2015金华市中考数学试卷
最新浙江省金华市中考数学试题及解析
2015年浙江省金华市中考数学试卷一、选择题:本题有10小题,每小题3分,共30分。
232.(3分)(2015•金华)要使分式有意义,则x的取值应满足()26.(3分)(2015•金华)如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是()7.(3分)(2015•金华)如图的四个转盘中,C、D转盘分成8等分,若让转盘自由转动一B8.(3分)(2015•金华)图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=﹣(x﹣80)2+16,桥拱与桥墩AC的交点C恰好在水面,有AC⊥x轴,若OA=10米,则桥面离水面的高度AC为()16米米米9.(3分)(2015•金华)以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b 互相平行的是()10.(3分)(2015•金华)如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是()B二、填空题:本题有6小题,每小题4分,共24分。
11.(4分)(2015•金华)实数﹣3的相反数是.12.(4分)(2015•金华)数据6,5,7,7,9的众数是.13.(4分)(2015•金华)已知a+b=3,a﹣b=5,则代数式a2﹣b2的值是.14.(4分)(2015•金华)如图,直线l1、l2、…l6是一组等距的平行线,过直线l1上的点A 作两条射线,分别与直线l3、l6相交于点B、E、C、F.若BC=2,则EF的长是.15.(4分)(2015•金华)如图,在平面直角坐标系中,菱形OBCD的边OB在x轴正半轴上,反比例函数y=(x>0)的图象经过该菱形对角线的交点A,且与边BC交于点F.若点D的坐标为(6,8),则点F的坐标是.16.(4分)(2015•金华)图1是一张可以折叠的小床展开后支撑起来放在地面的示意图,此时点A、B、C在同一直线上,且∠ACD=90°,图2是小床支撑脚CD折叠的示意图,在折叠过程中,△ACD变形为四边形ABC′D′,最后折叠形成一条线段BD″.(1)小床这样设计应用的数学原理是.(2)若AB:BC=1:4,则tan∠CAD的值是.三、解答题:本题有8小题,共66分,各小题都必须写出解答过程。
浙江省金华市中考数学试题及解析审批稿
浙江省金华市中考数学试题及解析YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】2015年浙江省金华市中考数学试卷一、选择题:本题有10小题,每小题3分,共30分。
1.(3分)(2015?金华)计算(a2)3的结果是()A.a5B.a6C.a8D.3a22.(3分)(2015?金华)要使分式有意义,则x的取值应满足()A.x=﹣2B.x≠2C.x>﹣2D.x≠﹣2 3.(3分)(2015?金华)点P(4,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)(2015?金华)已知∠α=35°,则∠α的补角的度数是()A.55°B.65°C.145°D.165°5.(3分)(2015?金华)一元二次方程x2+4x﹣3=0的两根为x1、x2,则x1x2的值是()A.4B .﹣4C.3D.﹣36.(3分)(2015?金华)如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是()A.点A B.点B C.点C D.点D7.(3分)(2015?金华)如图的四个转盘中,C、D转盘分成8等分,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是()A.B.C.D.8.(3分)(2015?金华)图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=﹣(x﹣80)2+16,桥拱与桥墩AC 的交点C恰好在水面,有AC⊥x轴,若OA=10米,则桥面离水面的高度AC为()A.16米B.米C.16米D.米9.(3分)(2015?金华)以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是()A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD10.(3分)(2015?金华)如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是()A.B.C.D.2二、填空题:本题有6小题,每小题4分,共24分。
中考数学——2015浙江中考汇编
2015年浙江省中考试卷汇编浙江省杭州市2015年中考数学试卷 (2)浙江省湖州市2015年中考数学试卷 ................................................................................................ 错误!未定义书签。
浙江省湖州市2015年中考数学试卷 ................................................................................................ 错误!未定义书签。
浙江省金华市2015年中考数学试卷 ................................................................................................ 错误!未定义书签。
浙江省金华市2015年中考数学试卷 ................................................................................................ 错误!未定义书签。
浙江省宁波市2015年中考数学试卷 ................................................................................................ 错误!未定义书签。
浙江省衢州市2015年中考数学试卷 ................................................................................................ 错误!未定义书签。
浙江省绍兴市2015年中考数学试卷 ................................................................................................ 错误!未定义书签。
2015年浙江省金华市中考数学试题(解析版)
2015年浙江省金华市中考数学试卷解析(本试卷满分120分,考试时间120分钟,本次考试采用开卷形式,不得使用计算器)一、选择题(本题有10小题,每小题3分,共30分) 1. (2015年浙江金华3分) 计算23(a )结果正确的是【 】A. 5aB. 6aC. 8aD. 23a 【答案】B . 【考点】幂的乘方【分析】根据“幂的乘方,底数不变,指数相乘”的幂的乘方法则计算作出判断:23236(a )a a ⨯==.故选B . 2. (2015年浙江金华3分)要使分式1x 2+有意义,则x 的取值应满足【 】 A. x 2=- B. x 2≠- C. x 2>- D. x 2≠- 【答案】D .【考点】分式有意义的条件.【分析】根据分式分母不为0的条件,要使1x 2+在实数范围内有意义,必须x 20x 2+≠⇒≠-.故选D . 3. (2015年浙江金华3分) 点P (4,3)所在的象限是【 】A. 第一象限B. 第二象限C. 第三象限D. 第四象限 【答案】A .【考点】平面直角坐标系中各象限点的特征.【分析】根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).故点P (4,3)位于第一象限. 故选A . 4. (2015年浙江金华3分) 已知35α∠=︒,则α∠的补角的度数是【 】A. 55°B. 65°C. 145°D. 165° 【答案】C .【考点】补角的计算.【分析】根据“当两个角的度数和为180 °时,这两个角互为补角”的定义计算即可:∵35α∠=︒,∴α∠的补角的度数是18035145︒-︒=︒. 故选C .5. (2015年浙江金华3分)一元二次方程2x 4x 30+-=的两根为1x ,2x ,则12x x ⋅的值是【 】A. 4B. -4C. 3D. -3 【答案】D .【考点】一元二次方程根与系数的关系.【分析】∵一元二次方程2x 4x 30+-=的两根为1x ,2x ,∴123x x 31-⋅==-. 故选D .6. (2015年浙江金华3分) 如图,数轴上的A ,B ,C ,D 四点中,与表示数3-的点最接近的是【 】A. 点AB. 点BC. 点CD. 点D 【答案】B .【考点】实数和数轴;估计无理数的大小;作差法的应用.【分析】∵1<3<41<3<22<3<1⇒⇒---,∴3-在21--:.又∵()32331293>02-----==,∴3>32--.∴32<3<2---,即与无理数3-最接近的整数是2-. ∴在数轴上示数3-的点最接近的是点B . 故选B .7. (2015年浙江金华3分)如图的四个转盘中,C ,D 转盘分成8等分,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是【 】A. B. C.D.【答案】A . 【考点】概率.【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,∵四个转盘中,A 、B 、C 、D 的面积分别为转盘的3215,,,4328, ∴A 、B 、C 、D 四个转盘指针落在阴影区域内的概率分别为3215,,,4328.∴指针落在阴影区域内的概率最大的转盘是A . 故选A .8. (2015年浙江金华3分)图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O ,B ,以点O 为原点,水平直线OB 为x 轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线21y (x 80)16400=--+,桥拱与桥墩AC 的交点C 恰好在水面,有AC ⊥x 轴. 若OA =10米,则桥面离水面的高度AC 为【 】A. 40916米 B. 417米 C. 40716米 D. 415米 【答案】B .【考点】二次函数的应用(实际应用);求函数值. 【分析】如图,∵OA =10,∴点A 的横坐标为10-,∴当x 10=-时,2117y (1080)164004=---+=-.∴AC =174米.故选B .9. (2015年浙江金华3分)以下四种沿AB 折叠的方法中,不一定能判定纸带两条边线a ,b 互相平行的是【 】A. 如图1,展开后,测得∠1=∠2B. 如图2,展开后,测得∠1=∠2,且∠3=∠4C. 如图3,测得∠1=∠2D. 如图4,展开后,再沿CD 折叠,两条折痕的交点为O ,测得OA =OB ,OC =OD【答案】C .【考点】折叠问题;平行的判定;对顶角的性质;全等三角形的判定和性质. 【分析】根据平行的判定逐一分析作出判断:A . 如图1,由∠1=∠2,根据“内错角相等,两直线平行”的判定可判定纸带两条边线a ,b 互相平行;B . 如图2,由∠1=∠2和∠3=∠4,根据平角定义可得∠1=∠2=∠3=∠4=90°,从而根据“内错角相等,两直线平行”或“同旁内角互补,两直线平行”的判定可判定纸带两条边线a ,b 互相平行;C . 如图3,由∠1=∠2不一定得到内错角相等或同位角相等或同旁内角互补,故不一定能判定纸带两条边线a ,b 互相平行;D . 如图4,由OA =OB ,OC =OD ,AOC BOD ∠∠=得到AOC BOD ∆∆≌,从而得到CAO DBO ∠∠=,进而根据“内错角相等,两直线平行”的判定可判定纸带两条边线a ,b 互相平行.故选C .10. (2015年浙江金华3分)如图,正方形ABCD 和正三角形AEF 都内接于⊙O ,EF 与BC ,CD 分别相交于点G ,H ,则EFGH的值是【 】A.26B. 2C. 3D. 2【答案】C .【考点】正方形和等边三角形的性质;圆周角定理;锐角三角函数定义;特殊角的三角函数值;等腰直角三角形的判定和性质,特殊元素法的应用.【分析】如答图,连接AC,EC ,AC 与EF 交于点M .则根据对称性质,AC 经过圆心O ,∴AC 垂直 平分EF ,01EAC FAC EAF 302∠=∠=∠=. 不妨设正方形ABCD 的边长为2,则AC 22=∵AC 是⊙O 的直径,∴0AEC 90∠=. 在Rt ACE ∆中,3AE AC cos EAC 2262=⋅∠==, 1CE AC sin EAC 2222=⋅∠=在Rt MCE ∆中,∵0FEC FAC 30∠=∠=,∴12CM CE sin EAC 22=⋅∠==易知GCH ∆是等腰直角三角形,∴GF 2CM 2=又∵AEF ∆是等边三角形,∴EF AE 6==∴EF 63GH 2==. 故选C .二、填空题(本题有6小题,每小题4分,共24分) 11. (2015年浙江金华4分) 数3-的相反数是 ▲ 【答案】3. 【考点】相反数.【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0. 因此-3的相反数是3.12. (2015年浙江金华4分)数据6,5,7,7,9的众数是 ▲ 【答案】7 【考点】众数.【分析】众数是在一组数据中,出现次数最多的数据,这组数据中7出现两次,出现的次数最多,故这组数据的众数为7.13. (2015年浙江金华4分)已知a b 3+=,a b 5-=,则代数式22a b -的值是 ▲ 【答案】15.【考点】求代数式的值;因式分解的应用;整体思想的应用. 【分析】∵a b 3+=,a b 5-=,∴()()22a b a b a b 3515-=+-=⨯=.14. (2015年浙江金华4分)如图,直线126l ,l ,,l ⋅⋅⋅ 是一组等距离的平行线,过直线1l 上的点A 作两条射线,分别与直线3l ,6l 相交于点B ,E ,C ,F . 若BC =2,则EF 的长是 ▲【答案】5.【考点】平行线分线段成比例的性质;相似三角形的判定和性质. 【分析】∵直线126l ,l ,,l ⋅⋅⋅ 是一组等距离的平行线,∴AB 2BE 3=,即AB 2AE 5=. 又∵3l ∥6l ,∴ABC AEF ∆∆∽. ∴BC AB 2EF AE 5==.∵BC=2,∴22EF5EF5=⇒=.15. (2015年浙江金华4分)如图,在平面直角坐标系中,菱形OBCD的边OB在x轴正半轴上,反比例函数ky(x0)x=>的图象经过该菱形对角线的交点A,且与边BC交于点F. 若点D的坐标为(6,8),则点F的坐标是▲【答案】8123⎛⎫⎪⎝⎭,.【考点】反比例函数综合题;曲线上点的坐标与方程的关系;待定系数法的应用;菱形的性质;中点坐标;方程思想的应用.【分析】∵菱形OBCD的边OB在x轴正半轴上,点D的坐标为(6,8),∴22OD DC OD6810===+=.∴点B的坐标为(10,0),点C的坐标为(16,8).∵菱形的对角线的交点为点A,∴点A的坐标为(8,4).∵反比例函数ky(x0)x=>的图象经过点A,∴k8432=⋅=.∴反比例函数为32yx=.设直线BC的解析式为y mx n=+,∴4m16m n8310m n040n3⎧=⎪+=⎧⎪⇒⎨⎨+=⎩⎪=-⎪⎩.∴直线BC的解析式为440y x33=-.联立440x12y x33832yy3x⎧==-⎧⎪⎪⎪⇒⎨⎨=⎪⎪=⎩⎪⎩.∴点F的坐标是8123⎛⎫⎪⎝⎭,.16. (2015年浙江金华4分)图1是一张可以折叠的小床展开后支撑起来放在地面的示意图,此时,点A,B,C 在同一直线上,且∠ACD=90°.图2是小床支撑脚CD折叠的示意图,在折叠过程中,ΔACD变形为四边形ABC'D',最后折叠形成一条线段BD".(1)小床这样设计应用的数学原理是▲(2)若AB:BC=1:4,则tan∠CAD的值是▲【答案】(1)三角形的稳定性和四边形的不稳定性;(2)815. 【考点】线动旋转问题;三角形的稳定性;旋转的性质;勾股定理;锐角三角函数定义.【分析】(1)在折叠过程中,由稳定的ΔACD 变形为不稳定四边形ABC'D',最后折叠形成一条线段BD",小床这样设计应用的数学原理是:三角形的稳定性和四边形的不稳定性.(2)∵AB :BC =1:4,∴设AB x,CD y == ,则BC 4x,AC 5x == .由旋转的性质知BC"BC 4x,AC"3x,C"D"y === = , ∴AD AD"AC"C"D"3x y ==+=+.在Rt ACD ∆中,根据勾股定理得222AD AC CD =+, ∴()()22283x y 5x y y x 3+=+⇒=.∴8xCD y 83tan CAD AD 5x 5x 15∠====. 三、解答题(本题有8小题,共66分,个小题都必须写出解答过程) 17. (2015年浙江金华6分)111224cos302--︒+-【答案】解:原式=131112342323122222⨯==+-+-+. 【考点】实数的运算;二次根式化简;负整数指数幂;特殊角的三角函数值;绝对值.【分析】针对二次根式化简,负整数指数幂,特殊角的三角函数值,绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果.18. (2015年浙江金华6分)解不等式组5x 34x4(x 1)32x -<⎧⎨-+≥⎩【答案】解:5x 3<4x 4(x 1)32x -⎧⎨-+≥⎩①②由①可得5x 4x 3-<,即x 3<,由②可得4x 432x -+≥,4x 2x 43-≥-,2x 1≥,1x 2≥, ∴不等式组的解是1x 32≤<. 【考点】解一元一次不等式组.【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).19. (2015年浙江金华6分)在平面直角坐标系中,点A 的坐标是(0,3),点B 在x 轴上,将△AOB 绕点A 逆时针旋转90°得到△AEF ,点O ,B 对应点分别是E ,F .(1)若点B 的坐标是()40- ,,请在图中画出△AEF ,并写出点E ,F 的坐标; (2)当点F 落在x 轴上方时,试写出一个符合条件的点B 的坐标.【答案】解:(1)如答图,△AEF 就是所求作的三角形; 点E 的坐标是(3,3),点F 的坐标是()3,1- .(2)答案不唯一,如B ()20- ,. 【考点】开放型;网格问题;图形的设计(面动旋转);点的坐标.【分析】(1)将线段AO 、AB 绕点A 逆时针旋转90°得到AE 、AF ,连接EF ,则△AEF 就是所求作的三角形,从而根据图形得到点E ,F 的坐标.(2)由于旋转后EF x ⊥,点E 的坐标是(3,3),所以当点F 落在x 轴上方时,只要0<EF <3即0<OB <3即可,从而符合条件的点B 的坐标可以是()()120,10,02⎛⎫--- ⎪⎝⎭,,,等,答案不唯一. 20. (2015年浙江金华8分)小明随机调查了若干市民租用公共自行车的骑车时间t (单位:分),将获得的数据分成四组,绘制了如下统计图. 请根据图中信息,解答下列问题: (1)这次被调查的总人数是多少?(2)试求表示A 组的扇形圆心角的度数,并补全条形统计图;(3)如果骑自行车的平均速度为12km /h ,请估算,在租用公共自行车的市民中,骑车路程不超过6km 的人数所占的百分比.【答案】解:(1)被调查总人数为19÷38%=50(人).(2)表示A组的扇形圆心角的度数为15360=108 50︒︒⨯.∵C组的人数为501519412---=(人),∴补全条形统计图如答图:(3)设骑车时间为t分,则12t660≤,解得t≤30,∴被调查的50人中,骑公共自行车的路程不超过6km的人数为50-4=46(人),∴在租用公共自行车的市民中,骑车路程不超过6km的人数所占的百分比为46÷50=92%. 【考点】条形统计图和扇形统计图;频数、频率和总量的关系;用样本估计总体.