高一数学集合的基本运算练习题及答案
高一数学第一章集合及基本运算章末习题课
第一章章末习题课(时间:80分钟)一、单项选择题1.已知集合A={1,2},B={1},则下列关系正确的是(C)A.B∉A B.B∈AC.B⊆A D.A⊆B解析:两个集合之间不能用“∈或∉”,首先排除选项A,B,因为集合A={1,2},B={1},所以集合B中的元素都是集合A中的元素,由子集的定义知B⊆A.故选C.2.命题“存在一个无理数,它的平方是有理数”的否定是(B)A.任意一个有理数,它的平方是有理数B.任意一个无理数,它的平方不是有理数C.存在一个有理数,它的平方是有理数D.存在一个无理数,它的平方不是有理数3.已知集合M={x|-3<x≤5},N={x|x>3},则M∪N=(A)A.{x|x>-3} B.{x|-3<x≤5}C.{x|3<x≤5} D.{x|x≤5}解析:在数轴上表示集合M,N,如图所示,则M∪N={x|x>-3}.4.“-2<x<4”是“x<4”的(A)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由“-2<x<4”可得“x<4”,反之不成立,故“-2<x<4”是“x<4”的充分不必要条件.故选A.5.已知集合U={1,2,3,4,5},集合A={1,3,4},集合B={2,4},则(∁U A)∪B=(A) A.{2,4,5} B.{1,3,4}C.{1,2,4} D.{2,3,4,5}解析:由题意知∁U A={2,5},所以(∁U A)∪B={2,4,5}.故选A.6.“⎩⎪⎨⎪⎧x >0,y >0”是“1xy >0”的( A ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:因为⎩⎨⎧ x >0,y >0⇒1xy >0,1xy >0⇒⎩⎨⎧ x >0,y >0或⎩⎪⎨⎪⎧ x <0,y <0,所以“⎩⎨⎧x >0,y >0”是“1xy >0”的充分不必要条件.故选A.7.满足M ⊆{a 1,a 2,a 3,a 4},且M ∩{a 1,a 2,a 3}={a 1,a 2}的集合M 的个数是( B )A .1B .2C .3D .4 解析:集合M 必须含有元素a 1,a 2,并且不能含有元素a 3,故M ={a 1,a 2}或M ={a 1,a 2,a 4}.8.设全集U =A ∪B ,定义:A -B ={x |x ∈A ,且x ∉B },集合A ,B 分别用圆表示,则下列图中阴影部分表示A -B 的是( C )解析:因为A -B ={x |x ∈A ,且x ∉B },所以A -B 是集合A 中的元素去掉A ∩B 中的元素构成的集合.故选C.二、多项选择题9.下列命题正确的有( ABD )A .0是最小的自然数B .每个正方形都有4条对称轴C .∀x ∈{1,-2,0},2x +1>0D .∃x ∈N ,使x 2≤x解析:对于A :根据自然数集的定义知,最小的自然数是0,命题A 正确;对于B :由正方形的图形特点知,每个正方形都有两条对角线和过对边中点的直线四条对称轴,命题B 正确;对于C:这是全称量词命题,当x=-2时,2×(-2)+1<0,命题C错误;对于D:这是存在量词命题,当x=1或x=0时,可得x2≤x成立,命题D正确.故选ABD.10.已知集合M={-2,3x2+3x-4,x2+x-4},若2∈M,则满足条件的实数x可能为(AC)A.2 B.-2C.-3 D.1解析:由题意得2=3x2+3x-4或2=x2+x-4,若2=3x2+3x-4,即x2+x-2=0,所以x=-2或x=1,检验:当x=-2时,x2+x-4=-2,与元素互异性矛盾,舍去;当x=1时,x2+x-4=-2,与元素互异性矛盾,舍去.若2=x2+x-4,即x2+x-6=0,所以x=2或x=-3,经验证x=2或x=-3为满足条件的实数x.故选AC.11.下列命题正确的有(CD)A.A∪∅=∅B.∁U(A∪B)=(∁U A)∪(∁U B)C.A∩B=B∩AD.∁U(∁U A)=A解析:在A中,A∪∅=A,故A错误;在B中,∁U(A∪B)=(∁U A)∩(∁U B),故B错误;在C中,A∩B=B∩A,故C正确;在D中,∁U(∁U A)=A,故D正确.故选CD.12.若-1<x<2是-2<x<a的充分不必要条件,则实数a的值可以是(BCD)A.1 B.2C.3 D.4解析:由题意得a≥2.所以实数a的值可以是2,3,4.故选BCD.三、填空题13.若命题p:∀a,b∈R,方程ax2+b=0恰有一解,则命题p的否定为∃a,b∈R,方程ax2+b=0无解或至少有两解.14.已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩(∁B)=__{3}__.U解析:由U={1,2,3,4},且∁U(A∪B)={4},得A∪B={1,2,3},又B={1,2},所以A中一定有元素3,没有元素4,所以A∩(∁U B)={3}.15.设p:-m≤x≤m(m>0),q:-1≤x≤4,若p是q的充分条件,则m的最大值为__1__;若p 是q 的必要条件,则m 的最小值为__4__.解析:设A ={x |-m ≤x ≤m }(m >0),B ={x |-1≤x ≤4},若p 是q 的充分条件,则A ⊆B ,所以⎩⎪⎨⎪⎧ -m ≥-1,m ≤4,所以0<m ≤1,所以m 的最大值为1;若p 是q 的必要条件,则B ⊆A ,所以⎩⎪⎨⎪⎧ -m ≤-1,m ≥4,所以m ≥4,所以m 的最小值为4. 16.若“x <-1”是“x ≤a ”的必要不充分条件,则a 的取值范围是__{a |a <-1}__. 解析:若“x <-1”是“x ≤a ”的必要不充分条件,则{x |x ≤a }⊆{x |x <-1},∴a <-1.四、解答题17.已知集合A ={x |2≤x ≤5},B ={x |-2m +1<x <m },全集为R .(1)若m =3,求A ∪B 和(∁R A )∩B ;(2)若A ∩B =A ,求实数m 的取值范围.解:(1)∵m =3,∴B ={x |-5<x <3}.又A ={x |2≤x ≤5},∴∁R A ={x |x <2或x >5}.∴A ∪B ={x |-5<x ≤5},(∁R A )∩B ={x |-5<x <2}.(2)∵A ∩B =A ,∴A ⊆B .∴⎩⎪⎨⎪⎧-2m +1<2,m >5,解得m >5. ∴实数m 的取值范围为{m |m >5}.18.在①{x |a -1≤x ≤a },②{x |a ≤x ≤a +2},③{x |a ≤x ≤a +3}这三个条件中任选一个,补充在下面问题中,若问题中的a 存在,求a 的值;若a 不存在,请说明理由.已知集合A =________,B ={x |1≤x ≤3}.若“x ∈A ”是“x ∈B ”的充分不必要条件,求实数a 的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.解:由题意知,A 不为空集,B ={x |1≤x ≤3}.当选条件①时,因为“x ∈A ”是“x ∈B ”的充分不必要条件,所以A B ,即⎩⎪⎨⎪⎧ a -1≥1,a <3或⎩⎪⎨⎪⎧a -1>1,a ≤3,解得2≤a ≤3. 所以实数a 的取值范围是{a |2≤a ≤3}.当选条件②时,因为“x ∈A ”是“x ∈B ”的充分不必要条件,所以A B ,即⎩⎪⎨⎪⎧ a ≥1,a +2<3或⎩⎪⎨⎪⎧a >1,a +2≤3,无解.故不存在满足题意的a . 当选条件③时,因为“x ∈A ”是“x ∈B ”的充分不必要条件,所以A B ,即⎩⎨⎧a ≥1,a +3<3或⎩⎨⎧ a >1a +3≤3,无解. 故不存在满足题意的a .。
高一数学集合的运算试题答案及解析
高一数学集合的运算试题答案及解析1.若,则的值为【答案】-1【解析】由集合相等的概念可知有元素,又,则,故,根据集合中元素的互异性知,故。
【考点】集合相等的概念及集合中元素的互异性。
2.设全集,集合,则等于()A.B.C.D.【答案】D【解析】由,,所以.故选D.【考点】集合的简单运算.3.设集合,,若, 则集合P的子集的个数为()A.2个B.4个C.6个D.8个【答案】B【解析】,集合的子集有:共4个。
故B正确。
【考点】1集合的运算,2集合的子集。
4.已知,(1)设集合,请用列举法表示集合B;(2)求和.【答案】(1);(2),【解析】(1)集合为以集合为定义域的函数的值域。
时,;时,;时,;时,。
可用例举法写出集合。
(2)根据交集和并集的定义可直接得出和。
试题解析:解:(1)B= 5分(2) 7分10分【考点】1函数的值域;1集合的运算。
5.设求 .【答案】.【解析】有并集定义得.【考点】并集概念.6.集合.(1)当时,求;(2)若是只有一个元素的集合,求实数的取值范围.【答案】(1)(2)m=3或m≥【解析】(1)两集合的交集即两集合的公共部分,所以应联立方程解方程组。
(2)要使是只有一个元素的集合,只需联立的方程只有一个根,消去y或x后整理出一元二次方程,当判别式等于0时,对称轴需在内,当判别式大于0时,函数的一个零点应在内。
试题解析:(1),所以。
(2)消去y整理可得。
因为是只有一个元素的集合,即此方程在只有一个根。
所以或解得m=3或m≥【考点】集合运算一元二次函数图像7.若集合,,则=()A.B.C.D.【答案】C【解析】由集合的交集运算性质可知,故选C.【考点】集合交集的运算.8.已知全集则()A.B.C.D.【答案】C.【解析】找出全集U中不属于A的元素,确定出A的补集,找出既属于A补集又属于B的元素,即可确定出所求的集合,∵全集U={1,2,3,4},A={1,2},∴∁UA={3,4},又B={2,3},则(∁UA)∪B={2,3,4},故选C.【考点】交、并、补集的混合运算.9.集合.(1)若A B=,求a的取值范围.(2)若A B=,求a的取值范围.【答案】(1)(2)【解析】(1)A B=时,集合A集合B没有公共点,所以时成立。
高中数学集合测试题(附答案和解析)
高中数学集合测试题(附答案和解析)一、单选题1.已知集合U =R ,{}2230A x x x =--<,则U A ( )A .{}13x x -<<B .{}13x x -≤≤C .{1x x ≤-或3}x ≥D .{1x x <-或3}x >2.已知集合(){}{}|20,|10M x x x N x x =-<=-<,则MN =( ) A .(),2-∞ B .(),1-∞ C .()0,1 D .()1,23.设全集U =R ,集合302x A x x ⎧⎫-=≤⎨⎬+⎩⎭,集合{}ln 1B x x =≥,则()U A B =( ) A .()e,3 B .[]e,3 C .[)2,e - D .()2,e - 4.设集合{}()(){}|32,|130A x x B x x x =-<<=+-≤,则A B =( ) A .{}|12x x -≤< B .{}|33x x -<≤ C .{}|32x x -<≤ D .{}|13x x -≤≤ 5.已知{}33U x x =-≤<,{}23A x x =-≤<,则图中阴影表示的集合是( )A .{}32x x -≤≤-B .][33,)-∞-⋃+∞(,C .{}0x x ≤D .{}32x x -≤<-6.集合{}220A x x x =--≤,{}10B x x =-<,则A B =( ) A .{}1x x ≥B .{}11x x -≤<C .{}1x x <-D .{}21x x -≤<7.已知集合{}|03A x x =<<,{}|14B x x =≤≤,则A B ⋃=( )A .{}|13≤<x xB .{}|04x x <≤C .{}|04x x <<D .{}3|1x x <<8.已知集合{}|21x A x =>,{}22B x y x x ==-∣,则A B =( ) A .()0,+∞ B .(]0,2 C .(]1,2 D .[)2,+∞9.已知集合{}28x A x =≤,{}16B x x =-≤≤,则A B ⋃=( ) A .(,6]-∞ B .[1,6]- C .[1,3]- D .(0,6]10.设全集{}*5U x N x =∈≤,集合{}1,2M =,{}2,3,4N =,则图中阴影部分表示的集合是( )A .{}2B .{}3,4C .{}2,3D .{}2,3,4 11.已知集合{}(5)0A x x x =-<,{}14B x x =-,则A B ⋃=( )A .[1,0)-B .[4,5)C .(0,4]D .[1,5)-12.设集合{}A x x a =>,{}2320B x x x =-+>,若A B ⊆,则实数a 的取值范围是( ).A .(),1-∞B .(],1-∞C .()2,+∞D .[)2,+∞ 13.设全集2,1,0,1,2U,{}2,1,2A =--,{}2,1,0,1B =--,则()U A B =( ) A .{}2,1- B .{}0,1 C .{}1,0,1- D .{}2,1,0,1--14.设集合{}*21230,1A x N x x B x R x ⎧⎫=∈--≤=∈≥⎨⎬⎩⎭∣∣,则A B =( ) A .0,1 B .{}1 C .(]0,1 D .{}0,1 15.下面五个式子中:①{}a a ⊆;②{}a ∅⊆;③{a }∈{a ,b };④{}{}a a ⊆;⑤a ∈{b ,c ,a };正确的有( )A .②④⑤B .②③④⑤C .②④D .①⑤二、填空题16.集合()(){}2140,A x x x ax x R =-++=∈中所有元素之和为3,则实数=a ________. 17.若集合406x A x x ⎧⎫-=<⎨⎬+⎩⎭,{}230B x x =+<,则()R A B ⋂=______. 18.已知集合(){}ln 2|A x y x ==-,{}2430|B x x x ≤=-+,则A B ⋃=____________19.若A ={}(,)21x y y x =-,B ={}2(,)x y y x =,则A B =____________ 20.已知函数2()43f x x x =-+,()52g x mx m =+-,若对任意的[]11,4x ∈,总存在[]21,4x ∈,使12()()f x g x =成立,则实数m 的取值范围是 ________.21.若{}31,2a ∈,则实数=a ____________.22.已知集合{}N 4sin ,02A x x θθπ=∈<≤≤,若集合A 中至少有3个元素,则实数θ取值范围为________23.某班有学生45人,参加了数学小组的学生有31人,参加了英语小组的学生有26人.已知该班每个学生都至少参加了这两个小组中的一个小组,则该班学生中既参加了数学小组,又参加了英语小组的学生有___________人.24.立德中学有35人参加“学党史知识竞赛”若答对第一题的有20人,答对第二题的有16人,两题都答对的有6人,则第一、二题都没答对的有___人.25.已知A ={x |2a <x ≤a +8},B ={x |x <-1或x >5},若A ∪B =R , 则a 的取值范围是________.三、解答题26.已知集合2111x A x x +⎧⎫=>-⎨⎬-⎩⎭,(){}222B x x m x m B =<-+,不为空集. (1)当1m =时,求()R A B ⋃;(2)若“x A ∈”是“x B ∈”的必要条件,求实数m 的取值范围.27.已知函数()f x =A ,函数()g x 的定义域为集合B ,(1)当0a =时,求A B ;(2)设命题:p x A ∈,命题:q x B ∈,p q 是的充分不必要条件,求实数a 的取值范围.28.已知集合{}37A x x =≤<,{}210B x x =<<,{}C x x a =<.(1)求A B ,()A B R ;(2)若A C ⋂≠∅,求a 的取值范围.29.已知集合{}12,,,n A a a a =⋅⋅⋅(120n a a a ≤<<⋅⋅⋅<,*n ∈N ,3n ≥)具有性质P :对任意,i j (1i j m ≤≤≤),i j a a +与j i a a -至少一个属于A .(1)分别判断集合{}0,2,4M =,与{}1,2,3N =是否具有性质P ,并说明理由;(2){}123,,A a a a =具有性质P ,当24a =时,求集合A ;(3)①求证:0A ∈;②求证:1232n n n a a a a a +++⋅⋅⋅+=.30.已知集合{}{}222,|540A xa a B x x x x =-≤+=-+≤≥∣. (1)当3a =时,求A B ;(2)若0a >,且“x A ∈”是“R x B ∈”的充分不必要条件,求实数a 的取值范围.【参考答案】一、单选题1.C【解析】【分析】根据补集的定义,结合一元二次不等式的解法进行求解即可.【详解】 因为集合{}2230{|13}A x x x x x =--<=-<<, 所以U A {1x x ≤-∣或3}x ≥. 故选:C.2.C 【解析】【分析】分别求出集合M 和集合N ,然后取交集即可.【详解】集合(){}{}|20|02M x x x x x =-<=<<,{}|1N x x =<,则MN ={}()|010,1x x <<=, 故选:C3.D【解析】【分析】求出集合A 、B ,利用交集和补集的定义可求得集合()U A B ∩.【详解】 因为{}30232x A x x x x ⎧⎫-=≤=-<≤⎨⎬+⎩⎭,{}{}ln 1e B x x x x =≥=≥,所以,{}e U B x x =<,因此,()()2,e U A B =-.故选:D.4.A【解析】【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得;【详解】解:由()()130x x +-≤,解得13x -≤≤,所以()(){}{}|130|13B x x x x x =+-≤=-≤≤,又{}|32A x x =-<<,所以{}|12A B x x ⋂=-≤<.故选:A5.D【解析】【分析】根据韦恩图,写出相应集合即可【详解】由图可知,阴影表示的集合为集合A 相对于全集U 的补集,即阴影表示的集合是U A ,所以{}32U A x x =-≤<-;故选:D6.B【解析】【分析】解不等式可求得集合,A B ,由交集定义可得结果.【详解】{}{}22012A x x x x x =--≤=-≤≤,{}{}101B x x x x =-<=<, {}11A B x x ∴⋂=-≤<.故选:B.7.B【解析】【分析】 根据集合的并集运算即可.【详解】因为{}|03A x x =<<,{}|14B x x =≤≤,所以{}|04A B x x =<≤.故选:B.8.B【解析】【分析】先求出集合A ,B ,再根据交集定义即可求出.【详解】因为{}|0A x x =>,{}|02B x x =≤≤,所以(]0,2A B =.故选:B.9.A【解析】【分析】先解出集合A ,再计算A B 即可.【详解】{}{}283x A x x x =≤=≤,故A B ⋃=(,6]-∞. 故选:A.10.B【解析】【分析】由Venn 图中阴影部分可知对应集合为N()U M ,然后根据集合的基本运算求解即可. 【详解】解:由Venn 图中阴影部分可知对应集合为N ()U M全集*{|5}{1U x N x =∈≤=,2,3,4,5},集合{1M =,2},{2N =,3,4},U M ={}3,4,5,N ()U M ={}3,4.故选:B .11.D【解析】【分析】由一元二次不等式的解法求出集合A ,再根据并集的定义即可求解.【详解】解:因为集合{}{}(5)005A x x x x x =-<=<<,{}14B x x =-,所以{}{}[05141,5)A B x x x x ⋃=<<⋃-=-.故选:D.12.D【解析】【分析】先求出集合B ,再由A B ⊆求出实数a 的范围.【详解】{}{23202B x x x x x =-+>=>或}1x <. 因为集合{}A x x a =>,A B ⊆,所以2a ≥.故选:D13.B【解析】【分析】先求U A ,再求()U A B ⋂即可.【详解】 U A ={0,1},()U A B ={0,1}. 故选:B.14.B【解析】【分析】先求出结合,A B ,再根据集合的交集运算,即可求出结果.【详解】 因为{}{}{}*2*N 230N 131,2,3A x x x x x =∈--≤=∈-≤≤=∣, {}1101B x x x x ⎧⎫=∈≥=∈<≤⎨⎬⎩⎭R R 所以{}1A B =.故选:B.15.A【解析】【分析】根据元素与集合,集合与集合之间的关系逐个分析即可得出答案.【详解】①中,a 是集合{a }中的一个元素,{}a a ∈,所以①错误;空集是任一集合的子集,所以②正确;{}a 是{},a b 的子集,所以③错误;任何集合是其本身的子集,所以④正确;a 是{},,bc a 的元素,所以⑤正确.故选:A.二、填空题16.2-【解析】【分析】由()()2140x x ax -++=得1231x x x a ++=-,即可求解参数. 【详解】由()()2140x x ax -++=得10x -=或240x ax ++=所以11x =或23x x a +=-依题意得12313x x x a ++=-=,得2a =-故答案为:2-.17.342x x ⎧⎫-≤<⎨⎬⎩⎭【解析】【分析】先求出集合A 和集合B 的补集,再求两集合的交集即可【详解】 依题意,{}40646x A x x x x ⎧⎫-=<=-<<⎨⎬+⎩⎭,{}32302B x x x x ⎧⎫=+<=<-⎨⎬⎩⎭, 则R 32B x x ⎧⎫=≥-⎨⎬⎩⎭, 故()R 342A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭. 故答案为:342x x ⎧⎫-≤<⎨⎬⎩⎭18.[)1,+∞ 【解析】【分析】先求出集合A 、B ,再求A B .【详解】集合(){}()2|2ln ,A x y x =+∞==-,{}[]2|1,3430B x x x =≤=-+, 所以()[][)2,1,31,A B +∞⋃=∞⋃+=.故答案为:[)1,+∞19.{(1,1)}【解析】【分析】由集合中的条件组成方程组求解可得.【详解】 将21y x =-代入2yx ,得2210x x -+=,解得1x =,则211y =-=,所以{(1,1)}A B =.故答案为:{(1,1)} 20.(,3][6,)-∞-⋃+∞【分析】根据对任意的[]11,4x ∈,总存在[]21,4x ∈,使得12()()f x g x =,可得两个函数值域的包含关系,进而根据关于m 的不等式组,解不等式组即可.【详解】因为()22()4321f x x x x =-+=--,所以函数()f x 的对称轴为2x =,对任意的[]11,4x ∈,记()[]1,3f x ∈-.