2017年中考数学专题复习新定义问题
2017年浙江省中考数学新定义题赏析及教学启示
2017年浙江省中考数学新定义题赏析及教学启示
王 芳 芳 唐 恒 钧 (浙 江 师 范 大 学 教 师 教 育 学 院 321004)
新课程改革的核心理念是为了每一个学生 的发展,具 体 指 向 学 生 数 学 素 养 的 发 展.特 别 是, 课 程 改 革 要 培 养 学 生 收 集 、整 理 信 息 的 能 力 ,以 及 发 现 问 题 、分 析 问 题 、解 决 问 题 的 能 力 .所 以 “新 定 义”题作为考察学生数学素养的 很 好 的 载 体 而 受 到关注,并出现在各地的中考中[1].新定义题是 指 在 试 卷 中 给 出 学 生 没 有 学 习 过 的 新 概 念 、新 运 算 、 新 定 理 等 ,并 要 求 学 生 借 助 新 定 义 解 决 问 题 [2].新 定义题的解决过程需要学生自主学习相关定义, 这是对学生自主学 习 能 力、数 学 阅 读 与 理 解 能 力 的直接考查.同时 新 定 义 题 又 往 往 会 与 学 生 已 有 的知识经验相结合,因 此 这 又 考 查 了 学 生 对 已 有 知 识 的 掌 握 情 况 .以 下 将 以 2017 年 浙 江 省 中 考 数 学 试 题 中 的 新 定 义 题 为 例 ,赏 析 其 命 制 思 路 ,并 从 中获得教学启示.
表1 新定义题在每份试卷的分值分布情况
城市 题号 题型
定义名称
分值
10 选择
跳马变换
3
湖州市
19 解答 新规定运算犪 犫 6
宁波市 26 解答
半对角四边形
14
衢州市 22 解答
勾股点
10
绍兴市 22 解答 等腰直角四边形 12
义乌市
10 选择
中考数学复习《新定义新概念问题》
中考数学复习新定义问题所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力.解决“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其解决问题的思想方法;二是根据问题情境的变化,通过认真思考,合理进行思想方法的迁移.类型1 新法则、新运算型例题:(2017甘肃天水)定义一种新的运算:x*y=,如:3*1==,则(2*3)*2= 2 .【考点】1G:有理数的混合运算.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(2*3)*2=()*2=4*2==2,故答案为:2同步训练:定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD,(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P 作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.【考点】LO:四边形综合题.【分析】(1)①只要证明四边形ABCD是正方形即可解决问题;②只要证明△ABD≌△CBD,即可解决问题;(2)若EF⊥BC,则AE≠EF,BF≠EF,推出四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,②当BF=AB 时,如图3中,此时四边形ABFE是等腰直角四边形,分别求解即可;【解答】解:(1)①∵AB=AC=1,AB∥CD,∴S四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,∴BD=AC==.(2)如图1中,连接AC、BD.∵AB=BC,AC⊥BD,∴∠ABD=∠CBD,∵BD=BD,∴△ABD≌△CBD,∴AD=CD.(2)若EF⊥BC,则AE≠EF,BF≠EF,∴四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,∴AE=AB=5.②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,∴BF=AB=5,∵DE∥BF,∴DE:BF=PD:PB=1:2,∴DE=2.5,∴AE=9﹣2.5=6.5,综上所述,满足条件的AE的长为5或6.5.解题方法点析此类问题在于读懂新定义,然后仿照范例进行运算,细心研读定义,细致观察范例是解题的关键.类型2 新定义几何概念型例题:(2017日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y)到直线Ax+By+C=0的距离公式为:d=.例如:求点P(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P(0,0)到直线4x+3y﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=﹣x+的距离为 4 ;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.【考点】FI:一次函数综合题.【分析】(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C到直线3x+4y+5=0的距离,求出⊙C上点P到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题.【解答】解:(1)点P1(3,4)到直线3x+4y﹣5=0的距离d==4,故答案为4.(2)∵⊙C与直线y=﹣x+b相切,⊙C的半径为1,∴C(2,1)到直线3x+4y﹣b=0的距离d=1,∴=1,解得b=5或15.(3)点C(2,1)到直线3x+4y+5=0的距离d==3,∴⊙C上点P到直线3x+4y+5=0的距离的最大值为4,最小值为2,∴S△ABP 的最大值=×2×4=4,S△ABP的最小值=×2×2=2.同步训练:(2017湖北随州)在平面直角坐标系中,我们定义直线y=ax﹣a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.已知抛物线y=﹣x2﹣x+2与其“梦想直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的解析式为y=﹣x+,点A的坐标为(﹣2,2),点B的坐标为(1,0);(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)由梦想直线的定义可求得其解析式,联立梦想直线与抛物线解析式可求得A、B 的坐标;(2)过A作AD⊥y轴于点D,则可知AN=AC,结合A点坐标,则可求得ON的长,可求得N 点坐标;(3)当AC为平行四边形的一边时,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,可证△EFH≌△ACK,可求得DF的长,则可求得F点的横坐标,从而可求得F点坐标,由HE的长可求得E点坐标;当AC为平行四边形的对角线时,设E(﹣1,t),由A、C的坐标可表示出AC 中点,从而可表示出F点的坐标,代入直线AB的解析式可求得t的值,可求得E、F的坐标.【解答】解:(1)∵抛物线y=﹣x2﹣x+2,∴其梦想直线的解析式为y=﹣x+,联立梦想直线与抛物线解析式可得,解得或,∴A(﹣2,2),B(1,0),故答案为:y=﹣x+;(﹣2,2);(1,0);(2)如图1,过A作AD⊥y轴于点D,在y=﹣x2﹣x+2中,令y=0可求得x=﹣3或x=1,∴C(﹣3,0),且A(﹣2,2),∴AC==,由翻折的性质可知AN=AC=,∵△AMN为梦想三角形,∴N点在y轴上,且AD=2,在Rt△AND中,由勾股定理可得DN===3,∵OD=2,∴ON=2﹣3或ON=2+3,∴N点坐标为(0,2﹣3)或(0,2+3);(3)①当AC为平行四边形的边时,如图2,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,则有AC∥EF且AC=EF,∴∠ACK=∠EFH,在△ACK和△EFH中∴△ACK≌△EFH(AAS),∴FH=CK=1,HE=AK=2,∵抛物线对称轴为x=﹣1,∴F点的横坐标为0或﹣2,∵点F在直线AB上,∴当F点横坐标为0时,则F(0,),此时点E在直线AB下方,∴E到y轴的距离为EH﹣OF=2﹣=,即E点纵坐标为﹣,∴E(﹣1,﹣);当F点的横坐标为﹣2时,则F与A重合,不合题意,舍去;②当AC为平行四边形的对角线时,∵C(﹣3,0),且A(﹣2,2),∴线段AC的中点坐标为(﹣2.5,),设E(﹣1,t),F(x,y),则x﹣1=2×(﹣2.5),y+t=2,∴x=﹣4,y=2﹣t,代入直线AB解析式可得2﹣t=﹣×(﹣4)+,解得t=﹣,∴E(﹣1,﹣),F(﹣4,);综上可知存在满足条件的点F,此时E(﹣1,﹣)、F(0,)或E(﹣1,﹣)、F(﹣4,).解题方法点析解决此类问题的关键在于仔细研读几何新概念,将新的几何问题转化为已知的三角形、四边形或圆的问题,从而解决问题.对于几何新概念弄清楚条件和结论是至关重要的.类型3 新内容理解把握例题:(2017湖南岳阳)已知点A在函数y1=﹣(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.有1对或2对 B.只有1对C.只有2对D.有2对或3对【分析】根据“友好点”的定义知,函数y1图象上点A(a,﹣)关于原点的对称点B(a,﹣)一定位于直线y2上,即方程ka2﹣(k+1)a+1=0 有解,整理方程得(a﹣1)(ka﹣1)=0,据此可得答案.【解答】解:设A(a,﹣),由题意知,点A关于原点的对称点B((a,﹣),)在直线y2=kx+1+k上,则=﹣ak+1+k,整理,得:ka2﹣(k+1)a+1=0 ①,即(a﹣1)(ka﹣1)=0,∴a﹣1=0或ka﹣1=0,则a=1或ka﹣1=0,若k=0,则a=1,此时方程①只有1个实数根,即两个函数图象上的“友好点”只有1对;若k≠0,则a=,此时方程①有2个实数根,即两个函数图象上的“友好点”有2对,综上,这两个函数图象上的“友好点”对数情况为1对或2对,故选:A.【点评】本题主要考查直线和双曲线上点的坐标特征及关于原点对称的点的坐标,将“友好点”的定义,根据关于原点对称的点的坐标特征转化为方程的问题求解是解题的关键.同步训练:(2017湖南株洲)如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A.5 B.4 C.D.【考点】R2:旋转的性质;JB:平行线的判定与性质;KW:等腰直角三角形.【分析】由△DQF∽△FQE,推出===,由此求出EQ、FQ即可解决问题.【解答】解:如图,在等腰直角三角形△DEF中,∠EDF=90°,DE=DF,∠1=∠2=∠3,∵∠1+∠QEF=∠3+∠DFQ=45°,∴∠QEF=∠DFQ,∵∠2=∠3,∴△DQF∽△FQE,∴===,∵DQ=1,∴FQ=,EQ=2,∴EQ+FQ=2+,故选D专题训练1.(2017深圳)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)= 2 .【考点】4F:平方差公式;2C:实数的运算.【分析】根据定义即可求出答案.【解答】解:由题意可知:原式=1﹣i2=1﹣(﹣1)=2故答案为:22. (2017浙江湖州)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b.例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.(1)若3⊗x=﹣2011,求x的值;(2)若x⊗3<5,求x的取值范围.【考点】C6:解一元一次不等式;2C:实数的运算;86:解一元一次方程.【分析】(1)根据新定义列出关于x的方程,解之可得;(2)根据新定义列出关于x的一元一次不等式,解之可得.【解答】解:(1)根据题意,得:2×3﹣x=﹣2011,解得:x=2017;(2)根据题意,得:2x﹣3<5,解得:x<4.3. (2017湖北宜昌)阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:其中m>n>0,m,n是互质的奇数.应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.【考点】KT:勾股数;KQ:勾股定理.【分析】由n=1,得到a=(m2﹣1)①,b=m②,c=(m2+1)③,根据直角三角形有一边长为5,列方程即可得到结论.【解答】解:当n=1,a=(m2﹣1)①,b=m②,c=(m2+1)③,∵直角三角形有一边长为5,∴Ⅰ、当a=5时,(m2﹣1)=5,解得:m=(舍去),Ⅱ、当b=5时,即m=5,代入①③得,a=12,c=13,Ⅲ、当c=5时,(m2+1)=5,解得:m=±3,∵m>0,∴m=3,代入①②得,a=4,b=3,综上所述,直角三角形的另外两条边长分别为12,13或3,4.4. (2017广西百色)阅读理解:用“十字相乘法”分解因式2x2﹣x﹣3的方法.(1)二次项系数2=1×2;(2)常数项﹣3=﹣1×3=1×(﹣3),验算:“交叉相乘之和”;1×3+2×(﹣1)=1 1×(﹣1)+2×3=5 1×(﹣3)+2×1=﹣1 1×1+2×(﹣3)=﹣5(3)发现第③个“交叉相乘之和”的结果1×(﹣3)+2×1=﹣1,等于一次项系数﹣1.即:(x+1)(2x﹣3)=2x2﹣3x+2x﹣3=2x2﹣x﹣3,则2x2﹣x﹣3=(x+1)(2x﹣3).像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x2+5x﹣12= (x+3)(3x﹣4).【考点】57:因式分解﹣十字相乘法等.【分析】根据“十字相乘法”分解因式得出3x2+5x﹣12=(x+3)(3x﹣4)即可.【解答】解:3x2+5x﹣12=(x+3)(3x﹣4).故答案为:(x+3)(3x﹣4)5. (2017湖北咸宁)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.理解:(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC为“智慧三角形”(画出点C的位置,保留作图痕迹);(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,试判断△AEF 是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P 的坐标.【考点】MR:圆的综合题.【分析】(1)连结AO并且延长交圆于C1,连结BO并且延长交圆于C2,即可求解;(2)设正方形的边长为4a,表示出DF=CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性质可得△AEF为“智慧三角形”;(3)根据“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.【解答】解:(1)如图1所示:(2)△AEF是否为“智慧三角形”,理由如下:设正方形的边长为4a,∵E是DC的中点,∴DE=CE=2a,∵BC:FC=4:1,∴FC=a,BF=4a﹣a=3a,在Rt△ADE中,AE2=(4a)2+(2a)2=20a2,在Rt△ECF中,EF2=(2a)2+a2=5a2,在Rt△ABF中,AF2=(4a)2+(3a)2=25a2,∴AE2+EF2=AF2,∴△AEF是直角三角形,∵斜边AF上的中线等于AF的一半,∴△AEF为“智慧三角形”;(3)如图3所示:由“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,由勾股定理可得PQ==2,PM=1×2÷3=,由勾股定理可求得OM==,故点P的坐标(﹣,),(,).6.(2017•益阳)在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(﹣3,5)与(5,﹣3)是一对“互换点”.(1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?(2)M、N是一对“互换点”,若点M的坐标为(m,n),求直线MN的表达式(用含m、n 的代数式表示);(3)在抛物线y=x2+bx+c的图象上有一对“互换点”A、B,其中点A在反比例函数y=﹣的图象上,直线AB经过点P(,),求此抛物线的表达式.【考点】G6:反比例函数图象上点的坐标特征;FA:待定系数法求一次函数解析式;H8:待定系数法求二次函数解析式.【分析】(1)设这一对“互换点”的坐标为(a,b)和(b,a).①当ab=0时,它们不可能在反比例函数的图象上,②当ab≠0时,由可得,于是得到结论;(2)把M(m,n),N(n,m)代入y=cx+d,即可得到结论;(3)设点A(p,q),则,由直线AB经过点P(,),得到p+q=1,得到q=﹣1或q=2,将这一对“互换点”代入y=x2+bx+c得,于是得到结论.【解答】解:(1)不一定,设这一对“互换点”的坐标为(a,b)和(b,a).①当ab=0时,它们不可能在反比例函数的图象上,②当ab≠0时,由可得,即(a,b)和(b,a)都在反比例函数(k≠0)的图象上;(2)由M(m,n)得N(n,m),设直线MN的表达式为y=cx+d(c≠0).则有解得,∴直线MN的表达式为y=﹣x+m+n;(3)设点A(p,q),则,∵直线AB经过点P(,),由(2)得,∴p+q=1,∴,解并检验得:p=2或p=﹣1,∴q=﹣1或q=2,∴这一对“互换点”是(2,﹣1)和(﹣1,2),将这一对“互换点”代入y=x2+bx+c得,∴解得,∴此抛物线的表达式为y=x2﹣2x﹣1.【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求函数的解析式,正确的理解题意是解题的关键.。
中考数学专题复习新定义问题(一)