【分析】(1)由B组的频数确19、频率38%,根据频数、频率和总量的关系即可求得被调查总人数.(2)求出A组的频率,即可求得表示A组的扇形圆心角的度数;求得C组的人数即可补全条形统计图.(3)求出被调查的50人中骑车路程不超过6km的人数所占的百分比即可用样本估计总体.21.(2015年浙江金华8分)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E. (1)求证:DE=AB;(2)以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求»EG的长.【答案】解:(1)证明:∵DE ⊥AF ,∴∠AED =90°.又∵四边形ABCD 是矩形, ∴AD ∥BC ,∠B =90°. ∴∠DAE =∠AFB ,∠AED =∠B =90°. 又∵AF =AD ,∴△ADE ≌△FAB (AAS ). ∴DE =AB .(2)∵BF =FC =1,∴AD =BC =BF +FC =2.又∵△ADE ≌△FAB ,∴AE =BF =1. ∴在Rt △ADE 中,AE =12AD . ∴∠ADE =30°. 又∵DE =2222AD AE 213-=-=,∴»n R 3033EG180πππ⋅⋅===. 【考点】矩形的性质;全等三角形的判定和性质;含30度角直角坐标三角形的性质;勾股定理;弧长的计算. 【分析】(1)通过应用AAS 证明△ADE ≌△FAB 即可证明DE =AB .(2)求出∠ADE 和DE 的长即可求得»EG的长. 22. (2015年浙江金华410分)小慧和小聪沿图1中的景区公路游览,小慧乘坐车速为30km /h 的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆现. 小聪骑自行车从飞瀑出发前往宾馆,速度为20km /h ,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点,上午10:00小聪到达宾馆. 图2中的图象分别表示两人离宾馆的路程s (km )与时间t (h )的函数关系. 试结合图中信息回答: (1)小聪上午几点钟从飞瀑出发?(2)试求线段AB ,GH 的交叉点B 的坐标,并说明它的实际意义;(3)如果小聪到达宾馆后,立即以30km /h 的速度按原路返回,那么返回途中他几点钟遇见小慧?【答案】解:(1)小聪从飞瀑到宾馆所用的时间为50÷20=2.5(h )∵小聪上午10:00到达宾馆,∴小聪从飞瀑出发的时刻为10-2.5=7.5. ∴小聪早上7:30分从飞瀑出发. (2)设直线GH 的函数表达式为s =kt +b ,∵点G (12,50),点H (3, 0 ),∴1k b 5023k b 0⎧+=⎪⎨⎪+=⎩,解得k 20b 60=-⎧⎨=⎩.∴直线GH 的函数表达式为s =-20t +60.又∵点B 的纵坐标为30,∴当s =30时,-20t +60=30, 解得t =32. ∴点B (32,30). 点B 的实际意义是:上午8:30小慧与小聪在离宾馆30km (即景点草甸) 处第一次相遇. (3)设直线DF 的函数表达式为11s k t b =+,该直线过点D 和 F (5,0),∵小慧从飞瀑回到宾馆所用时间55030=3÷(h ),∴所以小慧从飞瀑准备返回时t =510533-=,即D (103,50).111110k b 5035k b 0⎧+=⎪⎨⎪+=⎩,解得11k 30b 150=-⎧⎨=⎩. ∴直线DF 的函数表达式为s =-30t +150.∵小聪上午10:00到达宾馆后立即以30km /h 的速度返回飞瀑, ∴所需时间55030=3÷(h ).如答图,HM 为小聪返回时s 关于t 的函数图象. ∴点M 的横坐标为3+53=143,点M (143,50). 设直线HM 的函数表达式为s k t b =+22,该直线过点H (3,0) 和点M (143,50), ∴14k b 5033k b 0⎧+=⎪⎨⎪+=⎩2222,解得k 30b 90=⎧⎨=-⎩22.∴直线HM 的函数表达式为s =30t -90,由30t 9030t 150-=-+解得t 4=,对应时刻7+4=11, ∴小聪返回途中上午11:00遇见小慧.【考点】一次函数的应用;待定系数法的应用;直线上点的坐标与议程伯关系. 【分析】(1)求出小聪从飞瀑到宾馆所用的时间即可求得小聪上午从飞瀑出发的时间.(2)应用待定系数法求出直线GH 的函数表达式即可由点B 的纵坐标求出横坐标而得点B 的坐标;点B的实际意义是:上午8:30小慧与小聪在离宾馆30km (即景点草甸) 处第一次相遇.(3)求出直线DF 和小聪返回时s 关于t 的函数(HM ),二者联立即可求解.23. (2015年浙江金华10分)图1,图2为同一长方体房间的示意图,图2为该长方体的表面展开图.(1)蜘蛛在顶点A'处①苍蝇在顶点B 处时,试在图1中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线;②苍蝇在顶点C 处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD 爬行的最近路线A'GC 和往墙面BB'C'C 爬行的最近路线A'HC ,试通过计算判断哪条路线更近?(2)在图3中,半径为10dm 的⊙M 与D'C'相切,圆心M 到边CC'的距离为15dm ,蜘蛛P 在线段AB 上,苍蝇Q 在⊙M 的圆周上,线段PQ 为蜘蛛爬行路线。
初三中考数学数与式
第一部分 中考基础复习第一章 数与式第1讲 实数A 级 基础题1.(2015年广东梅州)12的相反数是( )A .2B .-2 C.12 D .-122.(2015年广东佛山)-3的倒数是( )A .-13 B.13C .3D .-33.(2015年广东广州)四个数-3.14,0,1,2中为负数的是( ) A .-3.14 B .0 C .1 D .24.(2015年内蒙古呼和浩特)以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是( )A .-3 ℃B .15 ℃C .-10 ℃D .-1 ℃5.(2015年广东汕尾)今年五月份香港举办“保普选反暴力”大联盟大型签名行动,9天共收集超121万个签名,将121万用科学记数法表示为( )A .1.21×106B .12.1×105C .0.121×107D .1.21×1056.(2015年湖南永州)在数轴上表示数-1和2014的两点分别为A 和B ,则A ,B 两点间的距离为( )A .2013B .2014C .2015D .20167.(2015年黑龙江绥化)在实数0,π,227, 2 ,-9中,无理数的个数有( )A .1个B .2个C .3个D .4个 8.(2015年山东威海)已知实数a ,b 在数轴上的位置如图1-1-2,下列结论错误的是( )图1-1-2A.||a <1<||b B .1 <-a <b C .1 < ||a <b D .-b <a <-1 9.(2015年湖北武汉)计算:-10+(+6)=________.10.(2015年吉林长春)比较大小:2__________1.(填“>”“=”或“<”) 11.(2015年江苏镇江)已知一个数的绝对值是4,则这个数是__________. 12.计算:(1)(2015年广东梅州)计算:8+|2 2-3|-⎝⎛⎭⎫13-1-(2015+2)°. (2)(2015年广东佛山)计算:9+20150+(-2)3+2 3×sin60°.B 级 中等题13.(2015年山东青岛)某种计算机完成一次基本运算的时间约为0.000 000 001 s ,将0.000 000 001 s 用科学记数法表示为( )A .0.1×10-8 sB .0.1×10-9 sC .1×10-8 sD .1×10-9 s 14.(2015年山东菏泽)如图1-1-3,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )图1-1-3A .点MB .点NC .点PD .点Q 15.(2015年重庆)下列图形都是由几个黑色和白色的正方形按一定规律组成.在图1-1-4中,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,按此规律,图⑩中黑色正方形的个数是( )图1-1-4A .32B .29C .28D .2616.(2015年贵州遵义)按一定规律排列的一列数依次为:45,48,411,414,…,按此规律,这列数中的第10个数与第16个数的积是__________.C 级 拔尖题17.(2015年湖南娄底)下列数据是按一定规律排列的(如图1-1-5),则第7行的第一个数为__________.图1-1-5第2讲 代数式A 级 基础题1.若x =1,y =12,则x 2+4xy +4y 2的值是( )A .2B .4 C.32 D.122.(2015年吉林)购买1个单价为a 元的面包和3瓶单价为b 元的饮料,所需要钱数为( )A .(a +b )元B .3(a +b )元C .(3a +b )元D .(a +3b )元3.(2015年四川自贡)为庆祝抗战胜利70周年,我市某楼盘让利于民,决定将原价为a 元/米2的商品房价降价10%销售,降价后的销售价为( )A .a -10%元/米2B .a ·10%元/米2C .a (1-10%)元/米2D .a (1+10%)元/米24.(2015年福建厦门)某商店举办促销活动,促销的方法是将原价x 元的衣服以⎝⎛⎭⎫45x -10元出售,则下列说法中,能正确表达该商店促销方法的是( )A .原价减去10元后再打8折B .原价打8折后再减去10元C .原价减去10元后再打2折D .原价打2折后再减去10元5.(2015年海南)某企业今年1月份产值为x 万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是( )A .(1-10%)(1+15%)x 万元B .(1-10%+15%)x 万元C .(x -10%)(x +15%)万元D .(1+10%-15%)x 万元 6.(2015年重庆)如图1-2-4所示的图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第④个图形中小圆圈的个数为( )图1-2-4A .21个B .24个C .27个D .30个7.(2015年湖南株洲)如果手机通话每分钟收费m 元,那么通话a 分钟,收费________元.8.(2014年江苏苏州)若a -2b =3,则9-2a +4b 的值为________. 9.(2015年湖南益阳)如图1-2-5是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n 个图案中有________根小棒.图1-2-510.(2015年四川内江)如图1-2-6是由火柴棒搭成的几何图案,则第n 个图案中有________根火柴棒.(用含n 的代数式表示)图1-2-611.已知a=3,b=|-2|,c=12,求代数式a2+b-4c的值.12.已知a,b互为相反数,c,d互为倒数,m的绝对值是2,求|| a+b2m2+1+4m-3cd的值.B级中等题13.按如图1-2-7所示的程序计算,若开始输入n的值为1,则最后输出的结果是()图1-2-7A.3 B.15 C.42 D.6314.(2015年黑龙江绥化)如图1-2-8,填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c=________.图1-2-815.(2015年江苏淮安)将连续正整数按如下规律排列(如图1-2-9):图1-2-9若正整数565位于第a 行,第b 列,则a +b =________. 16.(2014年四川达州)《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图1-2-10.图1-2-10由图易得:12+122+123+…+12n =________.C 级 拔尖题17.(2014年安徽)观察下列关于自然数的等式: 32-4×12=5;① 52-4×22=9;② 72-4×32=13;③ ……根据上述规律解决下列问题:(1)完成第四个等式:92-4×________2=________;(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.(列代数式)第3讲 整式与分式 第1课时 整式A 级 基础题1.(2015年浙江台州)单项式2a 的系数是( ) A .2 B .2a C .1 D .a2.(2015年广东珠海)计算-3a 2×a 3的结果为( ) A .-3a 5 B .3a 6 C .-3a 6 D .3a 53.(2015年四川巴中)若单项式2x 2y a +b 与-13x a -b y 4是同类项,则a ,b 的值分别为( )A .a =3,b =1B .a =-3,b =1C .a =3,b =-1D .a =-3,b =-1 4.(2015年湖南邵阳)已知a +b =3,ab =2,则a 2+b 2的值为( ) A .3 B .4 C .5 D .65.(2015年广东佛山)若(x +2)(x -1)=x 4+mx +n ,则m +n =( ) A .1 B .-2 C .-1 D .26.(2015年广东深圳)下列说法错误的是( )A .a ·a =a 2B .2a +a =3aC .(a 3)2=a 5D .a 3÷a -1=a 47.(2015年浙江金华)已知a +b =3,a -b =5,则代数式a 2-b 2=________. 8.(2015年广东珠海)填空:x 2+10x +________=(x +________)2. 9.(2015年四川绵阳)计算:a (a 2÷a )-a 2=________.10.(2015年山东菏泽)若x 2+x +m =(x -3)(x +n )对x 恒成立,则n =__________. 11.(2015年广东梅州)已知a +b =-2,求代数式(a -1)2+b (2a +b )+2a 的值.12.(2015年北京)已知2a 2+3a -6=0.求代数式3a ()2a +1-()2a +1()2a -1的值.B 级 中等题13.(2015年山东临沂)观察下列关于x 的单项式,探究其规律: x,3x 2,5x 3,7x 4,9x 5,11x 6,…,按照上述规律,第2015个单项式是( ) A .2015x 2015 B .4029x 2014 C .4029x 2015 D .4031x 201514.(2015年安徽)按一定规律排列的一列数:21,22,23,25,28,213,…,若x,y,z表示这列数中的连续三个数,猜想x,y,z满足的关系式是____________.15.(2014年浙江宁波)一个大正方形和四个全等的小正方形按图1-3-2(1)(2)两种方式摆放,则图(2)的大正方形中未被小正方形覆盖部分的面积是________.(用a,b的代数式表示)图1-3-216.(2015年河北)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:-3x=x2-5x+1(1)求所捂住的二次三项式;(2)若x=6+1,求所捂住的二次三项式的值.C级拔尖题17.利民商店出售一种原价为a的商品,有如下几种方案:(1)先提价10%,再降价10%;(2)先降价10%,再提价10%;(3)先提价20%,再降价20%.问:用这三种方案调价的结果是否一样,最后是不是都恢复了原价?第2课时 因式分解A 级 基础题1.(2014年海南)下列式子从左到右变形是因式分解的是( ) A .a 2+4a -21=a (a +4)-21 B .a 2+4a -21=(a -3)(a +7) C .(a -3)(a +7)=a 2+4a -21 D .a 2+4a -21=(a +2)2-25 2.(2015年湖北武汉)把a 2-2a 分解因式,正确的是( ) A .a (a -2) B .a (a +2) C .a (a 2-2) D .a (2-a ) 3.(2014年辽宁葫芦岛)计算:552-152=( ) A .40 B .1600 C .2400 D .28004.(2015年浙江台州)把多项式2x 2-8分解因式,结果正确的是( ) A .2()x 2-8 B .2()x -22C .2()x +2()x -2D .2x ⎝⎛⎭⎫x -4x 5.(2015年贵州毕节)下列因式分解正确的是( )A .a 4b -6a 3b +9a 2b =a 2b (a 2-6a +9)B .x 2-x +14=⎝⎛⎭⎫x -122 C .x 2-2x +4=(x -2)2 D .4x 2-y 2=(4x +y )(4x -y )6.(2015年广西贺州)把多项式4x 2y -4xy 2-x 3分解因式的结果是( ) A .4xy (x -y )-x 3 B .-x (x -2y )2C .x (4xy -4y 2-x 2)D .-x (-4xy +4y 2+x 2) 7.(2015年山东枣庄)如图1-3-3,边长为a ,b 的矩形的周长为14,面积为10,则a 2b+ab 2的值为( )图1-3-3A .140B .70C .35D .248.(2015年广东梅州)分解因式:m 3-m =________. 9.(2015年广东广州)分解因式:2mx -6my =________. 10.(2015年广东深圳)分解因式:3a 2-3b 2________.11.(2015年山东东营)分解因式:4+12(x -y )+9(x -y )2=________. 12.已知ab =-3,a +b =2.求代数式a 3b +ab 3的值.B 级 中等题13.(2015年湖南衡阳)已知a +b =3,a -b =-1,则a 2-b 2的值为________. 14.(2015年湖北孝感)分解因式:(a -b )2-4b 2__________. 15.(2015年甘肃平凉)分解因式:x 3y -2x 2y +xy =________.16.(2015年湖南株洲)分解因式:x 2()x -2-16()x -2=____________________.C 级 拔尖题17.分解因式:x 2-y 2-3x -3y .第3课时 分式A 级 基础题1.(2015年浙江丽水)分式-11-x可变形为( )A .-1x -1 B.11+x C .-11+x D.1x -12.(2015年浙江金华)要使分式xx +4有意义,则x 的取值应满足( )A .x =-4B .x ≠4C .x >-4D .x ≠-43.(2015年湖南)若分式3-xx +1的值为0,则x 的值为( )A .3或-1B .0C .3D .-14.(2014年内蒙古赤峰)化简a 2b -ab 2b -a的结果正确的是( )A .abB .-abC .a 2-b 2D .b 2-a 25.(2015年山东济南)化简 m 2m -3-9m -3 的结果是( )A .m +3B .m -3 C.m -3m +3 D.m +3m -36.(2015年湖南益阳)下列等式成立的是( ) A.1a +2b =3a +b B.22a +b =1a +b C.ab ab -b 2=a a -b D.a -a +b =-a a +b7.(2015年广东珠海)若分式3x -5有意义,则x 应满足________.8.(2015年江苏镇江)当x =__________时,分式x +1x -2的值为0.9.(2015年吉林)计算:x x -y ·x 2-y 2x=________.10.(2015年贵州六盘水)已知c 4=b 5=a6≠0,则b +c a 的值为________.11.(2015年广东佛山)计算:2x -2-8x 2-4.12.(2015年广东广州)已知A =x 2+2x +1x 2-1-xx -1.(1)化简A ;(2)当x 满足不等式组⎩⎪⎨⎪⎧x -1≥0,x -3<0,且x 为整数时,求A 的值.B 级 中等题 13.(2015年山东临沂)计算:a a +2-4a 2+2a = ______________.14.(2015年湖南邵阳)先化简⎝⎛⎭⎫1x -2-2x ·x 2-2x 2,再从0,1,2中选取一个合适的x 的值代入求值.15.(2015年湖北襄阳)先化简,再求值:⎝ ⎛⎭⎪⎫5x +3yx 2-y 2+2x y 2-x 2÷1x 2y -xy 2,其中x =3+2,y =3- 2.16.