记[]1,3A =-.由题意知,当0m =时不成立,当0m >时,()52g x mx m =+-在[]1,4上是增函数,所以[]()5,25g x m m ∈-+,记[]5,25B m m =-+由题意知,B A所以m m -≥-+≥⎧⎨⎩15253,解得6m ≥. 当0m <时,()52g x mx m =+-在[]1,4上是减函数,所以[]()25,5g x m m ∈+-,记[]25,5C m m =+-,由题意知,C A ⊇所以251{53m m +≤--≥,解得3m ≤-. 综上所述,实数m 的取值范围是(,3][6,)-∞-⋃+∞.故答案为: (,3][6,)-∞-⋃+∞【点睛】解决本题的关键是将问题转化为对任意的[]11,4x ∈,总存在[]21,4x ∈,使得12()()f x g x =, 可得两个函数值域的包含关系,进而分别求两个函数的值域.21.5##32【解析】【分析】根据题中条件,由元素与集合之间的关系,得到23a =求解,即可得出结果.【详解】因为{}31,2a ∈,所以23a =,解得32a =. 故答案为:32. 22.5,66ππ⎛⎫ ⎪⎝⎭【分析】分析可知元素0、1、2必属于集合A ,可得出1sin 2θ>,由[]0,2θπ∈可求得θ的取值范围. 【详解】要使集合A 中至少有3个元素,则元素0、1、2必属于集合A ,所以只需4sin 2θ>,即1sin 2θ>, 又[]0,2θπ∈,解得5,66ππθ⎛⎫∈ ⎪⎝⎭. 故答案为:5,66ππ⎛⎫ ⎪⎝⎭. 23.12【解析】【分析】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,列方程求解即可.【详解】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,则31264512x =+-=. 故答案为:12.24.5【解析】【分析】集合元素计算,只对第一题,只对第二题,二题都答对和二题都不对,总数为35人.【详解】设第一、二题都没答对的有x 人,则()()206166635x -+-++= ,所以5x =故答案为:525.13,2⎡⎫--⎪⎢⎣⎭ 【解析】【分析】由集合{|28}A x a x a =<+,{|1B x x =<-,或5}x >,A B R =,列出不等式组,能求出a 的取值范围.【详解】集合{|28}A x a x a =<+,{|1B x x =<-,或5}x >,A B R =,∴2185a a <-⎧⎨+⎩, 解得132a -<-.a ∴的取值范围为[3-,1)2-. 故答案为:[3-,1)2-. 三、解答题26.(1)12x x ⎧≤-⎨⎩或}1x ≥ (2)(]2,4-【解析】【分析】(1)分别求出集合,A B ,再根据并集和补集的定义即可得出答案;(2)根据“x A ∈”是“x B ∈”的必要条件,可得B A ⊆且B ≠∅,讨论m 的范围,从而可得出答案.(1)解:当1m =时,{}212112B x x x x x ⎧⎫=<+=-<<⎨⎬⎩⎭, {}211211x A x x x x +⎧⎫=>-=-<<⎨⎬-⎩⎭, 则112A B x x ⎧⎫⋃=-<<⎨⎬⎩⎭, 所以()12R A B x x ⎧⋃=≤-⎨⎩或}1x ≥; (2) 解:(){}()(){}222210B x x m x m x x m x =<-+=+-<, 因为“x A ∈”是“x B ∈”的必要条件,所以B A ⊆且B ≠∅,故2m ≠-, 当12m ->,即2m <-时,12m B x x ⎧⎫=<<-⎨⎬⎩⎭, 因为{}21A x x =-<<,所以A B =∅,不符合题意; 当12m -<,即2m >-时,12m B x x ⎧⎫=-<<⎨⎬⎩⎭, 则有222m m >-⎧⎪⎨-≥-⎪⎩,解得24m -<≤, 综上(]2,4m ∈-.27.(1)1{|03A B x x ⋂=-<≤或1}x =;(2)1a ≥或43a ≤-. 【解析】【分析】(1)求解分式不等式和一元二次不等式,解得集合,A B ,再求交集即可; (2)根据p q 是的充分不必要条件可知A 是B 的真子集,列不等式求a 的取值范围即可.(1)要使得()f x 有意义,则1031x x -≥+,得(1)(31)0310x x x -+≥⎧⎨+≠⎩,解得:113x ≤-<, 所以1|13A x x ⎧⎫=-<≤⎨⎬⎩⎭;当0a =时,()g x =()g x 有意义,则20x x -≥,解得:1x ≥或0x ≤, 所以{|1B x x =≥或0}x ≤, 故1{|03A B x x ⋂=-<≤或1}x =. (2)以为22(21)0x a x a a -+++≥,即[]()(1)0x a x a --+≥,解得:1x a ≥+或x a ≤, 所以{|1B x x a =≥+或}x a ≤,由题意可知A 是B 的真子集,所以1a ≥或113a +≤-(等号不同时成立), 得1a ≥或43a ≤-. 28.(1){}210A B x x ⋃=<<,R (){|23A B x x =<<或710}x ≤<;(2)()3,+∞.【解析】【分析】 (1)直接利用集合并集、交集和补集的定义求解;(2)分析A C ⋂≠∅即得解.(1)解:因为A ={x |3≤x <7},B ={x |2<x <10}, 所以{}210A B x x ⋃=<<.因为A ={x |3≤x <7},所以R {|3A x x =<或 7}x ≥则R (){|23A B x x =<<或710}x ≤<. (2)解:因为A ={x |3≤x <7},C ={x |x a <},且A C ⋂≠∅,所以3a >.所以a 的取值范围为()3,+∞.29.(1)集合M 具有,集合N 不具有,理由见详解(2)A {0,4,8}=(3)证明见详解【解析】【分析】(1)利用性质P 的定义判断即可;(2)利用33a a A +∉,330a A a -=∈可得10a =,又23a a A +∉,32a a A -∈,分析可得322a a a -=,即得解;(3)① 由 n n a a A +∉,0n n a A a -=∈,可证明; ② 由110n n n n n a a a a a a -≤<<⋅⋅⋅<---,以及n n i a a A -+∉,n n i a a A --∈可得121321,,,...,n n n n n n n n a a a a a a a a a a a a --=-=-=-=-,将等式左右两边相加可证明.(1)集合{}0,2,4M =具有性质P ,集合{}1,2,3N =不具有性质P 理由如下:对集合{}0,2,4M =,由于202,422,404,000,220,440M -=-=-=-=-=-=∈ 所以集合M 具有性质P ;对集合{}1,2,3N =,由于224N +=∉,故集合N 不具有性质P .(2)由于33333A a a a a a +>∴+∉,故330a A a -=∈10a ∴= 又23323,a a a A a a +>∴+∉,故32a a A -∈又3230<a a a -<,故322a a a -=322=8a a =∴因此集合A {0,4,8}=(3)①由于n n n n n A a a a a a +>∴+∉,故0n n a A a -=∈10a ∴= 0A ∴∈,故得证②由于120n a a a ≤<<⋅⋅⋅<故110n n n n n a a a a a a -≤<<⋅⋅⋅<---又(1,2,...,1)n n i n n n i a a a i n a a A --+>=-∴+∉n n i a a A -∴-∈121321,,,...,n n n n n n n n a a a a a a a a a a a a --∴=-=-=-=- 将各个式子左右两边相加可得:1232n n n a a a a a +++⋅⋅⋅+= 故得证30.(1){|11A B x x ⋂=-≤≤或}45x ≤≤(2)01a <<【解析】【分析】(1)求出集合,A B ,进而可得A B ; (2)根据包含关系列不等式求解即可.(1)∵当3a =时,{}{|15,|1A x x B x x =-≤≤=≤戓}4x ≥, ∴{|11A B x x ⋂=-≤≤或}45x ≤≤;(2)∵{|1B x x =≤或}4x ≥,∴{}|14R B x x =<<, 由“x A ∈”是“R x B ∈的充分不必要条件得A 是B R 的真子集且A ≠∅又{}()|220x A x a a a =-≤+>≤,∴2124a a ->⎧⎨+<⎩∴01a <<.。
【人教A版高一数学试题】必修一1.1.3《集合的基本运算》 及答案解析
集合的基本运算1.设集合A ={x|2≤x <4},B ={x|3x -7≥8-2x},则A ∪B 等于( )A .{x|x ≥3}B .{x|x ≥2}C .{x|2≤x <3}D .{x|x ≥4}2.已知集合A ={1,3,5,7,9},B ={0,3,6,9,12},则A ∩B =( )A .{3,5}B .{3,6}C .{3,7}D .{3,9}3.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.4.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},若A ∩B ={9},求a 的值.一、选择题(每小题5分,共20分)1.集合A ={0,2,a},B ={1,a 2}.若A ∪B ={0,1,2,4,16},则a 的值为( ) A .0 B .1 C .2 D .4 2.设S ={x|2x +1>0},T ={x|3x -5<0},则S ∩T =( ) A .Ø B .{x|x<-12} C .{x|x>53} D .{x|-12<x<53}3.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B=()A.{x|x≥-1} B.{x|x≤2}C.{x|0<x≤2} D.{x|-1≤x≤2}4.满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是()A.1 B.2 C.3 D.4二、填空题(每小题5分,共10分)5.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.6.满足{1,3}∪A={1,3,5}的所有集合A的个数是________.三、解答题(每小题10分,共20分)7.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A∩B.8.已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=Ø,求a 的取值范围.9.(10分)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?集合的基本运算(答案解析)1.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于() A.{x|x≥3}B.{x|x≥2}C.{x|2≤x<3} D.{x|x≥4}【解析】B={x|x≥3}.画数轴(如下图所示)可知选B.【答案】 B2.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=()A.{3,5} B.{3,6}C.{3,7} D.{3,9}【解析】A={1,3,5,7,9},B={0,3,6,9,12},A和B中有相同的元素3,9,∴A∩B={3,9}.故选D.【答案】 D3.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.【解析】设两项都参加的有x人,则只参加甲项的有(30-x)人,只参加乙项的有(25-x)人.(30-x)+x+(25-x)=50,∴x=5.∴只参加甲项的有25人,只参加乙项的有20人,∴仅参加一项的有45人.【答案】454.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},若A ∩B ={9},求a 的值.【解析】 ∵A ∩B ={9},∴9∈A ,∴2a -1=9或a 2=9,∴a =5或a =±3. 当a =5时,A ={-4,9,25},B ={0,-4,9}. 此时A ∩B ={-4,9}≠{9}.故a =5舍去.当a =3时,B ={-2,-2,9},不符合要求,舍去. 经检验可知a =-3符合题意.一、选择题(每小题5分,共20分)1.集合A ={0,2,a},B ={1,a 2}.若A ∪B ={0,1,2,4,16},则a 的值为( ) A .0 B .1 C .2 D .4【解析】 ∵A ∪B ={0,1,2,a ,a 2},又A ∪B ={0,1,2,4,16}, ∴{a ,a 2}={4,16},∴a =4,故选D. 【答案】 D2.设S ={x|2x +1>0},T ={x|3x -5<0},则S ∩T =( ) A .Ø B .{x|x<-12} C .{x|x>53} D .{x|-12<x<53}【解析】 S ={x|2x +1>0}={x|x>-12},T ={x|3x -5<0}={x|x<53},则S ∩T ={x|-12<x<53}.故选D.【答案】 D3.已知集合A ={x|x>0},B ={x|-1≤x ≤2},则A ∪B =( ) A .{x|x ≥-1} B .{x|x ≤2}C.{x|0<x≤2} D.{x|-1≤x≤2}【解析】集合A、B用数轴表示如图,A∪B={x|x≥-1}.故选A.【答案】 A4.满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是()A.1 B.2 C.3 D.4【解析】集合M必须含有元素a1,a2,并且不能含有元素a3,故M={a1,a2}或M={a1,a2,a4}.故选B.【答案】 B二、填空题(每小题5分,共10分)5.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.【解析】A=(-∞,1],B=[a,+∞),要使A∪B=R,只需a≤1.【答案】a≤16.满足{1,3}∪A={1,3,5}的所有集合A的个数是________.【解析】由于{1,3}∪A={1,3,5},则A⊆{1,3,5},且A中至少有一个元素为5,从而A中其余元素可以是集合{1,3}的子集的元素,而{1,3}有4个子集,因此满足条件的A的个数是4.它们分别是{5},{1,5},{3,5},{1,3,5}.【答案】 4三、解答题(每小题10分,共20分)7.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A∩B.【解析】由A∪B={1,2,3,5},B={1,2,x2-1}得x2-1=3或x2-1=5.若x2-1=3则x=±2;若x2-1=5,则x=±6;综上,x=±2或±6.当x=±2时,B={1,2,3},此时A∩B={1,3};当x=±6时,B={1,2,5},此时A∩B={1,5}.8.已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=Ø,求a 的取值范围.【解析】由A∩B=Ø,(1)若A=Ø,有2a>a+3,∴a>3.(2)若A≠Ø,如图:∴,解得-≤a≤2.综上所述,a的取值范围是{a|-≤a≤2或a>3}.9.(10分)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?【解析】设单独参加数学的同学为x人,参加数学化学的为y人,单独参加化学的为z人.依题意⎩⎪⎨⎪⎧x +y +6=26,y +4+z =13,x +y +z =21,解得⎩⎪⎨⎪⎧x =12,y =8,z =1.∴同时参加数学化学的同学有8人,答:同时参加数学和化学小组的有8人.。
高一数学集合练习题附答案
高一数学集合练习题附答案一、单选题1.设全集{}1,2,3,4U =,{}1,3A =,{}4B =,则()U A B =( ) A .{}2,4B .{}4C .∅D .{}1,3,42.已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =( )A .2B .1C .0D .-13.已知全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/则集合A 有( ) A .1个B .2个C .3个D .4个4.已知复数a 、b 满足0ab ≠,集合{}{}22,,a b a b =,则a b +的值为( )A .2B .1C .0D .-15.设集合{}22M x Z x =∈-<,则集合M 的真子集个数为( ) A .16B .15C .8D .76.设集合1|05x A x x -⎧⎫=>⎨⎬-⎩⎭,{}|13B x x =-≤≤,则()A B =R ( ) A .{}|35x x ≤< B .{}|15x x ≤< C .{}|15x x -≤<D .{}|13x x ≤≤7.设集合{}10M x x =-<,{}12,N y y x x M ==-∈,则M N =( )A .∅B .(,1)-∞-C .(,1)-∞D .(1,1)-8.已知集合{}27120A x x x =-+≤,{}20B x x m =+>,若A B ⊆,则m 的取值范围为( ) A .()6,-+∞B .[)6,-+∞C .(),6-∞-D .(],6∞--9.若集合2{|60}A x x x =--+>,5{|1}3B x x =≤--,则A B 等于( ) A .()3,3-B .[2,3)-C .(2,2)-D .[2,2)-10.设全集U =R ,集合{1,0,1,2,3}M =-,{R |1}N x x =∈>,则下面Venn 图中阴影部分表示的集合是( )A .(,1)-∞B .(,1]-∞C .{1,0}-D .{1,0,1}-11.已知集合{}20A x R x a =∈+>,且2A ∉,则实数a 的取值范围是( )A .{}4a a ≤B .{}4a a ≥C .{}4a a ≤-D .{}4a a ≥-12.已知全集{}U 1,0,1,3,6=-,{}0,6A =,则UA =( )A .{}1,3-B .{}1,1,3-C .{}0,1,3D .{}0,3,613.若集合{}{}22,3,|560,A B x x x ==-+=则A B =( )A .{2,3}B .∅C .2D .2,314.已知集合{}12,12x A y y x -==≤≤,|lg 2Bx y x,则下列结论正确的是( )A .AB ⊆B .[]0,2A B =C .(],2A B ⋃=-∞D .()R B A =⋃R15.已知集合{}220|A x x x =-<,{}|55B x x =-<<,则( )A .AB =∅ B .A B R =C .B A ⊆D .A B ⊆二、填空题16.若{}}{1020x ax x x +=⊆-=,则=a __________. 17.设集合{1,2,}A a =,{2,3}B =.若B A ⊆,则=a _______.18.设集合{}13A x x =<<,{}B x x a =<,若A B ⊆,则a 的取值范围是_________. 19.已知函数()()()2sin 0,0g x x ωϕωϕπ=+><<的部分图象如图所示,将函数()g x 的图象向右平移6π个单位长度,得到函数()f x 的图象,若集合()3512A x y f x f π⎧⎫⎪⎪⎛⎫==-⎨⎬⎪⎝⎭⎪⎪⎩⎭,集合{}0,1,2B =,则A B =______.20.已知集合121{|2}8x A x -=>,{|20}B x x a =-<.若A B A =,则实数a 的取值范围是________. 21.已知函数()94sin3264x x f x π-⋅+=,()21g x ax =-(0a >).若[]130,log 2x ∀∈,[]21,2x ∃∈,()()12f x g x =,则a 的取值范围是___________.22.若{}231,13a a ∈--,则=a ______.23.判断下列命题的真假:(1)集合{}1,2,3是集合{}1,2,3的真子集;( ) (2){}1是集合{}1,2,3的元素;( )(3)2是集合{}1,2,3的子集;( ) (4)满足{}{}00,1,2,3A的集合A 的个数是322-个.( )24.若全集{}0,1,2,3,4U =,{}012M =,,,{}2,3N =,则M N ⋂=______. 25.用符号“∈”或“∉”填空: (1)34______N ;(2)4-______Z ; (3)13______Q ;(4)2π-______R .三、解答题26.已知集合2{|23}A x a x a =≤≤+,{|14}B x x =-≤≤,全集U =R . (1)当1a =时,求U ()A B ;(2)当A =∅时,求实数a 的取值范围;(3)若“x A ∈”是“x B ∈”的充分条件,求实数a 的取值范围.27.已知:20,:40p x q ax ->->其中R a ∈.(1)若p 是q 的充分不必要条件,求实数a 的取值范围; (2)若p 是q 的必要不充分条件,求实数a 的取值范围.28.已知集合P ={x |a +1≤x ≤2a +1},Q ={x |-2≤x ≤5}. (1)若a =3,求()U P Q ⋂;(2)若“x ∈P ”是“x ∈Q ”充分不必要条件,求实数a 的取值范围.29.已知p :|m -1|>a (a >0),q :方程22152x y m m +=--表示双曲线.(1)若q 是真命题,求m 的取值范围;(2)若p 是q 的充分不必要条件,求a 的取值范围30.已知集合{}|13A x x =<<,集合{}|21B x m x m =<<-. (1)当1m =-时,求A B ;(2)若B A ⊆,求实数m 的取值范围;【参考答案】一、单选题 1.A 【解析】 【分析】根据补集的概念求出UA ,再根据并集运算即可求出结果.【详解】 由题意可知{}2,4UA =,又{}4B =,所以(){}2,4U A B =.故选:A. 2.B 【解析】 【分析】对于集合N ,元素x 对应的是一元二次方程的解,根据判别式得出必有两个不相等的实数根,又根据韦达定理以及N M ⊆,可确定出其中的元素,进而求解. 【详解】对于集合N ,因为280a ∆=+>, 所以N 中有两个元素,且乘积为-2, 又因为N M ⊆,所以{}2,1N =-, 所以211a -=-+=-.即a =1. 故选:B. 3.C 【解析】 【分析】根据题意,列举出符合题意的集合.