中考数学专题复习新定义问题(一)学校:___________姓名:___________班级:___________考号:___________ 评卷人 得分一、解答题1.在平面直角坐标系xOy 中,已知正方形ABCD ,其中2222,0,0,,,0,0,2222A B C D ⎛⎫⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,M ,N 为该正方形外两点,1MN =.给出如下定义:记线段MN 的中点为P ,平移线段MN 得到线段M N '',使点,M N ''分别落在正方形ABCD 的相邻两边上,或线段M N ''与正方形的边重合(,,M N P '''分别为点M ,N ,P 的对应点),线段PP '长度的最小值称为线段MN 到正方形ABCD 的“平移距离”.(1)如下图,平移线段MN ,得到正方形ABCD 内两条长度为1的线段1122,M N M N ,则这两条线段的位置关系是_______;若12,P P 分别为1122,M N M N 的中点,在点12,P P 中,连接点P 与点_______的线段的长度等于线段MN 到正方形ABCD 的“平移距离”;(2)如图,已知点21,02E ⎛⎫+ ⎪ ⎪⎝⎭,若M ,N 都在直线BE 上,记线段MN 到正方形ABCD 的“平移距离”为1d ,求1d 的最小值;(3)若线段MN 的中点P 的坐标为(2)2,,记线段MN 到正方形ABCD 的“平移距离”为2d ,直接写出2d 的取值范围.2.对于平面直角坐标系xOy 中的线段PQ ,给出如下定义:若存在PQR 使得2PQRSPQ =,则称PQR 为线段PQ 的“等幂三角形”,点R 称为线段PQ 的“等幂点”.(1)已知(3,0)A .①在点1234(1,3),(2,6),(5,1),(3,6)P P P P --中,是线段OA 的“等幂点”的是_____________; ①若存在等腰OAB 是线段OA 的“等幂三角形”,求点B 的坐标;(2)已知点C 的坐标为(2,1)C -,点D 在直线3y x =-上,记图形M 为以点(1,0)T 为圆心,2为半径的T 位于x 轴上方的部分,若图形M 上存在点E ,使得线段CD 的“等幂三角形”CDE △为锐角三角形,直接写出点D 的横坐标D x 的取值范围.3.对于平面直角坐标系xOy 中的图形M 和点P ,给出如下定义:将图形M 绕点P 顺时针旋转90︒得到图形N ,图形N 称为图形M 关于点P 的“垂直图形”.例如,图1中点D 为点C 关于点P 的“垂直图形”.(1)点A 关于原点O 的“垂直图形”为点B . ①若点A 的坐标为(0,2),则点B 的坐标为_______; ①若点B 的坐标为(2,1),则点A 的坐标为_______.(2)(3,3),(2,3),(,0)E F G a --.线段EF 关于点G 的“垂直图形”记为E F '',点E 的对应点为E ',点F 的对应点为F '. ①求点E '的坐标(用含a 的式子表示);①若O 的半径为2,E F ''上任意一点都在O 内部或圆上,直接写出满足条件的EE '的长度的最大值.4.如图,直线l和直线l外一点P,过点P作PH l⊥于点H任取直线l上点Q,点H 关于直线PQ的对称点为点H',标点H'为点P关于直线l的垂对点.在平面直角坐标系xOy中,(1)已知点(0,2)P,则点(0,0),(2,2),(0,4)O A B中是点P关于x轴的垂对点的是_______;(2)已知点(0,)M m,且0m>,直线443y x=-+上存在点M关于x轴的垂对点,求m的取值范围;(3)已知点(,2)N n,若直线y x n=+上存在两个点N关于x轴的垂对点,直接写出n 的取值范围,5.在平面直角坐标系xOy 中,对于点P 和线段ST ,我们定义点P 关于线段ST 的线段比()()PS PS PT ST k PT PS PT ST⎧<⎪⎪=⎨⎪≥⎪⎩(1)已知点(0,1),(1,0)A B .①点(2,0)Q 关于线段AB 的线段比k =__________; ①点(0,)C c 关于线段AB 的线段比2k =,求c 的值.(2)已知点(,0)M m ,点(2,0)N m +,直线2y x =+与坐标轴分别交于,E F 两点,若线段EF 上存在点使得这一点关于线段MN 的线段比14k <,直接写出m 的取值范围.6.在平面直角坐标系xOy 中,对于点A 和线段MN ,如果点A ,O ,M ,N 按逆时针方向排列构成菱形AOMN ,且AOM α∠=,则称线段MN 是点A 的“α-相关线段”.例如,图1中线段MN 是点A 的“30-相关线段”.(1)已知点A 的坐标是(0,2).①在图2中画出点A 的“30-相关线段”MN ,并直接写出点M 和点N 的坐标; ①若点A 的“α-相关线段”经过点(3,1),求α的值;(2)若存在,()αβαβ≠使得点P 的“α-相关线段”和“β-相关线段”都经过点(0,4),记PO t =,直接写出t 的取值范围.7.在平面直角坐标系xOy 中,O 的半径为1,点A 是平面内一点,过点A 的直线交O 于点 B 和点C (ABAC ),01BC ,我们把点 B 称为点A 关于O 的“斜射点”.(1)如图,在点12331(1,1),(0,),(,0)22A A A -中,存在关于 O 的“斜射点”的是_____________.(2)已知若(0,2)A ,点关于O 的“斜射点”为点B ,则点 B 的坐标可以是__________.(写出两个即可)(3)若点A 直线y kx k =+上,点A 关于O 的“斜射点”为(1,0)B -,画出示意图,直接写出 k 的取值范围.8.对于平面内的点P 和图形M ,给出如下定义:以点P 为圆心,r 为半径作圆,若P 与图形M 有交点,且半径r 存在最大值与最小值,则将半径r 的最大值与最小值的差称为点P 视角下图形M 的“宽度M d ”. (1)如图1.点(4,3)A ,(0,3)B .①在点O 视角下,则线段AB 的“宽度AB d ”为_________; ①若B 半径为1.5,在点A 视角下,B 的“宽度Bd”为_________;(2)如图2,O 半径为2,点P 为直线1y x =-+上一点.求点P 视角下O “宽度Od”的取值范围;(3)已知点(,0),1C m CK =,直线333y x =+与x 轴,y 轴分别交于点D ,E .若随着点C 位置的变化,使得在所有点K 的视角下,线段DE 的“宽度”均满足06DE d <<,直接写出m 的取值范围.9.在平面直角坐标系O x y 中,任意两点()11,P x y ,()22,Q x y ,定义线段PQ 的“直角长度”为2121PQ d x x y y =-+-. (1)已知点(3,2)A . ① OA d =________;① 已知点(,0)B m ,若6AB d =,求m 的值;(2)在三角形中,若存在两条边“直角长度”之和等于第三条边的“直角长度”,则称该三角形为“和距三角形”.已知点(3,3)M .① 点(0,)(0)D d d ≠.如果OMD 为“和距三角形”,求d 的取值范围;① 在平面直角坐标系xOy 中,点C 为直线4y x =--上一点,点K 是坐标系中的一点,且满足1CK =,当点C 在直线上运动时,点K 均满足使OMK △为“和距三角形”,请你直接写出点C 的横坐标C x 的取值范围.10.对于平面直角坐标系xOy 中的O 和图形N ,给出如下定义:如果O 平移m 个单位后,图形N 上的所有点在O 内或O 上,则称m 的最小值为O 对图形N 的“覆盖近距”.(1)当O 的半径为1时,①若点()3,0A ,则O 对点A 的“覆盖近距”为_________;①若O 对点B 的“覆盖近距”为1,写出一个满足条件的点B 的坐标_________; ①若直线2y x b =+上存在点C ,使O 对点C 的“覆盖近距”为1,求b 的取值范围; (2)当O 的半径为2时,(3,),(4,1)D t E t +,且12t -≤≤.记O 对以DE 为对角线的正方形的“覆盖近距”为d ,直接写出d 的取值范围.11.在平面直角坐标系xOy 中,对于任意两点()()1122,,,M x y N x y ,若1212x x y y k -+-=(k 为常数且0k ≠),则称点M 为点N 的k 倍直角点.根据以上定义,解决下列问题: (1)已知点(1,1)A①若点(2,3)B -是点A 的k 倍直角点,则k 的值是___________;①在点(2,3),(1,1),(0,2),(0,0)C D E O --中是点A 的2倍直角点的是_______; ①若直线2y x b =-+上存在点A 的2倍直角点,求b 的取值范围;(2)T 的圆心T 的坐标为(1,0),半径为r ,若T 上存在点O 的2倍直角点,直接写出r 的取值范围.12.已知点P 、Q 分别为图形M 和图形N 上的任意点,若存在点P 、Q 使得PQ =1,我们就称图形M 、N 为友好图形,P 、Q 为关于图形M 、N 的一对友好点. (1)已知点 (1,0)A ,1(0,)2B ,C (-1,1)中, 与点O 为一对友好点,(2)已知O 半径r =1,若直线y x b =+与O 有且只有一对友好点,求b 的值;(3)已知点,D(m,2), D 半径r =1,若直线y=x+m 与D 是友好图形,求m 的取值范围.13.规定如下:图形M 与图形N 恰有两个公共点(这两个公共点不重合),则称图形M 与图形N 是和谐图形.(1)在平面直角坐标系xOy 中,已知O 的半径为2,若直线x k =与O 是和谐图形,请你写出一个满足条件的k 值,即k =______; (2)在平面直角坐标系xOy 中,已知点(),0A t ,直线3:33l y x =+与x 轴、y 轴分别交于B ,C 两点(其中点A 不与点B 重合),则线段AB 与直线l 组成的图形我们称为图形V ;①3t =时,以A 为圆心,r 为半径的A 与图形V 是和谐图形,求r 的取值范围;①以点A 为圆心,23为半径的A 与图形V 均组成和谐图形,求t 的取值范围.参考答案:1.(1)平行,P 1;(2)1d 的最小值为24;(3)21332222d -≤≤.【解析】 【分析】(1)根据图形,比较PP 1,PP 2的长度即可求解;(2)根据已知条件求得①P 1BE =45︒,过P 1作P 1Q ①BE 于Q ,则△P 1QB 为等腰直角三角形,利用特殊角三角函数值即可求解;(3)先找到最值点,再利用两点之间的距离公式即可求解. 【详解】(1)解:由图可得MN ①M 1N 1,MN ①M 2N 2, ①M 1N 1①M 2N 2, 而PP 1<PP 2,故线段MN 到正方形ABCD 的“平移距离”为PP 1; 故答案为:平行,P 1; (2)①B (0,22),C (22,0),四边形ABCD 为正方形, ①BC =2222122⎛⎫⎛⎫+=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,①BCA =45︒, ①E (212+,0), ①CE =221122+-==BC , ①①1=①2,则①1+①2=①BCA =45︒, ①①1=①2=22.5︒,在Rt △BMN 中,BP 1为斜边上的中线, 则BP 1=12MN =12=NP 1,①①P 1BN =①P 1NB , 又MN ①BE , ①①2=①P 1NB ,①①2=①P 1NB =45︒,①P 1BE =①2+①P 1BN =45︒, 过P 1作P 1Q ①BE 于Q ,则△P 1QB 为等腰直角三角形,在Rt△P1QB中,P1Q=P1B sin45︒=122224⨯=,①1d的最小值为24;(3)解:根据题意,P1、P2分别是AB、BC的中点,则线段MN到正方形ABCD的“平移距离”最大为PP1,最小为PP2,此时,P1 (24-,24),P2 (24,24),①PP1=22223322442⎛⎫⎛⎫++-=⎪ ⎪⎪ ⎪⎝⎭⎝⎭,PP2=22222112222224422⎛⎫⎛⎫⎛⎫-+-=-=-⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,①2d的取值范围是21332222d-≤≤.【点睛】本题考查正方形的性质、等腰直角三角形的判定和性质、坐标与图形的性质、锐角三角函数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.2.(1)①24,P P:①362⎛⎫⎪⎝⎭,或362⎛⎫⎪⎝⎭,-;(2)3212Dx-<<或5232Dx+<<【解析】【分析】(1)①根据定义求出三角形面积与OA 2进行比较即可确定线段OA 的“等幂点”;①如图,由OAB 是线段OA 的“等幂三角形”,可得2OAB S OA =.由点A 的坐标为()3,0A ,若记OAB 中OA 边上的高为h ,可得392OAB S h ==, 求出6h =.由OAB 是等腰三角形,点B 在线段OA 的垂直平分线上即可求点B 的坐标为(32,6)或(32,-6); (2)设半圆与x 轴交于G ,H 两点,过T 作CH 的平行线与半圆交于R ,作CH 的垂线交半圆于Q ,直线y =x -3与y 轴交于N ,设D (x ,x -3),过D 作y 轴平行线,与过C 作x 轴平行线交于F ,求出N (0,-3), H (3,0),可证△ONH 为等腰直角三角形,①OHN =①ONH =45°,点D 运动分两种情况,第一种情况点D 在射线CH ,去掉线段CH 部分运动,在Rt △TCH 中TH =2,TC =CH =TH ×sin45°=22=22⨯,QC=2+2,又因为△ECD 为锐角三角形,点E 在QR 上运动,点E 到CD 的距离h 的范围是222h ≤≤+,可求h =2CD =22(x-2),5232D x +<<; 第二种情况点D 在射线CU 上,去掉线段CU 部分运动,点E 在QG 上运动,求出GU =GH ×cos45°=22,可得2222h ≤≤+,可求()2222222x ≤-≤+,解不等式即可得3212D x -<<. 【详解】(1)①1OP A S=1211933222P OA y OA ⨯⋅=⨯⨯=<,P 1不是线段OA 的“等幂点”. 2OP A S=2211369=22P OA y OA ⨯⋅=⨯⨯=, P 2是线段OA 的“等幂点”. 3OP A S=3211331222P OA y OA ⨯⋅=⨯⨯=<,P 3不是线段OA 的“等幂点”. 4OP AS =421136922P OA y OA ⨯⋅=⨯⨯==, P 4是线段OA 的“等幂点”. 是线段OA 的“等幂点”的是24,P P ,故答案为:24,P P :①如图,①OAB 是线段OA 的“等幂三角形”,①2OAB S OA =.①点A 的坐标为()3,0A ,若记OAB 中OA 边上的高为h ,则有13922OAB S OA h h =⨯⨯==. 解得6h =.①点B 在直线6y =或6y =-上.①OAB 是等腰三角形,①点B 在线段OA 的垂直平分线上.OA 的垂直平分线为x =32,与直线6y =或6y =-的交点为B 1(32,6),B 2(32,-6), 综上所述,点B 的坐标为(32,6)或(32,-6),(2)设半圆与x 轴交于G ,H 两点,过T 作CH 的平行线与半圆交于R ,作CH 的垂线交半圆于Q ,直线y =x -3与y 轴交于N ,设D (x ,x -3),过D 作y 轴平行线,与过C 作x 轴平行线交于F ,当x =0时,y =-3,N (0,-3),当y =0时,x -3=0,x =3,H (3,0),①ON =3=OH ,①ONH 为等腰直角三角形,①OHN =①ONH =45°,点D 运动分两种情况, 第一种情况点D 在射线CH ,去掉线段CH 部分运动,①TC ①NH ,①OHN =45°,①①TCH 为等腰直角三角形,在Rt ①TCH 中TH =2,TC =CH =TH ×sin45°=22=22⨯,QC=2+2, 又因为①ECD 为锐角三角形,点E 在QR 上运动,点E 到CD 的距离h 的范围是222h ≤≤+,CD=CF÷cos45°=2CF=2(x-2),①线段CD 的“等幂三角形”, S △CDE =12h CD ⋅=CD 2, ①h =2CD =22(x -2),①()222222x <-<+,解得55222x+<<,点D在H右侧,x>3,①5232Dx+<<;第二种情况点D在射线CU上,去掉线段CU部分运动,点E在QG上运动,又因为①ECD为锐角三角形,GU=GH×cos45°=22,①2222h≤≤+,①线段CD的“等幂三角形”,S△CDE=12h CD⋅=CD2,①h=2CD=22(2-x),则()2222222x≤-≤+,解得3212Dx-<<,D 的横坐标D x 的取值范围为3212D x -<<或5232D x +<<. 【点睛】 本题考查新定义问题,仔细阅读新定义,抓住三角形的高为底的二倍,涉及三角形面积,等腰三角形,等腰直角三角形,线段垂直平分线,一次函数的性质,圆的性质,直线与圆的位置关系,锐角三角函数,锐角三角形,列双边不等式,解不等式等知识,难度较大,综合较强,熟练掌握多方面知识才是解题关键.3.(1)①()2,0;①()1,2-;(2)①(3,3)+'+E a a ;①22【解析】【分析】(1)①点A 在y 轴上,则点B 在x 轴上,且OB =OA =2,从而易得点B 的坐标;①由OA =OB ,过A 、B 分别作x 轴的垂线于N 、 M ,则可得①ANO ①①OMB ,故有AN =OM =2,ON =BM =1,再由点在第二象限,从而可得点A 的坐标;(2)①分别过点E 、E E '作x 轴的垂线,垂足分别为H 、Q ,则由OE OE '=,可得EHG GQE '△≌△,由此可得E '点的坐标;①由①知,点E '的两个坐标相等,表明E '点在第一、三象限的角平分线上,当E '点位于第一象限的圆上时,EE '最大,此时2OE '=,从而可得E '点坐标为(2,2),这样可求得EE '的最大值.【详解】解:(1)①因点A 在y 轴上,故点B 必在x 轴正半轴上,又OB =OA =2,所以点A 坐标为()2,0;故答案为:()2,0.①如图,过A 、B 分别作x 轴的垂线于N 、 M .则①ANO =①OMB =90,①①AON +①A =90°①①AOB =90°,①①AON +①BOM =90°,①①A =①BOM ,①OA =OB ,①①ANO ①①OMB ,①AN =OM =2,ON =BM =1,根据题意,点A 必在第二象限,①A ()1,2-.故答案为:()1,2-.(2)①如图,过点E 作EH x ⊥轴于点H ,过点E '作'⊥E Q x 轴于点Q .由题意可知,,'90EG E G EGE '=∠=︒.①EHG GQE '△≌△.①,'==EH GQ HG QE .①(3,3),(,0)-E G a ,①()3,0-H .①.|3|3,3HG QE a a EH GQ ==+=+=='①|3|3OQ a a =+=+.①(3,3)+'+E a a .①①EF ①x 轴①E F x ''⊥轴连接OE ',延长E F ''交x 轴于点H ,则E H x '⊥轴;过点E '作x 轴的平行线,过点E 作y 轴的平行线,两线交于点D ,则ED E D '⊥,如图所示;由①知,点E '的两个坐标相等,①|3|OH E H a '==+,表明E '点在第一、三象限的角平分线上,且位于与圆相交的圆内的一条线段上运动,当点E '位于第一象限上的圆上时,即2OE '=时,EE '最大,①①E HO '是等腰直角三角形,①22OH OE '==,①2OH E H '==,①(2,2)E ',①32DE '=+,32DE =-,在Rt EDE '中,由勾股定理得:2222(32)(32)22EE DE DE =+=-++='', 即EE '的最大值为:22.【点睛】本题考查了新定义,对于新定义这类问题,关键是弄清楚新定义的含义,抓住问题的实质,本题新定义的实质是旋转,通过作x 轴的垂线,构造两个全等的直角三角形,问题便容易解决.4.