(2015年贵州黔东南州)先化简,再求值:m -33m 2-6m ÷⎝⎛⎭⎫m +2-5m -2,其中m 是方程x 2+2x -3=0的根.C 级 拔尖题 17.(2015年广东梅州)若1(2n -1)(2n +1)=a 2n -1+b2n +1,对任意自然数n 都成立,则a=______,b =______;计算:m =11×3+13×5+15×7+…+119×21=________.第4讲 二次根式A 级 基础题1.(2015年重庆)计算3 2-2的值是( )A .2B .3 C. 2 D .2 22.(2015年安徽)计算8×2的结果是( )A.10 B .4 C. 6 D .23.(2015年江苏无锡)函数y =x -4中自变量x 的取值范围是( )A .x >4B .x ≥4C .x ≤4D .x ≠44.(2015年四川凉山州)下列根式中,不能与3合并的是( ) A.13 B.33C.23D.12 5.(2015年江苏淮安)下列式子为最简二次根式的是( )A. 3B. 4C.8D.126.(2015年湖北潜江)下列各式计算正确的是( )A.2+3= 5 B .4 3-3 3=1 C .2 3×3 3=6 3 D.27÷3=37.(2015年湖南衡阳)计算8-2=________.8.(2015年江苏南京)计算5×153的结果是________. 9.(2015年江苏泰州)计算:18-2 12等于________. 10.(2015年湖北荆门)当1<a <2时,代数式()a -22+||1-a 的值是________.11.(2014年广东佛山)计算:8÷2-1+327×[2+(-2)3].12.(2014年湖北荆门)计算:24×13-4×18×(1-2)0.B 级 中等题13.(2014年安徽)设n 为正整数,且n <65<n +1,则n 的值为( )A .5B .6C .7D .814.(2014年山东济宁)如果ab>0,a+b<0,那么下面各式:①ab=ab;②ab·ba=1;③ab÷ab=-b,其中正确的是()A.①②B.②③C.①③D.①②③15.(2015年四川攀枝花)若y=x-3+3-x+2,则x y=________.16.(2014年山东德州)若y=x-4+4-x2-2,则(x+y)y=________.C级拔尖题17.(2015年山西)阅读与计算:阅读以下材料,并完成相应的任务.斐波那契(约1170—1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰好是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用:斐波那契数列中的第n个数可以用15⎝⎛⎭⎪⎫1+52n-⎝⎛⎭⎪⎫1-52n表示.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.第一章基础题强化提高测试时间:45分钟 满分:100分一、选择题(本大题共6小题,每小题5分,共30分)1.-15的相反数是( )A .15B .-15 C.115 D .-1152.用科学记数法表示316 000 000为( )A .3.16×107B .3.16×108C .31.6×107D .31.6×1063.下列二次根式中的最简二次根式是( ) A.30 B.12 C.8 D.124.下列运算正确的是( )A .a 2+a 3=a 5 B.()-a 32=a 6C .ab 2·3a 2b =3a 2b 2D .-2a 6÷a 2=-2a 35.下列计算正确的是( )A .ab ·ab =2abB .(2a )3=2a 3C .3 a -a =3(a ≥0) D.a ·b =ab (a ≥0,b ≥0)6.下列运算正确的是( )A.2+3= 5 B .3x 2y -x 2y =3C.a 2+b 2a +b=a +b D.()a 2b 3=a 6b 3 二、填空题(本大题共4小题,每小题5分,共20分)7.若分式1x -5有意义,则实数x 的取值范围是________. 8.81的平方根是________.9.若a 2-3b =5,则6b -2a 2+2015=________.10.化简:2(8-2)=________.三、解答题(本大题共5小题,每小题10分,共50分)11.分解因式:m 3n -4mn .12.化简:1x +3+6x 2-9.13.先化简,再求值:(2a +b )(2a -b )+(4ab 3-8a 2b 2)÷4ab ,其中a =-2,b =1.14.计算:|-3|+2sin45°+tan60°-⎝⎛⎭⎫-13-1-12+(π-3)0.15.先化简,再求值:⎝ ⎛⎭⎪⎫a 2-b 2a 2-2ab +b 2+a b -a ÷b 2a 2-ab,其中a ,b 满足a +1+|b -3|=0.第一部分 中考基础复习第一章 数与式第1讲 实数【演练·巩固提升】1.D 2.A 3.A 4.C 5.A 6.C 7.B 8.A9.-4 10.> 11.±412.解:(1)原式=2 2+3-2 2-3-1=-1.(2)原式=3+1-8+2 3×32=-4+3=-1. 13.D 14.C 15.B 16.110017.22 解析:由排列的规律可得,第n -1行结束的时候排了1+2+3+…+n -1=12n (n -1)个数.所以第n 行的第1个数为12n (n -1)+1.所以n =7时,第7行的第1个数为22. 第2讲 代数式【演练·巩固提升】1.B 2.D 3.C 4.B 5.A6.B 7.am 8.3 9.5n +1 10.2n (n +1)11.解:当a =3,b =|-2|=2,c =12时,a 2+b -4c =3+2-2=3. 12.解:根据题意,可知:a +b =0,①cd =1,②|m |=2,即m =±2.③把①②代入原式,可得原式=0+4m -3×1=4m -3.当m =2时,4m -3=2×4-3=5;当m =-2时,4m -3=-2×4-3=-11.所以,原式的值是5或-11.13.C 解析:把n =1代入,得n (n +1)=2<15,把n =2代入,得n (n +1)=6<15,把n =6代入,得n (n +1)=42>15,则最后输出的结果为42.14.110 解析:根据左上角+4=左下角,左上角+3=右上角,右下角的数是左下角与右上角两个数的乘积加上1的和,可得6+4=a,6+3=c ,ac +1=b ,可得a =10,c =9,b =91,所以a +b +c =10+9+91=110.15.147 解析:∵565÷4=141……1,∴正整数565位于第142行,即a =142.∵奇数行的数字在前四列,数字逐渐增加;偶数行的数字在后四列,数字逐渐减小,∴正整数565位于第五列,即b =5.∴a +b =142+5=147.16.2n -12n 解析:取n 天后剩下12n ,所以n 天共取走1-12n ,即12+122+123+…+12n =1-12n=2n -12n . 17.解:(1)4 17(2)第n 个等式为(2n +1)2-4n 2=4n +1.证明如下:左边=(2n +1)2-4n 2=4n 2+4n +1-4n 2=4n +1=右边.∴(2n +1)2-4n 2=4n +1.第3讲 整式与分式第1课时 整式【演练·巩固提升】1.A 2.A 3.A 4.C 5.C 6.C7.15 8.25 5 9.0 10.411.解:原式=a 2-2a +1+2ab +b 2+2a =()a +b 2+1,当a +b =-2时,()a +b 2+1=()-22+1=3.12.解:原式=6a 2+3a -(4a 2-1)=6a 2-4a 2+3a +1=2a 2+3a +1.因为2a 2+3a -6=0,所以2a 2+3a =6,所以原式=7.13.C 解析:先看x 的指数,第一个指数是1,第二个指数是2,第2015个单项式的指数是2015;再看系数,系数是连续的奇数,所以第2015个奇数为4029,所以第2015个单项式为4029x 2015.14.xy =z 解析:∵a m a n =a m +n ,21×22=23,22×23=25,23×25=28,25×28=213,故答案为xy =z .15.ab 解析:设大正方形的边长为x 1,小正方形的边长为x 2,由图①和②列出方程组得⎩⎪⎨⎪⎧ x 1+2x 2=a ,x 1-2x 2=b ,解得⎩⎨⎧ x 1=a +b 2,x 2=a -b 4.图②的大正方形中未被小正方形覆盖部分的面积=⎝⎛⎭⎫a +b 22-4×⎝⎛⎭⎫a -b 42=ab .16.解:(1)设所捂的二次三项式为A ,则A =x 2-5x +1+3x =x 2-2x +1.(2)若x =6+1,则A =()x -12=()6+1-12=6.17.解:方案(1)的调价结果为(1+10%)(1-10%)a =0.99a ;方案(2)的调价结果为(1-10%)(1+10%)a =0.99a ;方案(3)的调价结果为(1+20%)(1-20%)a =0.96a .由此可以得到方案(1)(2)的调价结果是一样的,方案(3)的调价结果与(1)(2)不一样.最后都没有恢复原价. 第2课时 因式分解【演练·巩固提升】1.B 2.A 3.D 4.C 5.B 6.B 7.B8.m ()m +1()m -1 9.2m ()x -3y10.3()a +b ()a -b 11.(3x -3y +2)212.解:∵a +b =2,∴(a +b )2=4.∴a 2+2ab +b 2=4.又∵ab =-3,a 2+2ab +b 2=4,∴a 2+b 2=10.∴a 3b +ab 3=ab (a 2+b 2)=-30.13.-3 14.(a +b )(a -3b ) 15.xy (x -1)216.(x -2)(x -4)(x +4)17.解:原式=(x +y )(x -y )-3(x +y )=(x +y )(x -y -3)第3课时 分式【演练·巩固提升】1.D 2.D 3.C 4.B 5.A 6.C 7.x ≠5 8.-1 9.x +y10.32 解析:由题意,可设a =6k ,b =5k ,c =4k ,则b +c a =5k +4k 6k =32. 11.解:原式=2()x +2-8()x +2()x -2=2()x -2()x +2()x -2=2x +2. 12.解:(1)A =x 2+2x +1x 2-1-x x -1=()x +12()x +1()x -1-x x -1=x +1x -1-x x -1=1x -1. (2)解x -1≥0,得x ≥1.解x -3<0,得x <3.∴⎩⎪⎨⎪⎧x -1≥0,x -3<0的解为1≤x <3. ∵x 为整数,∴x =1,2.当x =1时,分式无意义;当x =2时,A =12-1=1. 13.a -2a 解析:原式=a a +2-4a (a +2)=a 2a (a +2)-4a (a +2)=a 2-4a (a +2)=(a +2)(a -2)a (a +2)=a -2a. 14.解:原式=⎣⎢⎡⎦⎥⎤x x (x -2)-2(x -2)x (x -2)·x (x -2)2=x -2(x -2)x (x -2)·x (x -2)2=x -2x +42=-x +42, 由于x ≠0,且x ≠2,因此只能取x =1.所以当x =1时,原式的值为-x +42=-1+42=32. 15.解:原式=⎝ ⎛⎭⎪⎫5x +3y x 2-y 2-2x x 2-y 2÷1xy (x -y )=3(x +y )(x +y )(x -y )·xy (x -y ) =3xy .把x =3+2,y =3-2代入,可得:原式=3(3+2)(3-2)=3.16.解:原式=m -33m (m -2)÷⎝ ⎛⎭⎪⎫m 2-4m -2-5m -2=m -33m (m -2)·m -2(m +3)(m -3)=13m (m +3). ∵m 是方程x 2+2x -3=0的根,∴m =-3或m =1.当m =-3时,原式无意义;当m =1时,原式=13m (m +3)=13×1×(1+3)=112. 17.12 -12 1021. 解析:∵1()2n -1()2n +1=12()2n -1-12()2n +1 =a 2n -1+b 2n +1, ∴a =12,b =-12. ∴m =11×3+13×5+15×7+…+119×21=⎝⎛⎭⎫12-16+⎝⎛⎭⎫16-110+…+⎝⎛⎭⎫138-142=1021. 第4讲 二次根式【演练·巩固提升】1.D 2.B 3.B 4.C 5.A 6.D 7.2 8.5 9.2 210.1 解析:原式=||a -2+||1-a =2-a +a -1=1.11.解:原式=2 2÷12+3×(2-2 2)=4 2+6-6 2 =6-2 2.12.解:(1)原式=24×13-4×24×1=2 2-2= 2. 13.D 14.B15.9 解析:由题意,得x -3≥0,且3-x ≥0,得x =3,故y =2.∴x y =9. 16.14解析:由题意,得x -4≥0,且4-x ≥0. 解得x ≥4,且x ≤4.所以x =4.所以y =-2.所以(x +y )y =(4-2)-2=14. 17.解:第1个数:当n =1时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎣⎢⎡⎦⎥⎤1+52-1-52 =15×5=1. 第2个数:当n =2时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+522-⎝ ⎛⎭⎪⎫1-522=15⎝ ⎛⎭⎪⎫1+52-1-52⎝ ⎛⎭⎪⎫1+52+1-52 =15×5×1=1. 第一章基础题强化提高测试1.A 2.B 3.A 4.B 5.D 6.D7.x ≠5 8.±3 9.2005 10.211.解:原式=mn ()m 2-4= mn (m +2)(m -2).12.解:原式=x -3(x +3)(x -3)+6(x +3)(x -3)=x -3+6(x +3)(x -3)=x +3(x +3)(x -3)=1x -3. 13.解:原式=4a 2-b 2+b 2-2ab =2a (2a -b ). 当a =-2,b =1时,原式=2×(-2)×[2×(-2)-1]=20.14.解:原式=3+2×22+3-(-3)-2 3+1 =3+1+3+3-2 3+1=5.15.解:原式=⎣⎢⎡⎦⎥⎤(a +b )(a -b )(a -b )2-a a -b ·a (a -b )b 2 =⎝ ⎛⎭⎪⎫a +b a -b -a a -b ·a (a -b )b2=b a -b ·a (a -b )b 2=a b . ∵a +1+|b -3|=0,∴a +1=0,b -3=0.解得a =-1,b = 3.∴原式=-13=-33.。
金华市中考真题与参考答案
2015年浙江省金华市中考真题与参考答案20150620姓名: 授课时间:一、选择题(本题有10小题,每小题3分,共30分)1. 计算32)(a 结果正确的是A. 5aB. 6aC. 8aD. 23a2. 要使分式21+x 有意义,则x 的取值应满足 A. 2-=x B. 2-≠x C. 2->x D. 2-≠x3. 点P (4,3)所在的象限是A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 已知∠α=35°,则∠α的补角的度数是A. 55°B. 65°C. 145°D. 165°5. 一元二次方程0342=-+x x 的两根为1x ,2x ,则21x x ⋅的值是A. 4B. -4C. 3D. -36. 如图,数轴上的A ,B ,C ,D 四点中,与表示数3-的点最接近的是A. 点AB. 点BC. 点CD. 点D7. 如图的四个转盘中,C ,D 转盘分成8等分,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是8. 图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O ,B ,以点O 为原点,水平直线OB 为x 轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线16)80(40012+--=x y ,桥拱与桥墩AC 的交点C 恰好在水面,有AC ⊥x 轴。
若OA=10米,则桥面离水面的高度AC 为A. 40916米 B. 417米 C. 40716米 D. 415米 9. 以下四种沿AB 折叠的方法中,不一定能判定纸带两条边线a ,b 互相平行的是A. 如图1,展开后,测得∠1=∠2B. 如图2,展开后,测得∠1=∠2,且∠3=∠4C. 如图3,测得∠1=∠2D. 如图4,展开后,再沿CD 折叠,两条折痕的交点为O ,测得OA=OB ,OC=OD10. 如图,正方形ABCD 和正三角形AEF 都内接于⊙O ,EF 与BC ,CD 分别相交于点G ,H ,则GH EF 的值是 A. 26 B. 2 C. 3 D. 2二、填空题(本题有6小题,每小题4分,共24分)11. 数-3的相反数是12. 数据6,5,7,7,9的众数是13. 已知3=+b a ,5=-b a 则代数式22b a -的值是14. 如图,直线1l ,2l ,…,6l 是一组等距离的平行线,过直线1l 上的点A 作两条射线,分别与直线3l ,6l 相交于点B ,E ,C ,F 。
2015年全国各地中考试题汇总2015年浙江省义乌市中考数学试卷解析
