直线的倾斜角与斜率(教学案)
直线的倾斜角与斜率教案
直线的倾斜角与斜率教案一、引言在平面几何中,直线是最基本的图形之一,而直线的倾斜角和斜率则是直线的两个重要特征。
本教案将介绍直线的倾斜角和斜率的概念、计算方法以及应用。
二、直线的倾斜角1. 概念直线的倾斜角是指直线与水平方向的夹角,通常用角度制表示,取值范围为0°~90°。
2. 计算方法设直线的倾斜角为α,则有:•当直线向右倾斜时,0°≤α≤90°,且tanα=斜率;•当直线向左倾斜时,90°<α≤180°,且tan(α-90°)=斜率。
3. 应用直线的倾斜角可以用于解决一些实际问题,如:•在建筑设计中,需要计算房屋屋顶的倾斜角度;•在地理学中,需要计算山坡的倾斜角度;•在物理学中,需要计算斜面的倾斜角度等。
三、直线的斜率1. 概念直线的斜率是指直线上任意两点之间的高度差与水平距离之比,通常用斜率公式表示,即:k=y2−y1 x2−x1其中,(x1,y1)和(x2,y2)为直线上的两个点。
2. 计算方法直线的斜率可以通过斜率公式进行计算,也可以通过直线的倾斜角进行计算,具体方法如下:•当直线向右倾斜时,斜率为正,且斜率等于tanα;•当直线向左倾斜时,斜率为负,且斜率等于tan(α-180°)。
3. 应用直线的斜率可以用于解决一些实际问题,如:•在数学中,可以用斜率来判断两条直线是否平行或垂直;•在物理学中,可以用斜率来计算物体的速度、加速度等;•在工程学中,可以用斜率来计算斜坡的坡度、道路的坡度等。
四、练习题1.某条直线的斜率为2,求该直线的倾斜角。
2.某条直线的倾斜角为30°,求该直线的斜率。
3.某条直线过点(1,2)和(3,6),求该直线的斜率。
4.某条直线过点(1,2)和(3,6),求该直线的倾斜角。
五、总结本教案介绍了直线的倾斜角和斜率的概念、计算方法以及应用。
通过学习,我们可以更好地理解直线的特征和性质,为解决实际问题提供了有力的工具。
直线的倾斜角和斜率教案
直线的倾斜角和斜率教案教案标题:直线的倾斜角和斜率教案教案目标:1. 了解直线的倾斜角和斜率的概念。
2. 学习如何计算直线的倾斜角和斜率。
3. 掌握直线倾斜角和斜率在实际问题中的应用。
教学步骤:引入活动:1. 引导学生回顾直线的定义,并提问:你们知道直线的倾斜角和斜率是什么吗?知识讲解:2. 解释直线的倾斜角是指直线与水平线之间的夹角,介绍如何通过直线上两点的坐标计算倾斜角。
3. 解释直线的斜率是指直线上任意两点之间的纵坐标差与横坐标差的比值,介绍如何通过直线上两点的坐标计算斜率。
示例演练:4. 给出几个直线的示例,引导学生计算每条直线的倾斜角和斜率。
5. 引导学生思考不同斜率和倾斜角对应的直线形态和特点。
应用实践:6. 提供一些实际问题,要求学生根据给定的直线斜率或倾斜角,解决问题。
- 例如:一辆汽车以每小时60公里的速度行驶,这辆汽车的倾斜角是多少?- 例如:某校田径场的跑道是直线形状,每个标准跑道的长度是400米,倾斜角是多少?拓展练习:7. 提供一些更复杂的直线问题,要求学生应用倾斜角和斜率的概念解决问题。
总结回顾:8. 总结直线的倾斜角和斜率的概念和计算方法。
9. 强调直线倾斜角和斜率在实际问题中的应用。
评估:10. 给学生提供一些练习题,检验他们对直线倾斜角和斜率的理解和应用能力。
教学资源:- 直尺、量角器等测量工具- 白板或投影仪- 实际问题的案例和练习题教学延伸:- 引导学生进一步探究直线的方程与倾斜角、斜率的关系。
- 引导学生研究曲线的倾斜角和斜率。
教学提示:- 在讲解倾斜角和斜率的计算方法时,使用具体的示例来帮助学生理解。
- 鼓励学生积极参与示例演练和应用实践,提高他们的实际运用能力。
- 鼓励学生思考和讨论直线倾斜角和斜率在现实生活中的应用场景。
《直线的倾斜角和斜率》教案(公开课)
《直线的倾斜角和斜率》教案(公开课)直线的倾斜角和斜率直线的斜率和倾斜角是数学中的重要概念,它们帮助我们理解和描述直线的特性。
本文将介绍直线的倾斜角和斜率的概念,并提供一些实例来帮助读者更好地理解。
1. 斜率的定义和计算方法斜率是直线上的两个点之间纵坐标变化量与横坐标变化量的比值。
用数学符号表示,斜率可以表示为:m = (y₂ - y₁)/(x₂ - x₁)其中,(x₁, y₁)和(x₂, y₂)是直线上的两个点。
例如,有一条直线上的两个点分别为A(1, 2)和B(4, 5),我们可以计算这条直线的斜率:m = (5 - 2)/(4 - 1)= 3/3= 1所以,这条直线的斜率为1。
2. 斜率的特性斜率可以帮助我们判断直线的特性,如下所示:- 当斜率为正数时,直线是向上倾斜的。
斜率越大,直线的倾斜程度越大。
- 当斜率为负数时,直线是向下倾斜的。
斜率越小,直线的倾斜程度越大。
- 当斜率为0时,直线是水平的。
- 当斜率不存在(除数为0)时,直线是垂直的。
通过计算直线的斜率,我们可以快速了解直线的倾斜情况,并对其特性进行分析。
3. 倾斜角的定义和计算方法倾斜角是直线与水平线之间的夹角,用数学符号表示为θ。
对于任意一条直线,可以通过其斜率来计算倾斜角。
倾斜角的计算方法如下:- 当直线向上倾斜时,倾斜角为θ = arctan(m)。
- 当直线向下倾斜时,倾斜角为θ = arctan(m) + π。
- 当直线是水平的时,倾斜角为θ = 0。
- 当直线是垂直的时,倾斜角不存在。
4. 实例分析让我们通过几个实例来进一步理解直线的倾斜角和斜率。
实例一:有一条直线通过点A(-2, 1)和B(4, 9)。
计算直线的斜率和倾斜角。
通过斜率的计算公式,我们可以得到直线的斜率:m = (9 - 1)/(4 - (-2))= 8/6= 4/3接下来,我们可以计算直线的倾斜角:θ = arctan(4/3)实例二:有一条直线通过点C(3, 2)和D(3, 8)。
直线的倾斜角与斜率教案
直线的倾斜角与斜率教案一、教学目标:1. 让学生理解直线的倾斜角的概念,能够求出直线的倾斜角。
2. 让学生掌握直线的斜率计算公式,能够计算直线的斜率。
3. 让学生了解直线的倾斜角与斜率之间的关系,能够运用关系解决问题。
二、教学重点与难点:1. 教学重点:直线的倾斜角的概念,直线的斜率计算公式,直线的倾斜角与斜率之间的关系。
2. 教学难点:直线的倾斜角与斜率之间的关系的运用。
三、教学方法:1. 采用问题驱动法,引导学生主动探究直线的倾斜角与斜率之间的关系。
2. 利用数形结合法,让学生在几何图形中观察和理解直线的倾斜角与斜率。
3. 运用实例分析法,让学生通过实际问题运用直线的倾斜角与斜率之间的关系。
四、教学准备:1. 教学课件:直线的倾斜角与斜率的定义及计算公式。
2. 教学素材:几何图形、实际问题。
3. 教学工具:黑板、粉笔、直尺、圆规。
五、教学过程:1. 导入新课:通过复习平面几何中直线的基本概念,引导学生进入直线的倾斜角与斜率的学习。