(1)O 和A ;(2)3m 2≥;(3)-2n 1+21<<且n≠2 【解析】【分析】(1)根据垂对点的定义即可得出答案;(2)先得出点M 关于x 轴的垂对点在以M 为圆心MO 即m 为半径的圆上,点(0,2)m 除外,再根据当直线443y x =-+与①M 相切时,m 的值最小,利用相似三角形的判定和性质得出m 的值即可;(3)先得出点N 关于x 轴的垂对点在以N 为圆心2为半径的圆上,点(n,4)除外,再分n =0、n <0 、n >0三种情况进行分类讨论即可.【详解】解:(1)①点(0,2)P ,①根据垂对点的定义可得点P 关于x 轴的垂对点为(0,0),(2,2)O A ; (2)①点(0,)M m ,且0m >,①由垂对点的定义可知,点M 关于x 轴的垂对点在以M 为圆心MO 即m 为半径的圆上,点(0,2)m 除外,则OM =m ;设直线443y x =-+与x 轴和y 轴的交点分别为G 、H ,①G(3,0),H(0,4),①22345GH=+=,①直线443y x=-+上存在点M关于x轴的垂对点,①当直线443y x=-+与①M相切时,m的值最小,此时切点为N,连接MN,则①HOG=①MNH=90°,①①OHG=①NHM①①OHG①①NHM①=MN MHOG GH①m4-m35=①3m=2①m的取值范围是:3m2≥;(3)①(,2)N n,点N关于x轴的垂对点在以N为圆心2为半径的圆上,点(n,4)除外,当n=0时,①N与y=x有两个交点,则直线y x n=+上存在两个点N关于x轴的垂对点,当n>0时,相当于①N向右平移,y=x向上平移,当y=x+n与①N相切于①N左侧时是临界点,设切点为E,连接NE,①DEN=90°,过点E作EF①x轴于F,直线y=x+n与x轴y轴的交点分别为W、K,则W(-n,0),K (0,n),①OK=OW,①①OWK为等腰直角三角形,设过点(,2)N n且平行于x轴的直线与直线y=x+n相交于点D,则①DEN为等腰直角三角形,22DE=,设EF交DN于点I,在直角三角形ENI中,NE=2,①END=45°,①NI=EI=2,①E(n-2,2+2),①点E在y=x+n上,①2+2=n-2+n①n=1+2当n=2时,直线与圆交于点(0,2)、(2,4),此时只有一个垂对点,故n≠2.当n<0时,相当于①N向左平移,y=x向下平移,同理得出n=1-2,①-2n1+21<<且n≠2 .【点睛】本题属于新定义题型,涉及到了三角形的判定和性质、切线的性质,解题的关键在于读懂题目信息,并注意数形结合思想的应用.5.(1)①22;①C点为(0,3)或(0,3)-;(2)92422m-<<-+或52222m-<<-+.【解析】【分析】(1)①利用两点之间的距离公式和线段比k的定义即可得;①分若AC BC<时和AC BC≥时,两种情况讨论,根据线段比k的定义计算即可;(2)分①当点N 在E 点或在其左侧时,①当点N 在E 点右侧,M 点在E 点左侧时,①当M 点在E 点或在E 点右侧时三种情况讨论,结合图形和线段比k 的定义分析即可. 【详解】解:(1)①22112AB =+=,22215AQ =+=,1BQ =, ①BQ AQ <, ①1222BQ k AB ===, 故答案为:22; ①①(0,)C c ,①|1|AC c =-,21BC c =+, 若AC BC <时, |1|22c k -==,解得3c =或1c =-(不满足2|1|1c c -<+舍去); 若AC BC ≥时,2122c k +==,解得3c =(不满足2|1|1c c -≥+舍去)或3c =-;综上所述,C 点为(0,3)或(0,3)-;(2)①直线2y x =+与坐标轴分别交于,E F 两点, ①(2,0)E -,(0,2)F ,①点(,0)M m ,点(2,0)N m +, ①MN =2,①如下图,当点N 在E 点或在其左侧时,22m +≤-,即4m ≤-, M 、N 到线段EF 的最短距离为ME 、NE , 此时ME >NE ,即2(2)124m --+<,解得92m >-,即942m -<≤-;①如下图,当点N在E点右侧,M点在E点左侧时,42m-<<-,M、N到线段EF的最短距离为ME、NG(N到EF的垂线段),()222,422ME m NG EN m=--==+,若2(4)22m m+<--,即22m<-,2(414)22m+<,解得242m<-+,此时2442m-<<-+,若2(4)22m m+>--,即22m>-,4212m--<,解得52m>-,此时522m-<<-;①如下图,当M点在E点,或在E点右侧时,2m≥-M 到线段EF 的距离近,为MG (M 到EF 的垂线段),2(2)1224m +<,解得222m <-+,即2222m -≤<-+ 综上所述,92422m -<<-+或52222m -<<-+. 【点睛】本题是新定义的题目.注意考查一次函数与坐标轴交点问题,两点之间的距离公式.理解题中线段比的定义,能分类讨论结合图形分析是解题关键.6.(1)① 作图见解析;点M 的坐标是(1,3),点N 的坐标是(1,32)+;①α的值为60︒或120︒ ;(2) 224t <≤. 【解析】 【分析】(1)①根据“ α− 相关线段”的定义求解;①由题意点M 必在直线x =3上,记MH ①x 轴于H ,则可得MH =1,①MOH =30°,然后分点M 在x 轴上方和点M 在x 轴下方两种情况分别求出α的值即可; (2)根据题意分0<t ≤22、22<t ≤4、t >4三种情况讨论. 【详解】(1)①如图,MN 即为所求.过点M 作BM ①x 轴于点B , ①四边形AOMN 为菱形, ①AO ①MN ,AO =MO =MN , ①点A 在y 轴上, ①AO ①x 轴,①MN ①x 轴,即N 、M 、B 三点共线, ①①AOM =30°, ①①MOB =90°-30°=60°,在RT ①MOB 中,BO =12MO =1,MB =332MO =, ①点M 的坐标是(1,3),点N 的坐标是(1,32)+. ①解:①点A 的“α-相关线段”MN 经过点(3,1), ①点M 必在直线3x =上.记直线3x =与x 轴交于点(3,0)H , ①2,3OM OA OH ===,①221MH OM OH =-=,30MOH ∠=︒. 分两种情况:a )如图,当点M 在x 轴上方时,点M 恰为(3,1),符合题意,此时60,60AOMα︒∠==︒;b)如图,当点M在x轴下方时,点M为(3,1)-,由2MN=知点N为(3,1),也符合题意,此时120,120AOMα︒∠==︒.综上,α的值为60︒或120︒.(2)当0<t≤22时,任意菱形的边MN都不经过点(0,4);当22<t≤4且N为(0,4)时,点P的“α-相关线段”过(0,4),当22<t≤4且M为(0,4)时,点P的“β-相关线段”过(0,4);当t>4时,只有一种情况使P的“α-相关线段”或“β-相关线段”过(0,4),此时(0,4)在线段OM上,①不符合题意综上所述,224t<≤【点睛】本题考查一次函数的应用,熟练掌握一次函数的图象与性质、菱形的性质是解题关键.7.(1)1A,2A;(2)(32-,12),(35,45);(3)3k>或3k<-.【解析】【分析】(1)过点1(1,1)A -作直线交O 于点1B ,1C ,过点2()30,2A 作22B C y 轴交O 于点2B ,2C ,过点3()1,02A 作33B C x 轴交O 于点3B ,3C ,连接2OB ,3OC ,分别求出22B C ,33B C ,根据“斜射点”的判别条件ABAC ,01BC,分别进行判别即可;(2)过点A 作O 的切线AD ,交O 于点 D ,根据Rt ADO 中,1OD =, 2AO =,可求得点 D 的坐标是(32-,12),可知,满足 AB AC ,01BC,点D 是 O 的“斜射点”;在 OD 上取13=2OD ,并过 1D 作 144OD B C 交O 于点 4B ,4C ,可求得 4C 的坐标是(-1,0),设过A ,4C 两点的直线是 y kx b =+,并交 O 于点5B ,可求出点5B 的坐标是(35, 45),根据(1)中2A 的求法可知,55<1B C ,可得 5B 是O 的“斜射点”; (3)当0k >时,一次函数y kx k =+图像向上,过点B (-1,0)交O 于点5C ,并51BC ,可得5OBC 是等边三角形,根据(1)中 2A 的求法可知,点5C 的坐标是(12-, 32),可求出得: 3k =,则有当满足过点B 并且是O 的“斜射点”时,3k >,同理可得,当 0k >时,点5C 的坐标是(12-, 32-),可得满足过点 B 并且是O 的“斜射点”时,3k <-. 【详解】解:(1)过点1(1,1)A -作直线交O 于点 1B ,1C , 过点2()30,2A 作 22BC y 轴交O 于点2B ,2C , 过点3()1,02A 作33BC x 轴交O 于点3B ,3C ,连接2OB ,3OC ,O 的半径为1,即231OB OC ,①22B C y 轴,2A 的坐标是 3(0,)2①y 轴垂直平分22B C , ①由勾股定理可得:2222222231=11222B C OB OA , ①22=1B C ,满足AB AC ,01BC , ①点2A 是O 的“斜射点”; ①33B C x 轴,3A 的坐标是 1(,0)2①x 轴垂直平分33B C ,①由勾股定理可得:22223323132212=1B C OC OA ,①3331B C ,根据O 中,过点3A 的所有弦中,垂直半径的弦最短可知,过点3A 的所有弦都大于 3,因此点3A 不满足题意, ①点3A 不是是O 的“斜射点”; 由图中图像可知1122B C B C ,即有:1122=1B C B C故满足AB AC ,01BC , ①点1A 是O 的“斜射点”;综上所述,点1A ,2A 是O 的“斜射点”; (2)如图示,过点A 作O 的切线AD ,交O 于点 D ,在Rt ADO 中,1OD =,2AO =, ①2222=213AD AO D O ,设点D 的坐标是(D x ,D y ), 则有:11··22ADOD S OD AD AO x ==, ①11··22ADOD S OD AD AO x == ①32D x (点D 在第二象限,取负值), ①221D D x y ,①12Dy (点D 在第二象限,取正值),①点D 的坐标是(32-,12), 满足AB AC ,01BC ,①点D 是O 的“斜射点”,即点B 的坐标可以是(32-,12);在OD 上取13=2OD ,并过 1D 作144OD B C 交O 于点 4B ,4C ,根据(1)中2A 的求法可知,44=1B C , 4C 的坐标是(-1,0), 设过A ,4C 两点的直线是y kx b =+,并交O 于点5B①20b k b =⎧⎨-+=⎩,解之得 22b k ,①过A ,4C 两点的直线是22y x =+, 设点5B 的坐标是(5B x ,5B y ),则有555522122B B B B x y y x ,解之得5510B Bx y或553545B B x y ,即点5B 的坐标是(35,45), 根据(1)中2A 的求法可知,55<1B C , 即满足AB AC ,01BC ,①点5B 是O 的“斜射点”,即点B 的坐标可以是(35, 45);综上所述,即点B 的坐标可以是(32-,12),( 35,45); (3)如图示,当0k >时,一次函数y kx k =+图像向上,过点B (-1,0)交O 于点 5C ,并51BC ,①51OB OC ,①5OBC 是等边三角形,根据(1)中2A 的求法可知,点5C 的坐标是(12-,32),①1322k k,解之得:3k =,当满足过点B 并且是O 的“斜射点”时,3k >,同理可得,当0k >时,点5C 的坐标是(12-, 32-),①满足过点B 并且是O 的“斜射点”时,3k <-, 【点睛】本题是圆的综合题,主要考查了圆的切线的性质,勾股定理,等边三角形的判定与性质,弦长的性质,点与坐标的关系,方程组的解法,“斜射点”的定义的理解等知识点,熟悉相关性质是解题的关键. 8.(1)①2;①3;(2)24Od ≤≤;(3)332m <--或331m >-+.【解析】 【分析】(1)①根据题意易得当线段AB 与以点O 为圆心的圆相切时半径最小,经过点B 时半径最大,由此问题可得解;①由题意可得当以点A 为圆心的圆与B 外切时半径最小,内切时半径最大,由此问题可得解;(2)设直线1y x =-+与O 的交点分别为M 和N ,与x 轴、y 轴交于点A 、B ,由题意易得点()()1,0,0,1A B ,即OA =1,OB =1,则可分当点P 在点M 上方、点N 下方时和当点P 在线段MN 上时,然后进行分类求解即可; (3)由直线333y x =+可得33,3OD OE ==,则6DE =,30EDO ∠=︒,由(),0,1C m CK =可知点K 在以点C 为圆心,半径为1的圆上,进而可分当C 经过点D 时和当C 与直线DE 相切于点K 时,然后求解即可. 【详解】解:(1)①由题意得:当以点O 为圆心的圆与线段AB 相切于点B 时,半径为最小,经过点A 时半径最大,连接OA ,如图所示:①()4,3A,()0,3B,①3OB=,()()2240305OA=-+-=,①在点O视角下,则线段AB的“宽度ABd”为532-=,故答案为2;①由题意得:以点A为圆心的圆与B外切时半径最小,内切时半径最大,如图所示:①B半径为1.5,①半径最大为1.54 5.5+=,半径最小为4 1.5 2.5-=,①在点A视角下,B的“宽度Bd”为5.5-2.5=3,故答案为3;(2)设直线1y x =-+与O 的交点分别为M 和N ,与x 轴、y 轴交于点A 、B ,如图所示:当点P 在点M 上方时,则以点P 为圆心的圆与O 内切时半径最大,外切时半径最小,如图,设P 的半径最小为r ,由圆与圆的位置关系可得半径最大时为4r +, ①在点P 视角下O “宽度Od”为44r r +-=,同理可得当点P 在点N 下方时,与点P 在点M 外时相同;当点P 在线段MN 上时,则根据点到直线垂线段最短可得当点P 在AB 的中点时,此时在点P 视角下O “宽度Od ”取最小,即:以点P 为圆心的圆与O 内切时半径最大,外切时半径最小,如图所示:①由直线1y x =-+可得点()()1,0,0,1A B ,即OA =1,OB =1, ①①AOB 是等腰直角三角形, ①2AB =, ①点P 是AB 的中点, ①22OP =, ①P 的半径最小为222-,半径最大为222+, ①在点P 视角下O “宽度O d”为2222222⎛⎫+--= ⎪ ⎪⎝⎭, 综上所述:在点P 视角下O “宽度Od ”的取值范围为24Od ≤≤;(3)由题意可得如图所示:由直线333y x =+可得当y =0时,则3033x =+,解得33x =-,当x =0时,则有y =3, ①()()33,0,0,3D E -, ①33,3OD OE ==, ①6DE =, ①30EDO ∠=︒, ①(),0,1C m CK =,①点K 在以点C 为圆心,半径为1的圆上,①由在所有点K 的视角下,线段DE 的“宽度”均满足06DE d <<,则有: 当C 经过点D 时,如图所示:①DC =1, ①331OC =-, ①331m =-+,①当点K 与点D 重合时,以点K 为圆心的圆与线段DE 有交点时,半径最小为0,最大为6,所以在点K 的视角下,线段DE 的“宽度”为6DE d =,而点K 在C 的其他地方时,根据三角形三边关系可知始终满足题意, ①331m >-+;当C 与直线DE 相切于点K 时,如图所示:①CK =1,30EDO ∠=︒,①30CDK ∠=︒, ①22CD CK ==,①332OC =+,即332m =--,此时在点K 的视角下,线段DE 的“宽度”为6DE d =,故不符合题意, ①332m <--,综上所述:当随着点C 位置的变化,使得在所有点K 的视角下,线段DE 的“宽度”均满足06DE d <<,则m 的取值范围为332m <--或331m >-+.【点睛】本题主要考查直线与圆的位置关系、圆与圆的位置关系及一次函数的综合,熟练掌握直线与圆的位置关系、圆与圆的位置关系及一次函数的性质是解题的关键.9.(1)① 5;①1m =-或7;(2)①3d 且0d ≠;①3C x -<222--或2212C x -+<【解析】 【分析】(1)①根据题意把(0,0)O ,(3,2)A 代入2121PQ d x x y y =-+-计算即可;①把(3,2)A ,(,0)B m 代入公式,求得34m -=,去绝对值求得m 的值即可;(2)①据题意,锐角三角形不可能为 “和距三角形”,结合图像求出d 的取值范围;①结合图形画出所有可能情况即可求出C x 的取值范围. 【详解】解:(1)① ①(3,2)A①212130205OA d x x y y =-+-=-+-=; 故答案为:5① 知点(,0)B m ,(3,2)A 若6AB d =, ①21213206AB d x x y y m =-+-=-+-= ①34m -=,34m ∴-=或34,m -=-①1m =-或7;(2)① ()()()0,,0,0,3,3,D d O M,6,33,OD MO MDd d d d d∴===+-∴当d>3时,不存在“和距三角形”,①当3d=时,构成直角三角形如图,符合要求,当3d<时,构成钝角三角形如图,符合要求,①3d且0d≠① 据题意,点K的轨迹是以点C为圆心,半径为1的圆,且锐角三角形不可能为“和距三角形”,如图:①综上所述:3C x -<222--或2212C x -+<【点睛】本题考查了新定义,类比法,点与圆的位置关系,圆的切线等,解题的关键是有较强的理解能力及自学能力等.10.(1) ①2, ①(2,0)(答案不唯一), ①2525b -≤≤ (2) 15432d -≤≤ 【解析】 【分析】(1) ① 根据OA =3,可确定“覆盖近距”为3-1=2;①确定OB =2,写出坐标即可;①确定当OC ①GH 时的“覆盖近距”,以此确定b 的取值范围;(2)确定O 对以DE 为对角线的正方形的“覆盖近距”的最大值和最小值即可. 【详解】解:(1) ①因为OA =3,圆的半径是1,故O 对点A 的“覆盖近距”为3-1=2; 故答案为:2,①O 对点B 的“覆盖近距”为1,圆的半径是1,则OB =2,B 点坐标可以为(2,0)(答案不唯一);故答案为:(2,0)(答案不唯一);①设直线2y x b =+与x 轴、y 轴交于点G 、H ,当x =0时,y =b ,OH =b ;当y =0时,x =2b -,OG =2b ,tan①OHG =12,O 对点C 的“覆盖近距”为1,即OC =2,当OC ①GH 时,刚好存在“覆盖近距”为1,此时,OC =2,CH =4,222425OH =+=,同理,OI =25, 故b 的取值范围为:2525b -≤≤(2)根据题意可知以DE为对角线的正方形边长为1,如图所示,当t=-0.5时,“覆盖近距”最小,此时平移后的F经过E、G两点,EG交x轴于点H,连接FG,221520.52FH=-=,d=4-152;当t=2时,“覆盖近距”最大,如图所示,此时,EH=3,22345OE=+=,d=5-2=3;故d的取值范围为:15432d-≤≤【点睛】本题考查了新定义问题和与圆的位置关系,解题关键是准确理解题意,熟练运用圆的相关知识和解直角三角形,利用数形结合思想,正确推理计算.11.