【详解】因为全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/, 所以{}1,2,3A =或{}1,2A =或{}1,3A =. 故选:C 4.D 【解析】 【分析】 由集合的性质可知a b ,22a a b b ⎧=⎨=⎩或22a b b a ⎧=⎨=⎩,且0ab ≠,进而求解即可. 【详解】由题意,22a a b b ⎧=⎨=⎩或22a b b a ⎧=⎨=⎩, 因为0ab ≠,解得1212a b ⎧=-⎪⎪⎨⎪=-⎪⎩或1212b a ⎧=-⎪⎪⎨⎪=-⎪⎩, 所以1a b +=-, 故选:D. 5.D 【解析】 【分析】求出集合M 中的元素,再由子集的定义求解. 【详解】由题意{|04}{1,2,3}M x Z x =∈<<=, 因此其真子集个数为3217-=. 故选:D . 6.D 【解析】 【分析】求解分式不等式的解集,再由补集的定义求解出A R,再由交集的定义去求解得答案.【详解】1015x x x ->⇒<-或5x >,所以{}15A x x =≤≤R , 所以得(){}13A B x x ⋂=≤≤R . 故选:D 7.D 【解析】 【分析】解一元一次不等式求集合M ,求一次函数值域求集合N ,再应用集合的交运算求M N ⋂. 【详解】由题设,{|1}M x x =<,{|1}N y y =>-, 所以(1,1)M N =-.故选:D 8.A 【解析】 【分析】先解出集合,A B ,再结合A B ⊆得到关于m 的不等式,求解即可. 【详解】因为{}34,,2m A xx B x A B ⎧⎫==>-⊆⎨⎬⎩⎭∣,所以32m -<,解得6m >-. 故选:A. 9.D 【解析】 【分析】解不等式化简集合A ,B ,再利用交集的定义直接求解作答. 【详解】不等式260x x --+>化为:260x x +-<,解得:32x -<<,则(3,2)A =-, 不等式513x ≤--,即203x x +≤-,整理得:(2)(3)030x x x +-≤⎧⎨-≠⎩,解得23x -≤<,则[2,3)B =-, 所以[2,2)A B ⋂=-. 故选:D 10.D 【解析】 【分析】根据Venn 图,明确阴影部分表示的集合的含义,即可求得答案. 【详解】由题意,可知Venn 图中阴影部分表示的集合是(){1,0,1}U M N =- ,故选:D 11.C 【解析】 【分析】结合元素与集合的关系得到220a +≤,解不等式即可求出结果. 【详解】由题意可得220a +≤,解得4a ≤-, 故选:C 12.B【解析】 【分析】根据集合补集的概念及运算,即可求解. 【详解】由题意,全集{}U 1,0,1,3,6=-,且{}0,6A =, 根据集合补集的概念及运算,可得{}U1,1,3A =-.故选:B. 13.A 【解析】 【分析】依据交集定义去求A B 即可. 【详解】{}{}2|560=2,3B x x x =-+=则{}{}{}2,32,32,3A B ⋂=⋂=, 故选:A . 14.C 【解析】 【分析】求函数的值域求得集合A ,求函数的定义域求得集合B ,由此对选项进行分析,从而确定正确答案. 【详解】112,011,122x x x -≤≤≤-≤≤≤,所以[]1,2A =,20,2x x -><,所以(),2B =-∞. ∵2A ∈,2B ∈/,故A 错,B 错; ∵R2A ∈/,2B ∈/,∴()R 2A B ∈/,D 错.(],2A B ⋃=-∞,C 正确.故选:C 15.D 【解析】 【分析】先求出集合{}|02A x x =<<,再按照集合间的基本关系和运算判断即可. 【详解】{}|02A x x =<<,{}|02A B x x ⋂=<<,A 错误;{|A x x B =<,B 错误;A B ⊆,C 错误,D 正确.故选:D.二、填空题16.0或12-##12-或0【解析】 【分析】由题,先求出}{20x x -=所代表集合,再分别讨论{}10x ax +=作为子集的可能情况即可. 【详解】由}{20x x -=得集合为{}2,故{}10x ax +=为空集或{}2,当{}10x ax +=为{}2时,可得12a =-;当{}10x ax +=为空集时,可得0a =, 故答案为:0或12-17.3【解析】 【分析】由题意可知集合B 是集合A 的子集,进而求出答案. 【详解】由B A ⊆知集合B 是集合A 的子集, 所以33A a ∈⇒=, 故答案为:3.18.[)3,+∞【解析】 【分析】根据A B ⊆列出不等式即可求解. 【详解】因为{}13A x x =<<,{}B x x a =<,A B ⊆,故只需3a ≥即可满足题意. 故答案为:[)3,+∞.19.{}0【解析】 【分析】根据图像求出g (x )的解析式,再求出f (x )解析式,求出A 集合,根据集合交集运算法则计算即可. 【详解】由图可知()g x 周期52=1212T πππ⎛⎫=⨯+⎪⎝⎭,∴22T πω==.由212πg ⎛⎫-= ⎪⎝⎭得22122k ππϕπ⎛⎫⨯-+=+ ⎪⎝⎭,∴223k πϕπ=+,k ∈Z ,∵0ϕπ<<,∴k 取0,23ϕπ=, ∴()22sin 23g x x π⎛⎫=+⎪⎝⎭, ∴()22sin 22sin 2633f x x x πππ⎡⎤⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, ∴35352sin 22sin 611212363f ππππππ⎛⎫⎛⎫⎛⎫=⨯+=-+=⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∴()35150sin 22221232636f x f x k x k πππππππ⎛⎫⎛⎫-≥⇔+≥⇔+≤+≤+⎪ ⎪⎝⎭⎝⎭,k ∈Z , ∴,124A x k x k k ππππ⎧⎫=-≤≤+∈⎨⎬⎩⎭Z ,∴{}0A B ⋂=.故答案为:{}0﹒20.[4,)+∞【解析】 【分析】结合指数不等式化简集合A ,由A B A A B ⋂=⇒⊆,建立不等式即可求解a 的取值范围. 【详解】1212312228x x --->⇒>,即123x ->-,解得2x <,故{}|2A x x =<,|2a B x x ⎧⎫=<⎨⎬⎩⎭,由A B A A B ⋂=⇒⊆,即22a≤,4a ≥. 故答案为:[4,)+∞ 21.35,88⎡⎤⎢⎥⎣⎦【解析】 【分析】由题意,()f x 的值域为()g x 的值域子集,先求得两个函数的值域,再利用包含关系求得a 的取值范围. 【详解】 因为()()294sin32311644x x xf x π-⋅+-+==, 又当[]30,log 2x ∈时,0311x ≤-≤,()f x 的值域为11,42⎡⎤⎢⎥⎣⎦.因为0a >,所以()g x 在[]1,2上单调递增,其值域为[]21,41a a --. 依题意得[]11,21,4142a a ⎡⎤⊆--⎢⎥⎣⎦,则12141412a a ⎧-≤⎪⎪⎨⎪-≥⎪⎩,解得3588a ≤≤.故答案为:35,88⎡⎤⎢⎥⎣⎦22.4-【解析】 【分析】结合元素与集合的关系,利用集合的互异性分类讨论即可求解. 【详解】若13a -=,则4a =,此时,2113a a -=-,不合题意,舍去; 若2133a -=,则4a =-或4a =,因为4a =不合题意,舍去. 故4a =-. 故答案为:4-. 23. 假 假 假 真 【解析】 【分析】(1)利用真子集的定义即可判断. (2)由集合与集合的关系即可判断真假. (3)由元素与集合的关系即可判断真假.(4)由真子集的定义即可找到满足条件集合A 的个数. 【详解】(1)因为{}1,2,3的真子集有{}{}{}{}{}{},1,2,3,1,2,1,3,2,3∅,所以{}1,2,3不是{}1,2,3真子集,命题为假命题.(2){}1是集合,因此不是{}1,2,3的元素,命题为假命题. (3)因为2是元素,因此不是{}1,2,3的子集,命题为假命题. (4)若{}0A ,所以集合A 中至少含有两个元素且其中一个必须为0,又因为{}0,1,2,3A,所以集合A 可以从1,2,3中再选取一个元素、或者两个元素,所以满足条件的集合A 把∅和{}0,1,2,3去掉,所以满足条件集合A 的个数为322-个,命题为真命题.故答案为:假;假;假;真24.{}3【解析】 【分析】由交集、补集的定义计算. 【详解】由题意{4,3}M =,所以M N ⋂={3}. 故答案为:{3}. 25. ∉, ∈, ∈ ∈ 【解析】 【分析】(1)利用元素与集合的关系判断.(2)利用元素与集合的关系判断.(3)利用元素与集合的关系判断.(4)利用元素与集合的关系判断.【详解】 解:34∉N ; 4-∈Z ;13∈Q ; 2π-∈R .故答案为:∉,∈,∈,∈三、解答题26.(1)[)1,1-;(2)()(),13,∞∞--⋃+; (3)()1,3,2∞∞⎛⎤-⋃+ ⎥⎝⎦. 【解析】【分析】(1)根据集合的补运算和交运算,求解即可;(2)根据题意,求解关于a 的一元二次不等式,即可求得范围;(3)根据集合之间的关系,列出不等关系,求解即可.(1)当1a =时,{|15}A x x =≤≤,{|14}B x x =-≤≤,故U ()A B {|1x x =<或{}5}|14{|11}x x x x x >⋂-≤≤=-≤<. 即U ()A B [)1,1=-.(2)若A =∅,则223a a >+,即()()310a a -+>,解得1a <-或3a >,故实数a 的取值范围为:()(),13,∞∞--⋃+.(3)若“x A ∈”是“x B ∈”的充分条件,则A B ⊆,①A =∅时,1a <-或3a >满足题意; ②A ≠∅,则13234a a -≤≤⎧⎨+≤⎩,得1-12a ≤≤ 综上所述,实数a 的取值范围为()1,3,2∞∞⎛⎤-⋃+ ⎥⎝⎦. 27.(1)(2,)+∞(2)[0,2)【解析】【分析】(1)由题意可得A ⫋B ,所以0,42,a a>⎧⎪⎨<⎪⎩从而可求出实数a 的取值范围, (2)由题意可得B ⫋A ,然后分a =0,a >0和a <0三种情况求解即可(1)设命题p :A ={x |x -2>0},即p :A ={x |x >2},命题q :B ={x |ax -4>0},因为p 是q 的充分不必要条件,所以A ⫋B ,. 即0,42,a a>⎧⎪⎨<⎪⎩解得a >2 所以实数a 的取值范围为(2,)+∞(2)由(1)得p :A ={x |x >2},q :B ={x |ax -4>0},因为p 是q 的必要不充分条件,所以B ⫋A ,①当a =0时,B =∅,满足题意;②当a >0时,由B ⫋A ,得4a .>2,即0<a <2;.③当a <0时,显然不满足题意.综合①②③得,实数a 的取值范围为[0,2)28.(1)4{|}2x x -≤<(2)2a ≤【解析】【分析】(1)将a =3代入求出集合P ,Q ,再由补集及交集的意义即可计算得解. (2)由给定条件可得P Q ,再根据集合包含关系列式计算作答.(1)因a =3,则P ={x |4≤x ≤7},则有{|4U P x x =<或7}x >,又Q ={x |-2≤x ≤5}, 所以{|24)}(U P Q x x ⋂=-≤<.(2)“x ∈P ”是“x ∈Q ”充分不必要条件,于是得P Q ,当a +1>2a +1,即a <0时,P =∅,又Q ≠∅,即∅ Q ,满足P Q ,则a <0,当P ≠∅时,则有12112215a a a a +≤+⎧⎪+≥-⎨⎪+<⎩或12112215a a a a +≤+⎧⎪+>-⎨⎪+≤⎩,解得02a ≤<或02a ≤≤,即02a ≤≤,综上得:2a ≤,所以实数a 的取值范围是2a ≤.29.(1)(-∞,2)(5⋃,)∞+;(2)[4,)∞+.【解析】【分析】(1)解不等式(5)(2)0m m --<即得解;(2)由题意可得:1p m a >+或1m a <-+,解不等式组12150a a a -+⎧⎪+⎨⎪>⎩即得解. (1)解:由题意可得(5)(2)0m m --<,解得2m <或5m >.故m 的取值范围为(-∞,2)(5⋃,)∞+.(2)解:由题意可得:1p m a >+或1m a <-+.因为p 是q 的充分不必要条件,所以(-∞,1)(1a a -++⋃,)(+∞-∞,2)(5⋃,)∞+.所以12150a a a -+⎧⎪+⎨⎪>⎩,解得4a . 故a 的取值范围为[4,)∞+.30.(1){}23x x -<< (2)1,3⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(1)先分别求出,A B ,然后根据集合的并集的概念求解出A B 的结果;(2)根据B A ⊆,进而先讨论B =∅的情况,再讨论B ≠∅的情况,进而得答案;(1)解:当1m =-时,{}22B x x =-<<, ∴{}23A B x x ⋃=-<<;(2)解:因为B A ⊆,所以,当B =∅时, 21m m ,解得13m ≥,满足B A ⊆; 当B ≠∅时,若满足B A ⊆,则212113m m m m <-⎧⎪≥⎨⎪-≤⎩,该不等式无解;综上,若B A ⊆,实数m 的取值范围是1,3⎡⎫+∞⎪⎢⎣⎭。
集合的基本运算练习题含答案
集合的基本运算练习题(2)1. 已知集合A={x|2x2−7x+3<0},B={x∈Z|lg x<1},则阴影部分表示的集合的元素个数为()A.1B.2C.3D.42. 已知集合A={x|x2−4<0},B={x|x2−4x+3<0},则A∪B=()A.{x|−2<x<1}B.{x|1<x<2}C.{x|−2<x<3}D.{x|−2<x<2}3. 已知集合A={x∈Z|y=log2(3−x)},B={y|y=√x+1},则A∩B=()A.(0, 3)B.[1, 3)C.{1, 2}D.{1, 2, 3}4. 若集合A={x∈N||x−1|≤1},B={x|y=√1−x2},则A∩B的真子集的个数为()A.3B.4C.7D.85. 设集合A={x|1<x<2},B={x|x<a}满足A⫋B,则实数a的取值范围是( )A.{a|a≥1}B.{a|a≤1}C.{a|a≥2}D.{a|a≤2}6. 已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.7. 设集合A={2,4}, B={2,6,8},则A∪B=________.8. 设集合A={5,a+1},集合B={a,b}.若A∩B={2},则A∪B=________.9. 我们把集合{x|x∈A且x∉B}叫做集合A与B的差集,记作A−B.据此回答下列问题:(1)若A={1, 2, 3, 4},B={2, 3, 4, 5},求A−B;(2)在下列各图中用阴影部分表示集合A−B;(3)若A={x|0<x≤a},B={x|−1≤x≤2},且A−B=⌀,求a的取值范围.10. 已知集合A={−1,0},B={−1,3},则A∪B=________.11. 已知全集U=R,集合A={x|0<x<1},B={x|3≤9x≤27},C={x|a−2<x< 2a−4}.(1)求(∁U A)∩B;(2)若A∩C=C,求a的取值范围.12. 已知A={x|a≤x≤2a+3},B={x|x>1或x<−6}.(1)若A∩B=(1,3],求a的值;(2)若A∪B=B,求a的取值范围.参考答案与试题解析集合的基本运算练习题(2)一、选择题(本题共计 5 小题,每题 5 分,共计25分)1.【答案】B【考点】Venn图表达集合的关系及运算【解析】根据图所示的阴影部分所表示的集合的元素属于集合A但不属于集合B,即求A∩B,根据交集的定义和补集的定义即可求得【解答】阴影部分所表示的集合为A∩B,A={x|2x2−7x+3<0}=(1, 3),2B={x∈Z|lg x<1}={x∈Z|0<x<10},A∩B={1, 2},那么满足图中阴影部分的集合的元素的个数为2,2.【答案】C【考点】并集及其运算【解析】解不等式得出集合A、B,根据并集的定义写出A∪B.【解答】集合A={x|x2−4<0}={x|−2<x<2},B={x|x2−4x+3<0}={x|1<x<3},则A∪B={x|−2<x<3}.3.【答案】C【考点】交集及其运算【解析】先求出集合A,B,由此能求出A∩B.【解答】∵集合A={x∈Z|y=log(3−x)}={x∈Z|3−x>0}={x∈Z|x<3},2B={y|y=√x+1}={y|y≥1},∴A∩B={x∈Z|1≤x<3}={1, 2}.4.【答案】A【考点】交集及其运算子集与真子集【解析】分别求出集合A和B,从而求出A∩B={0, 1},由此能求出A∩B的真子集的个数.【解答】解:集合A={x∈N||x−1|≤1},B={x|y=√1−x2},∴A={0, 1, 2},B={x|−1≤x≤1},∴A∩B={0, 1},∴A∩B的真子集的个数为22−1=3.故选A.5.【答案】C【考点】集合关系中的参数取值问题【解析】根据真子集的定义、以及A、B两个集合的范围,求出实数a的取值范围.【解答】解:因为集合A={x|1<x<2},B={x|x<a},且满足A⫋B,所以集合A是集合B的真子集,所以a≥2.故选C.二、填空题(本题共计 3 小题,每题 5 分,共计15分)6.【答案】a≤1【考点】集合关系中的参数取值问题并集及其运算【解析】利用数轴,在数轴上画出集合,数形结合求得两集合的并集.【解答】解:∵A={x|x≤1},B={x|x≥a},且A∪B=R,如图所示:故当a≤1时,命题成立.故答案为:a≤1.7.【答案】{2,4,6,8}【考点】并集及其运算【解析】此题暂无解析【解答】解:因为集合A={2,4}, B={2,6,8},所以A∪B={2,4,6,8}.故答案为:{2,4,6,8}.8.【答案】{5,2,1}【考点】交集及其运算并集及其运算【解析】此题暂无解析【解答】解:由题意得a+1=2,解得a=1,则b=2,∴A∪B={5,2,1}.故答案为:{5,2,1}.三、解答题(本题共计 4 小题,每题 5 分,共计20分)9.【答案】解:(1)若A={1, 2, 3, 4},B={2, 3, 4, 5},则A−B={1};(2)在下列各图中用阴影部分表示集合A−B;(3)若A={x|0<x≤a},B={x|−1≤x≤2},且A−B=⌀,则a≤2,∴a的取值范围是(−∞, 2]【考点】Venn图表达集合的关系及运算【解析】(1)根据差集定义即可求A−B;(2)根据差集定义即可阴影部分表示集合A−B;(3)根据A−B=⌀,即可求a的取值范围.【解答】解:(1)若A={1, 2, 3, 4},B={2, 3, 4, 5},则A−B={1};(2)在下列各图中用阴影部分表示集合A−B;(3)若A={x|0<x≤a},B={x|−1≤x≤2},且A−B=⌀,则a≤2,∴a的取值范围是(−∞, 2]10.【答案】{−1,0,3}【考点】并集及其运算【解析】此题暂无解析【解答】解:∵A={−1,0},B={−1,3}∴A∪B={−1,0,3}.故答案为:{−1,0,3}.11.【答案】集合A={x|0<x<1}=(7, 1),所以∁U A=(−∞, 0]∪[7;又B={x|3≤9x≤27}={x|4≤2x≤3}={x|≤x≤,],所以(∁U A)∩B=[1,];若A∩C=C,则C⊆A;因为C={x|a−2<x<2a−4},所以当C=⌀时,a−2≥5a−4;当C≠⌀时,则,解得,即.综上知,a的取值范围是.【考点】交、并、补集的混合运算【解析】此题暂无解析【解答】此题暂无解答12.【答案】解:(1)∵A∩B={x|1<x≤3},可得{2a+3=3−6≤a≤1,∴a=0.(2)由A∪B=B得A⊆B.①当A=⌀时满足题意,此时,a>2a+3,解得a<−3;②当A≠⌀时,有{a≤2a+3a>1或2a+3<−6,解得a>1.综上,a的取值范围为:a<−3或a>1,即(−∞, −3)∪(1, +∞).【考点】集合关系中的参数取值问题【解析】(1)根据A={x|a≤x≤2a+3},B={x|x<−6, 或x>1},再由A∩B={x|1< x≤3}可得{2a+3=3−6≤a≤1,由此求得a的值.(2)由A∪B=B得A⊆B,分A=⌀和A≠⌀两种情况,分别求出a的取值范围,再取并集,即得所求.【解答】解:(1)∵A∩B={x|1<x≤3},可得{2a+3=3−6≤a≤1,∴a=0.(2)由A∪B=B得A⊆B.①当A=⌀时满足题意,此时,a>2a+3,解得a<−3;②当A≠⌀时,有{a≤2a+3a>1或2a+3<−6,解得a>1.综上,a的取值范围为:a<−3或a>1,即(−∞, −3)∪(1, +∞).。
高一数学集合的基本运算练习题及答案解析