2. 讲解直线的倾斜角:介绍直线的倾斜角的定义,讲解如何求直线的倾斜角。
3. 讲解直线的斜率:介绍直线的斜率计算公式,讲解如何计算直线的斜率。
4. 探究直线的倾斜角与斜率之间的关系:引导学生通过几何图形和实际问题,探究直线的倾斜角与斜率之间的关系。
5. 巩固知识:通过实例分析,让学生运用直线的倾斜角与斜率之间的关系解决问题。
6. 课堂小结:总结直线的倾斜角与斜率的概念、计算方法和关系。
7. 布置作业:布置有关直线的倾斜角与斜率的练习题,巩固所学知识。
六、教学反思:在课后对自己的教学进行反思,看是否达到了教学目标,学生是否掌握了直线的倾斜角与斜率的概念和计算方法,以及是否能够运用关系解决问题。
如有问题,要及时调整教学方法,提高教学质量。
七、课时安排:本节课安排2课时,第一课时讲解直线的倾斜角和斜率的概念及计算方法,第二课时讲解直线的倾斜角与斜率之间的关系和巩固知识。
八、教学评价:通过课堂讲解、练习题和实际问题解决,评价学生对直线的倾斜角与斜率的掌握程度。
直线的倾斜角和斜率教案
直线的倾斜角和斜率教案一、教学目标1. 知识与技能:(1)理解直线的倾斜角的概念,能够求出直线的倾斜角;(2)掌握直线的斜率与倾斜角的关系,能够计算直线的斜率;(3)能够运用直线的倾斜角和斜率解决实际问题。
2. 过程与方法:通过观察实际情境,让学生感受直线的倾斜角和斜率的概念,培养学生的观察能力和思维能力。
3. 情感态度与价值观:培养学生对数学的兴趣,提高学生运用数学知识解决实际问题的能力。
二、教学重点与难点1. 教学重点:(1)直线的倾斜角的概念;(2)直线的斜率与倾斜角的关系;(3)运用直线的倾斜角和斜率解决实际问题。
2. 教学难点:直线的斜率与倾斜角的计算。
三、教学过程1. 导入新课:通过展示实际情境,如倾斜的梯子、斜坡等,引导学生思考直线的倾斜角和斜率的概念。
2. 讲解直线的倾斜角:(1)介绍直线的倾斜角的概念,即直线与水平线之间的夹角;(2)引导学生通过观察和思考,理解直线的倾斜角的大小与直线的斜率之间的关系。
3. 讲解直线的斜率:(1)介绍直线的斜率的概念,即直线的倾斜角的正切值;(2)引导学生通过观察和思考,掌握直线的斜率与倾斜角的关系;(3)举例说明如何计算直线的斜率。
4. 练习与巩固:布置一些有关直线的倾斜角和斜率的练习题,让学生独立完成,巩固所学知识。
四、课后作业1. 请描述直线的倾斜角和斜率的概念,并说明它们之间的关系。
(1)直线y = 2x + 3;(2)直线x = 4。
五、教学反思通过本节课的教学,学生应该能够理解直线的倾斜角和斜率的概念,并掌握它们之间的关系。
在教学过程中,要注意引导学生通过观察和思考,培养学生的观察能力和思维能力。
布置适量的练习题,让学生巩固所学知识。
在课后,要关注学生的学习情况,及时进行教学反思,不断提高教学质量。
六、教学拓展1. 探讨直线的倾斜角与斜率在实际应用中的例子,如建筑设计中的斜屋顶、物理学中的倾斜面等。
2. 引导学生思考直线的倾斜角和斜率在几何图形中的作用,如在三角形、四边形等图形中的运用。
《直线的倾斜角与斜率》教案及说明
《直线的倾斜角与斜率》教案及说明一、教学目标:1. 让学生理解直线的倾斜角的概念,能够求出直线的倾斜角。
2. 让学生掌握直线的斜率的概念,能够求出直线的斜率。
3. 让学生能够运用直线的倾斜角和斜率解决实际问题。
二、教学内容:1. 直线的倾斜角的概念。
2. 直线的斜率的概念。
3. 直线的倾斜角与斜率的关系。
4. 求直线的倾斜角和斜率的方法。
5. 直线的倾斜角和斜率在实际问题中的应用。
三、教学重点与难点:1. 直线的倾斜角的概念。
2. 直线的斜率的概念。
3. 直线的倾斜角与斜率的关系。
四、教学方法:1. 采用讲解法,讲解直线的倾斜角和斜率的概念。
2. 采用案例分析法,分析直线的倾斜角和斜率在实际问题中的应用。
3. 采用互动教学法,引导学生参与课堂讨论,提高学生的思维能力。
五、教学过程:1. 导入:通过生活中的实例,引导学生思考直线的倾斜角和斜率的概念。
2. 讲解直线的倾斜角和斜率的概念,让学生掌握直线的倾斜角和斜率的定义。
3. 通过案例分析,让学生了解直线的倾斜角和斜率在实际问题中的应用。
4. 互动环节:引导学生参与课堂讨论,探讨直线的倾斜角和斜率的关系。
5. 总结:对本节课的内容进行总结,强调直线的倾斜角和斜率的重要性。
6. 作业布置:布置有关直线的倾斜角和斜率的练习题,巩固所学知识。
说明:本教案根据学生的实际情况,采用讲解法、案例分析法和互动教学法,旨在让学生掌握直线的倾斜角和斜率的概念,并能运用到实际问题中。
在教学过程中,注意启发学生的思维,培养学生的动手能力。
六、教学评估:1. 课堂讲解过程中,观察学生对直线的倾斜角和斜率概念的理解程度。
2. 案例分析环节,观察学生对实际问题中直线倾斜角和斜率的应用能力。
3. 课堂互动环节,评估学生对直线倾斜角和斜率关系的掌握情况。
七、教学反思:1. 课后对学生的作业进行批改,总结学生在直线的倾斜角和斜率方面的掌握情况。
2. 针对学生存在的问题,调整教学方法,以便更好地让学生理解和掌握直线的倾斜角和斜率。
《直线的倾斜角与斜率》教案及说明
《直线的倾斜角与斜率》教案及说明一、教学目标:1. 理解直线的倾斜角的概念,能够求出直线的倾斜角。
2. 掌握直线的斜率与倾斜角的关系,能够计算直线的斜率。
3. 能够运用直线的倾斜角和斜率解决实际问题。
二、教学内容:1. 直线的倾斜角:定义、求法。
2. 斜率与倾斜角的关系:正切函数的应用。
3. 直线的斜率:定义、求法。
4. 实际问题中的应用:求直线的倾斜角和斜率。
三、教学重点与难点:1. 重点:直线的倾斜角的概念、斜率与倾斜角的关系。
2. 难点:直线的斜率的求法、实际问题中的应用。
四、教学方法:1. 采用讲授法,讲解直线的倾斜角和斜率的定义及求法。
2. 利用例题,演示直线的倾斜角和斜率的计算过程。
3. 引导学生运用直线的倾斜角和斜率解决实际问题。
五、教学过程:1. 导入新课:回顾直线的倾斜角和斜率的概念,引导学生思考两者之间的关系。
2. 讲解直线的倾斜角:介绍直线的倾斜角的定义,讲解求法,举例说明。
3. 讲解斜率与倾斜角的关系:引入正切函数,讲解斜率与倾斜角的关系,举例说明。
4. 讲解直线的斜率:介绍直线的斜率的定义,讲解求法,举例说明。
6. 课堂练习:布置练习题,巩固所学知识。
8. 布置作业:布置课后作业,巩固所学知识。
六、教学评估:1. 课堂讲解:评估学生对直线的倾斜角和斜率概念的理解程度,观察学生能否正确求解直线的倾斜角和斜率。
2. 课堂练习:评估学生运用直线的倾斜角和斜率解决实际问题的能力,观察学生是否能够正确计算和应用。
3. 课后作业:评估学生对直线的倾斜角和斜率知识的掌握程度,检查学生是否能够独立完成相关练习。