(1)①5;①D 、O ;①b 的取值范围为:17b -≤≤;(2)r 的取值范围为232r ≤≤. 【解析】 【分析】(1)①根据k 倍直角点的定义计算即可求解; ①根据“2倍直角点”的定义分别计算,即可判断;①根据“2倍直角点”的定义得到如图所示有正方形的边界即为点A 的2倍直角点存在的区域,列式计算,即可求解;(2)若T 上存在点O 的2倍直角点,即T 与如图的正方形有交点(正方形的边界为点O 的2倍直角点存在的区域),根据切线的性质以及特殊角的三角函数值即可求解. 【详解】(1)①根据k 倍直角点的定义得:121221315k x x y y =-+-=--+-=,故答案为:5;①点C (2,3),121221313k x x y y =-+-=-+-=, 点D (−1,1),121211112k x x y y =-+-=--+-=, 点E (0,−2),121201214k x x y y =-+-=-+--=, 点O (0,0),121201012k x x y y =-+-=-+-=,①是点A 的2倍直角点的是D (−1,1),O (0,0), 故答案为:D 、O ;①如图,正方形的边界即为点A 的2倍直角点存在的区域,若直线2y x b =-+与其有交点,则过点(-1,1)时,b 值最小, 即()121b =-⨯-+,解得:1b =-, 当过点(3,1)时,b 值最大, 即123b =-⨯+,解得:7b =, ①b 的取值范围为:17b -≤≤;(2)若T 上存在点O 的2倍直角点,即T 与如图的正方形有交点(正方形的边界为点O 的2倍直角点存在的区域),由图可知,当①T 与正方形有交点为H (0,0)时,①T 的半径最大,即3r =; 当①T 与直线MN 相切时,①T 的半径最小, 过T 作TQ ①MN 于Q ,即r TQ =, 根据正方形的性质知①MNO =45︒, ①2sin sin 452TQ QNT TN ∠=︒==, ①1TN =,①22TQ =, ①r 的取值范围为232r ≤≤. 【点睛】本题属于新定义与一次函数相结合的综合压轴题,考查了正方形的性质,特殊角的三角函数值,切线的性质等知识,读懂定义,紧扣定义解题,熟练掌握“k 倍直角点”的定义是解答此题的关键.12.(1)A ;(2)22b =或b=-22;(3)22m -≤≤322. 【解析】 【分析】(1)根据友好点的定义去计算判断,只要满足到原点的距离为1即可;(2)根据直线与圆O 相切时,只有一个公共点,再根据友好点的定义,将直线向外平移1各单位,后确定b 的值即可;(3)确定直线y =x +m 与直线y =2的交点,分交点在点D 左边和右边两种情形求解即可. 【详解】解:(1)①(1,0)A ,1(0,)2B ,C (-1,1),①OA =22(10)(00)-+-=1,OB =221(0)(00)2-+-=12,OC =22(10)(10)--+-=2,①符合新定义的点是(1,0), 故答案为:A ;(2)如图,直线y x b =+与圆O 相切是时,直线与圆有一个公共点,此时OG =OD =1, 根据直线的特点,知道直线与坐标轴构成等腰直角三角形,根据友好点的定义,只需将相切的直线沿着OD 或OG 向外平移一个单位长即可,分别到达E 或H 点,此时OE =2或OH =2,根据平移的性质,OE =EF =2,或OH =HM =2,根据勾股定理,得OM =OF =22, ①b =22或b =-22;。
2017年中考数学总复习资料---定义新函数试题汇编
定义新函数 1. (昌平)26.有这样一个问题:探究函数2)2(1-=x y 的图象与性质,小静根据学习函数的经验,对函数2)2(1-=x y 的图象与性质进行了探究,下面是小静的探究过程,请补充完整: (1)函数2)2(1-=x y 的自变量x 的取值范围是__________; (2)下表是y 与x 的几组对应值.(3)如图,在平面直角坐标系xOy 中,描出以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;(4)结合函数图象,写出一条该函数图象的性质:______________________________.26.下面是小东的探究学习过程,请补充完整: (1)探究函数(x <1)的图象与性质.小东根据学习函数的经验,对函数(x <1)的图象与性质进行了探究.①下表是y 与x 的几组对应值.求m 的值;②如下图,在平面直角坐标系中,描出以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;③进一步探究发现,该函数图象的最高点的坐标是(0,1),结合函数的图象,写出该函数的其他性质(一条即可): _____;(2)小东在(1)的基础上继续探究:他将函数(x <1)的图象向上平移1个单位长度,再向右平移1个单位长度后得到函数22724x x y x +-=-(x <2)的图象,请写出函数22724x x y x +-=-(x <2)的一条性质:_____.22222x x y x +-=-22222x x y x +-=-xOy 22222x x y x +-=-26.佳佳想探究一元三次方程32220x x x +--=的解的情况. 根据以往的学习经验,他想到了方程与函数的关系:一次函数(0)y kx b k =+≠的图象与x 轴交点的横坐标即为一次方程0(0)kx b k +=≠的解;二次函数2(0)y ax bx c a =++≠的图象与x 轴交点的横坐标即为一元二次方程20(0)ax bx c a ++=≠的解. 如:二次函数223y x x =--的图象与x 轴的交点为(1,0)-和(3,0),交点的横坐标-1和3即为方程2230x x --=的解.根据以上方程与函数的关系,如果我们知道函数3222y x x x =+--的图象与x 轴交点的横坐标,即可知道方程32220x x x +--=的解.佳佳为了解函数3222y x x x =+--的图象,通过描点法画出函数的图象:(1)直接写出m 的值,并画出函数图象;(2)根据表格和图象可知,方程的解有_____个,分别为__________________;(3)借助函数的图象,直接写出不等式3222x x x +>+的解集.4.(海淀)26.已知y是x的函数,该函数的图象经过A(1,6),B(3,2)两点.(1)请写出一个符合要求的函数表达式;x≥,该函数无最小值.(2)若该函数的图象还经过点C(4,3),自变量x的取值范围是0①如图,在给定的坐标系xOy中,画出一.个.符合条件的函数的图象;②根据①中画出的函数图象,写出6(3)写出(2)中函数的一条性质(题目中已给出的除外).26小明根据学习函数的经验,利用上述表格所反映出的y 与x 之间的变化规律,对该函数的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据 描出的点,画出该函数的图象;(2)根据画出的函数图象,写出: ①1x =-对应的函数值y 约为; ②该函数的一条性质:.26.阅读下列材料:实验数据显示,一般成人喝250毫升低度白酒后,其血液中酒精含量(毫克/百毫升)随时间的增加逐步增高达到峰值,之后血液中酒精含量随时间的增加逐渐降低.小明根据相关数据和学习函数的经验,对血液中酒精含量随时间变化的规律进行了探究,发现血液中酒精含量y 是时间x 的函数,其中y 表示血液中酒精含量(毫克/百毫升),x 表示饮酒后的时间(小时). 下表记录了6小时内11个时间点血液中酒精含量y (毫克/百毫升)随饮酒后的时间x (小时)(x >0)的变化情况:下面是小明的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy 中,描出了上表中各对对应值为坐标的点,根据描出的点,画出血液中酒精含量y 随时间x 变化的函数图象; (2)观察表中数据及图象可发现此函数图象在直线x =23两侧可以用不同的函数表达式表示,请你任选其中一部分写出表达式. (3)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20∶00在家喝完250毫升低度白酒,第二天早上6∶30能否驾车去上班?请说明理由.26.有这样一个问题:探究函数x x y 2122-=的图象与性质. 小东根据学习函数的经验,对函数x x y 2122-=的图象与性质进行了探究.下面是小东的探究过程,请补充完整,并解决相关问题:(1)函数x x y 2122-=的自变量x 的取值范围是 ;(3)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第二象限内的最低点的坐标是(-2,23),结合函数的图象,写出该函数的其它性质(一条即可) .(5)根据函数图象估算方程22122=-x x的根为 .(精 确到0.1)答案1. (昌平)26.(1)2≠x ;…………………………………………………………………………………1分 (2)m=4;…………………………………………………………………………………2分 (3)……………………………………………………4分(4)函数图象关于直线x=2对称(答案不唯一,正确即可). ………………………5分2. (朝阳) 26.解:(1)①当x =12时,y =34.∴34m =. ②该函数的图象如下图所示:③答案不惟一,如:当x <0时,y 随x 的增大而增大. (2)答案不惟一,如:函数图象的最高点坐标为(1,2).26.解:(1)0m =,画出函数的图象如下:…………2分(2)方程的解有三个,分别是-2,-1,1.…………4分(3)不等式的解集是2-11x x -<<或>.…………5分4. (海淀)26.(1)答案不唯一,例如6y x=,28y x =-+,2611y x x =-+等; -------------------------------2分 (2)答案不唯一,符合题意即可; -----------------------------------------------------------------4分 (3)所写的性质与图象相符即可.----------------------------------------------------------------- 5分5. (石景山) 26.本题答案不唯一.画出的函数图象须符合表格中所反映出的y 与x 之间的变化规律,写出的函数值和 函数性质须符合所画出的函数图象.如: (1)如右图. ……………………… 2分(2)①1.5(答案不唯一). ……………… 3分 ②当2x <时,y 随x 的增大而减小; 当2x ≥时,y 随x 的增大而增大; 当2x =时,y 有最小值为2-. ……(写出一条即可) ………………… 5分26.解:(1)画图象.…………………2分(2)y =-200x 2+400x 或xy 225=…………………………3分(3)把y =20代入反比例函数xy 225=得x =11.25. ∴喝完酒经过11.25小时为早上7:15.∴第二天早上7:15以后才可以驾驶,6:30不能驾车去上班.…………5分7. (通州)26.(1)0≠x ………………………………..(1分) (2)815-………………………………..(2分) (3)图正确………………………………..(3分)(4)性质正确………………………………..(4分)(5)5.34-<<-x ;15.1-<<-x ;16.0<<x 中取值………………………..(5分)。
重庆市2017年中考数学第二部分题型研究题型六新定义题针对演练
题型六 新定义题针对演练1. (2016郴州)设a ,b 是任意两个实数,规定a 与b 之间的一种运算“⊕”为:a ⊕b =⎩⎪⎨⎪⎧b a (a >0)a -b (a ≤0).例如:1⊕(-3)=-31=-3,(-3)⊕ 2=(-3)-2=-5,(x 2+1)⊕(x -1)=x -1x 2+1.(因为x 2+1>0) 参照上面材料,解答下列问题:(1)2⊕ 4=________,(-2)⊕ 4=________;(2)若x >12,且满足(2x -1)⊕(4x 2-1)=(-4)⊕(1-4x ),求x 的值.2. 对于正整数n ,定义F (n )=⎩⎪⎨⎪⎧n 2,n <10f (n ),n ≥10,其中f (n )表示n 的首位数字、末位数字的平方和.例如:F (6)=62=36,F (123)=f (123)=12+02=1,.规定F 1(n )=F (n ),F k +1(n )=F (F k (n )).例如:F 1(123)=F (123)=10,F 2(123)=F (F 1(123))=F (10)=1.(1)求:F 2(4)和F 2015(4);(2)若F 3m (4)=89,求正整数m 的最小值.3. 如果一个自然数可以表示为两个连续奇数的立方差,那么我们就称这个自然数为“麻辣数”.如:2=13-(-1)3,26=33-13,所以2、26均为“麻辣数”.【立方差公式:a3-b3=(a-b)(a2+ab+b2)】(1)请判断98和169是否为“麻辣数”,并说明理由;(2)求在不超过2016的自然数中,所有的“麻辣数”之和为多少?4. (2015重庆A卷)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数1232+22=131,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此1232+22=131是一个“和谐数”.再如22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字为x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.5. (2016重庆一中三模)当一个多位数为偶数位时,在其中间位插入一位数k(0≤k≤9)得到一个新数,我们把这个新数称为原数的关联数.如:435729中间插入数字6可得435729的一个关联数4356729,其中435729=729+435×1000,4356729=729+6×1000+435×10000.请阅读以上材料,解决下列问题.(1)若一个三位关联数是原来两位数的9倍,请找出满足此条件的三位关联数;(2)对于任何一个位数为偶数的多位数,中间插入数字m,得其关联数(0≤m≤9,且m为3的倍数),试证明:所得的关联数与原数10倍的差一定能被3整除.6. (2016重庆外国语学校二诊)定义:如果M个不同的正整数,对其中的任意两个数,这两个数的积能被这两个数的和整除,则称这组数为M个数的祖冲之数组.如(3,6)为两个数的祖冲之数组,因为3×6能被(3+6)整除;又如(15,30,60)为三个数的祖冲之数组,因为(15×30)能被(15+30)整除,(15×60)能被(15+60)整除,(30×60)能被(30+60)整除….(1)我们发现,3和6,4和12,5和20,6和30,…,都是两个数的祖冲之数组;由此猜测n和n(n-1)(n≥2,n为整数)组成的数组是两个数的祖冲之数组,请证明这一猜想;(2)若(4a,5a,6a)是三个数的祖冲之数组,求满足条件的所有三位正整数a.7. (2016重庆南开阶段测试三)进位制是一种记数方式,可以用有限的数字符号代表所有的数值,使用数字符号的数目称为基数,基数为n,即可称n进制.现在最常用的是十进__________ __________ __________ __________ __________ __________ _____ _____ _____ _____ 制,通常使用10个阿拉伯数字0~9进行记数,特点是逢十进一,对于任意一个用n (n ≤10)进制表示的数,通常使用n 个阿拉伯数字0~(n -1)进行记数,特点是逢n 进一.我们可以通过以下方式把它转化为十进制:例如:五进制数(234)5=2×52+3×5+4=69,记作(234)5=69,七进制数(136)7=1×72+3×7+6=76,记作(136)7=76.(1)请将以下两个数转化为十进制:(331)5=________,(46)7=________;(2)若一个正数可以用七进制表示为(abc )7,也可以用五进制表示为(cba )5,请求出这个数并用十进制表示.8. (2016重庆实验外国语学校一诊)有一个n 位自然数abcd …gh 能被x 0整除,依次轮换个位数字得到的新数bcd …gha 能被(x 0+1)整除,再依次轮换个位数字得到的新数cd …ghab能被(x 0+2)整除,按此规律轮换后,d …ghabc 能被(x 0+3)整除,…,habc …g 能被(x 0+n-1)整除,则称这个n 位数abcd …gh 是x 0的一个“轮换数”.例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;再如:32+22=134能被2整除,243能被3整除,432+22=13能被4整除,则称三位数32+22=134是2的一个“轮换数”.(1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”;(2)若三位自然数abc 是3的一个“轮换数”,其中a =2,求这个三位自然数abc .9. 把一个自然数所有数位上的数字先平方再求和得到一个新数,叫做第一次运算,再把所得新数所有数位上的数字先平方再求和又将得到一个新数,叫做第二次运算,…,如此重复下去,若最终结果为1,我们把具有这种特征的自然数称为“快乐数”.例如:_____ _____ _____ _____ _____ 32+22=13→32+22=13→12+02=1,→12+02=1,72+02=→72+02=42+92=97→42+92=97→92+72=130→12+32+02=10→12+02=1, 所以32+22=13和72+02=都是“快乐数”.(1)写出最小的两位“快乐数”;判断19是不是“快乐数”;请证明任意一个“快乐数”经过若干次运算后都不可能得到4;(2)若一个三位“快乐数”经过两次运算后结果为1,把这个三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,求出这个“快乐数”.10. 定义一种对于三位数abc (a 、b 、c 不完全相同)的“F 运算”:重排abc 的三个数位上的数字,计算所得最大三位数和最小三位数的差(允许百位数字为零).例如abc =213时,则 213――→F 198(32+22=131-123=198)――→F 792(981-189=792).(1)579经过三次“F 运算”得________;(2)假设abc 中a >b >c ,则abc 经过一次“F 运算”得______(用代数式表示);(3)猜想:任意一个三位数经过若干次“F 运算”都会得到一个定值,请证明你的猜想.11. (2016大渡口区诊断性检测)若一个整数能表示成a 2+b 2(a ,b 是整数)的形式,则称这个数为“完美数”.例如,5是“完美数”,因为5=22+12.再如,M =x 2+2xy +2y 2=(x +y )2+y 2(x ,y 是整数),所以M 也是“完美数”.