2015年浙江省义乌市中考数学试卷一、单项选择题(本大题有10小题;每小题3分,共30分;在每小题提供的四个选项中,只有一项符合题目的要求)1.(3分)(2015•义乌市)计算(﹣1)×3的结果是()A.﹣3B.﹣2C.2D.32.(3分)(2015•义乌市)据报道,2015年第一季度,义乌电商实现交易额约26000000000元,同比增长22%,将26000000000用科学记数法表示为()A.2.6×1010B.2.6×1011C.26×1010D.0.26×10113.(3分)(2015•义乌市)有6个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.4.(3分)(2015•义乌市)下面是一位同学做的四道题:①2a+3b=5ab;②(3a3)2=6a6;③a6÷a2=a3;④a2•a3=a5,其中做对的一道题的序号是()A.①B.②C.③D.④5.(3分)(2015•义乌市)在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是()A.B.C.D.6.(3分)(2015•义乌市)化简的结果是()A.x+1B.C.x﹣1D.7.(3分)(2015•义乌市)如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS8.(3分)(2015•义乌市)如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长()A.B.πC.D.2π9.(3分)(2015•义乌市)如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是y=x2+1,则原抛物线的解析式不可能的是()A.y=x2﹣1B.y=x2+6x+5C.y=x2+4x+4D.y=x2+8x+17 10.(3分)(2015•义乌市)挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走.如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走()A.②号棒B.⑦号棒C.⑧号棒D.⑩号棒二、填空题(本大题有6小题,每小题4分,共24分)11.(4分)(2015•义乌市)分解因式:x2﹣4=.12.(4分)(2015•义乌市)如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于度.13.(4分)(2015•义乌市)由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是cm.14.(4分)(2015•义乌市)在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在以C为圆心,5为半径的圆上,连结PA,PB.若PB=4,则PA的长为.15.(4分)(2015•义乌市)在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线与此正方形的边有交点,则a的取值范围是.16.(4分)(2015•义乌市)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm.(1)开始注水1分钟,丙的水位上升cm.(2)开始注入分钟的水量后,乙的水位比甲高0.5cm.三、解答题(本大题有8小题,第1719小题每小题6分,第20、21小题每小题6分,第22、23小题每小题6分,第24小题12分,共66分)17.(6分)(2015•义乌市)(1)计算:;(2)解不等式:3x﹣5≤2(x+2)18.(6分)(2015•义乌市)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?19.(6分)(2015•义乌市)为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?20.(8分)(2015•义乌市)如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度(结果精确到1m).备用数据:,.21.(8分)(2015•义乌市)如果抛物线y=ax2+bx+c过定点M(1,1),则称次抛物线为定点抛物线.(1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式.小敏写出了一个答案:y=2x2+3x﹣4,请你写出一个不同于小敏的答案;(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线y=﹣x2+2bx+c+1,求该抛物线顶点纵坐标的值最小时的解析式,请你解答.22.(10分)(2015•义乌市)某校规划在一块长AD为18m,宽AB为13m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮.(1)如图1,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM:AN=8:9,问通道的宽是多少?(2)为了建造花坛,要修改(1)中的方案,如图2,将三条通道改为两条通道,纵向的宽度改为横向宽度的2倍,其余四块草坪相同,且每一块草坪均有一边长为8m,这样能在这些草坪建造花坛.如图3,在草坪RPCQ中,已知RE⊥PQ于点E,CF⊥PQ于点F,求花坛RECF的面积.23.(10分)(2015•义乌市)正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG 绕点A按顺时针方向旋转,记旋转角∠DAG=α,其中0°≤α≤180°,连结DF,BF,如图.(1)若α=0°,则DF=BF,请加以证明;(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由.24.(12分)(2015•义乌市)在平面直角坐标系中,O为原点,四边形OABC的顶点A在x轴的正半轴上,OA=4,OC=2,点P,点Q分别是边BC,边AB上的点,连结AC,PQ,点B1是点B关于PQ的对称点.(1)若四边形PABC为矩形,如图1,①求点B的坐标;②若BQ:BP=1:2,且点B1落在OA上,求点B1的坐标;(2)若四边形OABC为平行四边形,如图2,且OC⊥AC,过点B1作B1F∥x轴,与对角线AC、边OC分别交于点E、点F.若B1E:B1F=1:3,点B1的横坐标为m,求点B1的纵坐标,并直接写出m的取值范围.2015年浙江省义乌市中考数学试卷参考答案与试题解析一、单项选择题(本大题有10小题;每小题3分,共30分;在每小题提供的四个选项中,只有一项符合题目的要求)1.(3分)(2015•义乌市)计算(﹣1)×3的结果是()A.﹣3B.﹣2C.2D.3考点:有理数的乘法.分析:根据有理数的乘法运算法则进行计算即可得解.解答:解:(﹣1)×3=﹣1×3=﹣3.故选A.点评:本题考查了有理数的乘法,是基础题,计算时要注意符号的处理.2.(3分)(2015•义乌市)据报道,2015年第一季度,义乌电商实现交易额约26000000000元,同比增长22%,将26000000000用科学记数法表示为()A.2.6×1010B.2.6×1011C.26×1010D.0.26×1011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将26000000000用科学记数法表示为2.6×1010,故选:A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2015•义乌市)有6个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据主视图是从正面看得到的图形,可得答案.解答:解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形.故选:C.点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(3分)(2015•义乌市)下面是一位同学做的四道题:①2a+3b=5ab;②(3a3)2=6a6;③a6÷a2=a3;④a2•a3=a5,其中做对的一道题的序号是()A.①B.②C.③D.④考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:①根据合并同类项,可判断①,②根据积的乘方,可得答案;③根据同底数幂的除法,可得答案;④根据同底数幂的乘法,可得答案.解答:解:①不是同类项不能合并,故①错误;②积的乘方等于乘方的积,故②错误;③同底数幂的除法底数不变指数相减,故③错误;④同底数幂的乘法底数不变指数相加,故④正确;故选:D.点评:本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.5.(3分)(2015•义乌市)在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是()A.B.C.D.考点:概率公式.分析:由在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,直接利用概率公式求解即可求得答案.解答:解:∵在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,∴从中任意摸出一个球,则摸出白球的概率是:=.故选B.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.6.(3分)(2015•义乌市)化简的结果是()A.x+1B.C.x﹣1D.考点:分式的加减法.专题:计算题.分析:原式变形后,利用同分母分式的减法法则计算即可得到结果.解答:解:原式=﹣===x+1.故选A点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.7.(3分)(2015•义乌市)如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS考点:全等三角形的应用.分析:在△ADC和△ABC中,由于AC为公共边,AB=AD,BC=DC,利用SSS定理可判定△ADC≌△ABC,进而得到∠DAC=∠BAC,即∠QAE=∠PAE.解答:解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:D.点评:本题考查了全等三角形的应用;这种设计,用SSS判断全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分理解题意.8.(3分)(2015•义乌市)如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长()B.πC.D.A.2π考点:弧长的计算;圆周角定理;圆内接四边形的性质.分析:连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.解答:解:连接OA、OC,∵∠B=135°,∴∠D=180°﹣135°=45°,∴∠AOC=90°,则的长==π.故选B.点评:本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式L=.9.(3分)(2015•义乌市)如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是y=x2+1,则原抛物线的解析式不可能的是()A.y=x2﹣1B.y=x2+6x+5C.y=x2+4x+4D.y=x2+8x+17考点:二次函数图象与几何变换.分析:根据图象左移加,右移减,图象上移加,下移减,可得答案.解答:解:A、y=x2﹣1,先向上平移1个单位得到y=x2,再向上平移1个单位可以得到y=x2+1,故A正确;B、y=x2+6x+5=(x+3)2﹣4,无法经两次简单变换得到y=x2+1,故B错误;C、y=x2+4x+4=(x+2)2,先向右平移2个单位得到y=(x+2﹣2)2=x2,再向上平移1个单位得到y=x2+1,故C正确;D、y=x2+8x+17=(x+4)2+1,先向右平移2个单位得到y=(x+4﹣2)2+1=(x+2)2+1,再向右平移2个单位得到y=x2+1,故D正确.故选:B.点评:本题考查了二次函数图象与几何变换,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式,注意由目标函数图象到原函数图象方向正好相反.10.(3分)(2015•义乌市)挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走.如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走()A.②号棒B.⑦号棒C.⑧号棒D.⑩号棒考点:规律型:图形的变化类.分析:仔细观察图形,找到拿走后图形下面的游戏棒,从而确定正确的选项.解答:解:仔细观察图形发现:第1次应拿走⑨号棒,第2次应拿走⑤号棒,第3次应拿走⑥号棒,第4次应拿走②号棒,第5次应拿走⑧号棒,第6次应拿走⑩号棒,故选D.点评:本题考查了图形的变化类问题,解题的关键是仔细观察图形,锻炼了同学们的识图能力.二、填空题(本大题有6小题,每小题4分,共24分)11.(4分)(2015•义乌市)分解因式:x2﹣4=(x+2)(x﹣2).考点:因式分解-运用公式法.专题:因式分解.分析:直接利用平方差公式进行因式分解即可.解答:解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).点评:本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.12.(4分)(2015•义乌市)如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于60度.考点:垂径定理;坐标与图形性质;等边三角形的判定与性质;勾股定理.分析:求出OA、AC,通过余弦函数即可得出答案.解答:解:∵A(0,1),B(0,﹣1),∴AB=2,OA=1,∴AC=2,在Rt△AOC中,cos∠BAC==,∴∠BAC=60°,故答案为60.点评:本题考查了垂径定理的应用,关键是求出AC、OA的长.13.(4分)(2015•义乌市)由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是18 cm.考点:等边三角形的判定与性质.专题:应用题.分析:根据有一个角是60°的等腰三角形的等边三角形进行解答即可.解答:解:∵OA=OB,∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=OB=18cm,故答案为:18点评:此题考查等边三角形问题,关键是根据有一个角是60°的等腰三角形的等边三角形进行分析.14.(4分)(2015•义乌市)在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在以C为圆心,5为半径的圆上,连结PA,PB.若PB=4,则PA的长为3或.考点:点与圆的位置关系;勾股定理;垂径定理.专题:分类讨论.分析:连结CP,PB的延长线交⊙C于P′,如图,先计算出CB2+PB2=CP2,则根据勾股定理的逆定理得∠CBP=90°,再根据垂径定理得到PB=P′B=4,接着证明四边形ACBP为矩形,则PA=BC=3,然后在Rt△APP′中利用勾股定理计算出P′A=,从而得到满足条件的PA的长为3或.解答:解:连结CP,PB的延长线交⊙C于P′,如图,∵CP=5,CB=3,PB=4,∴CB2+PB2=CP2,∴△CPB为直角三角形,∠CBP=90°,∴CB⊥PB,∴PB=P′B=4,∵∠C=90°,∴PB∥AC,而PB=AC=4,∴四边形ACBP为矩形,∴PA=BC=3,在Rt△APP′中,∵PA=3,PP′=8,∴P′A==,∴PA的长为3或.故答案为3或.点评:本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了垂径定理和勾股定理.15.(4分)(2015•义乌市)在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线与此正方形的边有交点,则a的取值范围是≤a.考点:反比例函数图象上点的坐标特征.分析:根据题意得出C点的坐标(a﹣1,a﹣1),然后分别把A、C的坐标代入求得a的值,即可求得a的取值范围.解答:解:∵A点的坐标为(a,a).根据题意C(a﹣1,a﹣1),当A在双曲线时,则a﹣1=,解得a=+1,当C在双曲线时,则a=,解得a=,∴a的取值范围是≤a.故答案为≤a.点评:本题考查了反比例函数图象上点的坐标特征,点的坐标适合解析式是解题的关键.16.(4分)(2015•义乌市)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm.(1)开始注水1分钟,丙的水位上升cm.(2)开始注入或分钟的水量后,乙的水位比甲高0.5cm.考点:一元一次方程的应用.分析:(1)由甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,注水1分钟,乙的水位上升cm,得到注水1分钟,丙的水位上升cm;(2)设开始注入t分钟的水量后,乙的水位比甲高0.5cm,有两种情况:①甲的水位不变时,②乙的水位到达管子底部,甲的水位上升时,分别列方程求解即可.解答:解:(1)∵甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,∵注水1分钟,乙的水位上升cm,∴得到注水1分钟,丙的水位上升cm;(2)设开始注入t分钟的水量后,乙的水位比甲高0.5cm,有两种情况:①甲的水位不变时;由题意得,t﹣1=0.5,解得:t=,∵×=6>5,∴此时丙容器已向甲容器溢水,∵5÷=分钟,×=,即经过分钟时容器的水到达管子底部,乙的水位上升,∴+2×(t﹣)﹣1=0.5,解得:t=;②当乙的水位到达管子底部,甲的水位上升时,∵乙的水位到达管子底部的时间为;+(5﹣)÷÷2=分钟,∴5﹣1﹣2×(t﹣)=0.5,解得:t=,综上所述开始注入或分钟的水量后,乙的水位比甲高0.5cm.故答案为cm;或.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.三、解答题(本大题有8小题,第1719小题每小题6分,第20、21小题每小题6分,第22、23小题每小题6分,第24小题12分,共66分)17.(6分)(2015•义乌市)(1)计算:;(2)解不等式:3x﹣5≤2(x+2)考点:实数的运算;零指数幂;负整数指数幂;解一元一次不等式;特殊角的三角函数值.专题:计算题.分析:(1)原式第一项利用特殊角的三角函数值计算,第二项利用零指数幂法则计算,第三项利用算术平方根定义计算,最后一项利用负整数指数幂法则计算即可得到结果;(2)不等式去括号,移项合并,把x系数化为1,即可求出解.解答:解:(1)原式=2×﹣1++2=+;(2)去括号得:3x﹣5≤2x+4,移项合并得:x≤9.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2015•义乌市)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?考点:一次函数的应用.分析:(1)根据观察横坐标,可得去超市的时间,根据观察纵坐标,可得去超市的路程,根据路程与时间的关系,可得答案;在超市逗留的时间即路程不变化所对应的时间段;(2)求出返回家时的函数解析式,当y=0时,求出x的值,即可解答.解答:解:(1)小敏去超市途中的速度是:3000÷10=300(米/分),在超市逗留了的时间为:40﹣10=30(分).(2)设返回家时,y与x的函数解析式为y=kx+b,把(40,3000),(45,2000)代入得:,解得:,∴函数解析式为y=﹣200x+11000,当y=0时,x=55,∴返回到家的时间为:8:55.点评:本题考查了一次函数的应用,观察函数图象获取信息是解题关键.19.(6分)(2015•义乌市)为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?考点:条形统计图;扇形统计图;加权平均数.分析:(1)根据条形统计图和扇形图可知,将一次充电后行驶的里程数分为B等级的有30辆电动汽车,所占的百分比为30%,用30÷30%即可求出电动汽车的总量;分别计算出C、D所占的百分比,即可得到A所占的百分比,即可求出A的电动汽车的辆数,即可补全统计图;(2)用总里程除以汽车总辆数,即可解答.解答:解:(1)这次被抽检的电动汽车共有:30÷30%=100(辆),C所占的百分比为:40÷100×100%=40%,D所占的百分比为:20÷100×100%=20%,A所占的百分比为:100%﹣40%﹣20%﹣30%=10%,A等级电动汽车的辆数为:100×10%=10(辆),补全统计图如图所示:(2)这种电动汽车一次充电后行驶的平均里程数为:230)=217(千米),∴估计这种电动汽车一次充电后行驶的平均里程数为217千米.点评:此题考查了条形统计图,以及扇形统计图,弄清题意是解本题的关键.20.(8分)(2015•义乌市)如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度(结果精确到1m).备用数据:,.考点:解直角三角形的应用-仰角俯角问题.分析:(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可;92)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE﹣BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.解答:解:延长PQ交直线AB于点E,(1)∠BPQ=90°﹣60°=30°;(2)设PE=x米.在直角△APE中,∠A=45°,则AE=PE=x米;∵∠PBE=60°∴∠BPE=30°在直角△BPE中,BE=PE=x米,∵AB=AE﹣BE=6米,则x﹣x=6,解得:x=9+3.则BE=(3+3)米.在直角△BEQ中,QE=BE=(3+3)=(3+)米.∴PQ=PE﹣QE=9+3﹣(3+)=6+2≈9(米).答:电线杆PQ的高度约9米.点评:本题考查了仰角的定义,以及三角函数,正确求得PE的长度是关键.21.(8分)(2015•义乌市)如果抛物线y=ax2+bx+c过定点M(1,1),则称次抛物线为定点抛物线.(1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式.小敏写出了一个答案:y=2x2+3x﹣4,请你写出一个不同于小敏的答案;(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线y=﹣x2+2bx+c+1,求该抛物线顶点纵坐标的值最小时的解析式,请你解答.考点:二次函数图象上点的坐标特征;二次函数的性质.