七、教学反思:1. 反思教学内容:根据学生的学习情况,调整直线的倾斜角和斜率的教学内容,确保学生能够理解和掌握。
2. 反思教学方法:根据学生的反馈,调整教学方法,提高学生的学习兴趣和参与度。
八、教学拓展:1. 直线的倾斜角和斜率在实际应用中的例子:如工程测量、物理学中的运动分析等。
直线的倾斜角和斜率教学教案
直线的倾斜角和斜率一教学教案教学目标(1)了解直线方程的概念.(2)正确理解直线倾斜角和斜率概念.理解每条直线的倾斜角是唯一的,但不是每条直线都存在斜率.(3)理解公式的推导过程,掌握过两点的直线的斜率公式.(4)通过直线倾斜角概念的引入和直线倾斜角与斜率关系的揭示,培养学生观察、探究能力,运用数学言语表达能力,数学交流与评价能力.(5)通过斜率概念的建立和斜率公式的推导,援助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.教学建议1.教材分析(1)知识结构本节内容首先依据一次函数与其图像一一直线的关系导出直线方程的概念;其次为进一步研究直线,建立了直线倾斜角的概念,进而建立直线斜率的概念,从而完成了直线的方向或者说直线的倾斜角这一直线的几何属性向直线的斜率这一代数属性的转变;最后推导出经过两点的直线的斜率公式.这些充分表达了解析几何的思想方法.(2)重点、难点分析①本节的重点是斜率的概念和斜率公式.直线的斜率是后继内容展开的主线,无论是建立直线的方程,还是研究两条直线的位置关系,以及商量直线与二次曲线的位置关系,直线的斜率都发挥着重要作用.因此,正确理解斜率概念,熟练掌握斜率公式是学好这一章的关键.②本节的难点是对斜率概念的理解.学生对于用直线的倾斜角来刻画直线的方向并不难接受,但是,为什么要定义直线的斜率,为什么把斜率定义为倾斜角的正切两个问题却并不简单接受.2.教法建议(1)本节课的教学任务有三大项:倾斜角的概念、斜率的概念和斜率公式.学生思维也对应三个高潮:倾斜角如何定义、为什么斜率定义为倾斜角的正切和斜率公式如何建立.相应的教学过程也有三个阶段①在教学中首先是创设问题情境,然后通过商量明确用角来刻画直线的方向,如何定义这个角呢,学生在商量中逐渐明确倾斜角的概念.②本节的难点是对斜率概念的理解.学生认为倾斜角就可以刻画直线的方向,而且每一条直线的倾斜角是唯一确定的,而斜率却不这样.学生还会认为用弧度制表示倾斜角不是一样可以数量化吗.再有,为什么要用倾斜角的正切定义斜率,而不用正弦、余弦或余切哪要解决这些问题,就要求教师援助学生认识到在直线的方程中表达的不是直线的倾斜角,而是倾斜角的正切,即直线方程(一次函数的形式,下同)中X的系数恰好就是直线倾斜角的正切.为了便于学生更好的理解直线斜率的概念,可以借助几何画板设计:(1)α变化一直线变化一中的系数变化(同时注意的变化(2)中的系数变化一直线变化一Q变化(同时注意的变化〕.运用上述正反两种变化的动态演示充分揭示直线方程中系数与倾斜角正切的内在关系,这对援助学生理解斜率概念是极有好处的.③在进行过两点的斜率公式推导的教学中要注意与前后知识的联系,课前要对平面向量,三角函数等有关内容作肯定的复习打算.④在学习直线方程的概念时要通过举例清楚地指出两个条件,最好能用充要条件表达直线方程的概念,强化直线与相应方程的对应关系.为将来学习曲线方程做好打算.(2)本节内容在教学中宜采纳启发引导法和商量法,设计为启发、引导、探究、评价的教学模式.学生在积极思维的根底上,进行充分的商量、争辩、交流、和评价.倾斜角如何定义、为什么斜率定义为倾斜角的正切和斜率公式的建立,这三项教学任务都是在商量、交流、评价中完成的.在此过程中学生的思维和能力得到充分的开展.教师的任务是创设问题情境,引发争论,组织交流,参与评价.教学设计例如直线的倾斜角和斜率教学目标:(1)了解直线方程的概念,正确理解直线倾斜角和斜率概念,(2)理解公式的推导过程,掌握过两点的直线的斜率公式.(3)培养学生观察、探究能力,运用数学言语表达能力,数学交流与评价能力.(4)援助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.教学重点、难点:直线斜率的概念和公式教学用具:计算机教学方法:启发引导法,商量法教学过程:(一)直线方程的概念如图1,对于一次函数,和它的图像一一直线有下面关系:(1)有序数对(0,1)满足函数,则直线上就有一点A,它的坐标是(0,1).(2)反过来,直线上点B(1,3),则有序实数对(1,3)就满足.一般地,满足函数式的每一对,的值,都是直线上的点的坐标(,);反之,直线上每一点的坐标都满足函数式,因此,一次函数的图象是一条直线,它是以满足的每一对X,y的值为坐标的点构成的.从方程的角度看,函数也可以看作是二元一次方程,这样满足一次函数的每一对,的值“变成了〃二元一次方程的解,使方程和直线建立了联系.定义:以一个方程的解为坐标的点都是某条直线上的点,反过来,这条直线上的全部点坐标都是这个方程的解,这时,这个方程就叫做这条直线的方程,这条直线就叫做这个方程的直线.以上定义改用集合表述:,的二元一次方程的解为坐标的集合,记作.假设(1) (2),则.问:你能用充要条件表达吗?答:一条直线是一个方程的直线,或者说这个方程是这条直线的方程的充要条件是…….(问题1)请画出以下三个方程所表示的直线,并观察它们的异同.99过定点,方向不同.如何确定一条直线?两点确定一条直线.还有其他方法吗?或者说如果只给出一点,要确定这条直线还应增加什么条件?学生:思考、回忆、答复:这条直线的方向,或者说倾斜程度.(导入)今天我们就共同来研究如何刻画直线的方向.(问题2)在坐标系中的一条直线,我们用怎样的角来刻画直线的方向呢?商量之前我们可以设想这个角应该是怎样的呢?它不仅能解决我们的问题,同时还应该是简单的、自然的.学生:展开商量.学生商量过程中会有错误和不严谨之处,教师注意引导.通过商量认为:应选择α角来刻画直线的方向.依据三角函数的知识,说明一个方向可以有无穷多个角,这里只需一个角即可(开始时可能有学生认为有四个角或两个角),当然用最小的正角.从而得到直线倾斜角的概念.(板书)定义:一条直线1向上的方向与轴的正方向所成的最小正角叫做直线的倾斜角.(教师强调三点:(1)直线向上的方向,(2)轴的正方向,(3)最小正角.)特别地,当与轴平行或重合时,规定倾斜角为0。
直线的倾斜角与斜率教学设计
2.1直线的倾斜角与斜率第一课时:倾斜角与斜率教学设计教学目标:1.初步了解直线的倾斜角和斜率的概念.2.初步掌握过两点的直线斜率的计算公式,会求直线的倾斜角和斜率.3.通过斜率概念的建立和斜率公式的推导,经历几何问题代数化的过程,经历从特殊到一般,从感性到理性的认知过程,体会数形结合和化归转化思想.教学重点:理解直线的倾斜角和斜率概念,初步掌握过两点的直线斜率的计算公式教学难点:直线的倾斜角、斜率概念的形成,两点斜率公式的建构。