(1)请你再写一个小于10的“完美数”,并判断29是否为“完美数”;(2)已知S =x 2+4y 2+4x -12y +k (x ,y 是整数,k 是常数),要使S 为“完美数”,试求出符合条件的一个k 值,并说明理由;(3)如果数m ,n 都是“完美数”,试说明mn 也是“完美数”.12. (2016重庆西大附中第九次月考)对于实数x ,y 我们定义一种新运算L (x ,y )=ax +by (其中a ,b 均为非零常数),等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,记为L (x ,y ),其中x ,y 叫做线性数的一个数对.若实数x ,y 都取正整数,我们称这样的线性数为正格线性数,这时的x ,y 叫做正格线性数的正格数对.(1)若L (x ,y )=x +3y ,则L (2,1)=________,L (32,12)=________; (2)已知L (1,-2)=-1,L (13,12)=2. ①a =________,b =________;②若正格线性数L (m ,m -2),求满足50<L (m ,m -2)<100的正格数对有多少个;③若正格线性数L (x ,y )=76,求满足这样的正格数对有多少个;在这些正格数对中,有满足问题②的数对吗?若有,请找出;若没有,请说明理由.13. (2016重庆巴蜀二诊)古希腊的毕达哥拉斯学派由古希腊哲学家毕达哥拉斯所创立,毕达哥拉斯学派认为数是万物的本原,事物的性质是由某种数量关系决定的,如他们研究各种多边形数:记第n 个k 边形数N (n ,k )=k -22n 2+4-k 2n (n ≥1,k ≥3,k 、n 都为整数), 如第1个三角形数N (1,3)=3-22×12+4-32×1=1; 第2个三角形数N (2,3)=3-22×22+4-32×2=3;第3个四边形数N(3,4)=4-22×32+4-42×3=9;第4个四边形数N(4,4)=4-22×42+4-42×4=16.(1)N(5,3)=________,N(6,5)=________;(2)若N(m,6)比N(m+2,4)大10,求m的值;(3)若记y=N(6,t)-N(t,5),试求出y的最大值.题型六 新定义题针对演练1. 解:(1)2,-6.【解法提示】2⊕ 4=42=2,(-2)⊕ 4=-2-4=-6. (2)∵x >12, ∴2x -1>0,∴(2x -1)⊕(4x 2-1)=12142--x x =-4-(1-4x ), 即2x +1=-5+4x ,解得x =3.∴x 的值为3.2. 解:(1)F 2(4)=F (F 1(4))=F (F (4))=F (16)=12+62=37; F 1(4)=F (4)=16,F 2(4)=37,F 3(4)=58,F 4(4)=89,F 5(4)=145,F 6(4)=26,F 7(4)=40,F 8(4)=16,通过观察发现,每进行7步运算是一个循环,2015÷7=287……6,因此F 2015(4)=F 6(4)=26.(2)由(1)可知,每进行7步运算是一个循环,F 4(4)=89=F 11(4)=F 18(4)=F 4+7i (4),其中i =0,1,2,3,…,要求m 的最小值,则(4+7i )为3的最小公倍数,因为3m >4,所以3m =18,所以m =6.3. 解:(1)98是麻辣数,169不是麻辣数,理由如下:设k 为整数,则2k +1,2k -1为两个连续奇数,设M 为麻辣数,则M =(2k +1)3-(2k -1)3=24k 2+2,∵98=53-33,故98是麻辣数;M =24k 2+2为偶数,故169不是麻辣数.(2)同(1)令M ≤2016,则24k 2+2≤2016,解得k 2≤100712<84,故k 2=0,1,4,9,16,25,36,49,64,81,故M 的和为24×(0+1+4+9+16+25+36+49+64+81)+2×10=6860.所以,在不超过2016的自然数中,所有的“麻辣数”之和为6860.4. 解:(1)1331,2442,1001.猜想:任意一个四位“和谐数”能被11整除.理由:设一个四位“和谐数”记为xyyx ,用十进制表示为:1000x +100y +10y +x =1001x +110y =11(91x +10y ),∵x 、y 是0~9之间的整数,∴11(91x +10y )能被11整除.∴任意一个四位“和谐数”能被11整除.(2)设这个三位“和谐数”为xyx ,用十进制表示为:100x +10y +x =101x +10y ,∵它是11的倍数, ∴1110101yx +为整数.将这个式子变形:1110101y x +=11291121199yx y x y x y x -++=-++,∵x 、y 是0~9之间的整数, ∴112yx -应为整数._____ __________ ___ 又∵1≤x ≤4,0≤y ≤9,∴2≤2x ≤8,-9≤-y ≤0,∴-7≤2x -y ≤8,∵要使112y x 是整数,则2x -y 只能是0, ∴2x -y =0,即y =2x ,∴y 与x 的函数关系式是y =2x (1≤x ≤4,x 为自然数).5. (1)解:如:135,225,315,405.【解法提示】设原来的两位数为xy ,插入的数字为k .由题意得:9(10x +y )=100x +10k +y ,化简得:4y -5x =5k ,当k =0时,4y -5x =0,则x =4,y =5;当k =1时,4y -5x =5,则x =3,y =5;当k =2时,4y -5x =10,则x =2时,y =5;当k =3时,4y -5x =15,则x =1,y =5.(2)证明:设一个位数为2n 位的多位数为ab ,中间插入数字m ,得其关联数(0≤m ≤9,且m 为3的倍数)为amb , 由题意得,amb -10ab =a ×10n +1+m ×10n +b -10(a ×10n +b )=m ×10n -9b ,∵m 是3的倍数,∴m ×10n 能被3整除,又∵9b 能被3整除,∴m ×10n -9b 能被3整除,故对于任何一个位数为偶数的多位数,中间插入数字m (0≤m ≤9,且m 为3的倍数),所得的关联数与原数10倍的差一定能被3整除.6. (1)证明:∵n +n (n -1)=n +n 2-n =n 2,∴n ·n (n -1)÷[n +n (n -1)]=n -1,∵n ≥2,n 为整数,∴n -1是整数,∴n 和n (n -1)(n ≥2,n 为整数)组成的数组是两个数的祖冲之数组.(2)解:∵(4a ,5a ,6a )是三个数的祖冲之数组,∴可设⎪⎩⎪⎨⎧+=⋅+=⋅+=⋅pa a a a n a a a a ma a a a )65(65)64(64)54(54,即⎪⎩⎪⎨⎧===pa n a ma 1130512920,∴920m =512n =1130 p ,化简得:22p =25n =27m ;∵m 、n 、p 均为整数,∴m =22×25×i (i 为整数),∴a =920×22×25i =25119i⨯⨯,∵a 是整数,∴i 为偶数,当i =2时,a =495,_____ _____ _____ _____ _____ _____ _____ _____ _____ 当i =4时,a =990,当i =6时,a =1485,不是三位数,舍去,综上所述,满足条件的所有三位正整数a 为495和990.7. 解:(1)(331)5=3×52+3×5+1=91;(46)7=4×7+6=34.(2)∵(abc )7=a ×72+b ×7+c ,(cba)5=c ×52+b ×5+a ,∴25c +5b +a =49a +7b +c ,即24a +b =12c ,∵a 、b 、c 是0~6的整数,∴b =0,c =2a ,当a =1时,c =2,这个十进制的数为51;当a =2时,c =4,这个十进制的数为102;当a =3时,c =6,这个十进制的数为153.8. (1)证明:设此两位数为a 2a ,∵a 2a =10a +2a =12a 为6的倍数,轮换后2aa =20a+a =21a 为7的倍数,∴a 2a 为6的一个轮换数.故这个两位自然数一定是“轮换数”.(2)解:∵此三位数为2bc =200+10b +c =198+9b +(2+b +c ),为3的倍数,∴(2+b +c )为3的倍数,第一次轮换后:bc 2=100b +10c +2=100b +8c +(2c +2),为4的倍数,∴(c +1)为2的倍数,即c 为奇数,第二次轮换后:c 2b =100c +20+b ,为5的倍数,则b 为0或者5.当b =0时,2+b +c =2+c ,为3的倍数且c 为奇数,则c =1,或7,即三位数为201 或207;_____ _____ _____ 当b =5时,2+b +c =7+c 为3的倍数且c 为奇数,则c =5,即三位数为255.综上所述,这个三位自然数abc 为201,207或255.9. 解:(1)最小的两位“快乐数”是10; 19是“快乐数”. 证明:由题意可知,用反证法证明数字4经过若干次运算后都不会出现数字1即可. ∵4→16→37→58→89→145→42→20→4→16…→4出现两次,∴后面将重复出现,永远不会出现1,∴任意一个“快乐数”经过若干次运算后都不可能得到4.(2)设这个三位“快乐数”为abc ,由题意知,经过两次运算后结果为1,所以第一次运算后结果一定是10或100,所以a 2+b 2+c 2=10或100,又因为a 、b 、c 为整数,且a ≠0,所以a 2+b 2+c 2=12+32+02=10或a 2+b 2+c 2=0+62+82=100.(i)当a =1,b =3或0,c =0或3时,这个三位“快乐数”为130,103;(ii)当a =2时,b 、c 无解;(iii)当a =3时,b =1或0,c =0或1时,这个三位“快乐数”为310,301;同理当a 2+b 2+c 2=100时,因为62+82=100, 所以这个三位“快乐数”的所有可能为680,608,806,860.综上所述,一共有130,103,310,301,680,608,806,860八个. 又因为三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,经计算知只有310和860满足条件.10. 解:(1)495.【解法提示】①975-579=396;②963-369=594;③954-459=495.(2)99(a -c ).【解法提示】(100a +10b +c )-(100c +10b +a )=100a +10b +c -100c -10b -a =99a -99c =99(a -c ).(3)证明:设这个三位数中三个数字为a ,b ,c ,且a ≥b ≥c ,a ≥c +1,则经过“F 运算”有abc -cba =99(a -c )=100(a -c -1)+10×9+(10+c -a ),因此所得的三位数中必有一个9,而另外两个数字之和为9,共有990,981,972,963,954五种情况;以990为例得,990-099=891,981-189=792,972-279=693,963-369=594,954-459=495,…,由此可知最后得到495时就会循环.∴任意一个三位数经过若干次“F 运算”都会得到一个定值,这个定值为495.11. 解:(1)0,1,2,4,8,9均可.∵29=52+22,∴29是“完美数”.(2)根据题意S =x 2+4y 2+4x -12y +k =(x 2+4x )+(4y 2-12y )+k =(x +2)2-4+(2y -3)2-9+k =(x +2)2+(2y -3)2+(k -13).要使S 为“完美数”,则k -13=0,即k =13.(3)设m =a 2+b 2,n =c 2+d 2(a ,b ,c ,d 都是整数),则 mn =(a 2+b 2)(c 2+d 2)=a 2c 2+a 2d 2+b 2c 2+b 2d 2=a 2c 2+2abcd +b 2d 2+b 2c 2-2abcd +a 2d 2=(ac +bd )2+(bc -ad )2,∴mn 也是“完美数”.12. 解:(1)5;3.【解法提示】由新定义得,L(2,1)=2+3×1=2+3=5;L(32,12)=32+3×12=3. (2)①3;2. 【解法提示】由定义得, ⎪⎩⎪⎨⎧=+-=-2213112b a b a ,解得⎩⎨⎧==23b a . ②由新定义,得L (m ,m -2)=3m +2(m -2)=5m -4,∵50<L (m ,m -2)<100,∴⎩⎨⎧<->-100455045m m ,解得545<m <1045, ∵m 和m -2均为正整数,∴经计算可知满足50<L (m ,m -2)<100的正格数对共有10个. ③由L (x ,y )=3x +2y =76,得y =2376x-,∵x >0,y >0,即2376x ->0,解得x <763,又∵x ,y 均为正整数,∴x 为偶数,∴经计算可知共有12个满足条件的正格数对,若x ,y 满足问题②,则x -y =2,即x -2376x-=2,解得x =16,∴y =x -2=14,∴在这些正格数对中,有满足问题②的数对,为⎩⎨⎧==1416y x .13. 解:(1)15;51.【解法提示】根据题意得,N (5,3)=3-22×52+4-32×5=252+52=15;N (6,5)=5-22×62+4-52×6=54-3=51.(2)由题意得,6-22m 2+4-62m =4-22(m +2)2+4-42(m +2)+10,化简得m 2-5m -14=0,解方程得,m =7或m =-2(不合题意,舍去),故m =7.(3)由题意得, y =22-t ×62+24t-×6-5-22t 2-4-52t =-32t 2+312t -24,整理得y =-32(t -316)2+38524,∵a =-32<0,且t 是整数,∴当t =5时,y 有最大值,其最大值为16.。
2017年中考数学专题复习 新定义问题
新定义问题【专题点拨】新定义运算、新概念问题一般是介绍新定义、新概念,然后利用新定义、新概念解题,其解题步骤一般都可分为以下几步:1.阅读定义或概念,并理解;2.总结信息,建立数模;3.解决数模,回顾检查.“新概念”试题,其设计新颖,构思独特,思维容量大,既能考查学生的阅读、分析、推理、概括等能力,又能考查学生知识迁移的能力和数学素养,同时还兼具了区分选拔的功能 .【解题策略】具体分析新颖问题→弄清问题题意→向已知知识点转化→利用相关联知识查验→转化问题思路解决【典例解析】类型一:规律题型中的新定义例题1:(2015•永州,第10题3分)定义[x]为不超过x的最大整数,如[3.6]=3,[0.6]=0,[﹣3.6]=﹣4.对于任意实数x,下列式子中错误的是()A.[x]=x(x为整数) B.0≤x﹣[x]<1C.[x+y]≤[x]+[y]D.[n+x]=n+[x](n为整数)【解析】:根据“定义[x]为不超过x的最大整数”进行计算【解答】:解:A、∵[x]为不超过x的最大整数,∴当x是整数时,[x]=x,成立;B、∵[x]为不超过x的最大整数,∴0≤x﹣[x]<1,成立;C、例如,[﹣5.4﹣3.2]=[﹣8.6]=﹣9,[﹣5.4]+[﹣3.2]=﹣6+(﹣4)=﹣10,∵﹣9>﹣10,∴[﹣5.4﹣3.2]>[﹣5.4]+[﹣3.2],∴[x+y]≤[x]+[y]不成立,D、[n+x]=n+[x](n为整数),成立;故选:C.【点评】本题考查了一元一次不等式组的应用,解决本题的关键是理解新定义.新定义解题是近几年中考常考的题型.变式训练1:(2015•山东潍坊,第12题3分)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为( )A.(—2012,2) B.(一2012,一2)C. (—2013,—2)D. (—2013,2)类型二:运算题型中的新定义例题2:(2016·四川宜宾)规定:log a b(a>0,a≠1,b>0)表示a,b之间的一种运算.现有如下的运算法则:log n a n=n.log N M=(a>0,a≠1,N>0,N≠1,M>0).例如:log223=3,log25=,则log1001000= .【解析】实数的运算.先根据log N M=(a>0,a≠1,N>0,N≠1,M>0)将所求式子化成以10为底的对数形式,再利用公式进行计算.【解答】解:log1001000===.故答案为:.变式训练2:(2016四川省乐山市第16题)在直角坐标系xOy 中,对于点P (x ,y )和Q (x ,y′),给出如下定义:若(0)(0)y x y y x ≥⎧'=⎨-<⎩,则称点Q 为点P 的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)若点(﹣1,﹣2)是一次函数3y x =+图象上点M 的“可控变点”,则点M 的坐标为 ;(2)若点P 在函数216y x =-+(5x a -≤≤)的图象上,其“可控变点”Q 的纵坐标y′的取值范围是1616y '-≤≤,则实数a 的取值范围是 .类型三: 探索题型中的新定义例题3:(2016山西省第10题)宽与长的比是21-5(约为0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD ,BC 的中点E ,F ,连接EF ;以点F 为圆心,以FD 为半径画弧,交BC 的延长线与点G ;作AD GH ⊥,交AD 的延长线于点H .则图中下列矩形是黄金矩形的是( )A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH【解析】考点:黄金分割的识别【解答】:由作图方法可知DF=5CF ,所以CG=CF )15(-,且GH=CD=2CF ,从而得出黄金矩形CG=CF )15(-,GH=2CF ∴2152)15(-=-=CF CF GH CG ∴矩形DCGH 是黄金矩形。
中考数学专题复习--新定义型问题课件
知识概述
“新定 义”型 问题
定义新运算
“定义新运算”是指用一个符号和已知运 算表达式表示一种新的运算.解决这类问题 的关键是理解新运算规定的规则,明白其中 的算理算法.运算时,要严格按照新定义的 运算规则,转化为已学过的运算形式,然后 按正确的运算顺序进行计算.
定义新概念
例 3.在平面直角坐标系中,将一点(横坐标与纵坐标不相等) 的横坐标与纵坐标互换后得到的点叫这一点的“互换点”, 如(-3,5)与(5,-3)是一对“互换点”. (2)M,N 是一对“互换点”,若点 M 的坐标为(m,n), 求直线 MN 的表达式(用含 m,n 的代数式表示);
定义新概念 (2)M,N 是一对“互换点”,若点 M 的坐标为(m,n), 求直线 MN 的表达式(用含 m,n 的代数式表示); 【简析】(2)设直线 MN 的表达式为 y = kx + b( k≠ 0) . 把 M( m,n) ,N( n,m) 代入 y = kx + b,解得 k=-1,b=m + n,∴ 直线 MN 的表达式为 y=-x+m+n.
“定义新图形”试题呈现的一般结构为: 给出新图形定义→了解新图形结构→理解 和运用新图形性质.而理解新图形性质特 征是解题的关键.