分析:(1)根据顶点式的表示方法,结合题意写一个符合条件的表达式则可;(2)根据顶点纵坐标得出b=1,再利用最小值得出c=﹣1,进而得出抛物线的解析式.解答:解:(1)依题意,选择点(1,1)作为抛物线的顶点,二次项系数是1,根据顶点式得:y=x2﹣2x+2;(2)∵定点抛物线的顶点坐标为(b,c+b2+1),且﹣1+2b+c+1=1,∴c=1﹣2b,∵顶点纵坐标c+b2+1=2﹣2b+b2=(b﹣1)2+1,∴当b=1时,c+b2+1最小,抛物线顶点纵坐标的值最小,此时c=﹣1,∴抛物线的解析式为y=﹣x2+2x.点评:本题考查抛物线的形状与抛物线表达式系数的关系,首先利用顶点坐标式写出来,再化为一般形式.22.(10分)(2015•义乌市)某校规划在一块长AD为18m,宽AB为13m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮.(1)如图1,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM:AN=8:9,问通道的宽是多少?(2)为了建造花坛,要修改(1)中的方案,如图2,将三条通道改为两条通道,纵向的宽度改为横向宽度的2倍,其余四块草坪相同,且每一块草坪均有一边长为8m,这样能在这些草坪建造花坛.如图3,在草坪RPCQ中,已知RE⊥PQ于点E,CF⊥PQ于点F,求花坛RECF的面积.考点:二元一次方程组的应用;勾股定理的应用.分析:(1)利用AM:AN=8:9,设通道的宽为xm,AM=8ym,则AN=9y,进而利用AD 为18m,宽AB为13m得出等式求出即可;(2)根据题意得出纵向通道的宽为2m,横向通道的宽为1m,进而得出PQ,RE的长,即可得出PE、EF的长,进而求出花坛RECF的面积.解答:解:(1)设通道的宽为xm,AM=8ym,∵AM:AN=8:9,∴AN=9y,∴,解得:.答:通道的宽是1m;(2)∵四块相同草坪中的每一块,有一条边长为8m,若RP=8,则AB>13,不合题意,∴RQ=8,∴纵向通道的宽为2m,横向通道的宽为1m,∴RP=6,∵RE⊥PQ,四边形RPCQ是长方形,∴PQ=10,∴RE×PQ=PR×QR=6×8,∴RE=4.8,∵RP2=RE2+PE2,∴PE=3.6,同理可得:QF=3.6,∴EF=2.8,∴S四边形RECF=4.8×2.8=13.44,即花坛RECF的面积为13.44m2.,点评:此题主要考查了二元一次方程组的应用即四边形面积求法和三角形面积求法等知识,得出RP的长是解题关键.23.(10分)(2015•义乌市)正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG 绕点A按顺时针方向旋转,记旋转角∠DAG=α,其中0°≤α≤180°,连结DF,BF,如图.(1)若α=0°,则DF=BF,请加以证明;(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由.考点:正方形的性质;全等三角形的判定与性质;命题与定理;旋转的性质.分析:(1)利用正方形的性质证明△DGF≌△BEF即可;(2)当α=180°时,DF=BF.(3)利用正方形的性质和△DGF≌△BEF的性质即可证得是真命题.解答:(1)证明:如图1,∵四边形ABCD和四边形AEFG为正方形,。
2015年金华市中考数学试题解析
2015年浙江省金华市中考数学试卷解析(本试卷满分120分,考试时间120分钟,本次考试采用开卷形式,不得使用计算器)一、选择题(本题有10小题,每小题3分,共30分)1. (2015年浙江金华3分)计算(a2)3结果正确的是【】A. a5B. a6C. a8D. 3a2【答案】B.【考点】幕的乘方【分析】根据幂的乘方,底数不变,指数相乘”的幕的乘方法则计算作出判断:2、3 2 3 6(a ) a a .故选B.12.(2015年浙江金华3分)要使分式门有意义,则X的取值应满足【】A.X - -2B.x-2C. x -2D. X —2【答案】D.【考点】分式有意义的条件.【分析】根据分式分母不为0的条件,要使1---- 在实数范围内有意义,必须x+2式0n x式-2.故选Dx 23. (2015年浙江金华3分)点P (4, 3) 所在的象限是【】A.第一象限B.第二象限C.第三象限D.第四象限【答案】A.【考点】平面直角坐标系中各象限点的特征•【分析】根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(一,+);第二象限(一,一);第四象限(+ ,—).故点P (4, 3)位于第, 象限.故选A.4. (2015年浙江金华3分)已知•=35,则•「的补角的度数是【】A. 55 °B.65 °C.145 °D.165 °【答案】C.【考点】补角的计算.【分析】根据当两个角的度数和为180。
时,这两个角互为补角”的定义计算即可:=35的补角的度数是180 -35 =145 .故选C.25. (2015年浙江金华3分)一元二次方程XABC ^3~~n~o•/ 1< 3<4= 1< 3< 2= -2< - 3< -1,•- 3在_2: -1.又•• _3「3,3一亠12一9>。
【精校】2015年浙江省义乌市中考真题数学
2015年浙江省义乌市中考真题数学一、单项选择题(本大题有10小题;每小题3分,共30分;在每小题提供的四个选项中,只有一项符合题目的要求)1.计算(-1)×3的结果是( )A.-3B.-2C.2D.3解析:根据有理数的乘法运算法则进行计算即可得解.(-1)×3=-1×3=-3.答案:A2.据报道,2015年第一季度,义乌电商实现交易额约26 000 000 000元,同比增长22%,将26 000 000 000用科学记数法表示为( )A.2.6×1010B.2.6×1011C.26×1010D.0.26×1011解析:将26 000 000 000用科学记数法表示为2.6×1010,答案:A3.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A.B.C.D.解析:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形. 答案:C4.下面是一位同学做的四道题:①2a+3b=5ab;②(3a3)2=6a6;③a6÷a2=a3;④a2·a3=a5,其中做对的一道题的序号是( )A.①B.②C.③D.④解析:①不是同类项不能合并,故①错误;②积的乘方等于乘方的积,故②错误;③同底数幂的除法底数不变指数相减,故③错误;④同底数幂的乘法底数不变指数相加,故④正确;答案:D5.在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是( )A.1 3B.2 5C.1 2D.3 5解析:∵在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,∴从中任意摸出一个球,则摸出白球的概率是:22325=+. 故选B6.化简2111x x x+--的结果是( ) A.x+1 B.11x + C.x-1 D.1x x - 解析:原式=()()22111111111x x x x x x x x x +---===+----. 答案:A7.如图,小敏做了一个角平分仪ABCD ,其中AB=AD ,BC=DC.将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A.SASB.ASAC.AASD.SSS解析:在△ADC 和△ABC 中,AD AB DC BC AC AC =⎧⎪=⎨⎪=⎩,,,∴△ADC ≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.答案:D8.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则弧AC的长( )A.2πB.πC.2πD.3π解析:连接OA、OC,∵∠B=135°,∴∠D=180°-135°=45°,∴∠AOC=90°,则弧AC的长=902180π⨯=π.答案:B9.如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是y=x2+1,则原抛物线的解析式不可能的是( )A.y=x2-1B.y=x2+6x+5C.y=x2+4x+4D.y=x2+8x+17解析:A、y=x2-1,先向上平移1个单位得到y=x2,再向上平移1个单位可以得到y=x2+1,故A正确;B、y=x2+6x+5=(x+3)2-4,无法经两次简单变换得到y=x2+1,故B错误;C、y=x2+4x+4=(x+2)2,先向右平移2个单位得到y=(x+2-2)2=x2,再向上平移1个单位得到y=x2+1,故C正确;D、y=x2+8x+17=(x+4)2+1,先向右平移2个单位得到y=(x+4-2)2+1=(x+2)2+1,再向右平移2个单位得到y=x2+1,故D正确.答案:B10.挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走.如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走( )A.②号棒B.⑦号棒C.⑧号棒D.⑩号棒解析:仔细观察图形发现:第1次应拿走⑨号棒,第2次应拿走⑤号棒,第3次应拿走⑥号棒,第4次应拿走②号棒,第5次应拿走⑧号棒,第6次应拿走⑩号棒.答案:D二、填空题(本大题有6小题,每小题4分,共24分)11.分解因式:x2-4= .解析:x2-4=(x+2)(x-2).答案:(x+2)(x-2).12.如图,已知点A(0,1),B(0,-1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于度.解析:∵A(0,1),B(0,-1),∴AB=2,OA=1,∴AC=2,在Rt△AOC中,cos∠BAC=12OAAC,∴∠BAC=60°.答案:6013.由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是 cm.解析:∵OA=OB,∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=OB=18cm.答案:1814.在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在以C为圆心,5为半径的圆上,连结PA ,PB.若PB=4,则PA 的长为 .解析:连结CP ,PB 的延长线交⊙C 于P ′,如图,∵CP=5,CB=3,PB=4,∴CB 2+PB 2=CP 2,∴△CPB 为直角三角形,∠CBP=90°,∴CB ⊥PB ,∴PB=P ′B=4,∵∠C=90°,∴PB ∥AC ,而PB=AC=4,∴四边形ACBP 为矩形,∴PA=BC=3,在Rt △APP ′中,∵PA=3,PP ′=8,∴P ′=PA 的长为3答案:315.在平面直角坐标系的第一象限内,边长为1的正方形ABCD 的边均平行于坐标轴,A 点的坐标为(a ,a).如图,若曲线y=3x(x >0)与此正方形的边有交点,则a 的取值范围是 .解析:∵A 点的坐标为(a ,a).根据题意C(a-1,a-1),当C 在双曲线y=3x (x >0)时,则a-1=31a -,解得,当A 在双曲线y=3x (x >0)时,则a=3a ,解得,∴a ≤aa16.实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底端离容器底5cm).现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升56cm,则开始注入分钟的水量后,甲与乙的水位高度之差是0.5cm.解析:∵甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,∵注水1分钟,乙的水位上升56 cm,∴注水1分钟,丙的水位上升103cm,设开始注入t分钟的水量后,甲与乙的水位高度之差是0.5cm,甲与乙的水位高度之差是0.5cm有三种情况:①当乙的水位低于甲的水位时,有1-56t=0.5,解得:t=35分钟;②当甲的水位低于乙的水位时,甲的水位不变时,∵56t-1=0.5,解得:t=95,∵103×95=6>5,∴此时丙容器已向甲容器溢水,∵5÷10332=分钟,535624⨯=,即经过32分钟边容器的水到达管子底部,乙的水位上升54,∴54+2×56(t-32)-1=0.5,解得:t=3320;③当甲的水位低于乙的水位时,乙的水位到达管子底部,甲的水位上升时,∵乙的水位到达管子底部的时间为;32+(5-54)÷56÷2=154分钟,∴5-1-2×103(t-154)=0.5,解得:t=17140,综上所述开始注入35,3320,17140,分钟的水量后,甲与乙的水位高度之差是0.5cm.答案:0.5三、解答题(本大题有8小题,第17-19小题每小题6分,第20、21小题每小题6分,第22、23小题每小题6分,第24小题12分,共66分)17.(1)计算:2cos45°-(π+1)012)-1;(2)解不等式:3x-5≤2(x+2)解析:(1)原式第一项利用特殊角的三角函数值计算,第二项利用零指数幂法则计算,第三项利用算术平方根定义计算,最后一项利用负整数指数幂法则计算即可得到结果;(2)不等式去括号,移项合并,把x系数化为1,即可求出解.答案:(1)原式=2×2-1+12+32;(2)去括号得:3x-5≤2x+4,移项合并得:x≤9.18.小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?解析:(1)根据观察横坐标,可得去超市的时间,根据观察纵坐标,可得去超市的路程,根据路程与时间的关系,可得答案;在超市逗留的时间即路程不变化所对应的时间段;(2)求出返回家时的函数解析式,当y=0时,求出x的值,即可解答.答案:(1)小敏去超市途中的速度是:3000÷10=300(米/分),在超市逗留了的时间为:40-10=30(分).(2)设返回家时,y与x的函数解析式为y=kx+b,把(40,3000),(45,2000)代入得:300040200045k bk b=+⎧⎨=+⎩,,解得:20011000kb=-⎧⎨=⎩,,∴函数解析式为y=-200x+11000,当y=0时,x=55,∴返回到家的时间为:8:55.19.为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?解析:(1)根据条形统计图和扇形图可知,将一次充电后行驶的里程数分为B等级的有30辆电动汽车,所占的百分比为30%,用30÷30%即可求出电动汽车的总量;分别计算出C、D所占的百分比,即可得到A所占的百分比,即可求出A的电动汽车的辆数,即可补全统计图;(2)用总里程除以汽车总辆数,即可解答.答案:(1)这次被抽检的电动汽车共有:30÷30%=100(辆),C所占的百分比为:40÷100×100%=40%,D所占的百分比为:20÷100×100%=20%,A所占的百分比为:100%-40%-20%-30%=10%,A等级电动汽车的辆数为:100×10%=10(辆),补全统计图如图所示:(2)这种电动汽车一次充电后行驶的平均里程数为:1100×(10×200+30×210+220×40+20×230)=217(千米),∴估计这种电动汽车一次充电后行驶的平均里程数为217千米.20.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度(结果精确到1m). 1.7≈1.4.解析:(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可;92)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.答案:延长PQ交直线AB于点E,(1)∠BPQ=90°-60°=30°;(2)设PE=x 米.在直角△APE 中,∠A=45°,则AE=PE=x 米;∵∠PBE=60°∴∠BPE=30°在直角△BPE 中,BE=3PE=3x 米,∵AB=AE-BE=6米,则x-3x=6,解得:则米.在直角△BEQ 中,米.∴9(米).答:电线杆PQ 的高度约9米.21.如果抛物线y=ax 2+bx+c 过定点M(1,1),则称次抛物线为定点抛物线.(1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式.小敏写出了一个答案:y=2x 2+3x-4,请你写出一个不同于小敏的答案;(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线y=-x 2+2bx+c+1,求该抛物线顶点纵坐标的值最小时的解析式,请你解答.解析:(1)根据顶点式的表示方法,结合题意写一个符合条件的表达式则可;(2)根据顶点纵坐标得出b=1,再利用最小值得出c=-1,进而得出抛物线的解析式. 答案:(1)依题意,选择点(1,1)作为抛物线的顶点,二次项系数是1,根据顶点式得:y=x 2-2x+2;(2)∵定点抛物线的顶点坐标为(b ,c+b 2+1),且-1+2b+c+1=1,∴c=1-2b ,∵顶点纵坐标c+b 2+1=2-2b+b 2=(b-1)2+1,∴当b=1时,c+b 2+1最小,抛物线顶点纵坐标的值最小,此时c=-1,∴抛物线的解析式为y=-x 2+2x.22.某校规划在一块长AD 为18m ,宽AB 为13m 的长方形场地ABCD 上,设计分别与AD ,AB 平行的横向通道和纵向通道,其余部分铺上草皮.(1)如图1,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM :AN=8:9,问通道的宽是多少?(2)为了建造花坛,要修改(1)中的方案,如图2,将三条通道改为两条通道,纵向的宽度改为横向宽度的2倍,其余四块草坪相同,且每一块草坪均有一边长为8m ,这样能在这些草坪建造花坛.如图3,在草坪RPCQ 中,已知RE ⊥PQ 于点E ,CF ⊥PQ 于点F ,求花坛RECF 的面积.解析:(1)利用AM :AN=8:9,设通道的宽为xm ,AM=8ym ,则AN=9y ,进而利用AD 为18m ,宽AB 为13m 得出等式求出即可;(2)根据题意得出纵向通道的宽为2m ,横向通道的宽为1m ,进而得出PQ ,RE 的长,即可得出PE 、EF 的长,进而求出花坛RECF 的面积.答案:(1)设通道的宽为xm ,AM=8ym ,∵AM :AN=8:9,∴AN=9y ,∴224181813x y x y +=⎧⎨+=⎩,,解得:12.3x y =⎧⎪⎨=⎪⎩, 答:通道的宽是1m ;(2)∵四块相同草坪中的每一块,有一条边长为8m ,若RP=8,则AB >13,不合题意, ∴RQ=8,∴纵向通道的宽为2m ,横向通道的宽为1m ,∴RP=6,∵RE ⊥PQ ,四边形RPCQ 是长方形,∴PQ=10,∴RE ×PQ=PR ×QR=6×8,∴RE=4.8, ∵RP 2=RE 2+PE 2,∴PE=3.6,同理可得:QF=3.6,∴EF=2.8,∴S 四边形RECF =4.8×2.8=13.44,即花坛RECF 的面积为13.44m 2.23.正方形ABCD 和正方形AEFG 有公共顶点A ,将正方形AEFG 绕点A 按顺时针方向旋转,记旋转角∠DAG=α,其中0°≤α≤180°,连结DF ,BF ,如图.(1)若α=0°,则DF=BF ,请加以证明;(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由.解析:(1)利用正方形的性质证明△DGF ≌△BEF 即可;(2)当α=180°时,DF=BF.(3)利用正方形的性质和△DGF ≌△BEF 的性质即可证得是真命题.答案:(1)如图1,∵四边形ABCD 和四边形AEFG 为正方形,∴AG=AE ,AD=AB ,GF=EF ,∠DGF=∠BEF=90°,∴DG=BE ,在△DGF 和△BEF 中,DG BE DGF BEF GF EF =⎧⎪∠=∠⎨⎪=⎩,,,∴△DGF ≌△BEF(SAS),∴DF=BF ; (2)图形(即反例)如图2,(3)补充一个条件为:点F在正方形ABCD内;即:若点F在正方形ABCD内,DF=BF,则旋转角α=0°.24. 在平面直角坐标系中,O为原点,四边形OABC的顶点A在x轴的正半轴上,OA=4,OC=2,点P,点Q分别是边BC,边AB上的点,连结AC,PQ,点B1是点B关于PQ的对称点.(1)若四边形PABC为矩形,如图1,①求点B的坐标;②若BQ:BP=1:2,且点B1落在OA上,求点B1的坐标;(2)若四边形OABC为平行四边形,如图2,且OC⊥AC,过点B1作B1F∥x轴,与对角线AC、边OC分别交于点E、点F.若B1E:B1F=1:3,点B1的横坐标为m,求点B1的纵坐标,并直接写出m的取值范围.解析:(1)①根据OA=4,OC=2,可得点B的坐标;②利用相似三角形的判定和性质得出点的坐标;(2)根据平行四边形的性质,且分点在线段EF的延长线和线段上两种情况进行分析解答. 答案:(1)∵OA=4,OC=2,∴点B的坐标为(4,2);②如图1,过点P作PD⊥OA,垂足为点D,∵BQ:BP=1:2,点B关于PQ的对称点为B1,∴B1Q:B1P=1:2,∵∠PDB1=∠PB1Q=∠B1AQ=90°,∴∠PB1D=∠B1QA,∴△PB1D∽△B1QA,∴111PB PD AB B Q==2,∴B 1A=1,∴OB 1=3,即点B 1(3,0); (2)∵四边形OABC 为平行四边形,OA=4,OC=2,且OC ⊥AC ,∴∠OAC=30°,∴点C(1,),∵B 1E :B 1F=1:3,∴点B 1不与点E ,F 重合,也不在线段EF 的延长线上,①当点B 1在线段FE 的延长线上时,如图2,延长B 1F 与y 轴交于点G ,点B 1的横坐标为m ,B 1F ∥x 轴,B 1E :B 1F=1:3,∴B 1G=m ,设OG=a ,则GF=3a ,OF=3a ,∴CF=2-3a ,∴EF=4-3a ,B 1E=2-3a , ∴B 1G=B 1E+EF+FG=(2-3a)+(4-3a)+3a=m , ∴,即B 1的纵坐标为, m的取值范围是1717m ≤≤+ ②当点B 1在线段EF(除点E ,F)上时,如图3,延长B 1F 与y 轴交于点G ,点B 1的横坐标为m ,F ∥x 轴,B 1E :B 1F=1:3,∴B 1G=m ,设OG=a ,则a ,,∴a , ∴a ,B 1F=34a ,∴B 1G=B 1,∴a=-2B 1的纵坐标为-2, 故m 的取值范围是157≤m ≤3. 考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。