教学过程:新课引入:在以往的几何学习中,我们常常通过直观感知、操作确认、思辨论证、度量计算等方法研究几何图形的形状、大小和位置关系,这种方法通常称为综合法.本章我们采用一种新的方法——坐标法研究几何图形的性质.坐标法是解析几何中最基本的研究方法.解析几何是17世纪法国数学家笛卡儿和费马创立的,它的基本内涵和方法是:通过坐标系,把几何的基本元素——点和代数的基本对象——数(有序数对)对应起来,在此基础上建立曲线(点的轨迹)的方程,从而把几何问题转化为代数问题,通过代数方法研究几何图形的性质.解析几何的创立是数学发展史上的一个里程碑,数学从此进入变量数学时期,它为微积分的创建奠定了基础.本章我们将在平面直角坐标系中,探索确定直线位置的几何要素,建立直线的方程,并通过直线的方程研究两条直线的位置关系、交点坐标以及点到直线的距离等.探究新知:我们知道,点是构成直线的基本元素. 在平面直角坐标系中,点用坐标表示,那么,直线如何表示呢?自主学习:阅读课本51-52页探究上方问题1确定一条直线位置的几何要素是什么?对于平面直角坐标系中的一条直线l,如何利用坐标系确定它的位置?教师讲解:两点以及一点和一个方向可以确定一条直线,由方向向量我们可以知道,两点确定一条直线可以归结为一点和一个方向确定一条直线.问题2如何表示直线的方向?教师讲解:在平面直角坐标系中,我们规定一条直线向上的方向为这条直线的方向. 因此,这些直线的区别在于它们的方向不同. 如何表示这些直线的方向?我们看到,这些直线相对于x 轴的倾斜程度不同,也就是它们与x 轴所成的角不同. 因此,我们可以利用这样的角来表示这些直线的方向.新知:当直线l 与x 轴相交时,我们以x 轴为基准,x 轴正向与直线l 向上的方向之间所成的角α叫做直线l 的倾斜角问题3 当直线l 与x 轴平行或重合时,其倾斜角大小为多少?直线的倾斜角的取值范围是什么?当直线l 与x 轴平行或重合时,我们规定它的倾斜角为0°.因此,直线的倾斜角α的取值范围为0°≤α<180°.这样,平面直角坐标系中,每一条直线都有一个确定的倾斜角,而且方向相同的直线,其倾斜程度相同,倾斜角相等;方向不同的直线,其倾斜程度不同,倾斜角不相等. 因此,我们可以用倾斜角表示平面直角坐标系中一条直线的倾斜程度,也就表示了直线的方向. 探究: (1)已知直线l 经过点O (0,0),P (√3,1),α与点O ,P 的坐标有什么关系? (2)类似地,如果直线l 经过点P 1(-1,1),P 2(√2,0),α与点P 1,P 2的坐标又有什么关系?对于问题(1),如图,向量OP ⃗⃗⃗⃗⃗ =(√3,1),且直线OP 的倾斜角也为α.由正切函数的定义,有tan α=√3=√33. 对于问题(2),如图,P 2P 1⃗⃗⃗⃗⃗⃗⃗⃗ =(−1−√2,1−0)=(−1−√2,1).平移向量P 2P 1⃗⃗⃗⃗⃗⃗⃗⃗ 到OP ⃗⃗⃗⃗⃗ ,则点P 的坐标为(−1−√2,1),且直线OP 的倾斜角也是α.由正切函数的定义,有tan α=−1−√2=1−√2.1)0)一般地,如图,当向量21P P 的方向向上时,),(121221y y x x P P --=.平移向量21P P 到OP ,则点P 的坐标为,且直线OP 的倾斜角也是α,由正切函数的定义,有tan α=.同样,当向量12P P 的方向向上时,如图,),(212112y y x x P P --=,也有tan α==.新知:直线l 的倾斜角α与直线l 上的两点P 1(x 1,y 1), P 2(x 2,y 2)(x 1≠x 2)的坐标有如下关系:tan α=y 2−y 1x 2−x 1.我们把一条直线的倾斜角α的正切值叫做这条直线的斜率(slope ),斜率常用小写字母k 表示,即k =tan α.日常生活中常用“坡度”表示倾斜面的倾斜程度:坡度=铅直高度水平宽度.问题3 当直线的倾斜角由0o 逐渐增大到180o 时,其斜率如何变化?为什么? 当倾斜角α满足0o ≤α<90o 且逐渐增大时,斜率k 逐渐增大; 当倾斜角α=90o ,斜率不存在;当倾斜角α满足90o <α<180o 且逐渐增大时,斜率k 逐渐增大.由正切函数的单调性,倾斜角不同的直线其斜率也不同.因此,我们可以用斜率表示倾斜角不等于90o 的直线相对于x 轴的倾斜程度,进而表示直线的方向.由tan α=y 2−y1x 2−x 1及k =tan α知,k = y 2−y1x 2−x 1.2121(,)--x x y y 2121y y x x --1212y y x x --2121y y x x --问题4 直线的方向向量与斜率k 有什么关系?我们知道,直线P 1P 2上的向量21P P 及与它平行的向量都是直线的方向向量. 直线P 1P 2的方向向量21P P 的坐标为2121(,)--x x y y , 当直线P 1P 2与x 轴不垂直时,12≠x x . 此时向量21121P P x x -也是直线P 1P 2的方向向量,且它的坐标为2121211(,),---x x y y x x 即21211y y x x --(,)=(1,),k 其中k 是直线P 1P 2的斜率.因此,若直线l 的斜率为k ,它的一个方向向量的坐标为(x ,y ),则=y k x. 例1、 如图,已知A (3,2),B (-4,1),C (0,-1),求直线AB ,BC ,CA 的斜率,并判断这些直线的倾斜角是锐角还是钝角.解:直线AB 的斜率k AB =1243---=17; 直线BC 的斜率k BC =1104----()=24-=-12;直线CA 的斜率k CA =2-(-1)30-=33=1.由k AB >0及k CA >0可知,直线AB 与CA 的倾斜角均为锐角; 由k BC <0可知,直线BC 的倾斜角为钝角. 随堂练习:1.已知坐标平面内三点A(-1,1)、B(1,1)、C(2,3+1). 求直线AB 、BC 的斜率和倾斜角;2.若A(1,0),B(-3,m),直线AB 的斜率为-12,则m =( ) A .-8 B .-2 C .2D .8CBAxyO3、若直线过点(1,3),(4,3+3),则此直线的倾斜角是 ( ) A .π6 B .π4 C .π3D .2π34、已知点M(0,b)与点N(-3,1)连成直线的倾斜角为120°,则b =_______. 课堂小结本节课,我们在平面直角坐标系中,讨论了确定直线位置的几何要素,即两点确定一条直线以及一点和一个方向确定一条直线. 并从形和数的角度利用倾斜角和斜率来刻画直线的倾斜程度,即表示了直线的方向,并探讨了倾斜角、斜率与直线上两点坐标的关系,探讨了直线的方向向量与斜率的关系.在此过程中体会到了数形结合数学思想以及将几何问题转化为代数问题的化归转化思想.知识点回顾:(1)倾斜角的定义:当直线l 与x 轴相交时,我们以x 轴为基准,x 轴正向与直线l 向上的方向之间所成的角α叫做直线l 的倾斜角.直线的倾斜角α的取值范围为 0°≤α<180°.(2)k=tan α k=y 2−y 1x 2−x 1.(3)若直线l 的斜率为k ,它的一个方向向量的坐标为(x ,y ),则=yk x. 作业:课本55页练习。