定义新图形 例 4.定义:数学活动课上,李老师给出如下定义:如果一 个三角形有一边上的中线等于这条边的一半,那么称三角形 为“智慧三角形”. 理解:(1)如图 1,已知 A、B 是⊙O 上两点,请在圆上找 出满足条件的点 C,使△ABC 为“智慧三角形”(画出点 C 的位置,保留作图痕迹);
(1)填空:①- =
;
②若x=-2,则 x 的取值范围是
.
2017北京中考复习-数学热点专题突破专题五 新定义问题探究
专题五新定义问题探究本专题是新定义问题的探究,主要针对2015年、2016年北京市中考数学第29题,是对学生自主学习能力的考查.学生通过现场阅读学习,理解题中给出的新定义,通过简单特例进一步认识新定义所说的内容,重点是利用刚刚自主学习的新定义知识解决数学问题.此类问题在历次的考试中,学生感觉难度比较大.难度大的原因大多是①阅读理解存在问题,不能理解新定义所讲述的内容;②对新定义掌握不透彻,运用新定义存在问题.针对这类问题我们给出解题的策略:认真阅读,理解定义;根据题意画图,全面掌握定义;细作问题(1)、(2),注意归纳结论;画图辅助拓展,关注临界各点.典例诠释例1 (2016·北京)在平面直角坐标系xOy中,点P的坐标为,点Q的坐标为,且,,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”.图2-5-1为点P,Q的“相关矩形”的示意图.(1)已知点A的坐标为(1,0),①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;(2)⊙O的半径为,点M的坐标为.若在⊙O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.图2-5-1【解】(1)①S=2×1=2;②C的坐标可以为(3,2)或者(3,-2),设AC的表达式为y=kx+b,将A,C两点的坐标分别代入AC的表达式得到或解得或则直线AC的表达式为y=x-1或y=-x+1.(2)若⊙O上存在点N,使MN的相关矩形为正方形,则直线MN的斜率k=±1(正方形对角线),即过M点作k=±1的直线,与⊙O有交点,即存在N,当k=-1时,极限位置是直线与⊙O相切,如图2-5-2,与,直线与⊙O切于点N,ON=,∠ONM=90°,∴与y轴交于(0,-2),设点的坐标为,∴,∴=-5,(-5,3),同理可得(-1,3);当k=1时,则极限位置是,(与⊙O相切),可得(1,3),(5,3).因此m的取值范围为-5≤m≤-1或1≤m≤5.图2-5-2【名师点评】本题在自主学习的基础上,阅读理解新定义“相关矩形”,弄清楚什么叫“相关矩形”.理解关于P,Q两点的“相关矩形”对于P,Q两点的位置的要求,同时清楚“相关矩形”的边与坐标轴之间的特殊关系.这类问题的“入口宽”,问题(1)是对新定义的初步理解,并利用新定义解决简单、特殊的问题.本题(1)中给出A的坐标(1,0),在①中给出B 点坐标(3,1).由定义知道关于A,B两点的“相关矩形”中,A,B是对角顶点,且矩形的长和宽分别与y,x坐标轴垂直,因此易得关于A,B相关矩形的面积为S=2×1=2;②将①深化,点C在直线x=3上,且关于A,C的“相关矩形”是正方形.因此我们可以得出点C 的坐标为(3,2)或(3,-2),设直线AC的表达式为y=kx+b,将A,C两点的坐标分别代入AC的表达式,可以求出相关k,b的值,从而得到表达式y=x-1或y=-x+1.(2)中给出M点坐标为(m,3),知道点M在直线y=3上,由②可以推知,直线MN的k值为1或者-1,即点M,N在直线y=x+b或y=-x+b上.因为点N在半径为的⊙O上,由直线和圆的位置关系可以求出1≤m≤5或-5≤m≤-1.例2 (2015·西城一模)给出如下规定:两个图形和,点P为上任一点,点Q为上任一点,如果线段PQ的长度存在最小值,就称该最小值为两个图形和之间的距离.在平面直角坐标系xOy中,O为坐标原点.(1)点A的坐标为A(1,0),则点B(2,3)和射线OA之间的距离为,点C(-2,3)和射线OA之间的距离为.(2)如果直线y=x和双曲线y=之间的距离为,那么k= .(可在图2-5-3(1)中进行研究)(3)点E的坐标为(1,),将射线OE绕原点O逆时针旋转60°,得到射线OF,在坐标平面内所有和射线OE,OF之间的距离相等的点所组成的图形记为图形M.①请在图2-5-3(2)中画出图形M,并描述图形M的组成部分;(若涉及平面中某个区域时可以用阴影表示)②将射线OE,OF组成的图形记为图形W,抛物线-2与图形M的公共部分记为图形N,请直接写出图形W和图形N之间的距离.(1) (2)图2-5-3【解】(1)3,. (2)-1.(3)①如图2-5-4,过点O分别作射线OE,OF的垂线OG,OH,则图形M为:y轴正半轴,∠GOH的边及其内部的所有点(图中的阴影部分).图2-5-4说明:图形M也可描述为:y轴正半轴,直线y=x下方与直线y=-x下方重叠的部分(含边界)②.【名师点评】我们初中阶段学习过三个距离:两点之间的距离;点到直线之间的距离;两条平行线之间的距离.西城一模这道题又定义了一个新的距离:两个图形之间的距离.它指的是这两个图形中存在的两点之间线段长度的最小值.本题入口宽,(1)知道A(1,0),则射线OA是指x轴的正半轴,点B(2,3)在第一象限,和射线OA之间的距离就是由B 向x轴的正半轴作垂线,垂线段的长就是B点到射线OA之间的距离,距离为3.点C(-2,3)在第二象限,它和射线OA之间的距离为点C和点O之间的距离,由勾股定理得OC=,所以点C和射线OA之间的距离为.由此可以归纳出点到射线两个图形之间的距离分两种情况:①过点向射线作垂线,当垂足在射线上时,点到射线的距离就是垂线段的长;②当垂足不在射线上时,点到射线的距离就是已知点与射线端点之间线段的长.(2)知道直线y=x和双曲线y=之间的距离为,因此可以判断反比例函数图象在第二、四象限,因为它们之间的距离是,即两个图象上两点之间的最短距离是.因此,反比例函数经过(-1,1)或者(1,-1).∴k=-1.(3)由题中的条件可知,OE,OF与y轴正半轴的夹角都是30°,即y轴正半轴是∠EOF 的平分线,因此y轴正半轴是图形M的一部分.过点O分别作OE,OF的垂线OG,OH,射线OG,OH上和这两射线之间的点,到图形OE和OF的距离都是这些点到端点O的线段的长.因此,图形M为如图2-5-5所示.图2-5-5 图2-5-6②如图2-5-6,画出图形W、N,观察发现图形W、N之间的距离为OA或者OB的长.所以图形W、N之间的距离为.真题演练1.(2015·北京)在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于O的反称点的定义如下:若在射线..CP上存在一点P′,满足CP+CP′=2r,则称P′为点P关于⊙C的反称点,图2-5-7为点P及其关于⊙C的反称点P′的示意图.图2-5-7(1)当⊙O的半径为1时.①分别判断点M(2,1),N,T(1,)关于⊙O的反称点是否存在,若存在?求其坐标;②P在直线y=-x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P 的横坐标的取值范围.(2)当⊙C的圆心在x轴上,半径为1,直线y=-x+2与x轴,y轴分别交于点A,B,若线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值范围.【解】(1)①点M(2,1)关于⊙O的反称点不存在.点N关于⊙O的反称点存在,反称点为N′;点T(1,)关于⊙O的反称点存在,反称点为T′(0,0).②∵OP≤2r=2,≤4,设P(x,-x+2),==-4x+4≤4,∴-4x≤0,x(x-2)≤0,∴0≤x≤2.当x=2时,P(2,0),P′(0,0)不符合题意,当x=0时,P(0,2),P′(0,0)不符合题意,∴0<x<2.(2)【解】∵直线y=-x+2与x轴,y轴分别交于点A,B,∴A(6,0),B(0,2),∴=,∴∠OBA=60°,∴∠OAB=30°,设C(x,0),①当C在OA上时,作CH⊥AB于点H,如图2-5-8,则CH≤CP≤2r=2,∴AC≤4,C点横坐标x≥2.(当x=2时,C点坐标(2,0),H点的反称点H′(2,0)在圆的内部)图2-5-8 图2-5-9②当C在A点右侧时,如图2-5-9,C到线段AB的距离为AC长,AC的最大值为2,∴C 点横坐标x≤8.综上所述,圆心C的横坐标的取值范围是2≤x≤8.2.(2016·海淀一模)在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的限距点的定义如下:若P′为直线PC与⊙C的一个交点,满足r≤PP′≤2r,则.称P′为点P关于⊙C的限距点,图2-5-10为点P及其关于⊙C的限距点P′的示意图(1)当⊙O的半径为1时.①分别判断点M(3,4),N,T (1,)关于⊙O的限距点是否存在?若存在,求其坐标;②点D的坐标为(2,0),DE,DF分别切⊙O于点E,点F,点P在△DEF的边上.若点P 关于⊙O的限距点P′存在,求点P′的横坐标的取值范围;(2)保持(1)中D,E,F三点不变,点P在△DEF的边上沿E→F→D→E的方向运动,⊙C的圆心C的坐标为(1,0),半径为r,请从下面两个问题中任选一个作答.温馨提示:答对问题1得2分,答对问题2得1分,两题均答不重复计分.【解】(1)①点M,点T关于⊙O的限距点不存在;点N关于⊙O的限距点存在,坐标为(1,0).②∵点D的坐标为(2,0),⊙O半径为1,DE,DF分别切⊙O于点E,点F,∴切点坐标为,.如图2-5-11所示,不妨设点E的坐标为,点F的坐标为,EO,FO的延长线分别交⊙O于点E',F′,则E′,F′.图2-5-11设点P关于⊙O的限距点的横坐标为x.a.当点P在线段EF上时,直线PO与⊙O的交点P′满足1≤PP′≤2,故点P关于⊙O的限距点存在,其横坐标x满足-1≤x≤-.b.当点P在线段DE,DF(不包括端点)上时,直线PO与⊙O的交点P′满足0<PP′<1或2<PP′<3,故点P关于⊙O的限距点不存在.c.当点P与点D重合时,直线PO与⊙O的交点P′(1,0)满足PP′=1,故点P关于⊙O的限距点存在,其横坐标x=1.综上所述,点P关于⊙O的限距点的横坐标x的范围为-1≤x≤-或x=1.(2)问题1:.问题2:0<r<.3.(2014·长沙)在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为“梦之点”,例如点(-1,-1),(0,0),(,),…都是“梦之点”,显然,这样的“梦之点”有无数个.(1)若点P(2,m)是反比例函数y=(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y=3kx+s-1(k,s是常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标,若不存在,请说明理由;(3)若二次函数+bx+1(a,b是常数,a>0)的图象上存在两个不同的“梦之点”A,且满足-2<<2,=2,令-2b+,试求t的取值范围.【解】(1)由题意n=2m,m=2,∴n=4,∴这个反比例函数的解析式为y=.(2)在y=3kx+s-1中,当y=x时,(1-3k)x=s-1.当k=且s=1时,x有无数个解,此时的“梦之点”存在,有无数个;当k=且s≠1时,方程无解,此时的“梦之点”不存在;当k≠且s=1时,此时存在“梦之点”坐标为(0,0);当k≠且s≠1时,方程的解为x=,此时的“梦之点”存在,坐标为(,). (3)由得+(b-1)x+1=0,则,为此方程的两个不等实根,由=2,∵-2<<2,得-2<<0时,-4<<-2或0<<2;当<2时,<0或<4.∵抛物线+(b-1)x+1的对称轴为x=,故-3<<3①.由=2,∵====∴=2,整理,得+4a②,由①②整理,得a>;-2b+++4a+=4,当a>-时,t随a的增大而增大,当a=时,t=,∴当a>时,t>.4.(2016·昌平二模)已知四边形ABCD,顶点A,B的坐标分别为(m,0),(n,0),当顶点C落在反比例函数的图象上,我们称这样的四边形为“轴曲四边形ABCD”,顶点C称为“轴曲顶点”.小明对此问题非常感兴趣,对反比例函数y=进行了相关探究.(1)若轴曲四边形ABCD为正方形,小明发现不论m取何值,符合上述条件的轴曲正方形只有..两个,且一个正方形的顶点C在第一象限,另一个正方形的顶点在第三象限.①如图2-5-12所示,点A的坐标为(1,0),图中已画出符合条件的一个轴曲正方形ABCD,易知轴曲顶点C的坐标为(2,1),请你画出另一个轴曲正方形,并写出轴曲顶点的坐标为.②小明通过改变点A的坐标,对直线的解析式y=kx+b进行了探究,可得k= ,b(用含m的式子表示)= .(2)若轴曲四边形ABCD为矩形,且两邻边的比为1∶2,点A的坐标为(2,0),求出轴曲顶点C的坐标.图2-5-12 图2-5-13【解】(1)①如图2-5-13所示.点的坐标(-1,-2).②k=1,b=-m.(2)①当AB=2BC时,∵点A的坐标为(2,0),∴点C的坐标为(n,)或.∴n×=2或n×=2.解得n=1±或无实根.∴点C的坐标为或(1-,).②当BC=2AB时,点C的坐标为(n,2n-4)或(n,4-2n).∴n(2n-4)=2或n(4-2n)=2.解得n=1±或n=1.∴点C的坐标为(1+,2-2)或(1-,-2-2)或(1,2),综上所述,点C的坐标为或或(1+,2-2)或(1-,-2-2)或(1,2).5.(2016·海淀二模)对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如,图2-5-14中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=,有没有不变值?如果有,直接写出其不变长度.(2)函数-bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q的取值范围.图2-5-14【解】(1)函数y=x-1没有不变值;函数y=有-1和1两个不变值,其不变长度为2;函数有0和1两个不变值,其不变长度为1.(2)①∵函数-bx的不变长度为零,∴方程-bx=x有两个相等的实数根.∴b=-1.②解方程-bx=x,得=0,=.∵1≤b≤3,∴≤2,∴函数的不变长度q的取值范围为1≤q≤2.。
中考数学专题复习新定义问题(二)
中考数学专题复习新定义问题(二)学校:___________姓名:___________班级:___________考号:___________ 评卷人 得分一、解答题1.对于平面直角坐标系xOy 中的图形W ,给出如下定义:点P 是图形W 上任意一点,若存在点Q ,使得∠OQP 是直角,则称点Q 是图形W 的“直角点”.(1)已知点A ()6,8,在点Q 1()0,8,Q 2()4,2-,Q 3()8,4中,______是点A 的“直角点”;(2)已知点()3,4B -,()4,4C ,若点Q 是线段BC 的“直角点”,求点Q 的横坐标n 的取值范围;(3)在(2)的条件下,已知点(),0D t ,()1,0E t +,以线段DE 为边在x 轴上方作正方形DEFG .若正方形DEFG 上的所有点均为线段BC 的“直角点”,直接写出t 的取值范围.2.对于平面内的点M ,如果点P ,点Q 与点M 所构成的MPQ 是边长为1的等边三角形,则称点P ,点Q 为点M 的一对“关联点”,进一步地,在MPQ 中,若顶点M ,P ,Q 按顺时针排列,则称点P ,点Q 为点M 的一对“顺关联点”;若顶点M ,P ,Q 按逆时针排列,则称点P ,点Q 为点M 的一对“逆关联点”.已知(1,0)A ,(1)在33(0,0),(0,1),(2,0),,22O B C D ⎛⎫- ⎪⎝⎭中,点A 的一对关联点是____,它们为点A的一对___关联点(填“顺”或“逆”);(2)以原点O 为圆心作半径为1的圆,已知直线:3l y x b =+.∠若点P 在∠O 上,点Q 在直线l 上,点P ,点Q 为点A 的一对关联点,求b 的值; ∠若在∠O 上存在点R ,在直线l 上存在两点()11,T x y 和()22,S x y ,其中12x x >,且点T ,点S 为点R 的一对顺关联点,求b 的取值范围.3.在平面直角坐标系xOy 中,对于图形Q 和∠P ,给出如下定义:若图形Q 上的所有的点都在∠P 的内部或∠P 的边上,则∠P 的最小值称为点P 对图形Q 的可视度.如图1,∠AOB 的度数为点O 对线段AB 的可视度. (1)已知点N (2,0),在点12(0,3)3M ,2(1,3)M ,3(2,3)M 中,对线段ON 的可视度为60º的点是______.(2)如图2,已知点A (-2,2),B (-2,-2),C (2,-2),D (2,2),E (0,4). ∠直接写出点E 对四边形ABCD 的可视度为______°;∠已知点F (a ,4),若点F 对四边形ABCD 的可视度为45°,求a 的值.4.对于平面内点P和∠G,给出如下定义:T是∠G上任意一点,点P绕点T旋转180°后得到点P',则称点P'为点P关于∠G的旋转点.下图为点P及其关于∠G的旋转点P'的示意图.在平面直角坐标系xOy中,∠O的半径为1,点P(0,-2).