1.(2010年高考辽宁卷)已知集合U={1,3,5,7,9},A={1,5,7},则∁U A=()A.{1,3}B.{3,7,9}C.{3,5,9} D.{3,9}解析:选D.∁U A={3,9},故选D.2.(2010年高考陕西卷)集合A={x|-1≤x≤2},B={x|x<1},则A∩(∁R B)=()A.{x|x>1} B.{x|x≥1}C.{x|1<x≤2} D.{x|1≤x≤2}解析:选D.∵B={x|x<1},∴∁R B={x|x≥1},∴A∩∁R B={x|1≤x≤2}.3. 已知全集U=Z,集合A={x|x2=x},B={-1,0,1,2},则图中的阴影部分所表示的集合等于()A.{-1,2} B.{-1,0}C.{0,1} D.{1,2}解析:选A.依题意知A={0,1},(∁U A)∩B表示全集U中不在集合A中,但在集合B中的所有元素,故图中的阴影部分所表示的集合等于{-1,2}.选A.4.已知全集U={x|1≤x≤5},A={x|1≤x<a},若∁U A={x|2≤x≤5},则a=________.解析:∵A∪∁U A=U,∴A={x|1≤x<2}.∴a=2.答案:21.已知全集U={1,2,3,4,5},且A={2,3,4},B={1,2},则A∩(∁U B)等于()A.{2} B.{5}C.{3,4} D.{2,3,4,5}解析:选C.∁U B={3,4,5},∴A∩(∁U B)={3,4}.2.已知全集U={0,1,2},且∁U A={2},则A=()A.{0} B.{1}C.∅D.{0,1}解析:选D.∵∁U A={2},∴2∉A,又U={0,1,2},∴A={0,1}.3.(2009年高考全国卷Ⅰ)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个解析:选A.U=A∪B={3,4,5,7,8,9},A∩B={4,7,9},∴∁U(A∩B)={3,5,8}.4.已知集合U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则()A.M∩N={4,6} B.M∪N=UC.(∁U N)∪M=U D.(∁U M)∩N=N解析:选B.由U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},得M∩N={4,5},(∁U N)∪M={3,4,5,7},(∁U M)∩N={2,6},M∪N={2,3,4,5,6,7}=U,选B.5.已知全集U ={1,2,3,4,5},集合A ={x |x 2-3x +2=0},B ={x |x =2a ,a ∈A },则集合∁U (A ∪B )中元素个数为( )A .1B .2C .3D .4解析:选B.∵A ={1,2},∴B ={2,4},∴A ∪B ={1,2,4},∴∁U (A ∪B )={3,5}.6.已知全集U =A ∪B 中有m 个元素,(∁U A )∪(∁U B )中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为( )A .mnB .m +nC .n -mD .m -n解析:选D.U =A ∪B 中有m 个元素,∵(∁U A )∪(∁U B )=∁U (A ∩B )中有n 个元素,∴A ∩B 中有m -n 个元素,故选D.7.设集合U ={1,2,3,4,5},A ={2,4},B ={3,4,5},C ={3,4},则(A ∪B )∩(∁U C )=________.解析:∵A ∪B ={2,3,4,5},∁U C ={1,2,5},∴(A ∪B )∩(∁U C )={2,3,4,5}∩{1,2,5}={2,5}.答案:{2,5}8.已知全集U ={2,3,a 2-a -1},A ={2,3},若∁U A ={1},则实数a 的值是________. 解析:∵U ={2,3,a 2-a -1},A ={2,3},∁U A ={1},∴a 2-a -1=1,即a 2-a -2=0,解得a =-1或a =2.答案:-1或29.设集合A ={x |x +m ≥0},B ={x |-2<x <4},全集U =R ,且(∁U A )∩B =∅,求实数m 的取值范围为________.解析:由已知A ={x |x ≥-m },∴∁U A ={x |x <-m },∵B ={x |-2<x <4},(∁U A )∩B =∅,∴-m ≤-2,即m ≥2,∴m 的取值范围是m ≥2.答案:{m |m ≥2}10.已知全集U =R ,A ={x |-4≤x <2},B ={x |-1<x ≤3},P ={x |x ≤0或x ≥52},求A ∩B ,(∁U B )∪P ,(A ∩B )∩(∁U P ).解:将集合A 、B 、P 表示在数轴上,如图.X k b 1 . c o m∵A ={x |-4≤x <2},B ={x |-1<x ≤3},∴A ∩B ={x |-1<x <2}.∵∁U B ={x |x ≤-1或x >3},∴(∁U B )∪P ={x |x ≤0或x ≥52},(A ∩B )∩(∁U P )={x |-1<x <2}∩{x |0<x <52} ={x |0<x <2}.11.已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0},满足B ∩(∁U A )={2},A ∩(∁U B )={4},U =R ,求实数a ,b 的值.解:∵B ∩(∁U A )={2},∴2∈B ,但2∉A .∵A ∩(∁U B )={4},∴4∈A ,但4∉B .∴⎩⎪⎨⎪⎧ 42+4a +12b =022-2a +b =0,解得⎩⎨⎧ a =87b =127.∴a ,b 的值为87,-127. 12.已知集合A ={x |2a -2<x <a },B ={x |1<x <2},且A∁R B ,求实数a 的取值范围.解:∁R B ={x |x ≤1或x ≥2}≠∅,∵A ∁R B ,∴分A =∅和A ≠∅两种情况讨论.①若A =∅,此时有2a -2≥a ,∴a ≥2. ②若A ≠∅,则有⎩⎨⎧ 2a -2<a a ≤1或⎩⎪⎨⎪⎧2a -2<a 2a -2≥2. ∴a ≤1.综上所述,a ≤1或a ≥2.。
1.3集合的基本运算基础练习题
1.3集合的基本运算基础练习题一、单选题1.已知集合{|11}M x x =-≤≤,2{|,}N y y x x M ==∈,则M N =( )A .[1,1]-B .[0,)+∞C .(0,1)D .[0,1]2.已知全集U =R ,集合{}24A x x =-<<,{}2B x x =≥,则()UA B ⋂=( )A .()2,4 B .()2,4- C .()2,2-D .(]2,2- 3.设集合{1,2,3,4,5},{1,2,3},{2,3,4,5}===U M N ,则()UM N =( )A .{2,3}B .{1,4,5}C .{2,3,4}D .{2,4,5}4.已知集合{}1,2,3A =,集合{}2B x x x ==,则AB =( )A .{}0,1,2,3B .{}1,0,1,2,3-C .{}1,2D .{}15.已知集合{}1,2,3,4,5,6U =,{}2,3,5M =,{}4,6N =.则()UM N ⋂=( )A .{}4,6B .{}1,4,6C .∅D .{}2,3,4,5,66.已知集合{}0,2,4A =,{}2,4,6B =,则A B =( )A .{}4B .{}0,6C .{}2,4D .{}0,2,4,67.已知集合{}1,2,3,4A =,{}2,4,6B =,{}1,2,3,4,5,6U =,则()()UUA B ⋃=( ) A .{}5B .{}1,3,5,6C .{}1,3,5D .{}2,4,68.已知集含U =R ,集合{0,1,2,3,4,5}A =,{|1}B x x =>,则图中阴影部分所表示的集合为( )A .{0}B .{0,1}C .{1,2}D .{0,1,2}9.设全集{()|}U x y x R y R =∈∈,,,集合{}(,)|20A x y x y m =-+>,集合{()|0}B x y x y n =+-≤,,那么点(23)()U P A B ∈,的充要条件是( ).A .1m >-,5n <B .1m <-,5n ≤C .1m >-,5n >D .1m <-,5n ≥ 10.已知集合{1,2,3},{3,4}A B ==,则A B =( )A .{1,2,3}B .{1,3}C .{3}D .∅二、填空题 11.已知集合(){}()|1{|3}A x y x y B x y x y =-==+=,,,,则A B =_________.12.已知集合{}{}0,1,2,3,4,0,1,2,U A ==则UA______.13.某班共38人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,16人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为______. 14.已知集合{1,3,5,7,9,10},{1,3,5}U A ==,则UA__________.三、解答题15.设已知全集U =R ,集合{{|3215},2A x x B x x =-<-<=≤-或}0x ≥,求A B ,()UAB ,()U A B ⋂16.全集U =R ,若集合A ={x |3≤x <8},B ={x |2<x ≤6}. (1)求A ∩B ,A ∪B ;(2)若集合C ={x |x >a },A ⊆C ,求a 的取值范围. 17.已知集合{}|22A x x =-<<,{}|1B x x =≥. (1)求A B ;(2)求()RAB .18.已知{}{}2,4,6,8,10,2,4,6,{|,4}U A B x x A x ===∈<,求: (1)UA 及UB ;(2)()UA B ∩;(3)()UA B .参考答案1.D 【分析】求出N 中y 的范围确定出N ,再求出M 与N 的交集即可. 【详解】 解:{|11}M x x =-≤≤,N 中2,y x x M =∈,则{|01}N y y =≤≤,[0,1]M N ∴=.故选:D . 2.C 【分析】先求出集合B 的补集,再求()UA B ⋂【详解】解:因为{}2B x x =≥,所以{}2UB x x =<,因为{}24A x x =-<<, 所以(){}22UAB x x =-<<故选:C. 3.B 【分析】先求出交集,再求补集. 【详解】 ∵{}2,3MN =,∴(){1,4,5}⋂=U M N .故选:B. 4.A 【分析】化简集合B ,再根据集合并的意义求解. 【详解】{}{}20,1B x x x ===,{}0,1,2,3A B ⋃=.故选:A 【点睛】此题为基础题,考查集合并运算. 5.A 【分析】根据补集与交集的定义进行运算即可. 【详解】{}1,2,3,4,5,6U =,{}2,3,5M =,{}4,6N = {}1,4,6U M ∴=,(){}4,6U M N ∴=故选:A. 6.D 【分析】利用并集的定义可求得集合A B .【详解】集合{}0,2,4A =,{}2,4,6B =,则{}0,2,4,6A B ⋃=. 故选:D. 7.B 【分析】先根据补集定义求出UA ,UB ,再由并集定义即可求出.【详解】 可得{}5,6UA =,{}1,3,5UB =,()(){}1,3,5,6UUA B ∴⋃=.故选:B. 8.B 【分析】根据Venn 图表示的集合运算结果求解.【详解】图中阴影部分表示()U A B ,{|1}UB x x =≤,∴(){0,1}U AB =.故选:B . 9.A 【分析】 先求得UB ,由此求得()U A B ∩满足的不等式组,将P 点坐标代入上述不等式组,解不等式组求得,m n 的取值范围. 【详解】 依题意(){},|0UB x y x y n =+->,所以()U A B ∩满足的不等式组为20x y m x y n -+>⎧⎨+->⎩,由于(23)()U P A B ∈,,故430230m n -+>⎧⎨+->⎩,解得1m >-,5n <.故选:A 10.C 【分析】根据交集的概念直接求解出A B 的结果.【详解】因为{}{}1,2,3,3,4A B ==,所以{}3A B ⋂=, 故选:C. 11.(){}2,1【分析】 联立13x y x y -=⎧⎨+=⎩即可求出.【详解】联立方程13x y x y -=⎧⎨+=⎩,解得2,1x y ==,(){}2,1A B ∴⋂=.故答案为:(){}2,1.12.{}3,4 【分析】由补集的定义直接计算. 【详解】{}{}0,1,2,3,4,0,1,2,U A =={}3,4U A ∴=.故答案为:{}3,4. 13.12 【分析】设两者都喜欢的人数为x 人,则只喜爱篮球的有(15)x -人,只喜爱乒乓球的有(10)x -人,由此可得(15)(10)1638x x x -+-++=,解之即可两者都喜欢的人数,然后即可得出喜爱篮球运动但不喜爱乒乓球运动的人数. 【详解】设两者都喜欢的人数为x 人,则只喜爱篮球的有(15)x -人,只喜爱乒乓球的有(10)x -人, 由此可得(15)(10)1638x x x -+-++=,解得3x =, 所以1512x -=, 即所求人数为12人, 故答案为:12. 14.{7,9,10} 【分析】直接利用补集的定义求出UA .【详解】集合{1,3,5,7,9,10},{1,3,5}U A ==,则{}7,9,10UA =故答案为:{7,9,10}. 15.{|03}A B x x ⋂=≤<,(){|21}UA B x x ⋃=-<≤-,(){2U A B x x ⋂=≤-或}3x ≥.【分析】先求出集合A ,再根据交并补定义计算即可. 【详解】由已知得{|13}A x x =-<<,∴{|03}A B x x ⋂=≤<,{|2A B x x ⋃=≤-或1}x >-, ∴(){|21}UA B x x ⋃=-<≤-,又{1UA x x =≤-或}3x ≥, ∴(){2UA B x x ⋂=≤-或}3x ≥.16.(1){}{}36,28A B x x A B x x ⋂=≤≤⋃=<<;(2)3a <. 【分析】(1)直接根据交集与并集的概念进行计算可得结果; (2)根据子集关系列式可得结果. 【详解】(1)A ∩B {|36}x x =≤≤,{|28}A B x x ⋃=<<; (2)因为集合C ={x |x >a },A ⊆C , 所以3a < 【点睛】关键点点睛:掌握交集、并集和子集的概念是解题关键. 17.(1)()2,A B ⋃=-+∞;(2)()RA B =()2,1- .【分析】(1)直接利用并集的定义求解即可; (2)先求出集合B 的补集,再求()RA B【详解】解:(1)因为{}|22A x x =-<<,{}|1B x x =≥, 所以()2,A B ⋃=-+∞,(2)因为{}|1B x x =≥,所以{}1RB x x =<,因为{}|22A x x =-<<, 所以()RAB =()2,1-18.(1){}{}8,10,4,6,8,10U U C A C B ==;(2)(){}4,6U A C B ⋂=;(3)(){}2,8,10U C A B ⋃=.【分析】(1)先求解出集合B ,然后根据补集的概念求解出结果; (2)根据(1)中UB 的结果,根据交集的概念求解出结果; (3)根据(1)中UA 的结果,根据并集的概念求解出结果.【详解】解:∵{}{}24,6,8,10,2,4,6U A ==,,∴{}{|,4}2B x x A x =∈<=, (1){}{}810,4,6,8,10U U C A C B ==,; (2)(){}{}{}2,4,64,6,8,104,6U A C B ⋂=⋂=;(3)(){}{}{}81022,8,10U C A B ⋃=⋃=,.。
高一数学集合的基本运算练习题及答案
高一数学必修1集合练习题1.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于()A.{x|x≥3}B.{x|x≥2}C.{x|2≤x<3} D.{x|x≥4}【解析】B={x|x≥3}.画数轴(如下图所示)可知选B.【答案】 B2.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=()A.{3,5} B.{3,6}C.{3,7} D.{3,9}【解析】A={1,3,5,7,9},B={0,3,6,9,12},A和B中有相同的元素3,9,∴A∩B={3,9}.故选D.【答案】 D3.50名学生参与甲、乙两项体育活动,每人至少参与了一项,参与甲项的学生有30名,参与乙项的学生有25名,则仅参与了一项活动的学生人数为________.【解析】设两项都参与的有x人,则只参与甲项的有(30-x)人,只参与乙项的有(25-x)人.(30-x)+x+(25-x)=50,∴x=5.∴只参与甲项的有25人,只参与乙项的有20人,∴仅参与一项的有45人.【答案】454.已知集合A={-4,2a-1,a2},B={a-5,1-a,9},若A∩B={9},求a的值.【解析】∵A∩B={9},∴9∈A,∴2a-1=9或a2=9,∴a=5或a=±3.当a=5时,A={-4,9,25},B={0,-4,9}.此时A∩B={-4,9}≠{9}.故a=5舍去.当a=3时,B={-2,-2,9},不符合要求,舍去.经检验可知a=-3符合题意.一、选择题(每小题5分,共20分)1.集合A ={0,2,a},B ={1,a 2}.若A ∪B ={0,1,2,4,16},则a 的值为( )A .0B .1C .2D .4【解析】 ∵A ∪B ={0,1,2,a ,a 2},又A ∪B ={0,1,2,4,16},∴{a ,a 2}={4,16},∴a =4,故选D.【答案】 D2.设S ={x|2x +1>0},T ={x|3x -5<0},则S ∩T =( )A .ØB .{x|x<-12}C .{x|x>53}D .{x|-12<x<53} 【解析】 S ={x|2x +1>0}={x|x>-12},T ={x|3x -5<0}={x|x<53},则S ∩T ={x|-12<x<53}.故选D.【答案】 D3.已知集合A ={x|x>0},B ={x|-1≤x ≤2},则A ∪B =( )A .{x|x ≥-1}B .{x|x ≤2}C .{x|0<x ≤2}D .{x|-1≤x ≤2}【解析】 集合A 、B 用数轴表示如图,A ∪B ={x|x ≥-1}.故选A.【答案】 A4.满意M ⊆{a 1,a 2,a 3,a 4},且M ∩{a 1,a 2,a 3}={a 1,a 2}的集合M 的个数是( )A .1B .2C .3D .4【解析】 集合M 必需含有元素a 1,a 2,并且不能含有元素a 3,故M ={a 1,a 2}或M ={a 1,a 2,a 4}.故选B.【答案】 B二、填空题(每小题5分,共10分)5.已知集合A ={x|x ≤1},B ={x|x ≥a},且A ∪B =R ,则实数a 的取值范围是________.【解析】 A =(-∞,1],B =[a ,+∞),要使A ∪B =R ,只需a ≤1.【答案】 a ≤16.满意{1,3}∪A ={1,3,5}的全部集合A 的个数是________.【解析】 由于{1,3}∪A ={1,3,5},则A ⊆{1,3,5},且A 中至少有一个元素为5,从而A 中其余元素可以是集合{1,3}的子集的元素,而{1,3}有4个子集,因此满意条件的A 的个数是4.它们分别是{5},{1,5},{3,5},{1,3,5}.【答案】 4三、解答题(每小题10分,共20分)7.已知集合A ={1,3,5},B ={1,2,x 2-1},若A ∪B ={1,2,3,5},求x 及A ∩B.【解析】 由A ∪B ={1,2,3,5},B ={1,2,x 2-1}得x 2-1=3或x 2-1=5.若x 2-1=3则x =±2;若x 2-1=5,则x =±6;综上,x =±2或±6.当x =±2时,B ={1,2,3},此时A ∩B ={1,3};当x =±6时,B ={1,2,5},此时A ∩B ={1,5}.8.已知A ={x|2a ≤x ≤a +3},B ={x|x<-1或x>5},若A ∩B =Ø,求a 的取值范围.【解析】 由A ∩B =Ø,(1)若A =Ø,有2a>a +3,∴a>3.(2)若A ≠Ø,如图:∴ ,解得- ≤a ≤2.综上所述,a 的取值范围是{a|- ≤a ≤2或a>3}.9.(10分)某班有36名同学参与数学、物理、化学课外探究小组,每名同学至多参与两个小组.已知参与数学、物理、化学小组的人数分别为26,15,13,同时参与数学和物理小组的有6人,同时参与物理和化学小组的有4人,则同时参与数学和化学小组的有多少人?【解析】 设单独参与数学的同学为x 人,参与数学化学的为y 人,单独参与化学的为z 人.依题意⎩⎪⎨⎪⎧ x +y +6=26,y +4+z =13,x +y +z =21,解得⎩⎪⎨⎪⎧ x =12,y =8,z =1.∴同时参与数学化学的同学有8人,答:同时参与数学和化学小组的有8人.。
【高一】集合的基本运算过关训练题(带答案)
【高一】集合的基本运算过关训练题(带答案)1.(2021年高考广东卷)若集合A={x-2<x<1},B={x0<x<2},则集合A∩B=( )A.{x-1<x<1} B.{x-2<x<1}C.{x-2<x<2} D.{x0<x<1}解析:选D.因为A={x-2<x<1},B={x0<x<2},所以A∩B={x0<x<1}.2.(2021年高考湖南卷)已知集合={1,2,3},N={2,3,4}则( )A.⊆N B.N⊆C.∩N={2,3} D.∪N={1,4}解析:选C.∵={1,2,3},N={2,3,4}.∴选项A、B显然不对.∪N={1,2,3,4},∴选项D错误.又∩N={2,3},故选C.3.已知集合={yy=x2},N={yx=y2},则∩N=( )A.{(0,0),(1,1)} B.{0,1}C.{yy≥0} D.{y0≤y≤1}解析:选C.={yy≥0},N=R,∴∩N=={yy≥0}.4.已知集合A={xx≥2},B={xx≥},且A∪B=A,则实数的取值范围是________.解析:A∪B=A,即B⊆A,∴≥2.答案:≥21.下列关系Q∩R=R∩Q;Z∪N=N;Q∪R=R∪Q;Q∩N=N中,正确的个数是( )A.1 B.2C.3 D.4解析:选C.只有Z∪N=N是错误的,应是Z∪N=Z.2.(2021年高考四川卷)设集合A={3,5,6,8},集合B={4,5,7,8},则A∩B等于( )A.{3,4,5,6,7,8} B.{3,6}C.{4,7} D.{5,8}解析:选D.∵A={3,5,6,8},B={4,5,7,8},∴A∩B={5,8}.3.(2021年高考东卷)集合A={0,2,a},B={1,a2}.若A∪B={0,1,2,4,16},则a的值为( )A.0 B.1X k b 1 . c oC.2 D.4解析:选D.根据元素特性,a≠0,a≠2,a≠1.∴a=4.4.已知集合P={x∈N1≤x≤10},集合Q={x∈Rx2+x-6=0},则P∩Q等于( )A.{2} B.{1,2}C.{2,3} D.{1,2,3}解析:选A.Q={x∈Rx2+x-6=0}={-3,2}.∴P∩Q={2}.5.(2021年高考福建卷)若集合A={x1≤x≤3},B={xx>2},则A∩B等于( )A.{x2<x≤3} B.{xx≥1}C.{x2≤x<3} D.{xx>2}解析:选A.∵A={x1≤x≤3},B={xx>2},∴A∩B={x2<x≤3}.6.设集合S={xx>5或x<-1},T={xa<x<a+8},S∪T=R,则a的取值范围是( )A.-3<a<-1 B.-3≤a≤-1C.a≤-3或a≥-1 D.a<-3或a>-1解析:选A.S∪T=R,∴a+8>5,a<-1.∴-3<a<-1.7.(2021年高考湖南卷)已知集合A={1,2,3},B={2,,4},A∩B={2,3},则=________.解析:∵A∩B={2,3},∴3∈B,∴=3.答案:38.满足条件{1,3}∪={1,3,5}的集合的个数是________.解析:∵{1,3}∪={1,3,5},∴中必须含有5,∴可以是{5},{5,1},{5,3},{1,3,5},共4个.答案:49.若集合A={xx≤2},B={xx≥a},且满足A∩B={2},则实数a=________.解析:当a>2时,A∩B=∅;当a<2时,A∩B={xa≤x≤2};当a=2时,A∩B={2}.综上:a=2.答案:210.已知A={xx2+ax+b=0},B={xx2+cx+15=0},A∪B={3,5},A∩B={3},求实数a,b,c的值.解:∵A∩B={3},∴由9+3c+15=0,解得c=-8.由x2-8x+15=0,解得B={3,5},故A={3}.又a2-4b=0,解得a=-6,b=9.综上知,a=-6,b=9,c=-8.11.已知集合A={xx-2>3},B={x2x-3>3x-a},求A∪B.解:A={xx-2>3}={xx>5},B={x2x-3>3x-a}={xx<a-3}.借助数轴如图:①当a-3≤5,即a≤8时,A∪B={xx<a-3或x>5}.②当a-3>5,即a>8时,A∪B={xx>5}∪{xx<a-3}={xx∈R}=R.综上可知当a≤8时,A∪B={xx<a-3或x>5};当a>8时,A∪B=R.12.设集合A={(x,y)2x+y=1,x,y∈R},B={(x,y)a2x+2y=a,x,y∈R},若A∩B=∅,求a的值.解:集合A、B的元素都是点,A∩B的元素是两直线的公共点.A∩B=∅,则两直线无交点,即方程组无解.列方程组2x+y=1a2x+2y=a,解得(4-a2)x=2-a,则4-a2=02-a≠0,即a=-2.感谢您的阅读,祝您生活愉快。