直线的倾斜角与斜率教案
直线的倾斜角与斜率教案直线的倾斜角与斜率教案一、教学目标:1. 知识目标:了解直线的倾斜角和斜率的概念;2. 能力目标:能够计算直线的倾斜角和斜率;3. 情感目标:培养学生对数学知识的兴趣和自信心。
二、教学重难点:1. 重点:直线的倾斜角和斜率的概念;2. 难点:直线的斜率的计算方式。
三、教学过程:1. 导入(5分钟):通过给学生出示两条不同斜率的直线,让学生观察并思考,引导学生讨论直线的倾斜角和斜率的关系,激发学生学习的兴趣。
2. 了解直线的倾斜角和斜率(10分钟):通过简单直观的图形,引导学生理解直线的倾斜角和斜率的概念。
并且给出直线的斜率公式:k = tanθ,其中k为直线的斜率,θ为直线的倾斜角。
3. 计算直线的倾斜角和斜率(25分钟):(1)通过给出两个点的坐标,引导学生计算直线的斜率的计算方法:k = (y2 - y1) / (x2 - x1);(2)通过给出直线方程,引导学生计算直线的倾斜角的计算方法:θ = arctank。
4. 练习与巩固(15分钟):让学生进行相关的计算练习,巩固和加深对直线的倾斜角和斜率的理解。
通过多种情况的练习,让学生熟练掌握计算直线斜率和倾斜角的方法。
5. 拓展(10分钟):通过给学生展示各种曲线的斜率和倾斜角的计算方法,引导学生思考如何计算曲线的斜率和倾斜角。
通过观察各种曲线的特点,引导学生发现曲线斜率和倾斜角的规律。
6. 总结(5分钟):对刚才的学习内容进行总结,帮助学生回顾和巩固所学知识。
引导学生思考直线斜率和倾斜角的重要性以及实际应用。
四、教学反思:本节课通过以具体的图形为例,引导学生理解直线倾斜角和斜率的概念,通过具体的计算方法,让学生能够实际计算直线的斜率和倾斜角。
同时,通过拓展的内容引导学生思考更加复杂形状的曲线的斜率和倾斜角的计算方法,培养学生的综合应用能力。
针对学生的不同水平,提供了多种练习,巩固学生对知识的掌握,创设了有利于学生自主思考和交流的氛围。
《直线的倾斜角和斜率》教学设计和教案
1.教师对本节课进行总结,强调直线的倾斜角和斜率的重要性。
2.学生针对本节课的内容进行复习,理清思路。
五、教学资源
1.图像展示:直线的示意图;
2.课件:直线倾斜角和斜率的计算方法;
3.习题:直线倾斜角和斜率的练习题。
六、教学评价
1.课堂练习评价:通过学生的课堂练习来评价他们对直线倾斜角和斜率的掌握情况;
《直线的倾斜角和斜率》教学设计和教案
教学设计:
一、教学目标
1.通过学习,使学生了解直线的倾斜角和斜率的概念;
2.能够掌握直线的倾斜角和斜率的计算方法;
3.能够应用斜率和倾斜角的概念解决实际问题;
4.培养学生的逻辑思维能力和解决问题的能力。
二、教学内容
直线的倾斜角和斜率。
三、教学重难点
直线的倾斜角和斜率的计算方法,以及应用。
Step 4 斜率与倾斜角的关系: (10分钟)
1.教师引导学生思考斜率和倾斜角的关系。
2.教师通过示例,讲解斜率和倾斜角的关系。
3.学生进行课堂练习,巩固所学内容。
4.教师对学生练习结果进行讲解和评价。
Step 5 应用实际问题: (15分钟)
1.教师提供一些实际问题,引导学生利用斜率和倾斜角解决问题。
1.教师引导学生思考斜率和倾斜角的关系。
2.教师通过示例,讲解斜率和倾斜角的关系。
3.学生进行课堂练习,巩固所学内容。
4.教师对学生练习结果进行讲解和评价。
步骤五:应用实际问题(15分钟)
1.教师提供一些实际问题,引导学生利用斜率和倾斜角解决问题。
2.学生进行课堂讨论,解决实际问题。
3.教师对学生解决问题的方法和结果进行讲解和评价。
直线的倾斜角和斜率教学设计
§ 3.1.1 直线的倾斜角和斜率一、教材分析本课是解析几何第一课时。
“万事开头难”, “好的开始是成功的一半”, 解析几何的基本思想和方法都应当得到适当的体现, 因此教学内容不仅有倾斜角、斜率的概念, 还应当包含坐标法、数形结合思想、解析几何发展史等。
直线的倾斜角和斜率都描述了直线的倾斜程度, 倾斜角用几何位置关系刻画, 斜率从数量关系刻画, 二者的联系桥梁是正切函数值, 并且可以用直线上两个点的坐标表示。
建立斜率公式的过程, 体现了坐标法的基本思想: 把几何问题代数化, 通过代数运算研究几何图形的性质。
本课涉及两个概念——倾斜角和斜率。
倾斜角是几何概念, 它主要起过渡作用, 是联系新旧知识的纽带, 研究斜率、直线的平行、垂直的解析表示等问题时都要用这个概念;斜率概念, 不仅其建立过程很好地体现了解析法, 而且它在建立直线方程、通过直线方程研究几何问题时也起核心作用, 这是因为在直角坐标系下, 确定直线的条件最本质条件是直线上的一个点及其斜率, 其他形式都可以化归到这两个条件上来。
综上, 从解析几何的基本方法——坐标法的基本思想考虑, 斜率概念是本课时的核心概念。
(一)直线的斜率在高中数学课程中的地位作用随着后续内容的学习, 我们逐渐发现, 一点和倾斜程度确定直线的很多应用: 直线的方向向量、直线的参数方程等等。
另外, 从加强知识内容的联系性, 从不同角度看待同一数学内容的角度看, 如果把函数看作描述客观世界变化规律的数学模型, 那么从变化的角度看, 直线是线性的, 它描述的是均匀变化, 是最简单的变化之一。
即直线在某个区间上的平均变化率, 与直线上任意一点的瞬时变化率(导数)是相同的, 都等于这条直线的斜率。
一切不均匀的变化或者非线性的变化, 在某个很小的区间(领域)内都可以由线性的、均匀的变化近似代替。
这也是为什么用线性的研究非线性的, 以直代曲, 用平均变化率研究瞬时变化率(导数)的原因。
(完整版)直线的倾斜角和斜率教案
《直线的倾斜角和斜率》教案教学目的:1。
了解“坐标法”2.理解直线的倾斜角和斜率概念,掌握过两点的直线的斜率公式并牢记斜率公式的特点及适用范围;3。
已知直线的倾斜角,求直线的斜率4。
已知直线的斜率,求直线的倾斜角5.培养学生“数形结合”的数学思想.教学重点: 斜率概念,用代数方法刻画直线斜率的过程.教学难点: 1直线的斜率与它的倾斜角之间的关系。
2运用两点坐标计算直线的斜率授课类型:新授课课时安排: 1课时教具:多媒体教学过程:一。
知识背景与课题的引入1.从本章起,我们研究什么?怎样研究?解析几何是17世纪法国数学家笛卡尔和费马创立的,解析几何的创立是数学发展史上的一个里程碑,数学从此由常量数学进入变量数学时期。
解析几何由此成为近代数学的基础之一。