(1)在点A(-1,0),B(0,4),C(2,2)中,是点P关于∠O的旋转点的是;=+上存在点P关于∠O的旋转点,求b的取值范围;(2)若在直线y x b(3)若点D在∠O上,∠D的半径为1,点P关于∠D的旋转点为点P',请直接写出点P'的横坐标x P'的取值范围.5.在平面直角坐标系xOy 中,对于∠M 内的一点P ,若在∠M 外存在点P ',使得2MP MP '=,则称点P 为∠M 的二倍点.(1)当∠O 的半径为2时, ∠在1(1,0)T ,2(1,-1)T ,333(,)22-T 三个点中,是∠O 的二倍点的是 ; ∠已知一次函数2y kx k =+与y 轴的交点是(0,)A a ,若一次函数在第二象限的图象上的所有点都是∠O 的二倍点,求a 的取值范围.(2)已知点(,0)M m ,1(0,)2-B ,1(1,)2C -,∠M 的半径为2,若线段BC 上存在点P为∠M 的二倍点,直接写出m 的取值范围 .6.在平面直角坐标系xOy 中,12,,,k A A A ⋯是k 个互不相同的点,若这k 个点横坐标的不同取值有m 个,纵坐标的不同取值有n 个,p m n =+,则称p 为这k 个点的“特征值”,记为12,,,k A A A p ⋯=.如图1,点(1,1),(1,2),,123M N T M N 〈〉=+=.(1)如图2,圆C 的圆心为(0,3),半径为5,与x 轴交于A ,B 两点. ∠,T A B 〈〉=________,,,T A B C 〈〉= _________;∠直线(0)y b b =≠与圆C 交于两点D ,E ,若,,,6T A B D E 〈〉=,求b 的取值范围; (2)点128,,,A A A ⋯到点O 的距离为1或2,且这8个点构成中心对称图形,128,,,6T A A A ⋯=,若抛物线2(0)y ax bx c a =++>恰好经过128,,,A A A ⋯中的三个点,并以其中一个点为顶点,直接写出a 的所有可能取值.7.在∠ABC中,点P是∠BAC的角平分线AD上的一点,若以点P为圆心,P A为半径的∠P与∠ABC的交点不少于...4个,点P称为∠ABC关于∠BAC的“劲度点”,线段P A 的长度称为∠ABC关于∠BAC的“劲度距离”.(1)如图,在∠BAC平分线AD上的四个点1P、2P、3P、4P中,连接点A和点的线段长度是∠ABC关于∠BAC的“劲度距离”.(2)在平面直角坐标系中,已知点M(0,t),N(4,0).∠当t=5时,求出∠MON关于∠MON的“劲度距离”1d的最大值.∠如果222d≤≤内至少有一个值是∠MON关于∠MON的“劲度距离”,请直接写出t 的取值范围.8.在平面直角坐标系xOy中,若点P和点1P关于y轴对称,点1P和点2P关于直线l对称,则称点2P是点P关于y轴,直线l的完美点.(1)如图1,点(2,0)A-.∠若点B是点A关于y轴,直线1:4l x=的完美点,则点B的坐标为__________ ;∠若点(5,0)C是点A关于y轴,直线2:l x a=的完美点,则a的值为__________;(2)如图2,∠O的半径为1.若∠O上存在点M,使得点M'是点M关于y轴,直线3:l x b=的完美点,且点M'在函数2(0)y x x=>的图象上,求b的取值范围;(3)(),0E t是x轴上的动点,∠E的半径为2,若∠E上存在点N,使得点N'是点N关于y轴,直线4:32l y x=+的完美点,且点N'在y轴上,直接写出t的取值范围.9.对于平面直角坐标系xOy中的点P和图形G,给出如下定义:若在图形G上存在两个点M,N,且MN=2,使得以P,M,N为顶点的三角形为等边三角形,则称P为图形G的“正点”.已知A(2,0),B(0,23).(1)在点1C(-1,3),2C(0,0),3C(2,3)中,线段AB的“正点”是;(2)直线(1)3y k x=-+(0k≠)上存在线段AB的“正点”,求k的取值范围;(3)以(),0T t(0t<)为圆心,27为半径作∠T,若线段AB上总是存在∠T的“正点”,直接写出t 的取值范围.10.对于平面直角坐标系xOy 中的图形M ,N ,给出如下定义:P 为图形M 上任意一点,Q 为图形N 上任意一点,如果P ,Q 两点间的距离有最小值,那么称这个最小值为图形M ,N 间的“闭距离”,记作d (M ,N ),特殊地,当图形M 与图形N 有公共点时,规定d (M ,N )=0已知点()(2,00)2(30)0()2A B C D m -,,,,,,. (1)∠求d (点O ,线段AB );∠若d (线段CD ,直线AB )=1,直接写出m 的值;(2)∠O 的半径为r ,若d (∠O ,线段AB )≤1,直接写出r 的取值范围; (3)若直线3y x b =+上存在点E ,使d (E ,ABC )=1,直接写出b 的取值范围.11.对于平面直角坐标系xOy 中的一点P 和C ,给出如下的定义:若C 上存在一个点A ,连接P A ,将射线P A 绕点P 顺时针旋转90°得到射线PM ,若射线PM 与C 相交于点B ,则称P 为C 的直角点. (1)当O 的半径为1时,∠在点(0,0)D 、(1,1)E -、(2,2)F 中,O 的直角点是 .∠已知直线l :y x b =+,若直线l 上存在O 的直角点,求b 的取值范围.(2)若(,0)Q q ,Q 的半径为1,直线332y x q =-+ 上存在Q 的直角点,直接写出q 的取值范围.参考答案:1.(1)Q1,Q3;(2)4222n-≤≤+;(3)-3+21-31732t t≤≤-≤≤或【解析】【分析】(1)在平面直接坐标系中画出相关点的坐标,根据定义就可以判断出结果.(2)根据题意画出点Q的位置轨迹,观察图形,满足题意有两种情况,分别计算即可.(3)根据题意画图,并结合第二问,发现当正方形在以OB和OC为直径的圆的相交部分的时候,是不满足题意的,所以找到个边界点,即可解题【详解】解:(1)Q1,Q3,如下图:(2)∠∠OQP=90°,∠点Q在以OP为直径的圆上(O,P两点除外)如图1,以OB为直径作M,作//MH x轴,交M于点H(点H在点M左侧).∠点B的坐标为(-3,4),∠M 的半径为52,点M 的坐标为3,22⎛⎫- ⎪⎝⎭.∠35422H x =--=-.如图2,以OC 为直径作M ',作M H ''∠x 轴,交M '于点H '(点H '在点M '右侧). ∠点C 的坐标为(4,4),∠M '的半径为22,点M '的坐标为(2,2). ∠222H x '=+. ∠n 的取值范围是4222n -≤≤+. (3)正方形1的左下端点为左边界,此时13t =-.正方形2的右上端点在右边圆上,圆心坐标为()2,2 ,则满足关系式:()()22121222t +-+-=,化简得:2260t t --=,解得:121717t t =+=-(舍),. 正方形3的左端点在左边圆上,圆心坐标为3,22⎛⎫- ⎪⎝⎭,此时满足关系式:()22351222t ⎛⎫++-= ⎪⎝⎭,化简得:2+330t t -=, 解得:3432132122t t -+--==,(舍), 正方形4的右下端点在右边圆上,是右边界,143t t +==,. 综上所说:满足题意的解集是:-3+21-31732t t ≤≤-≤≤或.【点睛】本题是新定义题型的考查,能够根据题意画出相关图形,分类讨论是解题关键. 2.(1)C ,D ,逆(或D ,C ,顺);(2)∠0b =,3-或23-;∠2323b --≤≤-.【解析】【分析】(1)根据两点间距离公式,分别求出AO 、AB 、AC 、AD 、OD 的长,根据“关联点”及“顺关联点”的定义即可得答案;(2)∠根据“关联点”的定义可得1AP AQ PQ ===,可得∠QP A =60°,根据∠O 半径及点A 坐标可得OA=OP=AP ,可得∠OAP 是等边三角形,根据等边三角形点性质可得∠OAP =∠POA =60°,113,22P ⎛⎫ ⎪ ⎪⎝⎭,213,22P ⎛⎫- ⎪ ⎪⎝⎭,可得Q 1(0,0),根据∠QP A =∠POA =60°,可得PQ //OA ,即可得出点Q 的横坐标和纵坐标,即可得Q 2、Q 3坐标,把Q 1、Q 2、Q 3坐标代入直线l 解析式求出b 值即可;∠作RH ST ⊥于点H ,则32RH =,根据圆的性质分别求出b 的最大值和最小值即可得答案. 【详解】(1)∠(1,0)A ,33(0,0),(0,1),(2,0),,22O B C D ⎛⎫- ⎪⎝⎭, ∠AO =1,AB =2,AC =1,AD =1,OD=3,∠∠ACD 是等边三角形,∠C 、D 是点A 的“关联点”,∠点A 、C 、D 按顺时针排列,∠C 、D 是点A 的“顺关联点”,故答案为:C ,D ,顺(或D ,C ,逆)(2)∠如图.∠点P ,点Q 为点A 的一对“关联点”,∠APQ 为等边三角形,1AP AQ PQ ===,∠∠QP A =60°,∠以原点O 为圆心作半径为1的圆,点P 在∠O 上,OA =1,∠OA=OP=AP ,∠∠OAP 是等边三角形,∠∠OAP =∠POA =60°,113,22P ⎛⎫ ⎪ ⎪⎝⎭,213,22P ⎛⎫- ⎪ ⎪⎝⎭, ∠Q 1(0,0),∠点Q 在直线l 上,∠b 1=0,∠∠QP A =∠POA =60°,∠PQ //OA ,∠点Q 横坐标为12+1=32, ∠1AP AQ PQ ===,∠点Q 纵坐标为32±, ∠233333,,,2222Q Q ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 当233,22Q ⎛⎫ ⎪⎝⎭时,33322b +=,解得:3b =-; 当333,22Q ⎛⎫- ⎪⎝⎭时,33322b +=-,解得:23b =-. 综上所述,0b =,3-或23-.∠如图.∠点T,点S为点R的一对顺关联点,∠RTS为正三角形,1RT=,//RT x轴,点T和点S在直线:3l y x b=+上.作RH ST⊥于点H,则32RH=,当b取最大值时,111R H l⊥,1111312OH OR R H=-=-,此时11223b OH==-.当b取最小值时,222R H l⊥,2222312OH OR R H=+=+,此时222(23)23b OH=-=-+=--.综上所述,b的取值范围为2323b--≤≤-.【点睛】本题考查等边三角形点判定与性质、圆点性质及一次函数图象上点点坐标特征,正确理解“关联点”点概念是解题关键.3.(1)M1,M2;(2)∠90;∠232+或232【解析】【分析】(1)结合勾股定理,等边三角形的判定和性质以及锐角三角函数求角的度数,从而作出判断;(2)∠根据等腰直角三角形的判定和性质求解;∠根据可视度的定义结合勾股定理分情况讨论求解【详解】解:(1)∠点N (2,0),点12(0,3)3M ,2(1,3)M ,3(2,3)M 中, ∠M 3N ∠x 轴,∠332tan 3ON M M N ∠==,112tan 3233ON M OM ∠=== ∠360M ∠≠︒,160M ∠=︒()222132OM =+=,()222132M N =+=∠∠2OM N 是等边三角形∠2=60OM N ∠︒ ∠对线段ON 的可视度为60º的点是M 1,M 2故答案为:M 1,M 2.(2)∠连接EA ,ED由题意可得AG =EG =2,DG =GE =2∠∠AGE 和∠EDG 均为等腰直角三角形∠∠AED =90°∠点E 对四边形ABCD 的可视度为90°故答案为:90;∠解:由题意可知,四边形ABCD是正方形,点F在直线y=4上.如图所示,点F对正方形ABCD的可视度为45°,当点F是以点D为圆心,4为半径的圆和直线y=4的交点时,过点D作DN∠EF于点N,则有DN=2,DF=4,可得NF=23.∠a=232+.当点F是以点A为圆心,4为半径的圆和直线y=4的交点时,同理可得,a=232.综上,a的值为232+或232.【点睛】本题考查解直角三角形已经图形与坐标,理解题意,利用数形结合思想解题是关键.4.(1)点B,点C;(2)222222b-≤≤+;(3)44'-≤≤px【解析】【分析】(1)根据题意结合图即可得出旋转点;(2)使直线y x b =+分别与圆相切时,求出b 的取值范围;(3)考虑全两种情况即可得出取值范围.【详解】(1)点B ,点C ;(2)由题意可知,点P 关于∠O 的旋转点形成的图形为以点G (0,2)为圆心,以2个单位长度为半径的∠G .当直线y x b =+与∠G 相切时:如图1,求得:222b =+,如图2,求得:222b =-.因为直线y x b =+上存在点P 关于∠O 的旋转点,所以,222222b -≤≤+.图1图2(3) 当∠D 的圆心在(-1,0)(1,0)时,p x ' 取最小和最大值,∴ P '的横坐标x P '的取值范围44'-≤≤p x .【点睛】此题考查了圆与一次函数图像的知识,解题的关键是能够灵活运用直线与圆相切的特点,进而求解.5.(1)∠2T ,3T ;∠2323a <≤;(2)153122m -<<-或315122m <<+ 【解析】【分析】(1)∠根据圆的二倍点的含义判断即可;∠由于圆的半径为2,根据二倍点的含义,则这些点与圆心O 的距离大于1,当直线与半径为1的圆相切时,可求得一次函数解析式中的k 值,从而可求得a 的值;当直线y =kx +2k 与y 轴的交点也是O 与y 轴的交点时,可得a 的值,根据题意最后可确定a 的取值范围; (2)当2MC <且1MB > 或<2MB 且1MC >时,才满足条件,由此可求得m 的取值范围.【详解】(1)∠∠OT 1=1,122OT '=,但此时1T '点在圆上,不合题意,故T 1不是二倍点; ∠OT 2=22112+=,22333322OT ⎛⎫⎛⎫=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭,而22222OT '=>,32232OT '=>,∠2T ,3T 是二倍点.故答案为:2T ,3T∠当2x =-时,0y =,∠一次函数2y kx k =+过定点()2,0-,如图1,当一次函数2y kx k =+的图象与半径为1的O 相切时,可得33k =,则233a =.如图2当一次函数2y kx k =+的图象与y 轴的交点也是O 与y 轴的交点时,可得2a =.∠由题意可知2323a <≤. (2)当2MC <且1MB > 或<2MB 且1MC >时,线段BC 上存在点P 为∠M 的二倍点,即221(1)44114m m ⎧-+<⎪⎪⎨⎪+>⎪⎩或221(1)14144m m ⎧-+>⎪⎪⎨⎪+<⎪⎩, 解得:315122m <<+或153122m -<<-. 故答案为:153122m -<<-或315122m <<+. 【点睛】本题是一个新定义问题,涉及直线与圆的位置关系,一次函数的图象,解一元二次不等式组等知识,解题的关键是数形结合.6.(1)∠3,5;∠28b -<<且0b ≠,6b ≠;(2)1或2或14.【解析】【分析】(1)∠先写出A ,B 的坐标,然后根据题意即可求解;∠D ,E 两点都在直线(0)y b b =≠上,而A ,B 两点都在直线0y =上,因此A ,B ,D ,E 四点纵坐标不同的取值有2个,要使得,,,6T A B D E 〈〉=,则A ,B ,D ,E 四点横坐标不同的取值必须有4个,此时这四个点的横坐标均不能相同,由对称性,当6b =时,D ,E 分别为(4,6)-和(4,6),其横坐标分别与A ,B 的横坐标相同,不符合题意;由图可知,直线y b =与C 要有公共点,则28b -<<,答案可解;(2)根据题意画出图形,抛物线2(0)y ax bx c a =++>,所以0a >,抛物线开口向上,因为抛物线经过三个点,且抛物线呈对称,分析抛物线可能经过的点,进行分类讨论即可解得答案.【详解】(1)∠由图可知()()()4,0,4,0,0,3A B C -,根据题意可得:,213T A B 〈〉=+=,,,325T A B C 〈〉=+=,故答案为:3,5;∠解:D ,E 两点都在直线(0)y b b =≠上,而A ,B 两点都在直线0y =上,因此A ,B ,D ,E 四点纵坐标不同的取值有2个,要使得,,,6T A B D E 〈〉=,则A ,B ,D ,E 四点横坐标不同的取值必须有4个,于是此时这四个点的横坐标均不能相同.由对称性,当6b =时,D ,E 分别为(4,6)-和(4,6),其横坐标分别与A ,B 的横坐标相同,不符合题意;由图可知,直线y b =与C 要有公共点,则28b -<<;综上所述,b 的取值范围是28b -<<且0b ≠且6b ≠.(2)∠T <A 1,A 2,…,A 8>=6, ∠这8个点横坐标的不同取值的个数与纵坐标的不同取值的个数之和为6.∠点A 1,A 2,…A 8到点O 的距离为1或2,且这8个点构成中心对称图形,∠这8个点构成的图形如下图所示:它们的坐标分别为:A 1(-1,1),A 2(0,1),A 3(1,1),A 4(-1,0),A 5(1,0),A 6(-1,-1),A 7(0,-1),A 8(1,-1).∠抛物线y =ax 2+bx +c (a >0),∠抛物线开口向上.∠抛物线y =ax 2+bx +c (a >0)恰好经过A 1,A 2,…A 8中的三个点,并以其中一个点为顶点,∠根据抛物线为轴对称图形可得:抛物线经过A1,A3,A7或A4,A5,A7.∠抛物线经过A1,A3,A7时,11.1a b ca b cc-+=⎧⎪++=⎨⎪=-⎩解得:21abc=⎧⎪=⎨⎪=-⎩抛物线经过或A4,A5,A7时,1a b ca b cc-+=⎧⎪++=⎨⎪=-⎩解得:11abc=⎧⎪=⎨⎪=-⎩或这8个点构成的图形如下图所示:它们的坐标分别为:123214214(,),(,)4444A A--,34521432143214(,),(,),(,)444444A A A--6782142143214(,),(,),(,).444444A A A----∠抛物线y=ax2+bx+c(a>0)恰好经过A1,A2,…A8中的三个点,并以其中一个点为顶点,∠根据抛物线为轴对称图形可得:抛物线经过A1,A3,A6或A4,A2,A7.