高一数学集合的运算试题
高一数学集合的运算试题1.设全集,集合,则等于()A.B.C.D.【答案】D【解析】由,,所以.故选D.【考点】集合的简单运算.2.若集合,,则等于()A.B.C.D.【答案】B【解析】,所以答案选.【考点】集合间的运算.3.已知集合,,,.(1)求;(2)若,求实数的取值范围.【答案】(1),(2).【解析】(1)根据全集,先求出集合的补集,再求;(2)由知,集合与有公共元素,所以.试题解析:(1)因为,集合,所以,又因为,结合数轴可知(2)结合数轴可知:当时,.【考点】集合的基本运算(A∩B)=________.4.设全集U=R,A={x|x≥1},B={x|-1≤x<2},则∁U【答案】{x|x<1或x≥2}【解析】求出集合A∩B在求解其补集.把集合B化简,然后取交集.根据题意,由于全集U=R,A={x|x≥1},B={x|-1≤x<2},则A∩B={x|1≤x<2},那么结合数轴法可知∁U(A∩B)= {x|x<1或x≥2},故答案为{x|x<1或x≥2}。
【考点】交、并、补集点评:本题考查了交、并、补集的混合运算,解答时注意正确运用数轴,是基础题.5.若,则( )A.B.C.D.【答案】D【解析】根据题意,由于,那么借助于数轴标根法可知,,选D【考点】集合的并集点评:主要是考查了集合的并集的运算,属于基础题。
6.已知全集,集合,则()A.B.C.D.【答案】D【解析】根据题意,由于全集={0,2,1,3,4},集合,那么根据补集的定义可知,,选D【考点】集合的运算点评:主要是考查了集合的补集的运算,属于基础题。
7.设集合,,分别求满足下列条件的实数的取值范围:(1);(2).【答案】(1)(2)【解析】解:∵, 4分(1)当时,有, 6分解得∴ 8分(2)当时,有,应满足或 10分解得或∴ 12分【考点】集合的交集和并集点评:解决的关键是根据集合的交集和并集的定义,以及一元二次不等式来得到集合关系,结合数轴法求解,属于基础题。
高一数学集合的运算试题答案及解析
高一数学集合的运算试题答案及解析1.已知集合,则下列式子表示正确的有()①②③④A.1个B.2个C.3个D.4个【答案】C.【解析】由集合知,,即集合A包含两个元素1,-1.所以①,正确;由集合与集合之间的关系应为含于,即,所以②,不正确;由空集是任何非空集合的子集知,③正确;由任何非空集合是自身的子集,即④正确.所以其正确的个数为3个.故应选C.【考点】集合与集合的基本关系;元素与集合的关系.2.若,则的值为【答案】-1【解析】由集合相等的概念可知有元素,又,则,故,根据集合中元素的互异性知,故。
【考点】集合相等的概念及集合中元素的互异性。
3.设A是整数集的一个非空子集,对于k∈A,若k-1∉A,且k+1∉A,则称k是A的一个“孤立元”.给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“孤立元”的集合共有个.【答案】6【解析】由“孤立元”的定义可知,集合中不能存在一个与其他元素相差大于的元素。
故由S的3个元素构成的所有集合中,不含“孤立元”的集合有。
【考点】这是新定义问题,注意对“孤立元”定义的理解。
4.已知集合集合.(1)若,求;(2)若,求实数的取值范围.【答案】(1);(2)【解析】(1)解不等式、可得集合A、B中的元素,然后求交集;(2)即集合A是集合B的子集,所以集合A中元素的范围比集合B中元素的范围小,依此来建立关于的不等式。
(1)当时,,解得,则.由,得,则.所以.6′(2)由,得.即.若,则解得.所以实数的取值范围是. .12′【考点】(1)解绝对值、分式不等式;(2)集合的运算;5.设关于的二次方程和的解集分别是集合和,若为单元素集,求的值.【答案】或.【解析】先解出集合,根据为单元素集,得到或,相当于二次方程只有一个根2或二次方程只有一个根3,从而将2或3代入方程中得到参数的取值,求出的取值之后,返代,得出,检验此时的是否为或,满足要求的就取,不满足要求的的值应该舍去.试题解析:解方程,得 2分由为单元素集得或 3分当时有或时不合题意6分当时有或时不合题意10分综上得或 12分.【考点】1.集合的运算;2.二次方程的解.6.已知集合A=,B=,则()A.B.C.D.【答案】B【解析】,,故选B.【考点】集合的运算7.已知全集则()A.B.C.D.【答案】C.【解析】找出全集U中不属于A的元素,确定出A的补集,找出既属于A补集又属于B的元素,即可确定出所求的集合,∵全集U={1,2,3,4},A={1,2},∴∁UA={3,4},又B={2,3},则(∁UA)∪B={2,3,4},故选C.【考点】交、并、补集的混合运算.8.已知集合,集合,则()A.B.C.D.【答案】B【解析】集合为非负偶数集,所以【考点】本题考查集合的元素和运算.9.已知函数的定义域为集合,集合,集合.(1)求;(2)若 (),求的值.【答案】(1),(2)1.【解析】(1)求函数定义域,主要列出所有限制条件,本题一是要求分母不为零,二是要求偶次被开方数非负,结合两者得到函数定义域为;解对数不等式,注意真数要大于零及不等号的方向=,根据数轴求出集合的交集;(2)集合是解参数不等式,由于参数大于零,所以先求出集合为,再求出交集,由并结合数轴得,解此类问题需注意区间之间相互关系,并重视区间端点是否能取到.试题解析:(1)由题意得=.,=, 2分∴. 4分(2)由题意得=,∴, 6分∵,∴, 8分∴,又∵,∴=1. 10分【考点】函数定义域,解对数不等式,集合运算.A,则实数a的取值范围10.设全集U=R,A="{x|" x<-2,或x≥1},B="{x|" a-1<x<a+1},B∁R是______.【答案】【解析】由题意得,由,又因为,即集合为非空集合,所以有,解得.故正确答案为.【考点】集合的运算11.设集合A={1,2,3},B={2,4,5},则______________【答案】【解析】集合的并集是由两集合的所有元素组成.【考点】1、集合的并集运算;2、集合元素的互异性.12.已知集合,,则=A.B.C.D.【答案】A【解析】,,,故选:A.【考点】集合的运算13.某班共50人,参加A项比赛的共有30人,参加B项比赛的共有33人,且A,B两项都不参加的人数比A,B都参加的人数的多1人,则只参加A项不参加B项的有人.【答案】9【解析】假设A,B都参加的设为x,所以仅参加A项的共(30-x)人,仅参加B项的共(33-x)人,都不参加的()人,有这些相加即:,解得:x=21,所以只参加A项不参加B共有30-21=9,所以填9.【考点】本题考查的内容是容斥原理,通过韦恩建立数学模型巧妙的解决.14.已知集合,.(Ⅰ)若,求();(Ⅱ)若,求实数的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)解出集合,再根据确定集合,然后由数轴找出交集是;(Ⅱ)由可知,由子集概念求出的取值范围是.试题解析:(Ⅰ)因为当时,.所以.又因为集合,所以().(Ⅱ)因为,所以.当时,有:,此时;当时,有:,解得.综上所述,实数的取值范围是.【考点】集合的基本运算.15.已知集合,,,.(1)求;(2)若,求实数的取值范围.【答案】(1),(2).【解析】(1)根据全集,先求出集合的补集,再求;(2)由知,集合与有公共元素,所以.试题解析:(1)因为,集合,所以,又因为,结合数轴可知(2)结合数轴可知:当时,.【考点】集合的基本运算16.设集合,,若,则的范围是()A.B.C.D.【答案】B【解析】在数轴上画出集合A,B,如图,可知.这种与实数集有关问题借助于数轴可以很快得出结论.【考点】子集的概念.17.给出以下五个命题①集合与都表示空集.②是从到的一个映射.③函数是偶函数.④是定义在上的奇函数,则⑤是减函数.以上命题正确的序号为:【答案】②④【解析】①集合与都表示空集,不对,因为,中有元素,不是空集;②是从到的一个映射,正确,因为,对中任意一个元素,按,在中都有唯一一个元素与之对应;③函数是偶函数,不正确,定义域不关于原点对称;④是定义在上的奇函数,则,正确,因为,,;⑤是减函数,不对,只能说其在区间是减函数。
《集合的基本运算》同步练习及答案(共五套)
《1.3 集合的基本运算》分层同步练习(一)基础巩固1.设全集U={1,2,3,4,5},集合A={1,2},则∁U A等于( )A.{1,2}B.{3,4,5}C.{1,2,3,4,5}D.∅2.已知U=Z,A={1,3,5,7,9},B={1,2,3,4,5},则图中阴影部分表示的集合是( )A.{1,3,5}B.{1,2,3,4,5}C.{7,9}D.{2,4}3.满足{1,3}∪A={1,3,5}的所有集合A的个数是( )A.1B.2C.3D.44.已知集合M={x|-3<x≤5},N={x|x<-5,或x>4},则M∪N=( )A.{x|x<-5,或x>-3}B.{x|-5<x<4}C.{x|-3<x<4}D.{x|x<-3,或x>5}5.已知集合A={1,3,m2},B={1,m},A∪B=A,则m等于( )A.3B.0或3C.1或0D.1或36.已知全集U=N*,集合A={x|x=2n,n∈N*},B={x|x=4n,n∈N*},则( )A.U=A∪BB.U=(∁UA)∪BC.U=A∪(∁UB)D.U=(∁UA)∪(∁UB)7.集合A={x|x≤-1或x>6},B={x|-2≤x≤a},若A∪B=R,则实数a的取值范围为_________.8.已知集合A={x|1≤x≤2},B={x|x<a},若A∩B=A,则实数a的取值范围是_________,若A∩B=∅,则a的范围为_________.能力提升9.已知全集U=R,M={x|x≤1},P={x|x≥2},则∁U(M∪P)等于( )A. {x|1<x<2}B.{x|x≥1}C.{x|x≤2}D.{x|x≤1或x≥2}10.已知集合A={x|x<1,或x>5},B={x|a≤x≤b},且A∪B=R,A∩B={x|5<x≤6},则2a-b=________.11.已知全集U=R,集合A={x|-2≤x≤5},B={x|a+1≤x≤2a-1}且A⊆∁U B,求实数a的取值范围.素养达成12.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?【答案解析】基础巩固1.设全集U={1,2,3,4,5},集合A={1,2},则∁U A等于( )A.{1,2}B.{3,4,5}C.{1,2,3,4,5}D.∅【答案】B【解析】因为U={1,2,3,4,5},A={1,2},所以∁U A={3,4,5}.2.已知U=Z,A={1,3,5,7,9},B={1,2,3,4,5},则图中阴影部分表示的集合是( )A.{1,3,5}B.{1,2,3,4,5}C.{7,9}D.{2,4}【答案】D【解析】图中阴影部分表示的集合是(∁UA)∩B={2,4}.故选D.3.满足{1,3}∪A={1,3,5}的所有集合A的个数是( )A.1B.2C.3D.4【答案】D【解析】因为{1,3}∪A={1,3,5},所以1和3可能是集合A的元素,5一定是集合A的元素,则集合A可能是{5},{1,5},{3,5},{1,5,3}共4个.故选D.4.已知集合M={x|-3<x≤5},N={x|x<-5,或x>4},则M∪N=( )A.{x|x<-5,或x>-3}B.{x|-5<x<4}C.{x|-3<x<4}D.{x|x<-3,或x>5}【答案】A【解析】在数轴上分别表示集合M和N,如图所示,则M∪N={x|x<-5,或x>-3}.5.已知集合A={1,3,m2},B={1,m},A∪B=A,则m等于( )A.3B.0或3C.1或0D.1或3【答案】B【解析】因为B∪A=A,所以B⊆A,因为集合A={1,3,m2},B={1,m},所以m=3,或m2=m,所以m=3或m=0.故选B.6.已知全集U=N*,集合A={x|x=2n,n∈N*},B={x|x=4n,n∈N*},则( )A.U=A∪BB.U=(∁UA)∪BC.U=A∪(∁UB)D.U=(∁UA)∪(∁UB)【答案】C【解析】由题意易得B A,画出如图所示的示意图,显然U=A∪(∁U B),故选C.7.集合A={x|x≤-1或x>6},B={x|-2≤x≤a},若A∪B=R,则实数a的取值范围为_________.【答案】{a|a≥6}【解析】由图示可知a≥6.所以a的取值范围为{a|a≥6}8.已知集合A={x|1≤x ≤2},B={x|x<a},若A ∩B=A,则实数a 的取值范围是_________,若A ∩B=∅,则a 的范围为_________.【答案】{a|a>2} {a|a ≤1}【解析】根据题意,集合A={x|1≤x ≤2},若A ∩B=A,则有A ⊆B,必有a>2,若A ∩B=,必有a ≤1.能力提升9.已知全集U=R,M={x|x ≤1},P={x|x ≥2},则∁U(M ∪P)等于( )A. {x|1<x<2}B.{x|x ≥1}C.{x|x ≤2}D.{x|x ≤1或x ≥2}【答案】A【解析】因为M ∪P={x|x ≤1或x ≥2},所以∁U(M ∪P)={x|1<x<2}.故选A.10.已知集合A={x|x<1,或x>5},B={x|a ≤x ≤b},且A ∪B=R,A∩B={x|5<x≤6},则2a-b=________.【答案】-4【解析】如图所示,可知a=1,b=6,2a-b=-4.11.已知全集U=R,集合A={x|-2≤x ≤5},B={x|a+1≤x ≤2a-1}且A ⊆∁U B,求实数a 的取值范围.【答案】见解析【解析】若B=∅,则a+1>2a-1,则a<2,此时∁U B=R,所以A ⊆∁U B;若B ≠∅,则a+1≤2a-1,即a ≥2,此时∁U B={x|x<a+1,或x>2a-1},由于A ⊆∁U B,如图,则a+1>5,所以a>4,所以实数a 的取值范围为{a|a<2,或a>4}.素养达成12.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?【答案】见解析【解析】设参加数学、物理、化学小组的人数构成的集合分别为A,B,C,同时参加数学和化学小组的有x人,由题意可得如图所示的Venn图.由全班共36名同学参加课外探究小组可得(26-6-x)+6+(15-10)+4+(13-4-x)+x=36,解得x=8,即同时参加数学和化学小组的有8人.《1.3 集合的基本运算》分层同步练习(二)(第1课时)巩固基础1.已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B等于( )A.{0} B.{-1,0} C.{0,1} D.{-1,0,1}2.已知集合A={x|x≥0},B={x|-1≤x≤2},则A∪B=( )A.{x|x≥-1} B.{x|x≤2} C.{x|0<x≤2} D.{x|1≤x≤2} 3.若集合A={参加伦敦奥运会比赛的运动员},集合B={参加伦敦奥运会比赛的男运动员},集合C={参加伦敦奥运会比赛的女运动员},则下列关系正确的是( )A.A⊆B B.B⊆C C.A∩B=C D.B∪C=A4.已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=( )A.{0,1,2} B.{-1,0,1,2} C.{-1,0,2,3} D.{0,1,2,3} 5.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N为( ) A.x=3,y=-1 B.(3,-1)C.{3,-1} D.{(3,-1)}6.设集合M={1,2},则满足条件M∪N={1,2,3,4}的集合N的个数是( ) A.1 B.3 C.2 D.47.设A={x|-3≤x≤3},B={y|y=-x2+t}.若A∩B=∅,则实数t的取值范围是( )A.t<-3 B.t≤-3 C.t>3 D.t≥38.若集合A={x|x≤2},B={x|x≥a},满足A∩B={2},则实数a=________. 9.设集合A={-2},B={x|ax+1=0,a∈R},若A∩B=B,求a的值.10.已知集合A={x|-1≤x<3},B={x|2x-4≥x-2}.(1)求A∩B;(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.综合应用11.集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为( ) A.0 B.1 C.2 D.412.已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},且B≠∅,若A∪B =A,则( )A.-3≤m≤4 B.-3<m<4 C.2<m<4 D.2<m≤413.已知集合A={1,3,m},B={1,m},A∪B=A,则m等于( )A.0.0或3 C.1.1或314.设集合A={x|-1≤x≤2},B={x|-1<x≤4},C={x|-3<x<2}且集合A∩(B∪C)={x|a≤x≤b},则a=________,b=________.15.已知M={x|y=x2-1},N={y|y=x2-1},那么M∩N等于。
高一数学练习题加答案
高一数学练习题加答案在高一数学的学习中,练习题是帮助学生巩固知识点和提高解题能力的重要工具。
以下是一些高一数学的练习题,以及相应的答案,供学生参考和练习。
练习题一:集合的概念与运算1. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B。
2. 若集合C = {x | x > 5},D = {x | x < 10},求C∩D。
3. 集合E = {x | x^2 - 4x + 3 = 0},求E的元素。
答案一:1. A∪B = {1, 2, 3, 4}。
2. C∩D = {x | 5 < x < 10}。
3. E = {1, 3}。
练习题二:函数的基本概念1. 判断函数f(x) = x^2 - 4x + 3的单调性。
2. 求函数g(x) = 3x + 2的反函数。
3. 已知f(x) = 2x + 1,求f(-1)。
答案二:1. 函数f(x) = x^2 - 4x + 3在(-∞, 2]上单调递减,在[2, +∞)上单调递增。
2. 函数g(x) = 3x + 2的反函数为g^(-1)(x) = (x - 2) / 3。
3. f(-1) = 2*(-1) + 1 = -1。
练习题三:不等式的解法1. 解不等式:2x + 5 > 3x - 2。
2. 已知不等式组:\[ \begin{cases} x + y \geq 3 \\ 2x - y \leq 4 \end{cases} \],求其解集。
3. 解绝对值不等式:|x - 2| < 4。
答案三:1. 解得:x < 7。
2. 解集为:1 ≤ x ≤ 5,y ≥ -2。
3. 解得:-2 < x < 6。
练习题四:三角函数的基本性质1. 已知sinθ = 3/5,求cosθ(假设θ为锐角)。
2. 求值:\[ \sin(\frac{\pi}{6}) + \cos(\frac{\pi}{6}) \]。
高一数学集合练习题及答案经典