在解析几何学中,我们常常用一种方法:坐标法. 研究几何图形的性质.坐标法是以坐标系为基础,把几何问题转化成代数问题,通过代数运算研究几何图形性质的方法,它是解析几何中最基本的研究方法.本章首先在平面直角坐标系中,建立直线的方程。
然后通过方程,研究直线的交点、点到直线的距离等.2.课题的引入下面就让我们就一起踏着前人的足迹去学习和体会这一门科学的思想方法,用坐标法研究几何问题时,我们首先研究最简单的几何对象-—直线,学习直线的倾斜角和斜率.二。
新课1问题1对于平面直角坐标系内的一条直线它的位置由哪些条件可以确定呢?一个点可以确定一条直线的位置吗?分析:对,两点可以确定一条直线,过一个点可以画出无数条直线,这些直线都与轴正向成一定的角度,我们把直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,于是可以这样确定一条直线,过个定点,确定一个倾斜角便可以确定一条直线;这种方法与两点确定一条直线的方法是一致的.先固定个点,再确定另外一点相当于确定这条直线的方向,确定了方向也就等同于确定了该直线的倾斜角.注:平行于轴或于轴重合的直线的倾斜角为0°问题2直线倾斜角的范围是多少?这样在平面直角坐标系内每一条直线都有一个确定的倾斜角,倾斜角刻画了直线倾斜的程度,且倾斜程度相同的直线,其倾斜角相等,倾斜程度不相同的直线,其倾斜角也不相等.问题3(斜率的概念)日常生活中我们可以用一个比值表示倾斜程度的量:例如:坡度(比)= 升高量/前进量能否用一个比值刻画斜率呢?如果是一条直线的倾斜角,我们把倾斜角的正切值叫做这条直线的斜率(slop)记作:tank问题4(1)是不是所有的直线都有倾斜角?是(2)是不是直线都有斜率?倾斜角为90°时没有斜率, 因为90°的正切不存在。
直线的倾斜角与斜率教学设计
直线的倾斜角与斜率教学设计一、教学目标1.理解直线的斜率和倾斜角的概念及其在几何问题中的意义。
2.掌握计算直线斜率和倾斜角的方法。
3.能够应用直线斜率和倾斜角解决几何问题。
二、教学内容1.直线斜率的定义和计算方法。
2.直线倾斜角的定义和计算方法。
3.直线斜率和倾斜角在几何问题中的应用。
三、教学过程一、引入活动(15分钟)1.师生对话引入:教师可以与学生进行对话,通过问题引导学生思考直线斜率和倾斜角的概念。
教师:同学们,你们都知道直线吧?直线在几何学中很重要,我们今天要学习直线的一个重要特征,那就是斜率和倾斜角。
那你们知道直线的斜率和倾斜角在几何问题中有什么作用呢?学生:斜率和倾斜角可以帮助我们描述直线的倾斜程度和方向,可以用来计算两点之间的斜率和倾斜角以及解决几何问题。
教师:对的,直线的斜率和倾斜角可以帮助我们更好地理解直线的性质和特征,也可以应用到实际问题中。
接下来,我们就来具体学习一下直线的斜率和倾斜角。
二、讲解直线斜率的概念和计算方法(20分钟)1.定义斜率:斜率指直线上两点之间纵坐标的变化量与横坐标的变化量的比值。
斜率=(y2-y1)/(x2-x1),其中(x1,y1)和(x2,y2)是直线上的两个点。
2.示例讲解:教师通过示意图和具体计算进行示例讲解。
示例:已知直线上有两个点A(2,3)和B(5,7),求直线AB的斜率。
计算过程:斜率=(7-3)/(5-2)=4/3解释:直线AB的斜率为4/3,表示直线从点A到点B的上升程度(纵坐标增加的量)每增加3个单位,水平坐标(横坐标)增加4个单位。
3.学生练习:学生进行类似的计算练习,教师随机抽查学生的答案。
三、讲解直线倾斜角的概念和计算方法(20分钟)1.定义倾斜角:倾斜角指直线与坐标轴正方向之间的夹角。
2.计算倾斜角:可以利用直线的斜率来计算直线的倾斜角。
倾斜角 = arctan (斜率)注:这里的arctan是反正切函数,可以使用计算器或数学软件进行计算。
《直线的倾斜角与斜率》教案及说明
一、教案内容1.1 直线的倾斜角【教学目标】理解直线的倾斜角的概念,掌握求直线倾斜角的方法,能运用直线的倾斜角解决相关问题。
【教学重点】直线的倾斜角的概念,求直线倾斜角的方法。
【教学难点】如何运用直线的倾斜角解决相关问题。
【教学准备】直角坐标系,多媒体设备。
【教学过程】(1)引入:复习直线的斜率概念,引导学生思考直线的倾斜角与斜率的关系。
(2)讲解:介绍直线的倾斜角的概念,讲解求直线倾斜角的方法,结合实例进行演示。
(3)练习:让学生独立完成一些求直线倾斜角的问题,并及时给予反馈和讲解。
(4)应用:引导学生运用直线的倾斜角解决实际问题,如求直线的倾斜角和斜率,判断直线的方向等。
1.2 直线的斜率【教学目标】理解直线的斜率的概念,掌握求直线斜率的方法,能运用直线的斜率解决相关问题。
【教学重点】直线的斜率的概念,求直线斜率的方法。
【教学难点】如何运用直线的斜率解决相关问题。
【教学准备】直角坐标系,多媒体设备。
【教学过程】(1)引入:复习倾斜角的概念,引导学生思考直线的斜率与倾斜角的关系。
(2)讲解:介绍直线的斜率的概念,讲解求直线斜率的方法,结合实例进行演示。
(3)练习:让学生独立完成一些求直线斜率的问题,并及时给予反馈和讲解。
(4)应用:引导学生运用直线的斜率解决实际问题,如判断两直线是否平行或重合,求直线的倾斜角等。
二、教案说明本教案分为两个课时,第一课时讲解直线的倾斜角,第二课时讲解直线的斜率。
在教学过程中,注重让学生通过实例来理解和掌握概念和方法,并在应用环节中引导学生将所学知识运用到实际问题中。
,教案中还提供了丰富的练习题,以便学生巩固所学知识。
六、直线的斜率计算【教学目标】掌握直线斜率的计算方法,能够运用直线的斜率解决实际问题。
【教学重点】直线斜率的计算方法。
【教学难点】如何运用直线斜率解决实际问题。
【教学准备】直角坐标系,多媒体设备。
【教学过程】(1)引入:复习上节课的内容,引导学生思考直线的斜率与倾斜角的关系。
《直线的倾斜角与斜率》教案及说明
《直线的倾斜角与斜率》教案及说明一、教学目标1. 理解直线的倾斜角的概念,能够求出直线的倾斜角。
2. 掌握直线的斜率与倾斜角的关系,能够计算直线的斜率。
3. 能够运用直线的倾斜角和斜率解决实际问题。
二、教学内容1. 直线的倾斜角的概念:直线与x轴正方向所成的角称为直线的倾斜角。
2. 直线的斜率与倾斜角的关系:直线的斜率k等于tan(倾斜角)。
3. 直线的斜率的计算:给定直线的倾斜角,可以计算出直线的斜率。
三、教学方法1. 采用讲解法,讲解直线的倾斜角的概念和斜率与倾斜角的关系。
2. 采用例题解析法,通过例题讲解如何计算直线的斜率。
3. 采用练习法,让学生通过练习题巩固所学知识。
四、教学步骤1. 导入新课:通过提问方式引导学生回顾初中阶段学习的直线倾斜角的概念。
2. 讲解直线的倾斜角的概念,解释斜率与倾斜角的关系。
3. 讲解直线的斜率的计算方法,并通过例题进行讲解。
4. 布置练习题,让学生巩固所学知识。
五、教学评价1. 课堂讲解:评价学生对直线倾斜角的概念和斜率与倾斜角的关系的理解程度。