浙江省金华市2014-2015学年第二学期初三调研测试数学试题带答案
金华市2014-2015学年第二学期初三调研测试数学试题考生须知:1.全卷共三大题,24小题,满分为120分. 考试时间为120分钟.2.全卷分试卷Ⅰ(选择题)和试卷Ⅱ(非选择题)两部分. 卷Ⅰ的答案必须用2B 铅笔填 涂;卷Ⅱ的答案必须用黑色字迹钢笔或签字笔答在答题纸的相应位置上.3.请用黑色字迹钢笔或签字笔在答题纸上填写姓名和准考证号等信息.4.作图时,可先使用2B 铅笔,确定后必须使用黑色字迹的钢笔或签字笔涂黑.卷 Ⅰ说明:本卷共有1大题,10小题,共30分. 请用2B 铅笔在答题纸上将你认为正确的选项对应的小方框涂黑、涂满.一、选择题(本题有10小题,每小题3分,共30分)1.在1,0,53,-3这四个数中,最大的数是 ………………………………………( ▲ )A .1B .0C . 53D .-32.若分式21-x 有意义,则x 的值是 …………………………………………………( ▲ )A .2x =B .2x ≠C .2x =-D .2x ≠-3.李克强总理在2015年3月5日的《政府工作报告》表示,2015铁路将投资8000亿元以上.(数据来源:/).数8000亿元用科学记数法表示为( ▲ )A .8×1011元B .80×1010元C .8000×108元D .8×103元4.我市2015年某一周每天的最高气温(单位:℃)统计如下:19,20,24,22,24,26,27,则这组数据的众数是……………………………………………………………( ▲ ) A .22 B .23 C .24 D .25 5.如图A ,D 是⊙O 上两点,BC 是直径.若∠D =35,则∠AOB 的度数是…………………………( ▲ ) A .35 B .55C .65D .706.已知扇形的圆心角为45°,半径长为12,则该扇形 的弧长为……………………………………( ▲ )A .34π B .2π C .3π D . 12π7.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,则可以列出的方程是……………………………………( ▲ ) A .(3+x )(4-0.5x )=15 B .(x +3)(4+0.5x )=15 C .(x +4)(3-0.5x )=15 D .(x +1)(4-0.5x )=15 8.如图,AD 为⊙O 的直径,作⊙O 的内接正六边形ABCDEF ,甲、乙两人的作法分别是: 甲:①作OD 的中垂线,交⊙O 于C (左),E 两点;②再作OA 的中垂线,交⊙O 于B (左),F 两点;③连结A-B-C -D -E -F -A ,六边形ABCDEF 即为所求的六边形. 乙:①以D 为圆心,OD 长为半径作圆弧,交⊙O 于C (左),E 两点; ②再以A 为圆心,OA 长为半径作圆弧,交⊙O 于B (左),F 两点;D OC BA第5题图 DOA第8题图第9题图C MD A N B ③连结A-B-C -D -E -F -A ,六边形ABCDEF 即为所求的六边形. 对于甲、乙两人的作法,可判断……( ▲ ) A .甲、乙均正确B .甲、乙均错误C .甲正确、乙错误D .甲错误,乙正确9.如图,Rt △ABC 中,AB =9,BC =6,∠B =90°,将 △ABC 折叠,使A 点与BC 的中点D 重合,折痕 为MN ,则线段BN 的长为……………( ▲ )A .53B .52 C .4 D .510.在正方形ABCD 中,AB =3cm ,动点M 自A 点出发沿AB 方向以每秒1cm 的速度向B 点运动,同时动点N 自A 点出发沿折线AD —DC —CB 以每秒3cm 的速度运动,到达B 点时运动同时停止.设△AMN 的面积为y (cm 2),运动时间为x (秒),则下列图象中能大致反映y 与x 之间的函数关系的是……………………………………………………( ▲ )A .B .C .D .卷 Ⅱ二、填空题 (本题有6小题,每小题4分,共24分) 11.-2015的绝对值是 ▲ .12.说明命题“4x >-,则216x >”是假命题的一个反例可以是x = ▲ .13.如图,两位同学玩“石头、剪子、布”游戏,随机出手一次,两人手势相同的概率是▲ .14.如图,在⊙O 内有折线OABC ,其中OA =8,AB =12,∠A =∠B =60°,则BC 的长为 ▲ . 15.如图,△ABC 绕点A 顺时针旋转45°得到△A′B ′C ′,若∠BAC =90°,AB =AC 阴影部分的面积等于 ▲ .16.如图,Rt △ABC 的斜边AB 在x 轴上,AB =4,点A 的坐标为(-1,0),点C 在y 轴的第13题图第14题图第15题图 第16题图正半轴.若抛物线y =ax 2+bx +c (a ≠0)的图象经过点A ,B ,C , 则该抛物线的函数表达式为 ▲ ;若以动直线l :y =+m 为对称轴,线段BC 关于直线l 的对称线段B ′C ′与二次函数图象有交点,则m 的取值范围为 ▲ . 三、解答题(本题有8小题,共66分)17.(本题6分) 计算:﹣24﹣4sin 60°|+(2015π﹣23)0.18.(本题6分) 如图是某宾馆大厅到二楼的楼梯设计图,已知6BC =米,9AB =米,中间平台宽度DE 为2米,DM EN ,为平台的两根支柱,DM EN ,垂直于AB ,垂足分别为M N ,,30EAB ∠=,45CDF ∠=. 求DM 和BC 之间的水平距离BM 的长.(精确到0.1米)(最后结果精确到0.1米,参考1.73)19.(本题6分) 某中学为合理安排体育活动,在全校喜欢乒乓球、排球、羽毛球、足球、篮球五种球类运动的1000名学生中,随机抽取了若干名学生进行调查,了解学生最喜爱的的一种球类运动(每人只能在这五钟球类运动中选择一种),调查结果统计如下:(1)求a 和b 的值;(2)试估计上述1000名学生中最喜欢羽毛球运动的人数.20.(本题8分) 已知a 、b 、c 是△ABC 的三边长,且满足关于x 的一元二次方程22ax bx a c cx bx ++=--.(1)若1-=x 是方程的根,试判断△ABC 的形状;(2)若△ABC 是等边三角形,试求这个一元二次方程的根.21.(本题8分) 如图,已知等边△ABC ,以边BC 为直径的半圆与边AB 、AC 分别交于点D 、点E .过点D 作DF ⊥AC ,垂足为点F .(1)判断DF 与圆O 的位置关系,并证明你的结论; (2)过点F 作FH ⊥BC ,垂足为点H. 若等边△ABC的边长为4,求FH 的长(结果保留根号).22.(本题10分)如图是某运动场馆中租用羽毛球场地的两种收费方案说明.若晓莉和同学们周末打算在此运动场馆租用一个场地打羽毛球.(1)若晓莉和另外两位同学一起在此运动场馆恰好锻炼2小时,请通过计算说明,她们选择哪种付费方式合算?(2)若晓莉和同学们一起准备在此运动场馆锻炼4收费方法 方案一: 场地每个每小时40元,每人需另付入场费5月. 方案二:AN M B FC ED 第18题图第19题图第21题图小时,经计算后发现选择方案一比较便宜,请 你通过计算确定这一次她们至少有多少人参加 锻炼?23.(本题10分)如图,矩形OABC 中,点A ,点C 分别在x 轴,y 轴上, D 为边BC 上的一动点,现把△OCD 沿OD 对折,C 点落在点P 处.已知点B的坐标为(2).(1)当D 点坐标为(2,2)时,求P 点的坐标;(2)在点D 沿BC 从点C 运动至点B 的过程中,设点P 经过的路径长度为l ,求l 的值; (3)在点D 沿BC 从点C 运动至点B 的过程中,若点P 落在同一条直线y =kx +4上的次数 为2次,请直接写出k 的取值范围.24.(本题12分)如图,在平面直角坐标系中,直线y kx b =+经过点A (2,0),B (0,1),动点P 是x 轴正半轴上的动点,过点P 作PC ⊥x 轴,交直线AB 于点C ,以OA ,AC 为边构造平行四边形OACD .设点P 的横坐标为m .(1)求直线AB 的函数表达式;(2)若四边形OACD 恰是菱形,请求出m 的值;(3)在(2)的条件下,y 轴上是否存 在点Q ,连结CQ ,使得∠OQC +∠ODC =180°.若存在,请求出所 有符合条件的点Q 的坐标,若不 存在,请说明理由.参考答案及评分标准二、填空题(本题有6小题,每小题4分,共24分) 11.2015; 12.答案不唯一,可以是-4﹤x ≤4的任何数; 13.13; 14. 20; 15. 1-;16. 1)(3)y x x =+- ;m ≤≤m ≤≤. 三、解答题(本题有8小题,共66分) 17. (本题6分)解:原式﹦-16-1)+1……………(四式化简正确依次得1分,共4分)﹦-16 . ……………………………………………………………(结论正确得2分)18.(本题6分)解:设MB =x ,则由已知有DF =FC =x …………(1分)∴BF =EN =6-x …………(1分)∴AN )x -, …………(1分))29x x -++= ……………(2分)解得x 4.6(米).答:(略)…………(1分) 19.(本题6分)解:(1)a =30, b =24 ………(各2分,共4分)(2)由(1)可知,最喜欢羽毛球的人数约占30%,∴ 1000名学生中最喜欢羽毛球运动的人数月为300人. ……(2分)20. (本题8分)解:(1)∵1x =,∴原方程可化为a b a c c b -+=-+…………………(1分) 即a b = …………………(1分) ∴△ABC 是等腰三角形或等边三角形. …………………(2分) 【注:只回答“等腰三角形”也给4分】(2)∵△ABC 是等边三角形,∴a b c == ………………………(1分)∴原方程可化为22ax ax a a ax ax ++=--即2220ax ax += …………………(1分) ∵0a ≠,∴120, 1.x x ==- …………………(各1分,共2分) 答:该地区需移植这种树苗约15万棵.……………(4分)21. (本题8分)(1)解:连结OD ,BE ,交于点M∵BC 为⊙O 的直径,∴BE ⊥EC又DF ⊥AC ,∴DF ∥BE , …………(1分) ∵△ABC 为等边三角形,∴△BOD 也为等边三角形 ∴1122BD OB BC AB ===, 即点D 为AB 的中点, ∴OD ∥AC , …………(1分) ∴四边形MDFE 是矩形, …………(1分) ∴O D ⊥DF ,即DF 是⊙O 的切线.…………(1分)(2)解:易得112AF AD ==, ………………(1分) ∴3FC =, ………………(1分) 在Rt △CHF中,可得FH =2分)22.(本题10分)解:(1)按照方法一,需付费40×2+5×3=95元,…………(1分)按照方法二,需付费25×3=75元 …………(1分)∵95 ﹥75,故她们选择第二种付费方式比较合算.…………(2分)(2)设晓莉她们共有x 人参加锻炼,由题意知 440535x x ⨯+< ………………(2分)解得163x >, ………………(2分) ∴晓莉她们至少有6人参加锻炼.………………(2分)23.(本题10分) 解:(1)如图1,当D 点坐标为(2,2)时, 四边形OCDP 是正方形,故点P 的坐标为(2, 0).…………(4(2)如图2,∵在运动过程中,OP=OC 始终成立∴OP =2为定长故点P 在以点O 为圆心,以2为半径的圆上 ∵点B的坐标为(2) ∴∠COB =60°,∠COP =120°∴ l = 1223π⨯⨯ =43π.……(4分)(3)k ≤<2分) 24 .(本题12分)(1)由题意得201a b b +=⎧⎨=⎩解得121a b ⎧=-⎪⎨⎪=⎩ ∴112y x =-+………………(4分)(2)由勾股定理得AB,要使四边形OACD 是菱形,则只要满足AC =OA =2 .①如图,当P 在线段OA 上时,P A =2m - ∵cos AP OA PAC AC AB =∠=∴22m -=∴2m =-(2分)当P 在点A 右边时,P A =2m - ∵cos cos AP OA PAC OAB AC AB =∠=∠=∴22m -=2m = (2分)所以当2m =+或2-OACD 是菱形.(结论未写不扣分)(3)(解答略) ()0,254Q -或(0,4+或()0, 4Q -.………(4分)。
浙江省义乌市2015年中考数学真题试题(含扫描答案)
浙江省 2015 年初中毕业生升学考试(义乌卷)数学试题卷满分 150 分,考试时间120 分钟一、选择题(此题有10 小题,每题 4 分,共 40 分)1.计算 ( 1) 3 的结果是A. -3B. -2C. 2D. 32.据报导, 2015 年第一季度,义乌电商实现交易额约为26 000 000 000 元,同比增加22%,将26 000000 000用科学计数法表示为A. 2.6× 1010B. 2.6× 1011C. 26× 1010D. 0.26× 10113.有 6 个同样的立方体搭成的几何体以下图,则它的主视图是4.下边是一位同学做的四道题:①2a 3b5ab ;②(3a3)26a 6;③ a 6 a 2a3;④a 2a3 a 5,此中做对的一道题的序号是A.①B.②C.③D.④5.在一个不透明的袋子中装有除颜色外其他均同样的 3 个红球和 2 个白球,从中随意摸出一个球,则摸出白球的概率是A.1B.2C.1D.335256.化简 x 21的结果是x 1 1xA.x 1B.1C.x1D.x x 1x 17.如图,小敏做了一个角均分仪ABCD,此中 AB=AD, BC=DC,将仪器上的点 A 与∠ PRQ的极点 R重合,调整AB 和 AD,使它们分别落在角的两边上,过点A, C 画一条射线AE, AE就是∠ PRQ 的均分线。
此角均分仪的绘图原理是:依据仪器构造,可得△ABC≌△ ADC,这样就有∠Q AE=∠ PAE。
则说明这两个三角形全等的依照是A. SASB. ASAC. AASD. SSS8.如图,四边形ABCD是⊙ O的内接四边形,⊙ O的半径为2,∠ B=135°,则的长A. 2B.C.2D.39.假如一种变换是将抛物线向右平移 2 个单位或向上平移 1 个单位,我们把这类变换称为抛物线的简单变换。
已知抛物线经过两次简单变换后的一条抛物线是y x 21,则原抛物线的分析式不行能的是A. y x21B.y x26x 5C. y x24x4D.y x28x 1710.挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其他棒条压着时,就能够把它往上拿走。
2015年义乌市中考数学试卷及答案
浙江省2015年初中毕业生升学考试(义乌卷)数学试题卷满分150分,考试时间120分钟 一、选择题(本题有10小题,每小题4分,共40分)1. 计算3)1(⨯-的结果是A. -3B. -2C. 2D. 32. 据报道,2015年第一季度,义乌电商实现交易额约为26 000 000 000元,同比增长22%,将26 000 000 000用科学计数法表示为A. 2.6×1010B. 2.6×1011C. 26×1010D. 0.26×10113. 有6个相同的立方体搭成的几何体如图所示,则它的主视图是4. 下面是一位同学做的四道题:①ab b a 532=+;②6236)3(a a =;③326a a a =÷;④532a a a =⋅,其中做对的一道题的序号是A.①B. ②C. ③D. ④5. 在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是 A.31 B. 52 C. 21 D. 53 6. 化简xx x -+-1112的结果是 A. 1+x B. 11+x C. 1-x D. 1-x x 7. 如图,小敏做了一个角平分仪ABCD ,其中AB=AD ,BC=DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线。
此角平分仪的画图原理是:根据仪器结构,可得 △ABC ≌△ADC ,这样就有∠QAE=∠PAE 。
则说明这两个三角形全等的依据是A. SASB. ASAC. AASD. SSS8. 如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为2,∠B=135°,则的长 A.π2 B.πC. 2π D.3π 9. 如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换。
2015年浙江省义乌市中考数学试题及解析
分钟的水量后,乙的水位比甲高
0.5cm .
三、解答题(本大题有 8 小题,第 17? 19 小题每小题 6 分,第 20、 21 小题每小题 6 分, 第 22、 23 小题每小题 6 分,第 24 小题 12 分,共 66 分)
17.( 6 分)( 2015?义乌市)(1)计算:
;
(2)解不等式: 3x﹣ 5≤2( x+2)
2015 年浙江省义乌市中考数学试卷
一、单项选择题(本大题有 只有一项符合题目的要求)
10 小题;每小题 3 分,共 30 分;在每小题提供的四个选项中,
1.( 3 分)( 2015 ?义乌市)计算(﹣ 1)×3 的结果是(
)
A.﹣3
B.﹣2
C.2
D.3
2.( 3 分)(2015?义乌市) 据报道, 2015 年第一季度, 义乌电商实现交易额约 26 000 000 000
18.( 6 分)( 2015?义乌市)小敏上午 8: 00 从家里出发,骑车去一家超市购物,然后从这 家超市返回家中.小敏离家的路程 y(米)和所经过的时间 x(分)之间的函数图象如图所 示.请根据图象回答下列问题: (1)小敏去超市途中的速度是多少?在超市逗留了多少时间? (2)小敏几点几分返回到家?
5 为半径的圆上,连结 PA,PB .若 PB=4 ,则 PA 的长为
.
15.( 4 分)( 2015?义乌市)在平面直角坐标系的第一象限内,边长为 边均平行于坐标轴, A 点的坐标为( a, a).如图,若曲线
有交点,则 a 的取值范围是
.