高一数学集合练习题及答案经典一、单选题1.已知集合(){}ln 2A x y x ==-,集合1,32x B y y x ⎧⎫⎪⎪⎛⎫==>-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( ) A .∅ B .()2,8 C .()3,8 D .()8,+∞2.设集合{}25A x x =-<<,162B x x ⎧⎫=-≤≤⎨⎬⎩⎭,则A B =( ) A .122x x ⎧⎫-<≤-⎨⎬⎩⎭ B .{}26x x -<≤ C .1|52x x ⎧⎫-≤<⎨⎬⎩⎭ D .{}|56x x <≤3.已知集合{}24A x x =<,{}2log 0B x x =>,则A B =( ) A .{}22x x -<< B .{}02x x << C .{}21x x -<< D .{}12x x << 4.已知集合{}{}1,(2)0A x x B x x x =<=-<,则A B ⋃=( )A .(0,1)B .(1,2)C .(,2)-∞D .(0,)+∞ 5.已知集合{0,1,2,3}M =,集合{1,0,1,4,6}N =-,则M N =( ) A .{}1- B .{0,1} C .{0} D .{1} 6.()Z M 表示集合M 中整数元素的个数,设{}24A x x =-<<,{}723B x x =-<<,则()Z A B =( )A .5B .4C .3D .27.已知集合112A x x ⎧⎫=≥⎨⎬-⎩⎭,{B y y =,则A B =( ) A .∅ B .(]2,3 C .[]2,3 D .(]2,4 8.已知集合{}24A x Z x =∈<,{}210B x x =+>,则A B =( ) A .{}1 B .{}0,1 C .{}1,2 D .{}0,1,2 9.设全集{}U 0|x x =≥,集合2{|}0M x x x =-<,{}|1N x x =≥,则()U MN =( ) A .()0,1 B .[)0,1 C .()1,+∞ D .[)0,∞+ 10.若集合2{|60}A x x x =--+>,5{|1}3B x x =≤--,则A B 等于( ) A .()3,3- B .[2,3)- C .(2,2)- D .[2,2)- 11.已知集合{}1A x x =≥-,{}12B x x =-<,则A B ⋃=( )A .{}13x x -<<B .{}1x x >-C .{}13x x -≤<D .{}1x x ≥-12.如图,U 是全集,,,M N P 是U 的三个子集,则阴影部分所表示的集合是( )A .()()U U M N P ⋂⋂B .()U M P ⋂C .()U M N P ⋂⋂D .()U M N P ⋃⋃13.设集合{}*5,,5m M x x C m N m ==∈≤,则M 的子集个数为( ) A .8 B .16 C .32D .64 14.已知集合1|2,[,4]2x A x B a a ⎧⎫=>=+⎨⎬⎩⎭,若(]1,2A B =-,则=a ( ) A .2 B .1- C .2- D .5-15.已知集合{}2|20,A x x x x R =--≤∈,{}|14,B x x x Z =-<<∈,则A B =( ) A .(1,2]-B .(1,2)-C .{}0,2D .{}0,1,2二、填空题16.如图,用集合符号表述下列点、直线与平面之间的关系.(1)点C 与平面β:___________;(2)点A 与平面α:___________;(3)直线AB 与平面α:___________;(4)直线CD 与平面α:___________.17.已知集合{}21A x x =-<<,{}0B x x =<,则A B ⋃= ____________.18.若集合{}{}220,10M x x x N x ax =+-==+=,且N M ⊆,则实数a 的取值集合为____.19.已知{}12A x x =-<≤,{}20B x x =-≤<,A B =________________.20.某班有学生45人,参加了数学小组的学生有31人,参加了英语小组的学生有26人.已知该班每个学生都至少参加了这两个小组中的一个小组,则该班学生中既参加了数学小组,又参加了英语小组的学生有___________人.21.已知集合{1,2,3}A =,则满足A B A ⋃=的非空集合B 有_________个.22.已知集合{}1,0,1A =-,{}220B x x x =-=,则A B ⋃=______.23.在下面的写法中:①∅ {}0;②{}{}00,1∈;③0∈∅;④{}{}0,11,0⊆;⑤{}0∅∈,错误..的写法的序号是______. 24.已知集合{}2|1A x x ==,{}|10B x ax =-=,若B A ⊆,则实数=a ______. 25.设集合{}2,3,4U =,对其子集引进“势”的概念;①空集的“势”最小;②非空子集的元素越多,其“势”越大;③若两个子集的元素个数相同,则子集中最大的元素越大,子集的“势”就越大.最大的元素相同,则第二大的元素越大,子集的“势”就越大,以此类推.若将全部的子集按“势”从小到大顺序排列,则排在第6位的子集是_________.三、解答题26.已知{}{15},1,R A x x B x a x a a =-<<=-<<∈(1)若2,B ∈求实数a 的取值范围(2)若B A ⊆,求实数a 的取值范围27.已知集合{}1A x a x a =≤≤+,{}2280B x x x =--≤. (1)若A B B ⋃=,求a 的取值范围;(2)若A B =∅,求a 的取值范围.28.已知不等式()x a x a <210-++的解集为M .(1)若2∈M ,求实数a 的取值范围;(2)当M 为空集时,求不等式1x a-<2的解集.29.集合{}30?180120?180,Z A k k k αα︒︒=︒+<<+︒∈,集合{}45?360135?360,Z B k k k ββ=-+<<+∈. (1)求A B ;(2)若全集为U ,求U ()A B ⋂.30.(1)已知全集U =R ,集合{}2A x x =≤,{}2|60B x x x =--<,求()U A B ⋂. (2)已知0a >,0b >,且21a b +=,若不等式21m a b+≥恒成立,求实数m 的最大值.【参考答案】一、单选题1.B【解析】【分析】先求出集合,A B ,然后直接求A B 即可.【详解】集合(){}{}ln 22A x y x x x ==-=>, 集合{}1,3082x B y y x y y ⎧⎫⎪⎪⎛⎫==>-=<<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,()2,8A B =, 故选:B .2.C【解析】【分析】直接由交集得概念求解即可.【详解】由题意知:A B =1|52x x ⎧⎫-≤<⎨⎬⎩⎭. 故选:C.3.D【解析】【分析】先求得集合A 、B ,根据交集运算的概念,即可得答案.【详解】 由题意得集合{22}A x x =-<<,因为22log 0log 1x >=,所以1x >, 所以集合{1}B x x =>, 所以{12}A B x x ⋂=<<.故选:D4.C【解析】【分析】求出集合B ,由并集的定义即可求出答案.【详解】 因为{}{}(2)002B x x x x x =-<=<<,则}{2A B x x ⋃=<.故选:C.5.B【解析】【分析】运用集合交集的定义进行求解即可.【详解】因为{0,1,2,3}M =,集合{1,0,1,4,6}N =-,所以MN ={0,1},故选:B6.C【解析】【分析】首先求出集合B ,再根据交集的定义求出A B ,即可得解;【详解】 解:因为{}7372322B x x x x ⎧⎫=-<<=-<<⎨⎬⎩⎭,{}24A x x =-<<,所以3|22A B x x ⎧⎫=-<<⎨⎬⎩⎭,则()1A B -∈,()0A B ∈,()1A B ∈,所以()3Z A B =; 故选:C7.B【解析】【分析】首先解分式不等式求出集合A ,再求出集合B ,最后根据交集的定义计算可得;【详解】 解:由112x ≥-,即1102x -≥-,即1202x x -+≥-, 等价于()()23020x x x ⎧--≤⎨-≠⎩,解得23x <≤,即{}11232A x x x x ⎧⎫=≥=<≤⎨⎬-⎩⎭,因为20x ≥,所以21616x -≤,所以04≤,所以{{}04B y y y y ==≤≤,所以{}|23A B x x ⋂=<≤. 故选:B.8.B【解析】【分析】解不等式求得集合,A B ,由此求得A B .【详解】()()24,220,22x x x x <+-<-<<,所以{}1,0,1A =-, 由于1,2B ⎛⎫=-+∞ ⎪⎝⎭,所以{}0,1A B =. 故选:B9.B【解析】【分析】首先解一元二次不等式求出集合M ,再根据补集、并集的定义计算可得;【详解】解:由20x x -<,即()10x x -<,解得01x <<,所以{}{}210||0M x x x x x -=<=<<,因为{}|1N x x =≥,{}U 0|x x =≥, 所以{}U |01N x x =≤<,所以(){}U |01M N x x =≤<;故选:B10.D【解析】【分析】解不等式化简集合A ,B ,再利用交集的定义直接求解作答.【详解】不等式260x x --+>化为:260x x +-<,解得:32x -<<,则(3,2)A =-, 不等式513x ≤--,即203x x +≤-,整理得:(2)(3)030x x x +-≤⎧⎨-≠⎩,解得23x -≤<,则[2,3)B =-,所以[2,2)A B ⋂=-.故选:D11.D【解析】【分析】求出集合B ,利用并集的定义可求得集合A B .【详解】 因为{}{}{}1221213B x x x x x x =-<=-<-<=-<<,因此,{}1A B x x ⋃=≥-. 故选:D.12.A【解析】【分析】根据文氏图的意义,阴影部分为集合,M N 在全集上的补集的公共部分和集合P 的交集,进行求解即可.【详解】根据题意,阴影部分为集合,M N 分别在全集上的补集的公共部分和集合P 的交集, 即阴影部分为()()U U M N P ⋂⋂.故选:A13.A【解析】【分析】根据组合数的求解,先求得集合M 中的元素个数,再求其子集个数即可.【详解】因为*5,,5m x C m N m =∈≤,由14555C C ==,235510C C ==,551C =,故集合M 有3个元素,故其子集个数为328=个.故选:A.14.C【解析】【分析】求出集合A 的解集,由(]1,2A B =-,列出满足题意的关系式求解即可得答案.【详解】 解:因为{}{}11|2|22|1(1,)2x x A x x x x -⎧⎫=>=>=>-=-+∞⎨⎬⎩⎭,[,4]B a a =+, 又(1,2]A B ⋂=-,所以421a a +=⎧⎨≤-⎩,即2a =-, 故选:C.15.D【解析】【分析】解不等式后求解【详解】220x x --≤,解得[1,2]A =-,{0,1,2}A B ⋂=故选:D二、填空题16. C β∉ A α AB B α⋂= CD α⊂【解析】【分析】根据元素与集合,集合与集合之间的关系,由图可写出答案【详解】(1)C 为元素,平面β为集合,所以,由图可得C β∉.(2)A 为元素,平面α为集合,所以,由图可得A α.(3)直线AB 为集合,平面α为集合,所以,由图可得AB B α⋂=.(4)直线CD 为集合,平面α为集合,所以,CD α⊂.故答案为:①C β∉;②A α;③AB B α⋂=;④CD α⊂;17.{}1x x <【解析】 【分析】利用并集概念及运算法则进行计算.【详解】在数轴上画出两集合,如图:{}{}{}2101A B x x x x x x ⋃=-<<⋃<=<.故答案为:{}1x x <18.10,1,2⎧⎫-⎨⎬⎩⎭【解析】【详解】先求出集合M ,然后分N =∅和N ≠∅两种情况求解【点睛】由220x x +-=,得(1)(2)0x x -+=,解得1x =或2x =-,所以{}1,2M =-,当N =∅时,满足N M ⊆,此时0a =当N ≠∅时,即0a ≠,则1N a ⎧⎫=-⎨⎬⎩⎭, 因为N M ⊆,所以1M a -∈,所以11a -=或12a-=-, 解得1a =-或12a =, 综上,12a =,或1a =-,或0a =, 所以实数a 的取值集合为10,1,2⎧⎫-⎨⎬⎩⎭, 故答案为:10,1,2⎧⎫-⎨⎬⎩⎭ 19.{}10x x -<<【解析】【分析】由交集运算求解即可.【详解】A B ={}{}{}122010x x x x x x -<≤⋂-≤<=-<< 故答案为:{}10x x -<<20.12【解析】【分析】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,列方程求解即可.【详解】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,则31264512x =+-=. 故答案为:12.21.7【解析】【分析】由A B A ⋃=可得B A ⊆,所以求出集合B 的所有非空子集即可【详解】因为A B A ⋃=,所以B A ⊆,因为{1,2,3}A =,所以非空集合{}1B =,{}2,{}3,{}1,2,{}1,3,{}2,3,{}1,2,3,所以非空集合B 有7个,故答案为:722.{1,0,1,2}-【解析】【分析】根据给定条件求出集合B ,再利用并集的定义直接计算作答.【详解】解方程220x x -=得:0x =或2x =,则{}0,2B =,而{}1,0,1A =-,所以{1,0,1,2}A B =-.故答案为:{1,0,1,2}-23.②③⑤【解析】【分析】根据集合与集合的关系,元素与集合的关系确定正确答案.【详解】①,空集是任何非空集合的真子集,①正确.②,集合与集合间是包含关系,不是“属于”,元素与集合之间是属于关系,②错误. ③,空集没有任何元素,③错误.④,根据集合元素的无序性可知④正确.⑤,集合与集合间是包含关系,不是“属于”,元素与集合之间是属于关系,⑤错误. 故答案为:②③⑤24.0,1或1-【解析】【分析】根据集合间的关系,运用分类讨论的方法求解参数的值即可.【详解】根据题意知,{}1,1A =-B A ⊆B ∴=∅①时,0a =;B ≠∅② 时,1B a ⎧⎫=⎨⎬⎩⎭,此时, 11a =或11a =-,解得 1a =或1a =- 故答案为:01,或-1.25.{}2,4【解析】【分析】根据题意依次按“势”从小到大顺序排列,得到答案.【详解】根据题意,将全部的子集按“势”从小到大顺序排列为:∅,{}2,{}3,{}4,{}2,3,{}2,4,{}3,4,{}2,3,4.故排在第6的子集为{}2,4.故答案为:{}2,4三、解答题26.(1)23a <<;(2)05a ≤≤.【解析】【分析】(1)由题可得12a a -<<,即得;(2)根据B A ⊆,结合集合的包含关系,即可求得a 的取值范围.(1)∵2,B ∈{}1B x a x a =-<<,∴12a a -<<,即23a <<,∴实数a 的取值范围为23a <<;(2)∵B A ⊆,{}{15},1,R A x x B x a x a a =-<<=-<<∈,∴115a a -≥-⎧⎨≤⎩,解得05a ≤≤, 故实数a 的取值范围为05a ≤≤.27.(1)[2,3]-(2)(,3)(4,)∞∞--⋃+【解析】【分析】(1)首先解一元二次不等式,求出集合B ,由A B B ⋃=,得A B ⊆,即可得到不等式组,解得即可;(2)由A B =∅,则4a >或12a +<-,解得即可;(1)解:由2280x x --≤,即()()420x x -+≤,解得24x -≤≤,所以{}{}228024B x x x x x =--≤=-≤≤,因为A B B ⋃=,得A B ⊆,则214a a ≥-⎧⎨+≤⎩, 即23a -≤≤,所以a 的取值范围是[2,3]-. (2)解:由A B =∅,则4a >或12a +<-,即4a >或3a <-,所以a 的取值范围是()(),34,-∞-⋃+∞.28.(1)a >2(2)(-∞,1)∪3,2⎛⎫+∞ ⎪⎝⎭【解析】【分析】(1)由已知2∈M 可得,2满足已知不等式,代入即可求解; (2)由M 为空集,可求得a ,然后代入解分式不等式即可求解.(1)由已知2∈M 可得,4-2(a +1)+a <0,解得a >2,所以实数a 的取值范围为()2,+∞;(2)当M 为空集,则()a a -∆=≤2410+,即()a -≤210;所以10a -=,即1a = ∴1x a -<2,即11x -<2, ∴231x x -->0,解得x >32或x <1. ∴此不等式的解集为(-∞,1)∪3,2⎛⎫+∞ ⎪⎝⎭. 29.(1){}30?360120?360,Z A B k k k αα⋂=+<<+∈ (2)U ()A B ⋂ {}210?360300?360,Z k k k αα=+<<+∈ 【解析】【分析】(1)先变形集合A ,再求交集;(2)先求补集,再求交集.(1) 解:因为{}30?180120?180,Z A k k k αα︒︒=+<<︒+︒∈ {}30?360120?360210?360300?360,Z k k k k k ααα︒︒︒=︒+︒<<︒+︒+<<+︒∈或所以 {}30?360120?360,Z A B k k k αα︒︒︒⋂=+︒<<+∈; (2)解:由(1),知U B {}135?360315?360,Z k k k γγ︒︒=+≤≤︒+︒∈ 故U ()A B ⋂{}210?360300?360,Z k k k αα=+<<+∈ 30.(1)()2,3U A B ⋂=;(2)9.【解析】【分析】 (1)先求不等式解集,再利用集合的补集、交集运算即可(2)转化为最值问题,由基本不等式求解【详解】(1)由已知{}()2602,3B x x x =--<=- ()2,U A =+∞,所以()()2,3U A B ⋂=,(2)()2121222559b a a b a b a b a b ⎛⎫+=+⋅+=++≥= ⎪⎝⎭, 且仅当13a b ==时取等号, 不等式21m a b +≥恒成立,则9m ≤,故m 的最大值为9.。
(完整word版)高一数学集合练习题
高一数学集合的练习题及答案一、、知识点:本周主要学习集合的初步知识,包括集合的有关概念、集合的表示、集合之间的关系及集合的运算等。
在进行集合间的运算时要注意使用Venn图。
本章知识结构1、集合的概念集合是集合论中的不定义的原始概念,教材中对集合的概念进行了描述性说明:“一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集)”。
理解这句话,应该把握4个关键词:对象、确定的、不同的、整体。
对象――即集合中的元素。
集合是由它的元素唯一确定的。
整体――集合不是研究某一单一对象的,它关注的是这些对象的全体。
确定的――集合元素的确定性――元素与集合的“从属”关系。
不同的――集合元素的互异性。
2、有限集、无限集、空集的意义有限集和无限集是针对非空集合来说的。
我们理解起来并不困难。
我们把不含有任何元素的集合叫做空集,记做Φ。
理解它时不妨思考一下“0与Φ”及“Φ与{Φ}”的关系。
几个常用数集N、N*、N+、Z、Q、R要记牢。
3、集合的表示方法(1)列举法的表示形式比较容易掌握,并不是所有的集合都能用列举法表示,同学们需要知道能用列举法表示的三种集合:①元素不太多的有限集,如{0,1,8}②元素较多但呈现一定的规律的有限集,如{1,2,3, (100)③呈现一定规律的无限集,如{1,2,3,…,n,…}●注意a与{a}的区别●注意用列举法表示集合时,集合元素的“无序性”。
(2)特征性质描述法的关键是把所研究的集合的“特征性质”找准,然后适当地表示出来就行了。
但关键点也是难点。
学习时多加练习就可以了。
另外,弄清“代表元素”也是非常重要的。
如{x|y =x 2}, {y|y =x 2}, {(x ,y )|y =x 2}是三个不同的集合。
4、集合之间的关系●注意区分“从属”关系与“包含”关系 “从属”关系是元素与集合之间的关系。
“包含”关系是集合与集合之间的关系。
掌握子集、真子集的概念,掌握集合相等的概念,学会正确使用“”等符号,会用Venn 图描述集合之间的关系是基本要求。
集合的基本运算练习题
集合的基本运算练习题集合的基本运算练题一、选择题(每小题5分,共30分)1.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B={ }。
答案:A。
解析:A∩B表示既属于A又属于B的元素,即{3,9}。
2.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于{ }。
答案:B。
解析:A表示2≤x<4的实数,B表示3x-7≥8-2x的实数,化简得x≥3,因此A∪B表示x≥2或x≥3,即{x|x≥2}。
3.集合A={0,2,a},B={1,a}。
若A∪B={0,1,2,4,16},则a的值为{ }。
答案:D。
解析:A∪B表示A和B的并集,即所有属于A或B的元素,因此a=4.4.满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是{ }。
答案:C。
解析:M中的元素可以是{a1,a2}、{a1,a2,a4}、{a1,a2,a3}、{a1,a2,a3,a4},共4种情况,但由于M∩{a1,a2,a3}={a1,a2},因此M中必须包含a1和a2,只有第三种情况符合要求。
5.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∩(CUB)等于{ }。
答案:A。
解析:CUB表示全集,即所有实数,因此A∩(CUB)=A。
6.设I为全集,S1,S2,S3是I的三个非空子集且S1∪S2∪S3=I,则下面论断正确的是{ }。
答案:B。
解析:CIS1表示全集I中不属于S1的元素构成的集合,因此CIS1∩(S2∪S3)表示不属于S1且属于S2或S3的元素,即S2\S1∪S3\S1,因此B正确。
二、填空题(每小题5分,共30分)1.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是{ }。
答案:a≤1.解析:A表示所有小于等于1的实数,B表示所有大于等于a的实数,因此A∪B表示所有实数,即R,因此a≤1.2.满足{1,3}∪A={1,3,5}的所有集合A的个数是{ }。
人教A版必修一集合的基本运算同步练习卷(含答案及解析)