2. 练习题:评价学生运用直线的倾斜角和斜率解决问题的能力。
说明:本教案分为五个部分,包括教学目标、教学内容、教学方法、教学步骤和教学评价。
在教学过程中,要注意引导学生理解直线的倾斜角的概念,掌握斜率与倾斜角的关系,并通过练习题让学生巩固所学知识。
教案中的教学内容可以根据实际情况进行调整。
六、教学拓展1. 讨论斜率的正负性:解释当倾斜角大于45度时,斜率为正;小于45度时,斜率为负。
2. 探究斜率与倾斜角的关系:引导学生通过绘制不同倾斜角的直线,观察斜率的变化。
七、实际应用1. 生活实例:举例说明直线的倾斜角和斜率在生活中的应用,如建筑物的屋顶斜率、道路的坡度等。
2. 数学应用:引导学生运用直线的倾斜角和斜率解决数学问题,如计算直线与坐标轴的交点、直线的方程等。
八、课堂小结1. 回顾本节课所学的内容,强调直线的倾斜角的概念和斜率与倾斜角的关系。
直线的倾斜角与斜率教案
3.1.1直线的倾斜角与斜率教学目标:1、正确理解直线的倾斜角和斜率的概念.2、理解直线的倾斜角的唯一性.3、理解直线的斜率的存在性.4、斜率公式的推导过程,掌握过两点的直线的斜率公式.重点与难点:直线的倾斜角、斜率的概念和公式.教学过程:一、复习准备:1.讨论:在直角坐标系中,只知道直线上的一点,能不能确定一条直线呢2.在日常生活中,我们常说这个山坡很陡峭,有时也说坡度,这里的陡峭和坡度说的是山坡与水平面之间的一个什么关系呢二、讲授新课:1.教学直线倾斜角与斜率的概念:我们知道,经过两点有且只有确定一条直线.那么,经过一点P的直线l的位置能确定吗如图,过一点P可以作无数多条直线a,b,c,…易见,答案是否定的.这些直线有什么联系呢1它们都经过点P.2它们的‘倾斜程度’不同.怎样描述这种‘倾斜程度’的不同引入直线的倾斜角的概念:①直线倾斜角的概念:x轴正向与直线向上方向之间所成的角叫直线的倾斜角注意:当直线与x轴平行或重合时,我们规定它的倾斜角为0度.;讨论:倾斜角的取值范围是什么呢0°≤α<180°.因为平面直角坐标系内的每一条直线都有确定的倾斜程度,引入直线的倾斜角之后,我们就可以用倾斜角α来表示平面直角坐标系内的每一条直线的倾斜程度.直线a∥b∥c,那么它们的倾斜角α相等吗答案是肯定的.所以一个倾斜角α不能确定一条直线.确定平面直角坐标系内的一条直线位置的几何要素:一个点P和一个倾斜角α..②直线斜率的概念:直线倾斜角 的正切值叫直线的斜率.常用k 表示,tan k α=讨论:当直线倾斜角为90︒度时它的斜率不存在吗.倾斜角的大小与斜率为正或负有何关系斜率为正或负时,直线过哪些象限呢 α取值范围是0°≤α<180°.给定两点P 1x 1,y 1,P 2x 2,y 2,x 1≠x 2,如何用两点的坐标来表示直线P 1P 2的斜率③ 直线斜率的计算:两点确定一直线,给定两点111(,)p x y 与222(,)p x y ,则过这两点的直线的斜率2121y y k x x -=- 思考:1直线的倾斜角α确定后,斜率k 的值与点1p ,2p 的顺序是否有关2当直线平行表于y 轴或与y 轴重合时,上述公式2121y y k x x -=-还适用吗归纳:对于上面的斜率公式要注意下面四点:1当x 1=x 2时,公式右边无意义,直线的斜率不存在,倾斜角α=90°,直线与x 轴垂直;2k 与P 1、P 2的顺序无关,即y 1,y 2和x 1,x 2在公式中的前后次序可以同时交换,但分子与分母不能交换;3斜率k 可以不通过倾斜角而直接由直线上两点的坐标求得;4当y 1=y 2时,斜率k=0,直线的倾斜角α=0°,直线与x 轴平行或重合.2.教学例题:例1.已知A3,2,B-4,1,C0,-1求直线AB 、AC 、BC 的斜率,并判断这些直线的倾斜角是锐角还是钝角.例2.在平面直角坐标系中画出经过原点且斜率分别为1,2,3--的直线123,,l l l .例3.已知三点Aa,2、B5,1、C-4,2a 在同一直线上,求a 的值;27 三.巩固与提高练习:1.教材P86面练习第1、2、3、4题;2.若直线l 向上的方向与y 轴正方向成30°角,则l 的倾斜角为60°、l 的斜率为3;3.已知等边三角形ABC,若直线AB 平行于y 轴,则∠C 的平分线所在的直线的倾斜角为0°, 斜率为0,另两边AC 、BC 所在的直线的倾斜角为120°、60°,斜率为-3、3;4.当且仅当m为何值时,经过两点Am,3、B-m,2m-1的直线的倾斜角为60°四.小结:倾斜角、斜率的概念,斜率的计算公式.五:作业习案十七。
直线的倾斜角和斜率教案
直线的倾斜角和斜率教案一、教学目标1. 让学生理解直线的倾斜角的概念,能够求出直线的倾斜角。
2. 让学生掌握直线的斜率的概念,能够求出直线的斜率。
3. 能够运用直线的倾斜角和斜率解决实际问题。
二、教学重点与难点1. 教学重点:直线的倾斜角和斜率的概念,求直线的倾斜角和斜率的方法。
2. 教学难点:直线的倾斜角和斜率在实际问题中的应用。
三、教学方法采用讲解法、演示法、练习法、讨论法等相结合的方法进行教学。
四、教学准备1. 教学课件。
2. 练习题。
3. 黑板、粉笔。
五、教学过程1. 导入新课通过复习旧知识,引导学生回顾直线方程的基本形式,提出直线的倾斜角和斜率的概念。
2. 讲解直线的倾斜角讲解直线的倾斜角的定义,通过图形演示直线的倾斜角,让学生理解直线的倾斜角的概念。
3. 讲解直线的斜率讲解直线的斜率的定义,通过图形演示直线的斜率,让学生理解直线的斜率的概念。
4. 求直线的倾斜角和斜率讲解如何求直线的倾斜角和斜率,通过例题演示求直线的倾斜角和斜率的方法,让学生跟随讲解,理解求直线的倾斜角和斜率的过程。
5. 练习巩固布置练习题,让学生独立完成,巩固直线的倾斜角和斜率的概念。
6. 课堂小结对本节课的内容进行小结,强调直线的倾斜角和斜率的概念及求法。
7. 作业布置布置课后作业,让学生进一步巩固直线的倾斜角和斜率的知识。
六、教学拓展1. 讨论斜率与倾斜角的关系:斜率k 与倾斜角α的关系是k = tan(α)。
通过这个关系,学生可以理解为什么斜率是倾斜角的正切值。
2. 探索非锐角直线的斜率:讨论当直线倾斜角大于90度时,斜率是什么。
学生将了解到,当直线垂直于x轴时,倾斜角为90度,斜率是无穷大;当直线逆时针旋转超过90度时,斜率变为负无穷。
七、应用实例1. 实际问题:给定直线的倾斜角,求直线的方程。
学生可以通过已知的倾斜角和一点来求解直线的斜率和方程。
2. 实际问题:给定直线的斜率,求直线的倾斜角。
学生可以通过已知的斜率来求解直线的倾斜角,并理解斜率与倾斜角的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线的倾斜角与斜率
教学目标:
1、了解确定直线位置的几何要素(两个定点、一个定点和斜率) .