1 的正方形 ABCD 的 与此正方形的边
16.( 4 分)( 2015?义乌市)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足
2015年浙江省义乌市中考数学试题及解析
2015年浙江省义乌市中考数学试卷一、单项选择题(本大题有10小题;每小题3分,共30分;在每小题提供的四个选项中,只有一项符合题目的要求)1.(3分)(2015•义乌市)计算(﹣1)×3的结果是()A.﹣3 B.﹣2 C.2D.32.(3分)(2015•义乌市)据报道,2015年第一季度,义乌电商实现交易额约26 000 000 000元,同比增长22%,将26 000 000 000用科学记数法表示为()A.2.6×1010B.2.6×1011C.26×1010D.0.26×10113.(3分)(2015•义乌市)有6个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.4.(3分)(2015•义乌市)下面是一位同学做的四道题:①2a+3b=5ab;②(3a3)2=6a6;③a6÷a2=a3;④a2•a3=a5,其中做对的一道题的序号是()A.①B.②C.③D.④5.(3分)(2015•义乌市)在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是()A.B.C.D.6.(3分)(2015•义乌市)化简的结果是()A.x+1 B.C.x﹣1 D.7.(3分)(2015•义乌市)如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.S AS B.A SA C.A AS D.S SS8.(3分)(2015•义乌市)如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长()A.2πB.πC.D.9.(3分)(2015•义乌市)如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是y=x2+1,则原抛物线的解析式不可能的是()A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+1710.(3分)(2015•义乌市)挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走.如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走()A.②号棒B.⑦号棒C.⑧号棒D.⑩号棒二、填空题(本大题有6小题,每小题4分,共24分)11.(4分)(2015•义乌市)分解因式:x2﹣4=.12.(4分)(2015•义乌市)如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于度.13.(4分)(2015•义乌市)由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是cm.14.(4分)(2015•义乌市)在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在以C为圆心,5为半径的圆上,连结PA,PB.若PB=4,则PA的长为.15.(4分)(2015•义乌市)在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线与此正方形的边有交点,则a的取值范围是.16.(4分)(2015•义乌市)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm.(1)开始注水1分钟,丙的水位上升cm.(2)开始注入分钟的水量后,乙的水位比甲高0.5cm.三、解答题(本大题有8小题,第17〜19小题每小题6分,第20、21小题每小题6分,第22、23小题每小题6分,第24小题12分,共66分)17.(6分)(2015•义乌市)(1)计算:;(2)解不等式:3x﹣5≤2(x+2)18.(6分)(2015•义乌市)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?19.(6分)(2015•义乌市)为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?20.(8分)(2015•义乌市)如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度(结果精确到1m).备用数据:,.21.(8分)(2015•义乌市)如果抛物线y=ax2+bx+c过定点M(1,1),则称次抛物线为定点抛物线.(1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式.小敏写出了一个答案:y=2x2+3x﹣4,请你写出一个不同于小敏的答案;(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线y=﹣x2+2bx+c+1,求该抛物线顶点纵坐标的值最小时的解析式,请你解答.22.(10分)(2015•义乌市)某校规划在一块长AD为18m,宽AB为13m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮.(1)如图1,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM:AN=8:9,问通道的宽是多少?(2)为了建造花坛,要修改(1)中的方案,如图2,将三条通道改为两条通道,纵向的宽度改为横向宽度的2倍,其余四块草坪相同,且每一块草坪均有一边长为8m,这样能在这些草坪建造花坛.如图3,在草坪RPCQ中,已知RE⊥PQ于点E,CF⊥PQ于点F,求花坛RECF的面积.23.(10分)(2015•义乌市)正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG 绕点A按顺时针方向旋转,记旋转角∠DAG=α,其中0°≤α≤180°,连结DF,BF,如图.(1)若α=0°,则DF=BF,请加以证明;(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由.24.(12分)(2015•义乌市)在平面直角坐标系中,O为原点,四边形OABC的顶点A在x 轴的正半轴上,OA=4,OC=2,点P,点Q分别是边BC,边AB上的点,连结AC,PQ,点B1是点B关于PQ的对称点.(1)若四边形PABC为矩形,如图1,①求点B的坐标;②若BQ:BP=1:2,且点B1落在OA上,求点B1的坐标;(2)若四边形OABC为平行四边形,如图2,且OC⊥AC,过点B1作B1F∥x轴,与对角线AC、边OC分别交于点E、点F.若B1E:B1F=1:3,点B1的横坐标为m,求点B1的纵坐标,并直接写出m的取值范围.2015年浙江省义乌市中考数学试卷参考答案与试题解析一、单项选择题(本大题有10小题;每小题3分,共30分;在每小题提供的四个选项中,只有一项符合题目的要求)1.(3分)(2015•义乌市)计算(﹣1)×3的结果是()A.﹣3 B.﹣2 C.2D.3考点:有理数的乘法.分析:根据有理数的乘法运算法则进行计算即可得解.解答:解:(﹣1)×3=﹣1×3=﹣3.故选A.点评:本题考查了有理数的乘法,是基础题,计算时要注意符号的处理.2.(3分)(2015•义乌市)据报道,2015年第一季度,义乌电商实现交易额约26 000 000 000元,同比增长22%,将26 000 000 000用科学记数法表示为()A.2.6×1010B.2.6×1011C.26×1010D.0.26×1011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将26 000 000 000用科学记数法表示为2.6×1010,故选:A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2015•义乌市)有6个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据主视图是从正面看得到的图形,可得答案.解答:解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形.故选:C.点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(3分)(2015•义乌市)下面是一位同学做的四道题:①2a+3b=5ab;②(3a3)2=6a6;③a6÷a2=a3;④a2•a3=a5,其中做对的一道题的序号是()A.①B.②C.③D.④考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:①根据合并同类项,可判断①,②根据积的乘方,可得答案;③根据同底数幂的除法,可得答案;④根据同底数幂的乘法,可得答案.解答:解:①不是同类项不能合并,故①错误;②积的乘方等于乘方的积,故②错误;③同底数幂的除法底数不变指数相减,故③错误;④同底数幂的乘法底数不变指数相加,故④正确;故选:D.点评:本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.5.(3分)(2015•义乌市)在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是()A.B.C.D.考点:概率公式.分析:由在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,直接利用概率公式求解即可求得答案.解答:解:∵在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,∴从中任意摸出一个球,则摸出白球的概率是:=.故选B.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.6.(3分)(2015•义乌市)化简的结果是()A.x+1 B.C.x﹣1 D.考点:分式的加减法.专题:计算题.分析:原式变形后,利用同分母分式的减法法则计算即可得到结果.解答:解:原式=﹣===x+1.故选A点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.7.(3分)(2015•义乌市)如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.S AS B.A SA C.A AS D.S SS考点:全等三角形的应用.分析:在△ADC和△ABC中,由于AC为公共边,AB=AD,BC=DC,利用SSS定理可判定△ADC≌△ABC,进而得到∠DAC=∠BAC,即∠QAE=∠PAE.解答:解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:D.点评:本题考查了全等三角形的应用;这种设计,用SSS判断全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分理解题意.8.(3分)(2015•义乌市)如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长()A.2πB.πC.D.考点:弧长的计算;圆周角定理;圆内接四边形的性质.分析:连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.解答:解:连接OA、OC,∵∠B=135°,∴∠D=180°﹣135°=45°,∴∠AOC=90°,则的长==π.故选B.点评:本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式L=.9.(3分)(2015•义乌市)如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是y=x2+1,则原抛物线的解析式不可能的是()A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+17考点:二次函数图象与几何变换.分析:根据图象左移加,右移减,图象上移加,下移减,可得答案.解答:解:A、y=x2﹣1,先向上平移1个单位得到y=x2,再向上平移1个单位可以得到y=x2+1,故A正确;B、y=x2+6x+5=(x+3)2﹣4,无法经两次简单变换得到y=x2+1,故B错误;C、y=x2+4x+4=(x+2)2,先向右平移2个单位得到y=(x+2﹣2)2=x2,再向上平移1个单位得到y=x2+1,故C正确;D、y=x2+8x+17=(x+4)2+1,先向右平移2个单位得到y=(x+4﹣2)2+1=(x+2)2+1,再向右平移2个单位得到y=x2+1,故D正确.故选:B.点评:本题考查了二次函数图象与几何变换,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式,注意由目标函数图象到原函数图象方向正好相反.10.(3分)(2015•义乌市)挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走.如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走()A.②号棒B.⑦号棒C.⑧号棒D.⑩号棒考点:规律型:图形的变化类.分析:仔细观察图形,找到拿走后图形下面的游戏棒,从而确定正确的选项.解答:解:仔细观察图形发现:第1次应拿走⑨号棒,第2次应拿走⑤号棒,第3次应拿走⑥号棒,第4次应拿走②号棒,第5次应拿走⑧号棒,第6次应拿走⑩号棒,故选D.点评:本题考查了图形的变化类问题,解题的关键是仔细观察图形,锻炼了同学们的识图能力.二、填空题(本大题有6小题,每小题4分,共24分)11.(4分)(2015•义乌市)分解因式:x2﹣4=(x+2)(x﹣2).考点:因式分解-运用公式法.专题:因式分解.分析:直接利用平方差公式进行因式分解即可.解答:解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).点评:本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.12.(4分)(2015•义乌市)如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于60度.考点:垂径定理;坐标与图形性质;等边三角形的判定与性质;勾股定理.分析:求出OA、AC,通过余弦函数即可得出答案.解答:解:∵A(0,1),B(0,﹣1),∴AB=2,OA=1,∴AC=2,在Rt△AOC中,cos∠BAC==,∴∠BAC=60°,故答案为60.点评:本题考查了垂径定理的应用,关键是求出AC、OA的长.13.(4分)(2015•义乌市)由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是18 cm.考点:等边三角形的判定与性质.专题:应用题.分析:根据有一个角是60°的等腰三角形的等边三角形进行解答即可.解答:解:∵OA=OB,∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=OB=18cm,故答案为:18点评:此题考查等边三角形问题,关键是根据有一个角是60°的等腰三角形的等边三角形进行分析.14.(4分)(2015•义乌市)在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在以C为圆心,5为半径的圆上,连结PA,PB.若PB=4,则PA的长为3或.考点:点与圆的位置关系;勾股定理;垂径定理.专题:分类讨论.分析:连结CP,PB的延长线交⊙C于P′,如图,先计算出CB2+PB2=CP2,则根据勾股定理的逆定理得∠CBP=90°,再根据垂径定理得到PB=P′B=4,接着证明四边形ACBP为矩形,则PA=BC=3,然后在Rt△APP′中利用勾股定理计算出P′A=,从而得到满足条件的PA的长为3或.解答:解:连结CP,PB的延长线交⊙C于P′,如图,∵CP=5,CB=3,PB=4,∴CB2+PB2=CP2,∴△CPB为直角三角形,∠CBP=90°,∴CB⊥PB,∴PB=P′B=4,∵∠C=90°,∴PB∥AC,而PB=AC=4,∴四边形ACBP为矩形,∴PA=BC=3,在Rt△APP′中,∵PA=3,PP′=8,∴P′A==,∴PA的长为3或.故答案为3或.点评:本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了垂径定理和勾股定理.15.(4分)(2015•义乌市)在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线与此正方形的边有交点,则a的取值范围是≤a.考点:反比例函数图象上点的坐标特征.分析:根据题意得出C点的坐标(a﹣1,a﹣1),然后分别把A、C的坐标代入求得a的值,即可求得a的取值范围.解答:解:∵A点的坐标为(a,a).根据题意C(a﹣1,a﹣1),当A在双曲线时,则a﹣1=,解得a=+1,当C在双曲线时,则a=,解得a=,∴a的取值范围是≤a.故答案为≤a.点评:本题考查了反比例函数图象上点的坐标特征,点的坐标适合解析式是解题的关键.16.(4分)(2015•义乌市)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm.(1)开始注水1分钟,丙的水位上升cm.(2)开始注入或分钟的水量后,乙的水位比甲高0.5cm.考点:一元一次方程的应用.分析:(1)由甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,注水1分钟,乙的水位上升cm,得到注水1分钟,丙的水位上升cm;(2)设开始注入t分钟的水量后,乙的水位比甲高0.5cm,有两种情况:①甲的水位不变时,②乙的水位到达管子底部,甲的水位上升时,分别列方程求解即可.解答:解:(1)∵甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,∵注水1分钟,乙的水位上升cm,∴得到注水1分钟,丙的水位上升cm;(2)设开始注入t分钟的水量后,乙的水位比甲高0.5cm,有两种情况:①甲的水位不变时;由题意得,t﹣1=0.5,解得:t=,∵×=6>5,∴此时丙容器已向甲容器溢水,∵5÷=分钟,×=,即经过分钟时容器的水到达管子底部,乙的水位上升,∴+2×(t﹣)﹣1=0.5,解得:t=;②当乙的水位到达管子底部,甲的水位上升时,∵乙的水位到达管子底部的时间为;+(5﹣)÷÷2=分钟,∴5﹣1﹣2×(t﹣)=0.5,解得:t=,综上所述开始注入或分钟的水量后,乙的水位比甲高0.5cm.故答案为cm;或.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.三、解答题(本大题有8小题,第17〜19小题每小题6分,第20、21小题每小题6分,第22、23小题每小题6分,第24小题12分,共66分)17.(6分)(2015•义乌市)(1)计算:;(2)解不等式:3x﹣5≤2(x+2)考点:实数的运算;零指数幂;负整数指数幂;解一元一次不等式;特殊角的三角函数值.专题:计算题.分析:(1)原式第一项利用特殊角的三角函数值计算,第二项利用零指数幂法则计算,第三项利用算术平方根定义计算,最后一项利用负整数指数幂法则计算即可得到结果;(2)不等式去括号,移项合并,把x系数化为1,即可求出解.解答:解:(1)原式=2×﹣1++2=+;(2)去括号得:3x﹣5≤2x+4,移项合并得:x≤9.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2015•义乌市)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?考点:一次函数的应用.分析:(1)根据观察横坐标,可得去超市的时间,根据观察纵坐标,可得去超市的路程,根据路程与时间的关系,可得答案;在超市逗留的时间即路程不变化所对应的时间段;(2)求出返回家时的函数解析式,当y=0时,求出x的值,即可解答.解答:解:(1)小敏去超市途中的速度是:3000÷10=300(米/分),在超市逗留了的时间为:40﹣10=30(分).(2)设返回家时,y与x的函数解析式为y=kx+b,把(40,3000),(45,2000)代入得:,解得:,∴函数解析式为y=﹣200x+11000,当y=0时,x=55,∴返回到家的时间为:8:55.点评:本题考查了一次函数的应用,观察函数图象获取信息是解题关键.19.(6分)(2015•义乌市)为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?考点:条形统计图;扇形统计图;加权平均数.分析:(1)根据条形统计图和扇形图可知,将一次充电后行驶的里程数分为B等级的有30辆电动汽车,所占的百分比为30%,用30÷30%即可求出电动汽车的总量;分别计算出C、D所占的百分比,即可得到A所占的百分比,即可求出A的电动汽车的辆数,即可补全统计图;(2)用总里程除以汽车总辆数,即可解答.解答:解:(1)这次被抽检的电动汽车共有:30÷30%=100(辆),C所占的百分比为:40÷100×100%=40%,D所占的百分比为:20÷100×100%=20%,A所占的百分比为:100%﹣40%﹣20%﹣30%=10%,A等级电动汽车的辆数为:100×10%=10(辆),补全统计图如图所示:(2)这种电动汽车一次充电后行驶的平均里程数为:230)=217(千米),∴估计这种电动汽车一次充电后行驶的平均里程数为217千米.点评:此题考查了条形统计图,以及扇形统计图,弄清题意是解本题的关键.20.(8分)(2015•义乌市)如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度(结果精确到1m).备用数据:,.考点:解直角三角形的应用-仰角俯角问题.分析:(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可;92)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE﹣BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.解答:解:延长PQ交直线AB于点E,(1)∠BPQ=90°﹣60°=30°;(2)设PE=x米.在直角△APE中,∠A=45°,则AE=PE=x米;∵∠PBE=60°∴∠BPE=30°在直角△BPE中,BE=PE=x米,∵AB=AE﹣BE=6米,则x﹣x=6,解得:x=9+3.则BE=(3+3)米.在直角△BEQ中,QE=BE=(3+3)=(3+)米.