人教A 版必修一集合的基本运算同步练习卷一 选择题(共16小题,1~11题为单项选择题,12~16题为多项选择题)1.全集U ={﹣2,﹣1,0,1},集合A ={x|x 2+x ﹣2=0},B ={0,1},则A ∪(∁U B )=( )A .{﹣2,﹣1,0}B .{﹣2,﹣1,1}C .{﹣2,0,1}D .{﹣2,﹣1,0,1}2.设集合M ={x|﹣2<x <2},N ={0,1,2,3},则M ∩N =( )A .{x|﹣2<x <2}B .{0,1}C .{0,1,2}D .{x|0<x <2}3.设集合A ={1,2,3},B ={2,3,4},则A ∩B =( )A .{2}B .{2,3}C .{3,4}D .{1,2,3,4}4.已知全集U =Z ,集合A ={1,2,3},B ={3,4},则(∁U A )∩B =( )A .{4}B .{3}C .{1,2}D .∅5.已知集合A ={x|﹣2≤x ﹣1<2},B ={x|2x <x},则A ∩B =( )A .{x|0<x <3}B .{x|﹣1≤x <0}C .{x|﹣3<x <1}D .{x ︱0x 23 ≤-} 6.已知集合M ={x|﹣2<x ≤4}和集合N ={﹣2,﹣1,0,2,4},则M ∩N =( )A .{﹣2,﹣1,0,2,4}B .{﹣1,0,2}C .{﹣1,0,2,4}D .{﹣2,﹣1,0,2}7.已知集合A ={﹣1,1},B ={0,1,2},则A ∩B =( )A .{0}B .{﹣1}C .{1}D .{﹣1,1}8.已知集合A ={x ,y ,z},C ={B|B ⊆A},则A ∩C =( )A .∅B .{x}C .{x ,y}D .{x ,y ,z}9.已知集合A ={x|0≤x ≤3},B ={x|1<x <4},则A ∪B =( )A .{x|1<x ≤3}B .{x|0≤x <4}C .{x|1≤x ≤3}D .{x|0<x <4}10.已知M ={x|x ﹣a =0},N ={x|ax ﹣1=0},若M ∩N =N ,则实数a 的值为( )A .1B .﹣1C .1或﹣1D .0或1或﹣111.已知集合A ={1,3,m },B ={1,m},B ⊆A ,则m =( )A .0或3B .0或3C .1或3D .1或312.已知集合A ={x ∈Z|x <4},B ⊆N ,则( )A .集合B ∪N =N B .集合A ∩B 可能是{1,2,3}C .集合A ∩B 可能是{﹣1,1}D .0可能属于B13.已知全集U =Z ,集合A ={x|2x+1≥0,x ∈Z},B ={﹣1,0,1,2},则( )A .A ∩B ={0,1,2} B .A ∪B ={x|x ≥0}C .(∁U A )∩B ={﹣1}D .A ∩B 的真子集个数是714.设全集为U ,下列命题正确的是( )A .若A ∩B =∅,则(∁U A )∪(∁U B )=U B .若A ∩B =∅,则A =∅或B =∅C .若A ∪B =U ,则 (∁U A )∩(∁U B )=∅D .若A ∪B =∅,则A =B =∅15.已知A ={x|2x 2﹣ax+b =0},B ={x|6x 2+(a+2)x+5+b =0},且A ∩B={21},则A ∪B 中的元素是( )A .﹣4 B .1 C .31 D .21 16.对任意A ,B ⊆R ,记A ⊕B ={x|x ∈A ∪B ,x ∉A ∩B},则称A ⊕B 为集合A ,B 的对称差.例如,若A ={1,2,3},B ={2,3,4},则A ⊕B ={1,4},下列命题中,为真命题的是( )A .若A ,B ⊆R 且A ⊕B =B ,则A =∅ B .若A ,B ⊆R 且A ⊕B =∅,则A =BC .若A ,B ⊆R 且A ⊕B ⊆A ,则A ⊆BD .存在A ,B ⊆R ,使得A ⊕B =∁R A ⊕∁R B二填空题17.已知集合A={3,|a|},B={a,1},A∪B={1,2,3,﹣2},则a的值为.18.设集合A=(﹣1,3),B=[0,4),则A∪B=.19.设集合M={x|x2﹣mx+6=0,x∈R},且M∩{2,3}=M,则实数m的取值范围是.20.若A={x|x2+(m+2)x+1=0,x∈R},且A∩R+=∅,则m的取值范围是.三解答题21.设全集U={1,2,3,4,5,6},集合A={1,3,4},B={1,4,5,6}.(1)求A∩B 及A∪B;(2)求(∁A)∩B.U22.设全集U=R,集合A={x|﹣1<x≤5},B={x|x≤0或x≥4}.(1)求A∩B;(2)集合CB),求实数t的取值范围.={x|1﹣t≤x≤t+2},且C⊆(∁U23.已知集合A={x|x2﹣8x+m=0,m∈R},B={x|ax﹣1=0,a∈R},且A∪B=A.(1)若∁BA ={3},求m,a的值;(2)若m=12,求实数a组成的集合.(A∩B);(3)24.已知集合A={x|2≤x≤6},B={x|3x﹣7≥8﹣2x}.(1)求A∩B;(2)求∁R若C={x|a﹣4<x≤a+4},且A⊆C,求a的取值范围.25.已知集合A={x|x2+2x﹣a=0}.(1)若∅是A的真子集,求a的范围;(2)若B={x|x2+x =0},且A是B的子集,求实数a的取值范围.人教A 版必修一集合的基本运算同步练习卷参考答案与解析1.分析:可求出集合A ,然后进行补集和并集的运算即可.解:U ={﹣2,﹣1,0,1},A ={1,﹣2},B ={0,1},∴∁U B ={﹣2,﹣1},A ∪(∁U B )={﹣2,﹣1,1}.故选B .2.分析:利用交集定义直接求解.解:∵集合M ={x|﹣2<x <2},N ={0,1,2,3},∴M ∩N ={0,1}.故选B .3.分析:进行交集的运算即可.解:∵A ={1,2,3},B ={2,3,4},∴A ∩B ={2,3}.故选B .4.分析:利用补集、交集的定义直接求解.解:因为U =Z ,A ={1,2,3},B ={3,4},所以(∁U A )∩B ={4}.故选A .5.分析:可求出集合A ,B ,然后进行交集的运算即可.解:A ={x|﹣1≤x <3},B ={x|x <0},∴A ∩B ={x|﹣1≤x <0}.故选B .6.分析:进行交集的运算即可.解:∵M ={x|﹣2<x ≤4},N ={﹣2,﹣1,0,2,4},∴M ∩N ={﹣1,0,2,4}.故选C .7.分析:利用交集定义直接求解.解:∵集合A ={﹣1,1},B ={0,1,2},∴A ∩B ={1}.故选C .8.分析:根据集合A 的元素是字母x ,y ,z ,集合C 的元素是集合B ,即可求出A ∩C . 解:集合A 的元素是字母x ,y ,z ,而集合C 的元素是集合B ,∴A ∩C =∅.故选A .9.分析:利用集合并集的定义求解即可.解:因为集合A ={x|0≤x ≤3},B ={x|1<x <4},则A ∪B ={x|0≤x <4}.故选B .10.分析:根据题意,M ={a},若M ∩N =N ,则N ⊆M ,对N 是不是空集进行分2种情况讨论,分别求出符合条件的a 的值,综合可得答案.解:根据题意,分析可得,M 是x ﹣a =0的解集,而x ﹣a =0⇒x =a ;故M ={a},若M ∩N =N ,则N ⊆M ,①N =∅,则a =0;②N ≠∅,则有N ={a 1},必有a1=a ,解可得,a =±1;综合可得,a =0,1,﹣1;故选D .11.分析:由子集定义得到m =3或m =m ,再利用集合中元素的性质能求出m .解:因为集合A ={1,3,m },B ={1,m},B ⊆A ,所以m =3或m =m ,若m =3,A ={1,3,3},B ={1,3},满足A ⊆B ,若m =m ,解得m =1或m =1,①若m =0,则A ={1,3,0},B ={1,0},满足A ⊆B .②若m =1,则A ,B 不满足集合中元素的互异性,舍去.综上,m =0或m =3.故选B .12.分析:根据Z ,N 的定义,及集合元素的特点进行逐一判断即可.解:因为B ⊆N ,所以B ∪N =N ,故A 正确.集合A 中一定包含元素1,2,3,集合B ⊆N ,1,2,3都属于集合N ,所以集合A ∩B 可能是{1,2,3}正确.﹣1不是自然数,故C 错误.0是最小的自然数,故D 正确.故选ABD .13.分析:求出集合A ,然后利用集合交集的定义判断A ;由集合并集的定义判断B ;由补集以及交集的定义判断C ;由集合真子集个数的计算公式判断D .解:集合A ={x|2x+1≥0,x ∈Z}={x|x ≥21-,x ∈Z},B ={﹣1,0,1,2},所以A ∩B ={0,1,2},故选项A 正确;A ∪B ={x|x ≥﹣1,x ∈Z},故选项B 错误;∁UA ={x|x <21-,x ∈Z},﹣1=7,故选项D 正确.故选ACD .14.分析:由集合的交、并、补集运算说明ACD 正确;举反例可得B 错误.解:对于选项A ,若A ∩B =∅,则∁U (A ∩B )=U ,即(∁U A )∪(∁U B )=U ,故A 正确;对于选项B ,考虑A ={1,2},B ={3,4},满足A ∩B =∅,但A ≠∅,B ≠∅,故B 错误;对于选项C ,若A ∪B =U ,则∁U (A ∪B )=∅,即(∁U A )∩(∁U B )=∅,故C 正确;对于选项D ,若A ∪B=∅,则有A =B =∅,故D 正确.故选ACD .15.分析:把x =21分别代入两个方程,可得关于a ,b 的方程组,求得a 与b 的值,化简A 与B ,再由并集运算得答案.解:由A ∩B={21},得21∈A ,且21∈B ,∴⎪⎪⎩⎪⎪⎨⎧=++++⨯=+⨯0b 52a 214160b a 21-412)(,解得⎩⎨⎧-=-=4b 7a .∴A ={x|2x 2+7x ﹣4=0}={﹣4,21},B ={x|6x 2﹣5x+1=0}={31,21},则A ∪B ={﹣4,31,21},∴A ∪B 中的元素是﹣4,31,21,故选ACD . 16.分析:理解集合的新定义,然后结合韦恩图逐一判断A 、B 、C 选项;对于D 选项,举出特例,例如R ={1,2,3,4,5,6},A ={1,2,3},B ={2,3,4},然后分别算出A ⊕B 和∁R A ⊕∁R B ,即可得解.解:对于A 选项,因为A ⊕B =B ,所以B ={x|x ∈A ∪B ,x ∉A ∩B},所以A ⊆B ,且B 中的元素不能出现在A ∩B 中,因此A =∅,即选项A 正确;对于B 选项,因为A ⊕B =∅,所以∅={x|x ∈A ∪B ,x ∉A ∩B},即A ∪B 与A ∩B 是相同的,所以A =B ,即选项B 正确;对于C 选项,因为A ⊕B ⊆A ,所以{x|x ∈A ∪B ,x ∉A ∩B}⊆A ,所以B ⊆A ,即选项C 错误;对于D 选项,设R ={1,2,3,4,5,6},A ={1,2,3},B ={2,3,4},则A ⊕B ={1,4},∁R A ={4,5,6},∁R B ={1,5,6},所以∁R A ⊕∁R B ={1,4},因此A ⊕B =∁R A ⊕∁R B ,即D 正确.故选ABD .17.分析:根据条件可得出{1,3,|a|,a}={1,2,3,﹣2},然后求出a 的值即可.解:∵A ={3,|a|},B ={a ,1},A ∪B ={1,2,3,﹣2},∴A ∪B ={1,3,|a|,a}={1,2,3,﹣2},∴|a|=2且a =﹣2,∴a =﹣1.故答案为:﹣2.18.分析:进行并集的运算即可.解:∵A =(﹣1,3),B =[0,4),∴A ∪B =(﹣1,4).故答案为:(﹣1,4).19.分析:利用集合交集的定义可知2∈M ,或3∈M 或M =∅,分类讨论即可得到答案.解:因为集合M ={x|x 2﹣mx+6=0,x ∈R},且M ∩{2,3}=M ,所以2∈M ,或3∈M 或M =∅, 当2∈M 时,4﹣2m+6=0,解得m =5;当3∈M 时,9﹣3m+6=0,解得m =5;当M =∅时,Δ=(-m)2﹣24<0,解得62-<m <62,所以实数m 的取值范围为{m=5或62-<m <62}.故答案为:{m ︱m=5或62-<m <62}.20.分析:A ∩R +=∅知,A 有两种情况,一种是A 是空集,一种是A 中的元素都是小于等于零的,故解本题应分类来解.解:A ∩R +=∅知,A 有两种情况,一种是A 是空集,一种是A 中的元素都是小于等于零的,若A =∅,则Δ=(p+2)2﹣4<0,解得﹣4<p <0 ①方法一:若A ≠∅,则Δ=(p+2)2﹣4≥0,解得p ≤﹣4或p ≥0.又A 中的元素都小于等于零 ∵两根之积为1,∴A 中的元素都小于O ,∴两根之和﹣(p+2)<0,解得p >﹣2,∴p ≥0 ②,方法二:若A ≠∅,方程有两个负根,△≥0且两根和小于0.(p+2)2﹣4≥0且﹣(p+2)<0 p 2+4p ≥0且p >﹣2,(p ≤﹣4或p ≥0)且p >﹣2,所以p ≥0.取(1)(2)的并集得,实数p 的取值范围是p >﹣4.故答案为:p >﹣4.21.分析:(1)利用交集定义和并集定义直接求解.(2)先求出∁U A ,由此能求出(∁U A )∩B .解:(1)因为全集U ={1,2,3,4,5,6},集合A ={1,3,4},B ={1,4,5,6},所以A ∩B ={1,3,4}∩{1,4,5,6}={1,4},A ∪B ={1,3,4}∪{1,4,5,6}={1,3,4,5,6}.(2)因为U ={1,2,3,4,5,6},所以∁U A ={2,5,6},所以(∁U A )∩B ={5,6}.22.分析:(1)利用交集定义直接求解;(2)求出∁U B ,当C =∅时,1﹣t >t+2,当C ≠∅时,⎪⎩⎪⎨⎧+-+≤-42t 0t 12t t 1 ⇒21-≤t <1,由此能求出实数t 的取值范围. 解:(1)∵A ={x|﹣1<x ≤5},B ={x|x ≤0或x ≥4},∴A ∩B ={x|﹣1<x ≤0或4≤x ≤5};(2)∁U B ={x|0<x <4},当C =∅时:1﹣t >t+2,即t <21-,成立;当C ≠∅时:⎪⎩⎪⎨⎧+-+≤-42t 0t 12t t 1 ⇒21-≤t <1.综上:实数t 的取值范围是 {t|t <1}.23.分析:(1)推导出3∈A ,3∉B ,从而32﹣8×3+m =0,解得m =15,从而A ={3,5},5∈B ,由此能求出a .(2)由m =12,得A ={2,6},由A ∪B =A ,得B ⊆A ,由此能求出实数a 组成的集合.解:(1)因为A ={x|x 2﹣8x+m =0,m ∈R},B ={x|ax ﹣1=0,a ∈R},且A ∪B =A .∁AB ={3},所以3∈A ,3∉B ,所以32﹣8×3+m =0,解得m =15,所以A ={3,5},所以5∈B ,所以5a ﹣1=0,解得a=51. (2)若m =12,所以A ={2,6},因为A ∪B =A ,所以B ⊆A ,当B =∅,则a =0;当B ={2},则a=21;当B ={6},则a=61;综上可得a ∈{0,21,61}. 24.分析:(1)化简集合B ,根据交集的定义写出A ∩B .(2)根据补集的定义求出∁R (A ∩B ).(3)根据A ⊆C 且A ≠∅,列不等式组求出a 的取值范围.解:(1)∵B ={x|3x ﹣7≥8﹣2x}={x|x ≥3},A ={x|2≤x ≤6},∴A ∩B ={x|3≤x ≤6}.(2)∁R (A ∩B )={x|x <3或x >6}.(3)∵A ⊆C ,∴⎩⎨⎧≥+64a 24-a ,∴2≤a <6,∴a 的取值范围是2≤a <6.25.分析:(1)若∅是A 的真子集,则A ={x|x 2+2x ﹣a =0}≠∅,由根的判别式能求出结果;(2)由A ⊆B ,得A =∅,{0},{﹣1},{0,﹣1},由此分类讨论,能求出结果.解:(1)∵若∅是A 的真子集,∴A ={x|x 2+2x ﹣a =0}≠∅,∴Δ=4+4a ≥0,∴a ≥﹣1;(2)B ={x|x 2+x =0}={0,﹣1},∵A ⊆B ,∴A =∅,{0},{﹣1},{0,﹣1},A =∅,则Δ=4+4a <0,∴a <﹣1;A 是单元素集合,Δ=4+4a =0,∴a =﹣1此时A ={﹣1},符合题意; A ={0,﹣1},0﹣1=﹣1≠﹣2不符合.综上,a ≤﹣1.。
高一数学集合的运算练习题
高一数学集合的运算练习题题型一 集合的基本运算【例1】若{}|1,I x x x =-∈Z ≥,则I N ð= .【例2】已知全集{(,)|R,R}I x y x y =∈∈,{(1,1)}P =,表示I P ð.【例3】若集合{1,1}A =-,{|1}B x mx ==,且A B A =U ,则m 的值为( )A .1B .1-C .1或1-D .1或1-或0【例4】若{}{}{},,|,A a b B x x A M A ==⊆=,求B M ð.【例5】已知2{|43,}A y y x x x ==-+∈R ,2{|22,}B y y x x x ==--+∈R ,则A B I 等于() A .∅ B .{1,3}- C .R D .[1,3]-【例6】若{}{}21,4,,1,A x B x ==且A B B =I ,则x = .【例7】若集合{}{}22(,)0,(,)0,,M x y x y N x y x y x y =+==+=∈∈R R ,则有( )A .M N M =UB .M N N =UC .M N M =ID .M N =∅I典例分析【例8】已知集合{}{}22,1,3,3,21,1A a a B a a a =+-=--+,若{}3A B =-I ,求实数a 的值.【例9】设集合{|(3)()0,R}A x x x a a =--=∈,{|(4)(1)0}B x x x =--=,求,A B A B U I .【例10】设集合22{|0},{|0}A x x x B x x x =-==+=,则集合A B =I ( )A .0B .{}0C .∅D .{}1,0,1-【例11】已知全集是R ,{|37},{|210}A x x B x x =<=<<≤,求R ()A B U ð,R ()A B I ð【例12】设全集U R =,{}2|10M m mx x =--=方程有实数根,{}2|0N n x x n =-+=方程有实数根,求()U M N I ð.【例13】已知{}2|43,M y y x x x ==-+∈R ,{}2|28,N y y x x x ==-++∈R ,则__________M N =I .【例14】已知{|2820,,}A x x m n m n ==+∈Z ,{|1218,,}B x x m n m n ==+∈Z ,则A B I 中最小的正整数是 _________.【例15】设2{|20}A x x ax b =-+=,2{|6(2)50}B x x a x b =++++=,若12A B ⎧⎫=⎨⎬⎩⎭I ,求A B U .【例16】设U R =,集合{}2|320A x x x =++=,{}2|(1)0B x x m x m =+++=;若()U A B =∅I ð,求m 的值.【例17】 x 、y ∈R ,A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|by a x - =1,a >0,b >0},当A ∩B 只有一个元素时,a ,b 的关系式是_________【例18】 集合A ={x |x 2-ax +a 2-19=0},B ={x |log 2(x 2-5x +8)=1},C ={x |x 2+2x -8=0},求当a 取什么实数时,A ∩B∅和A ∩C =∅同时成立【例19】若集合{}{}22(,)0,(,)0,,M x y x y N x y x y x y =+==+=∈∈R R ,则有.A .M N M =UB .M N N =UC .M N M =ID .M N =∅I【例20】集合{}22|190A x x ax a =-+-=,{}2|560B x x x =-+=,{}2|280C x x x =+-=满足A B ≠∅I ,A C =∅I ,求实数a 的值.【例21】设I =R ,集合2{|4430}A x x ax a =+-+=,22{|(1)0}B x x a x a =+-+=,2{|220}C x x ax a =+-=.若,,A B C 中至少有一个不是空集,求实数a 的取值范围.题型二 集合的运算律【例22】下列表述中错误的是( )A .若AB ⊆,则A B A =I B .若A B B =U ,则A B ⊆C .()()A B A A B I U 苘D .()()()U U U A B A B =I U 痧?【例23】已知全集{1,2,3,,10}U =L ,{1,2,3,4,5}A =,{4,5,6,7,8}B =,{3,5,7,9}C =求:A B U ,A B I ,()U A B I ð,U A B U ð,()A B C U I【例24】若U 为全集,下面三个命题中真命题的个数是( )⑴若A B =∅I ,则()()U U A B U =U 痧⑵若A B U =U ,则()()U U A B =∅I 痧⑶若A B =∅U ,则A B ==∅A .0个B .1个C .2个D .3个【例25】设集合{}{}{}1,2,1,2,3,2,3,4A B C ===,则A B =I U ()C【例26】已知{(,)|,}I x y x y =∈R ,3(,)|12y A x y x -⎧⎫==⎨⎬-⎩⎭,{}(,)|1B x y y x =≠+,则()I A B U ð等于()A .∅B .{(2,3)}C .(2,3)D .{2,3}【例27】设集合,{|15},{|39},,()U U R A x x B x x A B A B ==-≤≤=<<I U 求ð.【例28】设{|||6}A x Z x =∈≤,{}{}1,2,3,3,4,5,6B C ==,求:(1)()A B C I I ; (2)()A A B C I U ð.【例29】已知全集*{|10,}U x x x N =<∈且,{2,4,5,8}A =,{1,3,5,8}B =,求()U C A B U ,()U C A B I ,()()U U C A C B I , ()()U U C A C B U ,并比较它们的关系.【例30】设全集{}(,),U x y x y R =∈,集合2(,)12y M x y x ⎧+⎫==⎨⎬-⎩⎭,{}(,)4N x y y x =≠-, 那么()()U U M N I 痧等于________________.【例31】下列表示图形中的阴影部分的是 ( )A .()()A CBC U I UB .()()A B AC U I UC .()()A B B C U I UD .()A B C U I【例32】设全集{|20I x x =≤且x 为质数}.若{3,5},{7,19}I I A B A B ==I I 痧,且{2,17}I I A B =I 痧,A BC求集合,A B .题型三 集合的元素个数【例33】(2008江苏卷4)A={()}2137x x x -<-,则A I Z 的元素的个数 .【例34】(07安徽)若{}8222<≤∈=-x Z x A {}1log R <∈=x x B x ,则)(C R B A ⋂的元素个数为A.0B.1C.2D.3【例35】50名同学参加跳远和铅球测验,跳远和铅球测验成绩分别为及格40人和31人,2项测验成绩均不及格的有4人,2项测验成绩都及格的人数是( )A .35B .25C .28D .15【例36】某班有学生55人,其中体育爱好者43人,音乐爱好者34人,还有4人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为 人.【例37】已知全集I 中有15个元素,集合M N I 中有3个元素,I I M N I痧中有5个元素,I M N I ð中有4个元素.则集合N 中元素的个数( )A .3B .4C .5D .615453IN M【例38】向50名学生调查对A 、B 两事件的态度,有如下结果 赞成A 的人数是全体的五分之三,其余的不赞成,赞成B 的比赞成A 的多3人,其余的不赞成;另外,对A 、B 都不赞成的学生数比对A 、B 都赞成的学生数的三分之一多1人。
高一数学集合练习题及答案