2、对直线的倾斜角、斜率的概念要理解,能牢记过两点的斜率公式并掌握斜率公式的推导,了解直线的倾斜角的范围.
3、理解直线的斜率和倾斜角之间的关系,能根据直线的倾斜角求出直线的斜率.
1. 直线经过原点和点(-1,-1),则它的倾斜角是________.
答案:45°
解析:tan α=k =1,∴α=45°.
2. (必修2P 115习题2改编)已知过两点A(-a,3),B(5,-a)的直线的斜率为1,则实数a =________.
答案:-4
解析:由k =-a -35+a
=1,得a =-4. 3. 已知过两点A(m 2+2,m 2-3),B(3-m 2-m,2m)的直线l 的倾斜角为45°,则实数m =________.
答案:-2
解析: ∵m 2-3-2m m 2+2-(3-m 2-m )
=tan45°=1,∴m 2+3m +2=0,解得 m =-1或-2. 但当m =-1时,A 、B 重合,舍去. ∴m =-2.
4. 在直角坐标系中,直线y =-
33
x +1的倾斜角为________. 答案:5π6
解析:∵tanα=k =-
33,又α∈[0,π),∴α=5π6.
1. 直线倾斜角的定义
在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴所在的直线绕着交点按逆时针方向旋转至和直线重合时,所转的最小正角记为α,那么α就叫做直线的倾斜角,并规定:
与x 轴平行或重合的直线的倾斜角为0;
直线的倾斜角α的取值范围为[0,π).
2. 直线斜率的定义
倾斜角不是90°的直线,它的倾斜角的正切值叫做这条直线的斜率.直线的斜率常用k 表示,即k =tanα.由正切函数的单调性可知,倾斜角不同的直线其斜率也不同.
3. 过两点的斜率公式
过两点P 1(x 1,y 1),P 2(x 2,y 2)的直线,当x 1≠x 2时,斜率公式k =tanα=y 2-y 1x 2-x 1
,该公式与两点的顺序无关;当x 1=x 2时,直线的斜率不存在,此时直线的倾斜角为90°.
题型1 求直线的倾斜角和斜率
例1 在△ABC 中,A(1,-1),B(1,1),C(3,-1),求三边所在直线的倾斜角和斜率.
解:因为A 、B 两点的横坐标相同,所以边AB 垂直于x 轴,倾斜角为π2
,斜率不存在;因为A 、C 两点纵坐标相同,所以边AC 平行于x 轴,即垂直于y 轴,倾斜角和斜率均为0;
B 、
C 两点横坐标不相同,纵坐标也不相同,由tanα=
-1-13-1=-1,所以BC 边所在直线的倾斜角为3π4
,斜率为-1. 变式:已知点A(-3,1),点B 在y 轴上,直线AB 的倾斜角为2π3
,求点B 的坐标. 解:B 点的坐标设为(0,y),再利用k =tanθ以及两点求斜率公式tan120°=y -10+3
,得y =-2,所以B 的坐标为(0,-2).
题型2 直线的倾斜角和斜率之间的关系
例2 如果三条直线l 1,l 2,l 3的倾斜角分别为α1,α2,α3,其中l 1:x -y =0,l 2:x +2y =0,l 3:x +3y =0,则α1,α2,α3从小到大的排列顺序为____________.
答案:α1<α2<α3
解析:由tanα1=k 1=1>0,所以α1∈⎝⎛⎭
⎫0,π2. tanα2=k 2=-12
<0, 所以α2∈⎝⎛⎭⎫π2,π,α2>α1.tanα3=k 3=-13
<0, 所以α3∈⎝⎛⎭⎫π2,π,α3>α1,而-12<-13
,正切函数在⎝⎛⎭⎫π2,π上单调递增,所以α3>α2. 综上,α1<α2<α3.
变式1: 设直线l 的倾斜角为α,且π4≤α≤5π6
,则直线l 的斜率k 的取值范围是________. 答案:⎝⎛⎦
⎤-∞,-33∪[1,+∞) 解析:由k =tanα关系图(如下)知k ∈⎝⎛⎦
⎤-∞,-33∪[1,+∞).
变式2:直线l 的倾斜角是直线2x +y +2=0倾斜角的一半,则直线l 的斜率是多少?
反馈练习
1、直线xtan π7
+y =0的倾斜角是________. 答案:6π7
解析:k =-tan π7=tan ⎝⎛⎭⎫π-π7=tan 6π7,且6π7
∈[0,π). 2、直线l 经过A(2,1)、B(1,m 2)(m ∈R )两点,那么直线l 的倾斜角的取值范围是________.
答案: ⎣⎡⎦⎤0,π4∪⎝⎛⎭
⎫π2,π 解析:k =m 2-11-2
=1-m 2≤1.又k =tanα,0≤α<π,所以l 的倾斜角的取值范围为⎣⎡⎦⎤0,π4∪⎝⎛⎭⎫π2,π.
3、直线l 的倾斜角是直线2x —y +2=0倾斜角的两倍,则直线l 的斜率是 .
4、若经过点P(1-a,1+a)和Q(3,2a)的直线的倾斜角为锐角,则实数a 的取值范围是________.
答案:(-∞,-2)∪(1,+∞)
解析:由条件知直线的斜率存在,由公式得k =a -1a +2
,因为倾斜角为锐角,所以k>0,解得a>1或a<-2.所以a 的取值范围是{a|a>1或a<-2}.
(思考题)5、如图所示,直线l 过点P(-1,2),且与以A(-2,-3),B(4,0)为端点的线段恒相交,求直线l 的斜率范围.
解:设直线l ,PA ,PB 的倾斜角分别为θ,α1,α2,因为直线l 与线段AB 恒相交,所
以α1≤θ≤α2,其中,tanα1=5,tanα2=-25,α1∈⎝⎛⎭⎫0,π2,α2∈π2
,π,所以,tanθ≥tanα1或tanθ≥tanα2,即k ≥5或k ≤-25
.。