∴PQ=PE﹣QE=9+3﹣(3+)=6+2≈9(米).答:电线杆PQ的高度约9米.点评:本题考查了仰角的定义,以及三角函数,正确求得PE的长度是关键.21.(8分)(2015•义乌市)如果抛物线y=ax2+bx+c过定点M(1,1),则称次抛物线为定点抛物线.(1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式.小敏写出了一个答案:y=2x2+3x﹣4,请你写出一个不同于小敏的答案;(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线y=﹣x2+2bx+c+1,求该抛物线顶点纵坐标的值最小时的解析式,请你解答.考点:二次函数图象上点的坐标特征;二次函数的性质.分析:(1)根据顶点式的表示方法,结合题意写一个符合条件的表达式则可;(2)根据顶点纵坐标得出b=1,再利用最小值得出c=﹣1,进而得出抛物线的解析式.解答:解:(1)依题意,选择点(1,1)作为抛物线的顶点,二次项系数是1,根据顶点式得:y=x2﹣2x+2;(2)∵定点抛物线的顶点坐标为(b,c+b2+1),且﹣1+2b+c+1=1,∴c=1﹣2b,∵顶点纵坐标c+b2+1=2﹣2b+b2=(b﹣1)2+1,∴当b=1时,c+b2+1最小,抛物线顶点纵坐标的值最小,此时c=﹣1,∴抛物线的解析式为y=﹣x2+2x.点评:本题考查抛物线的形状与抛物线表达式系数的关系,首先利用顶点坐标式写出来,再化为一般形式.22.(10分)(2015•义乌市)某校规划在一块长AD为18m,宽AB为13m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮.(1)如图1,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM:AN=8:9,问通道的宽是多少?(2)为了建造花坛,要修改(1)中的方案,如图2,将三条通道改为两条通道,纵向的宽度改为横向宽度的2倍,其余四块草坪相同,且每一块草坪均有一边长为8m,这样能在这些草坪建造花坛.如图3,在草坪RPCQ中,已知RE⊥PQ于点E,CF⊥PQ于点F,求花坛RECF的面积.考点:二元一次方程组的应用;勾股定理的应用.分析:(1)利用AM:AN=8:9,设通道的宽为xm,AM=8ym,则AN=9y,进而利用AD 为18m,宽AB为13m得出等式求出即可;(2)根据题意得出纵向通道的宽为2m,横向通道的宽为1m,进而得出PQ,RE的长,即可得出PE、EF的长,进而求出花坛RECF的面积.解答:解:(1)设通道的宽为xm,AM=8ym,∵AM:AN=8:9,∴AN=9y,∴,解得:.答:通道的宽是1m;(2)∵四块相同草坪中的每一块,有一条边长为8m,若RP=8,则AB>13,不合题意,∴RQ=8,∴纵向通道的宽为2m,横向通道的宽为1m,∴RP=6,∵RE⊥PQ,四边形RPCQ是长方形,∴PQ=10,∴RE×PQ=PR×QR=6×8,∴RE=4.8,∵RP2=RE2+PE2,∴PE=3.6,同理可得:QF=3.6,∴EF=2.8,∴S四边形RECF=4.8×2.8=13.44,即花坛RECF的面积为13.44m2.,点评:此题主要考查了二元一次方程组的应用即四边形面积求法和三角形面积求法等知识,得出RP的长是解题关键.23.(10分)(2015•义乌市)正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG 绕点A按顺时针方向旋转,记旋转角∠DAG=α,其中0°≤α≤180°,连结DF,BF,如图.(1)若α=0°,则DF=BF,请加以证明;(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由.考点:正方形的性质;全等三角形的判定与性质;命题与定理;旋转的性质.分析:(1)利用正方形的性质证明△DGF≌△BEF即可;(2)当α=180°时,DF=BF.(3)利用正方形的性质和△DGF≌△BEF的性质即可证得是真命题.解答:(1)证明:如图1,∵四边形ABCD和四边形AEFG为正方形,∴AG=AE,AD=AB,GF=EF,∠DGF=∠BEF=90°,∴DG=BE,在△DGF和△BEF中,,∴△DGF≌△BEF(SAS),∴DF=BF;(2)解:图形(即反例)如图2,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年浙江省金华市中考数学试卷解析(本试卷满分120分,考试时间120分钟,本次考试采用开卷形式,不得使用计算器)一、选择题(本题有10小题,每小题3分,共30分)1. (2015年浙江金华3分) 计算23(a )结果正确的是【 】A. 5aB. 6aC. 8aD. 23a【答案】B .【考点】幂的乘方【分析】根据“幂的乘方,底数不变,指数相乘”的幂的乘方法则计算作出判断:23236(a )a a ⨯==.故选B .2. (2015年浙江金华3分)要使分式1x 2+有意义,则x 的取值应满足【 】 A. x 2=- B. x 2≠- C. x 2>- D. x 2≠-【答案】D .【考点】分式有意义的条件.【分析】根据分式分母不为0的条件,要使1x 2+在实数范围内有意义,必须x 20x 2+≠⇒≠-.故选D . 3. (2015年浙江金华3分) 点P (4,3)所在的象限是【 】A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A .【考点】平面直角坐标系中各象限点的特征.【分析】根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).故点P (4,3)位于第一象限. 故选A .4. (2015年浙江金华3分) 已知35α∠=︒,则α∠的补角的度数是【 】A. 55°B. 65°C. 145°D. 165°【答案】C .【考点】补角的计算.【分析】根据“当两个角的度数和为180 °时,这两个角互为补角”的定义计算即可:∵35α∠=︒,∴α∠的补角的度数是18035145︒-︒=︒.故选C .5. (2015年浙江金华3分)一元二次方程2x 4x 30+-=的两根为1x ,2x ,则12x x ⋅的值是【 】A. 4B. -4C. 3D. -3【答案】D .【考点】一元二次方程根与系数的关系.【分析】∵一元二次方程2x 4x 30+-=的两根为1x ,2x , ∴123x x 31-⋅==-. 故选D .6. (2015年浙江金华3分) 如图,数轴上的A ,B ,C ,D 四点中,与表示数3-的点最接近的是【 】A. 点AB. 点BC. 点CD. 点D【答案】B .【考点】实数和数轴;估计无理数的大小;作差法的应用.【分析】∵1<3<41<22<1⇒⇒--,∴21--:.又∵(33>0222--==,∴3>2-∴32<2--,即与无理数2-.∴在数轴上示数B .故选B .7. (2015年浙江金华3分)如图的四个转盘中,C ,D 转盘分成8等分,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是【 】A. B. C.D.【答案】A .【考点】概率.【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,∵四个转盘中,A 、B 、C 、D 的面积分别为转盘的3215,,,4328,∴A 、B 、C 、D 四个转盘指针落在阴影区域内的概率分别为3215,,,4328 . ∴指针落在阴影区域内的概率最大的转盘是A .故选A .8. (2015年浙江金华3分)图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O ,B ,以点O 为原点,水平直线OB 为x 轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线21y (x 80)16400=--+,桥拱与桥墩AC 的交点C 恰好在水面,有AC ⊥x 轴. 若OA =10米,则桥面离水面的高度AC 为【 】A. 40916米B. 417米C. 40716米D. 415米 【答案】B .【考点】二次函数的应用(实际应用);求函数值.【分析】如图,∵OA =10,∴点A 的横坐标为10-,∴当x 10=-时,2117y (1080)164004=---+=-.∴AC =174米. 故选B .9. (2015年浙江金华3分)以下四种沿AB 折叠的方法中,不一定能判定纸带两条边线a ,b 互相平行的是【 】A. 如图1,展开后,测得∠1=∠2B. 如图2,展开后,测得∠1=∠2,且∠3=∠4C. 如图3,测得∠1=∠2D. 如图4,展开后,再沿CD 折叠,两条折痕的交点为O ,测得OA =OB ,OC =OD【答案】C .【考点】折叠问题;平行的判定;对顶角的性质;全等三角形的判定和性质.【分析】根据平行的判定逐一分析作出判断:A . 如图1,由∠1=∠2,根据“内错角相等,两直线平行”的判定可判定纸带两条边线a ,b 互相平行;B . 如图2,由∠1=∠2和∠3=∠4,根据平角定义可得∠1=∠2=∠3=∠4=90°,从而根据“内错角相等,两直线平行”或“同旁内角互补,两直线平行”的判定可判定纸带两条边线a ,b 互相平行;C . 如图3,由∠1=∠2不一定得到内错角相等或同位角相等或同旁内角互补,故不一定能判定纸带两条边线a ,b 互相平行;D . 如图4,由OA =OB ,OC =OD ,AOC BOD ∠∠=得到AOC BOD ∆∆≌,从而得到CAO DBO ∠∠=,进而根据“内错角相等,两直线平行”的判定可判定纸带两条边线a ,b 互相平行.故选C .10. (2015年浙江金华3分)如图,正方形ABCD 和正三角形AEF 都内接于⊙O ,EF 与BC ,CD 分别相交于点G ,H ,则EF GH的值是【 】A. 26B. 2C. 3D. 2【答案】C .【考点】正方形和等边三角形的性质;圆周角定理;锐角三角函数定义;特殊角的三角函数值;等腰直角三角形的判定和性质,特殊元素法的应用.【分析】如答图,连接AC,EC ,AC 与EF 交于点M .则根据对称性质,AC 经过圆心O ,∴AC 垂直 平分EF ,01EAC FAC EAF 302∠=∠=∠=.不妨设正方形ABCD 的边长为2,则AC =∵AC 是⊙O 的直径,∴0AEC 90∠=.在Rt ACE ∆中,AE AC cos EAC =⋅∠==, 1CE AC sin EAC 2=⋅∠==在Rt MCE ∆中,∵0FEC FAC 30∠=∠=,∴1CM CE sin EAC 2=⋅∠==易知GCH ∆是等腰直角三角形,∴GF 2CM =又∵AEF ∆是等边三角形,∴EF AE ==∴EF GH ==. 故选C .二、填空题(本题有6小题,每小题4分,共24分)11. (2015年浙江金华4分) 数3-的相反数是 ▲【答案】3.【考点】相反数.【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0. 因此-3的相反数是3.12. (2015年浙江金华4分)数据6,5,7,7,9的众数是 ▲【答案】7【考点】众数.【分析】众数是在一组数据中,出现次数最多的数据,这组数据中7出现两次,出现的次数最多,故这组数据的众数为7.13. (2015年浙江金华4分)已知a b 3+=,a b 5-=,则代数式22a b -的值是 ▲【答案】15.【考点】求代数式的值;因式分解的应用;整体思想的应用.【分析】∵a b 3+=,a b 5-=,∴()()22a b a b a b 3515-=+-=⨯=.14. (2015年浙江金华4分)如图,直线126l ,l ,,l ⋅⋅⋅ 是一组等距离的平行线,过直线1l 上的点A 作两条射线,分别与直线3l ,6l 相交于点B ,E ,C ,F . 若BC =2,则EF 的长是 ▲【答案】5.【考点】平行线分线段成比例的性质;相似三角形的判定和性质.【分析】∵直线126l ,l ,,l ⋅⋅⋅ 是一组等距离的平行线,∴AB 2BE 3=,即AB 2AE 5=. 又∵3l ∥6l ,∴ABC AEF ∆∆∽. ∴BC AB 2EF AE 5==. ∵BC =2,∴22EF 5EF 5=⇒=. 15. (2015年浙江金华4分)如图,在平面直角坐标系中,菱形OBCD 的边OB 在x 轴正半轴上,反比例函数k y (x 0)x =>的图象经过该菱形对角线的交点A ,且与边BC 交于点F . 若点D 的坐标为(6,8),则点F 的坐标是 ▲【答案】8123⎛⎫ ⎪⎝⎭,. 【考点】反比例函数综合题;曲线上点的坐标与方程的关系;待定系数法的应用;菱形的性质;中点坐标;方程思想的应用.【分析】∵菱形OBCD 的边OB 在x 轴正半轴上,点D 的坐标为(6,8),∴OD DC OD 10====.∴点B 的坐标为(10,0),点C 的坐标为(16,8).∵菱形的对角线的交点为点A ,∴点A 的坐标为(8,4). ∵反比例函数k y (x 0)x=>的图象经过点A ,∴k 8432=⋅=. ∴反比例函数为32y x=. 设直线BC 的解析式为y mx n =+,∴4m 16m n 8310m n 040n 3⎧=⎪+=⎧⎪⇒⎨⎨+=⎩⎪=-⎪⎩. ∴直线BC 的解析式为440y x 33=-. 联立440x 12y x 33832y y 3x ⎧==-⎧⎪⎪⎪⇒⎨⎨=⎪⎪=⎩⎪⎩. ∴点F 的坐标是8123⎛⎫ ⎪⎝⎭,. 16. (2015年浙江金华4分)图1是一张可以折叠的小床展开后支撑起来放在地面的示意图,此时,点A ,B ,C 在同一直线上,且∠ACD =90°.图2是小床支撑脚CD 折叠的示意图,在折叠过程中,ΔACD 变形为四边形ABC'D',最后折叠形成一条线段BD".(1)小床这样设计应用的数学原理是 ▲(2)若AB :BC =1:4,则tan ∠CAD 的值是 ▲【答案】(1)三角形的稳定性和四边形的不稳定性;(2)815. 【考点】线动旋转问题;三角形的稳定性;旋转的性质;勾股定理;锐角三角函数定义.【分析】(1)在折叠过程中,由稳定的ΔACD 变形为不稳定四边形ABC'D',最后折叠形成一条线段BD",小床这样设计应用的数学原理是:三角形的稳定性和四边形的不稳定性.(2)∵AB :BC =1:4,∴设AB x,CD y == ,则BC 4x,AC 5x == .由旋转的性质知BC"BC 4x,AC"3x,C"D"y === = ,∴AD AD"AC"C"D"3x y ==+=+.在Rt ACD ∆中,根据勾股定理得222AD AC CD =+,∴()()22283x y 5x y y x 3+=+⇒=. ∴8x CD y 83tan CAD AD 5x 5x 15∠====. 三、解答题(本题有8小题,共66分,个小题都必须写出解答过程)17. (2015年浙江金华6分)1124cos302--︒+- 【答案】解:原式=11114122222⨯==--. 【考点】实数的运算;二次根式化简;负整数指数幂;特殊角的三角函数值;绝对值.【分析】针对二次根式化简,负整数指数幂,特殊角的三角函数值,绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果.18. (2015年浙江金华6分)解不等式组5x 34x 4(x 1)32x -<⎧⎨-+≥⎩【答案】解:5x 3<4x 4(x 1)32x -⎧⎨-+≥⎩①② 由①可得5x 4x 3-<,即x 3<,由②可得4x 432x -+≥,4x 2x 43-≥-,2x 1≥,1x 2≥, ∴不等式组的解是1x 32≤<. 【考点】解一元一次不等式组. 【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).19. (2015年浙江金华6分)在平面直角坐标系中,点A 的坐标是(0,3),点B 在x 轴上,将△AOB 绕点A 逆时针旋转90°得到△AEF ,点O ,B 对应点分别是E ,F .(1)若点B 的坐标是()40- ,,请在图中画出△AEF ,并写出点E ,F 的坐标; (2)当点F 落在x 轴上方时,试写出一个符合条件的点B 的坐标.【答案】解:(1)如答图,△AEF 就是所求作的三角形; 点E 的坐标是(3,3),点F 的坐标是()3,1- .(2)答案不唯一,如B ()20- ,. 【考点】开放型;网格问题;图形的设计(面动旋转);点的坐标.【分析】(1)将线段AO 、AB 绕点A 逆时针旋转90°得到AE 、AF ,连接EF ,则△AEF 就是所求作的三角形,从而根据图形得到点E ,F 的坐标.(2)由于旋转后EF x ⊥,点E 的坐标是(3,3),所以当点F 落在x 轴上方时,只要0<EF <3即0<OB <3即可,从而符合条件的点B 的坐标可以是()()120,10,02⎛⎫--- ⎪⎝⎭,,,等,答案不唯一. 20. (2015年浙江金华8分)小明随机调查了若干市民租用公共自行车的骑车时间t (单位:分),将获得的数据分成四组,绘制了如下统计图. 请根据图中信息,解答下列问题:(1)这次被调查的总人数是多少?(2)试求表示A 组的扇形圆心角的度数,并补全条形统计图;(3)如果骑自行车的平均速度为12km /h ,请估算,在租用公共自行车的市民中,骑车路程不超过6km 的人数所占的百分比.【答案】解:(1)被调查总人数为19÷38%=50(人).(2)表示A 组的扇形圆心角的度数为15360=10850︒︒⨯. ∵C 组的人数为501519412---=(人),∴补全条形统计图如答图:(3)设骑车时间为t 分,则12t 660≤,解得t ≤30, ∴被调查的50人中,骑公共自行车的路程不超过6km 的人数为50-4=46(人),∴在租用公共自行车的市民中,骑车路程不超过6km 的人数所占的百分比为46÷50=92%.【考点】条形统计图和扇形统计图;频数、频率和总量的关系;用样本估计总体.【分析】(1)由B 组的频数确19、频率38%,根据频数、频率和总量的关系即可求得被调查总人数.(2)求出A 组的频率,即可求得表示A 组的扇形圆心角的度数;求得C 组的人数即可补全条形统计图.(3)求出被调查的50人中骑车路程不超过6km 的人数所占的百分比即可用样本估计总体.21. (2015年浙江金华8分)如图,在矩形ABCD 中,点F 在边BC 上,且AF =AD ,过点D 作DE ⊥AF ,垂足为点E .(1)求证:DE =AB ;(2)以D 为圆心,DE 为半径作圆弧交AD 于点G ,若BF =FC =1,试求»EG的长.【答案】解:(1)证明:∵DE ⊥AF ,∴∠AED =90°.又∵四边形ABCD 是矩形, ∴AD ∥BC ,∠B =90°.∴∠DAE =∠AFB ,∠AED =∠B =90°.又∵AF =AD ,∴△ADE ≌△FAB (AAS ).∴DE =AB .(2)∵BF =FC =1,∴AD =BC =BF +FC =2.又∵△ADE ≌△FAB ,∴AE =BF =1.∴在Rt △ADE 中,AE =12AD . ∴∠ADE =30°.又∵DE ==∴»n R 30EG 1801806ππ⋅===. 【考点】矩形的性质;全等三角形的判定和性质;含30度角直角坐标三角形的性质;勾股定理;弧长的计算.【分析】(1)通过应用AAS证明△ADE≌△FAB即可证明DE=AB.(2)求出∠ADE和DE的长即可求得»EG的长.22.(2015年浙江金华410分)小慧和小聪沿图1中的景区公路游览,小慧乘坐车速为30km/h 的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆现. 小聪骑自行车从飞瀑出发前往宾馆,速度为20km/h,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点,上午10:00小聪到达宾馆. 图2中的图象分别表示两人离宾馆的路程s(km)与时间t(h)的函数关系. 试结合图中信息回答:(1)小聪上午几点钟从飞瀑出发?(2)试求线段AB,GH的交叉点B的坐标,并说明它的实际意义;(3)如果小聪到达宾馆后,立即以30km/h的速度按原路返回,那么返回途中他几点钟遇见小慧?【答案】解:(1)小聪从飞瀑到宾馆所用的时间为50÷20=2.5(h)∵小聪上午10:00到达宾馆,∴小聪从飞瀑出发的时刻为10-2.5=7.5.∴小聪早上7:30分从飞瀑出发.(2)设直线GH的函数表达式为s=kt+b,∵点G(12,50),点H (3, 0 ),∴1k b5023k b0⎧+=⎪⎨⎪+=⎩,解得k20b60=-⎧⎨=⎩.∴直线GH的函数表达式为s=-20t+60.又∵点B的纵坐标为30,∴当s=30时,-20t+60=30, 解得t=3 2 .∴点B(32,30).点B的实际意义是:上午8:30小慧与小聪在离宾馆30km(即景点草甸)处第一次相遇.(3)设直线DF 的函数表达式为11s k t b =+,该直线过点D 和 F (5,0), ∵小慧从飞瀑回到宾馆所用时间55030=3÷(h ), ∴所以小慧从飞瀑准备返回时t =510533-=,即D (103,50). 111110k b 5035k b 0⎧+=⎪⎨⎪+=⎩,解得11k 30b 150=-⎧⎨=⎩. ∴直线DF 的函数表达式为s =-30t +150.∵小聪上午10:00到达宾馆后立即以30km /h 的速度返回飞瀑, ∴所需时间55030=3÷(h ).如答图,HM 为小聪返回时s 关于t 的函数图象.∴点M 的横坐标为3+53=143,点M (143,50). 设直线HM 的函数表达式为s k t b =+22,该直线过点H (3,0) 和点M (143,50), ∴14k b 5033k b 0⎧+=⎪⎨⎪+=⎩2222,解得k 30b 90=⎧⎨=-⎩22. ∴直线HM 的函数表达式为s =30t -90,由30t 9030t 150-=-+解得t 4=,对应时刻7+4=11,∴小聪返回途中上午11:00遇见小慧.【考点】一次函数的应用;待定系数法的应用;直线上点的坐标与议程伯关系.【分析】(1)求出小聪从飞瀑到宾馆所用的时间即可求得小聪上午从飞瀑出发的时间.(2)应用待定系数法求出直线GH 的函数表达式即可由点B 的纵坐标求出横坐标而得点B 的坐标;点B 的实际意义是:上午8:30小慧与小聪在离宾馆30km (即景点草甸) 处第一次相遇.(3)求出直线DF 和小聪返回时s 关于t 的函数(HM ),二者联立即可求解.23. (2015年浙江金华10分)图1,图2为同一长方体房间的示意图,图2为该长方体的表面展开图.(1)蜘蛛在顶点A'处①苍蝇在顶点B 处时,试在图1中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线;②苍蝇在顶点C处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD爬行的最近路线A'GC和往墙面BB'C'C爬行的最近路线A'HC,试通过计算判断哪条路线更近?(2)在图3中,半径为10dm的⊙M与D'C'相切,圆心M到边CC'的距离为15dm,蜘蛛P在线段AB上,苍蝇Q在⊙M的圆周上,线段PQ为蜘蛛爬行路线。