高一数学集合练习题及答案一、单选题1.已知集合{}2|280{|1]M x x x N y y =--<=≥-,,则M N ⋂=( )A .[-1,4)B .[-1,2)C .(-2,-1)D .∅2.已知集合{}0,1,2,3A =,集合{}11B x x =-≤,则A B 等于( ) A .{}3B .{}0,1,2C .{}1,2D .{}0,1,2,33.已知集合{}42A x x =-<<,{}29B x x =≤,则A B ⋃=( )A .(]4,3-B .[)3,2-C .()4,2-D .[]3,3-4.设集合{}2260A x Z x x =∈+-≤,{}02B x x =<<,则()R A B ⋂=( )A .[]2,0-B .30,2⎛⎤ ⎥⎝⎦C .{}2,1,0--D .{}2,1--5.设全集{}1,2,3,4,5U =,集合{}1,2A =,{}2,3B =,则()UA B =( ) A .{}4,5B .{}2,3C .{}1D .{}36.已知集合{}11A x Z x =∈-≤≤,{}1,2B =,则A B ⋃=( ) A .{}1 B .{}0,1,2 C .1,0,1,2D .{}1,1,2- 7.已知集合{0,1,2,3}M =,集合{1,0,1,4,6}N =-,则MN =( )A .{}1-B .{0,1}C .{0}D .{1}8.若集合{}220A x x x =--<,{}24B x x =<,则A B =( )A .AB .BC .()1,0-D .()0,29.设集合{}|3,A x x x R =<∈,{}1,2,3B =,则A B =( ) A .{}1 B .{}1,2,3 C .{}1,2 D .{}1,0,1- 10.下列关系中正确的是( )A .{}0=∅B .{}0∅⊆C .{}(){}0,10,1⊆D .(){}(){},,a b b a =11.已知集合{}24A x Z x =∈<,{}210B x x =+>,则A B =( )A .{}1B .{}0,1C .{}1,2D .{}0,1,212.设集合{}09A x x =∈≤≤N ,{}1,2,3,6,9,10B =-,则()AA B ⋂=( ).A .{}0,1,4,5,7,8B .{}1,4,5,7,8C .{}2,3,6,9D .∅13.已知集合{}24A x x =≤,{}2,B y y x x ==∈R ,则A B =( )A .[0,2]B .[0,4]C .[2,2]-D .∅14.设集合{}220A x x x =-≤,{}1,2,3B =,{}2,3,4C =,则()A B C =( )A .{}2B .{}2,3C .{}1,2,3,4D .{}0,1,2,3,415.已知全集{}0,1,2,3,4,5U =,集合{}3A x N x =∈<,集合{}0,3,4,5B =,则()UA B ⋂=( )A .{}4,5B .{}3,4,5C .{}0,4,5D .{}0,3,4,5二、填空题16.集合()(){}2140,A x x x ax x R =-++=∈中所有元素之和为3,则实数=a ________.17.集合A ={2|x x -ax +2=0}的子集有两个,则实数a =______. 18.下列命题中正确的有________(写出全部正确的序号).①{2,4,6}⊆{2,3,4,5,6};②{菱形}⊆{矩形};③{x |x 2=0}⊆{0}; ④{(0,1)}⊆{0,1};⑤{1}∈{0,1,2};⑥{}|2x x ≥ {}|1x x >.19.已知集合{}0,1,2A =,则集合{}3,B b b a a A ==∈=______.(用列举法表示) 20.已知函数()5f x =-M ,集合{}9N x x =≥,若M N ⋂=∅,则实数a 的取值范围是_________.21.已知集合{}1,2,4,8A =,集合B ={x x 是6的正因数},则A B ⋃=__________.22.已知集合{}2|1A x x ==,{}|10B x ax =-=,若B A ⊆,则实数=a ______.23.已知集合{}2202120200A x x x =-+<,{}B x x a =<,若A B ⊆,则实数a 的取值范围是______.24.若集合{}|21A x x =-<≤,{}|13B x x =<≤,{}|2C x x =>,则()A B C =______.25.用描述法表示被4除余3的自然数全体组成的集合A =______.三、解答题26.已知集合{}2|3100A x x x =--<,{}|121B x m x m =+≤≤-.(1)当3m =时,求集合()U A B ;(2)若A B B =,求实数m 的取值范围.27.对于正整数a ,b ,存在唯一一对整数q 和r ,使得a bq r =+,0r b ≤<.特别地,当0r =时,称b 能整除a ,记作|b a ,已知{}1,2,3,,23A =⋅⋅⋅(1)存在q A ∈,使得()202291091q r r =+≤<,试求r 的值;(2)求证.不存在这样的函数f :{}1,2,3A →,使得对任意的整数1x ,2x A ∈,若{}121,2,3x x -∈,则()()12f x f x ≠(3)若B A ⊆,()12card B =(()card B 指集合B 中的元素的个数).且存在,a b B ∈,b a <,|b a ,则称B 为“和谐集”.判断:当7m =时,集合A 中有12个元素并且含有m 的任意子集是否都为“和谐集”,并说明理由.28.已知集合2111x A xx +⎧⎫=<⎨⎬-⎩⎭,{(1)(2)0}B x x x m =-+<. (1)当1m =时,求A B ;(2)已知“x A ∈”是“x B ∈”的必要条件,求实数m 的取值范围.29.已知集合A ={x |2≤|x |≤m },B ={3|x x -26x +8x >0},C ={2|x x -2x -15=0}. (1)若A C =A ,求实数m 的最小值; (2)若A B =∅,求实数m 的取值范围.30.设p :()224300x ax a a -+<>,q :211180x x -+≤.(1)若命题“()1,2x ∀∈,p 是真命题”,求a 的取值范围; (2)若p 是q 的充分不必要条件,求a 的取值范围.【参考答案】一、单选题 1.A【分析】解一元二次不等式求集合M ,再根据集合的交运算求M N ⋂. 【详解】由题设,{|24}M x x =-<<,而{|1}N y y ≥-, 所以{|14}M N x x ⋂=-≤<. 故选:A 2.B 【解析】 【分析】由交集运算求解即可. 【详解】{}{}{}1102,0,1,2B x x x x A B =-=≤≤∴⋂=∣故选:B 3.A 【解析】 【分析】先求B ,再求并集即可 【详解】易得{}3|3B x x =-≤≤,故(]4,3A B ⋃=- 故选:A 4.C 【解析】 【分析】求解集合A ,然后进行交集补集运算即可. 【详解】集合()(){}{}|23202,1,0,1A x Z x x =∈-+≤=--,{}02B x x =<<{R|0B x x =≤或}2x ≥,则()R A B ⋂={}2,1,0--故选:C 5.C 【解析】 【分析】直接按照补集和交集的概念运算即可. 【详解】 由题意知:{}1,4,5UB =,则(){}1UA B =.故选:C. 6.C 【解析】首先用列举法表示集合A ,再根据并集的定义计算可得; 【详解】解:因为{}{}111,0,1A x Z x =∈-≤≤=-,{}1,2B =,所以{}1,0,1,2A B ⋃=-; 故选:C 7.B 【解析】 【分析】运用集合交集的定义进行求解即可. 【详解】因为{0,1,2,3}M =,集合{1,0,1,4,6}N =-, 所以M N ={0,1},故选:B 8.A 【解析】 【分析】分别求出集合A 和B 求的解集,交集运算即可. 【详解】集合{}{}22012A x x x x x =--<=-<<,{}22B x x =-<<,所以A B A =.故选:A . 9.C 【解析】 【分析】求出集合A 的解集,取交集运算即可. 【详解】因为{}|33A x x =-<<,{}1,2,3B =,所以{}1,2A B =. 故选:C. 10.B 【解析】 【分析】明确∅和{}0的含义,可判断A,B;说明{}0,1是数集,而(){}0,1是点集,判断C; 当在ab 时(){}(){},,a b b a =不成立,判断D;【详解】对于A, {}0是单元素集合,元素为0,而∅是空集,二者不相等,故A 错误; 对于B ,空集为任何一个集合的子集,故{}0∅⊆正确;对于C ,{}0,1 的元素为0,1,而(){}0,1的元素为点()0,1,二者没有包含关系,故错误; 对于D, (,),(,)a b b a 当ab 表示不同的点,故(){}(){},,,a b b a 在ab 时不相等,故错误,11.B 【解析】 【分析】解不等式求得集合,A B ,由此求得A B . 【详解】()()24,220,22x x x x <+-<-<<,所以{}1,0,1A =-,由于1,2B ⎛⎫=-+∞ ⎪⎝⎭,所以{}0,1A B =.故选:B 12.A 【解析】 【分析】根据集合的运算直接可得. 【详解】解:依题意{}0123456789A ,,,,,,,,,=,{}1,2,3,6,9,10B =-, 所以{}2,3,6,9A B ⋂=,故(){}0,1,4,5,7,8AA B ⋂=.故选:A . 13.A 【解析】 【分析】解不等式得集合A ,求二次函数值域得集合B ,然后由集合的交集运算可得. 【详解】由24x ≤解得22x -≤≤,即{}22A x x =-≤≤, 易知20y x =≥,即{|0}B y y =≥ 则{|02}A B x x =≤≤. 故选:A 14.C 【解析】 【分析】先求出集合A ,再按照交集并集的运算计算()A B C 即可. 【详解】{}{}22002A x x x x x =-≤=≤≤,{}(){}1,2,1,2,3,4A B A B C ==.故选:C. 15.B 【解析】利用集合间的基本运算,即可得到答案; 【详解】{}3,4,5UA =,则(){}U 3,4,5AB ⋂=.故选:B.二、填空题 16.2-【解析】 【分析】由()()2140x x ax -++=得1231x x x a ++=-,即可求解参数.【详解】由()()2140x x ax -++=得10x -=或240x ax ++=所以11x =或23x x a +=-依题意得12313x x x a ++=-=,得2a =- 故答案为:2-.17.±【解析】 【分析】根据题意可得集合A 中仅有一个元素,则方程220x ax -+=只有一个解,从而有0∆=,即可得出答案. 【详解】解:因为A ={2|x x -ax +2=0}的子集有两个, 所以集合A 中仅有一个元素, 所以方程220x ax -+=只有一个解,所以280a ∆=-=,解得a =±故答案为:± 18.①③⑥ 【解析】 【分析】根据集合间的基本关系中的子集、真子集的定义及元素与集合的关系即可求解. 【详解】对于①,2,4,6}{2,3,4,5,6∈,则{2,4,6}⊆{2,3,4,5,6},故①正确; 对于②,菱形不属于矩形,则{菱形} {矩形},故②不正确; 对于③,由20x =,解得0x =,则{x |x 2=0}⊆{0},故③正确; 对于④,()}{0,10,1∉,则{(0,1)}⊆{0,1},故④不正确;对于⑤,集合与集合不能用属于与不属于关系表示,所以{1}∈{0,1,2}不正确; 对于⑥,{}|2x x ≥ {}|1x x >,故⑥正确. 故答案为:①③⑥.19.{0,3,6}【解析】 【分析】根据给定条件直接计算作答. 【详解】因{}0,1,2A =,而{}3,B b b a a A ==∈,所以{0,3,6}B =. 故答案为:{0,3,6}20.(,8]-∞【解析】 【分析】根据集合交集的性质,结合子集的性质进行求解即可. 【详解】∵{}9,N x x M N =≥⋂=∅,∵{}9M x x ⊆<,∵{}1M x x a =<+,∴19a +≤,解得8a ≤,∴实数a 的取值范围是(,8]-∞. 故答案为:(,8]-∞21.{1,2,3,4,6,8}【解析】 【分析】先化简集合B ,再求两集合的并集. 【详解】因为B ={x x 是6的正因数}{1,2,3,6}=, 所以{1,2,3,4,6,8}A B =. 故答案为:{1,2,3,4,6,8}. 22.0,1或1- 【解析】 【分析】根据集合间的关系,运用分类讨论的方法求解参数的值即可. 【详解】根据题意知,{}1,1A =-B A ⊆B ∴=∅①时,0a =;B ≠∅② 时,1B a ⎧⎫=⎨⎬⎩⎭,此时, 11a =或11a =-,解得 1a =或1a =-故答案为:01,或-1.23.[)2020,∞+【解析】 【分析】解一元二次不等式求得集合A ,根据A B ⊆求a 的取值范围. 【详解】由2202120200x x -+<,解得:12020x <<, ∴()1,2020A =,又A B ⊆,且{}|B x x a =<, ∴2020a ≥,故a 的取值范围为[)2020,∞+. 故答案为:[)2020,∞+24.{}|23x x <≤【解析】 【分析】先求得A B ,然后求得()A B C . 【详解】{}23A B x x =|-<≤,()A B C ={}|23x x <≤.故答案为:{}|23x x <≤25.{}|43,N n n k k =+∈【解析】 【分析】用数学式子表示出自然语言即可. 【详解】被4除余3的自然数即为4的整数倍加3, 因此{|43,N}A n n k k ==+∈. 故答案为:{}|43,N n n k k =+∈.三、解答题26.(1){}5 (2)(3),-∞ 【解析】 【分析】(1)求出集合B ,进而求出补集与交集;(2)根据集合交集的结果得到集合的包含关系,进而分类讨论,求出实数m 的取值范围. (1)由题意得,集合{}25A x x =-<<,当3m =时,{}45B x x =≤≤, 所以{2UA x x =≤-或}5x ≥,所以{}()5U AB =.(2)由A B B =,可得B A ⊆,①当B =∅时,可得121m m +>-,解得:2m <;②当B ≠∅时,则满足12112215m m m m +≤-⎧⎪+>-⎨⎪-<⎩,解得:23m ≤<,综上所述:实数m 的取值范围是(3),-∞. 27.(1)20 (2)证明见解析 (3)是,理由见解析 【解析】 【分析】(1)由2022除以91求解; (2)利用反证法证明; (3)利用“和谐集”的求解. (1)解:因为2022912220=⨯+,且q A ∈, 所以q =22,r =20; (2)假设存在这样的函数f :{}1,2,3A →,使得对任意的整数1x ,2x A ∈,若{}121,2,3x x -∈,则()()12f x f x ≠,设(){}(){}1,1,2,3,2,1,2,3f a a f b b =∈=∈, 由已知ab ,由于312,321-=-=, 所以()()()()31,32f f f f ≠≠,不妨设(){}3,1,2,3f c c =∈,且,c a c b ≠≠, 同理()()4,4f b f c ≠≠, 因为{}1,2,3只有三个元素, 所以()4f a =,即()()14f f =, 但413-=,与已知矛盾,所以假设不成立,即不存在这样的函数f :{}1,2,3A →,使得对任意的整数1x ,2x A ∈,若{}121,2,3x x -∈,则()()12f x f x ≠ (3)设{}1211,,...,,7B a a a =,若1,14,21中之一为集合B 的元素,显然为“和谐集”, 现考虑1,14,21都不属于集合B ,构造集合{}{}{}1232,4,8,16,3,6,12,5,10,20B B B ===,{}{}459,18,11,22B B ==,{}13,15,17,19,23B '=,12345,,,,B B B B B 每个集合中的元素都是倍数关系,考虑B B '⊆的情况,也即B '中5个元素全都是B 的元素,则B 中剩下的6个元素必须从12345,,,,B B B B B 这5个集合中选取6个元素,则至少有一个集合有两个元素被选,即集合B 中至少有两个元素存在倍数关系, 综上:当7m =时,集合A 中有12个元素并且含有m 的任意子集都为“和谐集”.28.(1){21}x x -<<;(2)[2,4]∈-m .【解析】【分析】(1)当1m =时,解分式不等式化简集合A ,解一元二次不等式化简集合B ,再利用并集的定义计算作答.(2)由给定条件可得B A ⊆,再借助集合包含关系列式计算作答.(1) 由2111x x +<-,得201x x +<-,解得21x -<<,则{21}A x x =-<<, 当1m =时,()()1{1210}12B x x x x x ⎧⎫=-+<=-<<⎨⎬⎩⎭, 所以{21}A B x x ⋃=-<<.(2)因为“x A ∈”是“x B ∈”的必要条件,则B A ⊆, 当12m ->,即2m <-时,{1}2m B x x =<<-,B A ⊄,不符合题意, 当12m -=,即2m =-时,B =∅,符合题意, 当12m -<,即2m >-时,12m B x x ⎧⎫=-<<⎨⎬⎩⎭,则212m -≤-<,解得24m -<≤, 综上得:24m -≤≤,所以实数m 的取值范围[2,4]∈-m .29.(1)5(2)(],4∞-【解析】【分析】(1)由并集结果得到{3,5}A -⊆,从而得到不等式组,求出m 的取值范围,得到m 的最小值;(2)由交集结果分A =∅与A ≠∅进行分类讨论,求出m 的取值范围.(1)由题有{3,5}C =-,若A C A ⋃=,则{3,5}A -⊆,则 可知2325m m ⎧≤-≤⎪⎨≤≤⎪⎩,解得:5m ≥,所以m 的最小值为5. (2)()()()(){|240}0,24,B x x x x =-->=⋃+∞,由A B =∅,则①当A =∅时,2m <;②当A ≠∅时,2m ≥,有{|22}A x m x x m =-≤≤-≤≤或,从而有24m ≤≤综上:数m 的取值范围是(],4∞-.30.(1)2,13⎡⎤⎢⎥⎣⎦(2)[]2,3【解析】【分析】(1)解不等式得到解集,根据题意列出不等式组,求出a 的取值范围;(2)先解不等式,再根据充分不必要条件得到(,3)a a 是[]2,9的真子集,进而求出a 的取值范围.(1)因为0a >,由22430x ax a -+<可得:3a x a <<,因为“()1,2x ∀∈,22430x ax a -+<”为真命题,所以()()1,2,3a a ⊆,即1,32,a a ≤⎧⎨≥⎩,解得:213a ≤≤. 即a 的取值范围是2,13⎡⎤⎢⎥⎣⎦. (2)因为0a >,由22430x ax a -+<可得:3a x a <<,21118029x x x -+≤⇔≤≤,因为p 是q 的充分不必要条件,所以(,3)a a 是[]2,9的真子集,所以2,39,a a ≥⎧⎨≤⎩(等号不同时取),解得:23a ≤≤, 即a 的取值范围是[]2,3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修1集合练习题
1.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于()
A.{x|x≥3}B.{x|x≥2}
C.{x|2≤x<3} D.{x|x≥4}
【解析】B={x|x≥3}.画数轴(如下图所示)可知选B.
【答案】B
2.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=()
`
A.{3,5} B.{3,6}
C.{3,7} D.{3,9}
【解析】A={1,3,5,7,9},B={0,3,6,9,12},A和B中有相同的元素3,9,∴A∩B={3,9}.故选D.
【答案】D
3.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.【解析】
设两项都参加的有x人,则只参加甲项的有(30-x)人,只参加乙项的有(25-x)人.(30-x)+x+(25-x)=50,∴x=5.
\
∴只参加甲项的有25人,只参加乙项的有20人,
∴仅参加一项的有45人.
【答案】45
4.已知集合A={-4,2a-1,a2},B={a-5,1-a,9},若A∩B={9},求a的值.
【解析】∵A∩B={9},
∴9∈A,∴2a-1=9或a2=9,∴a=5或a=±3.
当a=5时,A={-4,9,25},B={0,-4,9}.
此时A∩B={-4,9}≠{9}.故a=5舍去.
$
当a=3时,B={-2,-2,9},不符合要求,舍去.
经检验可知a =-3符合题意.
一、选择题(每小题5分,共20分)
1.集合A ={0,2,a},B ={1,a 2}.若A ∪B ={0,1,2,4,16},则a 的值为( )
A .0
B .1
C .2
D .4
【解析】 ∵A ∪B ={0,1,2,a ,a 2},又A ∪B ={0,1,2,4,16},
"
∴{a ,a 2}={4,16},∴a =4,故选D.
【答案】 D
2.设S ={x|2x +1>0},T ={x|3x -5<0},则S∩T =( )
A .Ø
B .{x|x<-12}
C .{x|x>53}
D .{x|-12<x<53}
【解析】 S ={x|2x +1>0}={x|x>-12},T ={x|3x -5<0}={x|x<53},则S∩T ={x|-12
<x<53}.故选D.
【答案】 D
3.已知集合A ={x|x>0},B ={x|-1≤x≤2},则A ∪B =( )
\
A .{x|x≥-1}
B .{x|x≤2}
C .{x|0<x≤2}
D .{x|-1≤x≤2}
【解析】 集合A 、B 用数轴表示如图,
A ∪
B ={x|x≥-1}.故选A.
【答案】 A
4.满足M ⊆{a 1,a 2,a 3,a 4},且M∩{a 1,a 2,a 3}={a 1,a 2}的集合M 的个数是( )
A .1
B .2
}
C .3
D .4
【解析】 集合M 必须含有元素a 1,a 2,并且不能含有元素a 3,故M ={a 1,a 2}或M =
{a1,a2,a4}.故选B.
【答案】B
二、填空题(每小题5分,共10分)
5.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.【解析】A=(-∞,1],B=[a,+∞),要使A∪B=R,只需
a≤1.
【答案】a≤1
`
6.满足{1,3}∪A={1,3,5}的所有集合A的个数是________.
【解析】由于{1,3}∪A={1,3,5},则A⊆{1,3,5},且A中至少有一个元素为5,从而A 中其余元素可以是集合{1,3}的子集的元素,而{1,3}有4个子集,因此满足条件的A的个数是4.它们分别是{5},{1,5},{3,5},{1,3,5}.
【答案】4
三、解答题(每小题10分,共20分)
7.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A∩B.
【解析】由A∪B={1,2,3,5},B={1,2,x2-1}得x2-1=3或x2-1=5.
若x2-1=3则x=±2;
若x2-1=5,则x=±6;
'
综上,x=±2或± 6.
当x=±2时,B={1,2,3},此时A∩B={1,3};
当x=±6时,B={1,2,5},此时A∩B={1,5}.
8.已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=Ø,求a的取值范围.
【解析】由A∩B=Ø,
(1)若A=Ø,
有2a>a+3,∴a>3.
)
(2)若A≠Ø,
如图:
∴,解得- ≤a≤2.
综上所述,a的取值范围是{a|- ≤a≤2或a>3}.
9.(10分)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人
【解析】 设单独参加数学的同学为x 人,参加数学化学的为y 人,单独参加化学的为z 人.
依题意⎩⎪⎨⎪⎧ x +y +6=26,y +4+z =13,x +y +z =21,解得⎩⎪⎨⎪⎧
x =12,y =8,z =1.
∴同时参加数学化学的同学有8人,
答:同时参加数学和化学小组的有8人.。