∠抛物线经过A1,A3,A6时,A6为顶点,经过A1,A3,设抛物线解析式为2214().44y x =+- 将A 3坐标代入得:142214().4444a =+- 解得:14.a =抛物线经过A 2,A 4,A 7时,A 7为顶点,经过A 2,A 4,设抛物线解析式为2214().44y x =-- 将A 4坐标代入得:21432214().4444=-- 解得:14.a =综上,a 的值为1或2或14【点睛】本题考查了二次函数的综合运用,解题的关键是进行分类讨论.7.(1)23,P P ;(2)∠22;∠52t -≤≤-或25t ≤≤.【解析】【分析】(1)以AP 为半径,以点P 为圆心作圆,观察图形,结合题意即可解答;(2)∠作∠MON 的角平分线OE ,ON 的垂直平分线PF ,OE 和PF 相交于点P ,此时∠P 过点N ,线段OP 的长度是∠MON 关于∠MON 的“劲度距离”最大值.由此求解即可;∠由题意可知圆心都在直线y =x 上,再分当t >0和t <0时两种情况求t 的取值范围即可.【详解】(1)以AP 为半径,以点P 为圆心作圆,则23P P 、符合要求.故答案为:23P P、;(2)∠作∠MON的角平分线OE,ON的垂直平分线PF,OE和PF相交于点P,此时∠P 过点N,线段OP的长度是∠MON关于∠MON的“劲度距离”最大值.易知,OE的函数表达式为y=x,PF的函数表达式为x=2,从而可得其交点坐标为P(2,2).∠1d=OP=22;∠由题意可知,圆心都在直线y=x上,∠当t>0时,当d最大为22时,圆P经过点N,此时和∠一样,点M在(0,5)处,即t=5;当d最小为2时,圆P经过点M,此时点P的纵坐标为1122OM t=,所以点P的坐标(12t,12t),再由OP=2可得22211()()(2)22t t+=,解得t=2;∠当t>0时,t的取值范围为25t≤≤.∠同理,当t<0时,t的取值范围为52t-≤≤-.综上所述t的取值范围为52t-≤≤-或25t≤≤.【点睛】本题时一次函数和圆的综合题,正确理解题意是解决问题的关键.8.(1)∠(6,0),∠3.5;(2)1524b-<≤;(3)234234t-≤≤+.【解析】【分析】(1)∠根据点坐标的轴对称变换规律即可得;∠先求出点A 关于y 轴,直线2:l x a =的完美点,再根据点C 的坐标建立方程,求解即可得;(2)先根据完美点的定义、待定系数法求出点M 所在直线的解析式为24y x b =+,再找出两个临界位置∠直线24(0)y x b y =+>与位于x 轴上方的半圆O 相切;∠直线24(0)y x b y =+>恰好经过点(1,0),分别利用相似三角形的判定与性质、一次函数的性质求出b 的值即可得;(3)如图(见解析),先确定点N '在E '上运动,再利用待定系数法求出直线1E E '的解析式,从而求出点,K E '的坐标,然后求出E '与y 轴相切时的t 值即可得出答案. 【详解】解:(1)∠(2,0)A -, ∴点A 关于y 轴对称的点坐标为(2,0),又点(2,0)关于直线1:4l x =对称坐标为(6,0),(6,0)B ∴, 故答案为:(6,0);∠(2,0)A -, ∴点A 关于y 轴对称的点坐标为(2,0),又点(2,0)关于直线2:l x a =对称坐标为(22,0)a -,点(5,0)C 是点A 关于y 轴,直线2:l x a =的完美点,225a ∴-=,解得 3.5a =,故答案为:3.5;(2)如图,设点M 关于y 轴的对称点为''M ,由完美点的定义得:点M 所在直线与点M '所在直线2(0)y x x =>平行,则设点M 所在直线的解析式为2(0)y x c y =+>,设点M '的坐标为(,2)M m m ',则(2,2)M b m m ''-,(2,2)M b m m -+,将点(2,2)M b m m -+代入2y x c =+得:2(2)2b m c m -++=,解得4c b =,则点M 所在直线的解析式为24y x b =+,因此,有两个临界位置:∠直线24(0)y x b y =+>与位于x 轴上方的半圆O 相切;∠直线24(0)y x b y =+>恰好经过点(1,0),∠直线24(0)y x b y =+>与位于x 轴上方的半圆O 相切,如图,设直线24(0)y x b y =+>与x 轴交于点B ,与y 轴交于点A ,则(0,4),(2,0),0A b B b b ->,224,2,25OA b OB b AB OA OB b ∴===+=,由圆的切线的性质得:OM AB ⊥,1OM =,在AOB 和OMB △中,90AOB OMB ABO OBM ∠=∠=︒⎧⎨∠=∠⎩, AOB OMB ∴~,OA AB OM OB ∴=,即42512b b b=, 解得54b =, ∠直线24(0)y x b y =+>恰好经过点(1,0), 将点(1,0)代入得:240b +=,解得12b =-, 点M '在函数2(0)y x x =>的图象上,不含原点(0,0)O ,b ∴的值不能取12-,则b 的取值范围为1524b -<≤;(3)如图,设点E关于y轴的对称点为1E,点1E关于直线4:32l y x=+的对称点为E',连接1E E',交直线4l于点K,则E'的半径为2,当点N在E上运动时,点N'在E'上运动,要使点N'在y轴上,则E'与y轴相切或相交即可,(,0)E t,1(,0)E t∴-,14E E l'⊥,∴设直线1E E'的解析式为33y x n=-+,将点1(,0)E t -代入得:303t n +=,解得33n t =-, 则直线1E E '的解析式为3333y x t =--, 联立333332y x t y x ⎧=--⎪⎨⎪=+⎩,解得234324t x t y ⎧--=⎪⎪⎨-+⎪=⎪⎩, 2332(,)44t t K ---+∴, 又点K 是线段1E E '的中点,2332(,)22t t E --+'∴, 当E '与y 轴相切时,2322t -=, 解得234t =+或234t =-,综上,满足条件的t 的取值范围为234234t -≤≤+.【点睛】本题考查了点坐标的轴对称变换规律、圆的切线的性质、相似三角形的判定与性质等知识点,较难的是题(2)(3),正确找出相应的临界位置是解题关键.9.(1)1C ,2C ;(2)03k <≤;(3)6243t -≤≤-或20t ≤<-【解析】【分析】(1)按照定义分别判断所给点能否与已知点构成等边三角形即可;(2)根据正点的定义,可以判断满足条件的正点连线是正六边形的两条边,结合直线(1)3y k x =-+过定点()1,3,进一步判断的范围即可; (3)根据正点的定义,画出满足题意的圆,根据图形进行计算,即可.【详解】解:过点O 作OD ∠AB ,∠2C (0,0),A (2,0),B (0,23),∠AB =22(20)(023)-+-=4,∠OD=22334OA OBAB⨯⨯==,∠在线段AB上存在存在两个点M,N,且MN=2,使得以2C,M,N为顶点的三角形为等边三角形,即:2C是线段AB的“正点”.同理:1C是线段AB的“正点”.故答案是:1C,2C;(2)如图,线段AB的“正点”在线段OC和'C D上.且六边形BCOAD'C是正六边形,∠直线(1)3y k x=-+(0k≠)过定点()1,3,是正六边形的中心坐标也是()1,3,∠直线(1)3y k x=-+(0k≠)绕着中心(1,3)旋转.又∠直线(1)3y k x=-+(0k≠)过点O和C'时,k=3,过点C和D时,k=0,∠03k<≤.(3)如下图:在∠T上取线段MN,使MN=2,往圆外作等边三角形MNE,在MN上取中点D,连接TN,ED,TD,则ED∠MN,TD∠MN,T,D,E三点共线,∠DE=22213-=,TD=()2227133-=,∠大圆的半径=3+33=43,同理:小圆半径=33-3=23,当大圆或小圆与线段AB有交点时,线段AB上存在∠T的“正点”,若大圆过点B时,则TB=43,∠AB=4,OB=23,∠OT=()()2243236-=,∠tan∠OBT=OT OBOB OA==tan∠OAB,即:∠OBT=∠OAB,∠∠ABT=∠OBT+∠ABO=∠OAB+∠ABO=90°,∠此时AB与大圆相切于点B,t=-6,若大圆过点A时,AT=43,此时,t=2-43,若小圆与线段AB相切于点C时,∠ATC=∠ABO=30°,TC=23,∠AT =TC ÷cos30°=23÷32=4,此时,t =-2, 若小圆经过B 点时,圆心与点O 重合时,t =0,综上,243t -6≤≤-或20t ≤<-.【点睛】本题是新定义题型,考查动点轨迹为圆时的综合数据处理,以及等边三角形的性质,锐角三角函数相关知识点,能够根据题意画出图形是解题关键.10.(1)∠3;∠232m =-;(2)31231r -≤≤+;(3)232232b --≤≤+【解析】【分析】(1)∠根据题意作图,由三角形的面积公式及“闭距离”的定义即可求解;∠根据题意作图,根据含30°的直角三角形的性质即可求出D 点坐标,故可求解; (2)根据题意作图,由d (∠O ,线段AB )≤1,分情况讨论即可求解;(3)根据题意作图,找到d (∠O ,线段AB )=1的点,再根据解直角三角形、一次函数的解析式求解方法求出b 的值,故可求解.【详解】(1)∠如图,作OH ∠AB ,∠()0)2023(A B -,,, ∠AO =2,BO =23,AB =()222234+= 根据三角形的面积公式可得1122AO BO AB OH ⋅=⋅ ∠OH =22334⨯= ∠d (点O ,线段AB )=3;∠∠AO =2,BO =23,AB =()222234+=∠AB =2AO ,∠∠ABO =30°如图,作HD ∠AB ,∠d (线段CD ,直线AB )=1,∠DH =1∠BD =2HD =2∠DO =BO -BD =232-∠D(232-,0)∠m=232-;Array(2)如图,OH∠AB,交∠O于M点,BI=1当d(∠O,线段AB)≤1当HM≤1时,由(1)可得OH=3∠31r≥-当BI≤1时,此时IO=BI+OB=231+∠231r≤+故若d(∠O,线段AB)≤1时,r的取值范围为31231-≤≤+;r(3)∠ d (E ,ABC )=1,如图,作CM ∠直线3y x b =+于M 点,此时CM =1设直线3y x b =+与x 轴交于K 点,则∠CKM =60°∠CK =CM ÷cos60°=233∠K (2+233,0),代入3y x b =+得232330b ⎛⎫=+⨯+ ⎪ ⎪⎝⎭ 解得b =232如图,作BG ∠直线3y x b =+于G 点,此时BG =1设直线3y x b =+与y 轴交于N 点,则∠GNB =90°-60°=30°∠BN =2BG =2∠N (0,232+),代入3y x b =+得32320b +=⨯+解得b =232+∠存在点E ,使d (E ,ABC )=1,∠b 的取值范围是232232b --≤≤+.【点睛】此题主要考查圆与几何综合,解题的关键是根据题意作图,由“闭距离”的定义及解直角三角形、圆的性质特点进行求解.11.(1)∠D ,E ;∠22b -≤≤;(2)464633q -≤≤ 【解析】【分析】(1)∠如图,由定义可得:,A B 都在O 上,且90,APB ∠=︒ 再分别画出图形,即可得到答案;∠由定义可知,如图O 的直角点,分布在以O 为圆心以2为半径的圆上或圆内,结合∠可得直线的两个极限位置,从而可得答案;(2)先求解332y x q =-+与,x y 轴的交点坐标,再求解60,ONK QNM ∠=︒=∠ 再分两种情况讨论:情况1:q >0时,结合∠画出图形求解463q =,再利用对称性得到.情况2:q <0时, 463q =-,从而可得答案. 【详解】 解:(1)∠如图,由定义可得:,A B 都在O 上,且90,APB ∠=︒当,P D 重合时,则()0,0P ,此时1,AP BP ==故D是O的直角点,如图,同理可得;()1,1E-是O的直角点,当()2,2F时,AFB∠<90,︒F∴不是O的直角点,故答案为:D,E;∠由定义可知,如图O的直角点,分布在以O为圆心以2为半径的圆上或圆内由∠可得:当直线y x b=+过()1,1E-时,11,b∴=-+2,b∴=当直线y x b=+过()1,1E'-时,11,b∴-=+2,b∴=-所以22b -≤≤;(2) 332y x q =-+, 当0x =,则3,2y q =当0,y = 则330,2x q -+= .2q x ∴= 所以直线与x 轴交点为N (,0)2q ,与y 轴的交点30,,2K q ⎛⎫ ⎪ ⎪⎝⎭32tan 3.2q OK ONK q ON∴∠=== 60,ONK QNM ∴∠=︒=∠情况1:q >0时,如图Q (半径为2)与直线332y x q =-+相切时, ∠2QM =,60QNM ∠=︒,∠26sin 603QM QN ==︒, ∠2623q ON QN ===, ∠463q =.情况2:q <0时,根据对称性,463q =-, ∠q 的取值范围为464633q -≤≤ 【点睛】 本题考查的是自定义题,同时考查了旋转的性质,圆的基本性质,圆的切线的性质定理,求解一次函数的解析式,锐角三角函数的应用,掌握数形结合的方法是解题的关键.。
2017全国中考数学真题 新定义型问题(选择题+填空题+解答题)解析版
2017全国中考数学真题 知识点49新定义型问题(选择题+填空题+解答题)解析版一、选择题1. (2017山东潍坊,11,3分)定义[x ]表示不超过实数x 的最大整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数的图象如图所示,则方程[]221x x =的解为( ) A .0或2 B .0或2C .1或2-D .2或2-答案:A ,解析:由函数图象可知,当-2≤x <-1时,y =-2,即有[x ]=-2,此时方程无解;当-1≤x <0时,y =-1,即有[x ]=-1,此时方程无解;当0≤x <1时,y =0,即有[x ]=0,此时方程为0=221x ,解得x =0;当1≤x <2时,y =1,即有[x ]=1,此时方程为1=221x ,解得x =2或x =-2(不在x 的取值范围内,舍去).综上可知,方程的解为0或2.2. (2017山东莱芜,11,3分)对于实数a ,b ,定义符号min,其意义为:当a ≥b 时,min =b :当a <b 时,min=a .例如min =-1.若关于x 的函数y =min {2x -1,-x +3},则该函数的最大值为( )A .23B .1C .43D .53 答案:D ,解析:当2x -1≥-x +3时,43x ≥,y =min {2x -1,-x +3}=-x +3,最大值为53. 当2x -1<-x +3时,43x <,y =min {2x -1,-x +3}=2x -1,最大值为53. 综上,该函数的最大值为53.3. (2017湖北荆州,10,3分)规定:如果关于的一元二次方程有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论: ①方程是倍根方程; ②若关于的方程是倍根方程,则; ③若关于的方程是倍根方程,则抛物线与轴的公共点的坐标是(2,0)和(4,0);④若点在反比例函数的图象上,则关于的方程是倍根方程 上述结论中正确的有( )A.①②B.③④C.②③D.②④答案:C ,解析:解:①由x 2﹣2x ﹣8=0,得(x ﹣4)(x+2)=0,解得x 1=4,x 2=﹣2,∵x 1≠2x 2,或x 2≠2x 1,∴方程x 2﹣2x ﹣8=0不是倍根方程.故①错误;②关于x 的方程x 2+ax+2=0是倍根方程,∴设x 2=2x 1,∴x 1•x 2=2x 12=2,∴x 1=±1,当x 1=1时,x 2=2,当x 1=﹣1时,x 2=﹣2,∴x 1+x 2=﹣a=±3,∴a=±3,故②正确;③关于x 的方程ax 2﹣6ax+c=0(a≠0)是倍根方程,∴x 2=2x 1,∵抛物线y=ax 2﹣6ax+c 的对称轴是直线x=3,∴抛物线y=ax 2﹣6ax+c 与x 轴的交点的坐标是(2,0)和(4,0),故③正确;④∵点(m ,n )在反比例函数y=4x 的图象上,∴mn=4,解mx 2+5x+n=0得x 1=﹣2m ,x 2=﹣8m, ∴x 2=4x 1,∴关于x 的方程mx 2+5x+n=0不是倍根方程;故选C .二、填空题1. (2017四川成都,24. 4分)在平面直角坐标系xOy 中,对于不在坐标轴上的任意一点(),P x y ,我们把点11,P x y ⎛⎫' ⎪⎝⎭称为点P 的 “倒影点”.直线1y x =-+上有两点,A B ,它们的倒影点,A B ''均在反比例函数k y x =的图像上.若22AB =k =____________.答案:43-,解析:∵A ,B 两点在直线1y x =-+上,设A (a ,-a +1),B (b ,-b +1), ∴22222()(11)2()(22)AB a b a b a b =-+-++-=-=,∴2()4,2a b a b -=∴-=±.∴A ,B 两点的“倒影点”1111(,),(,)11A B a a b b''--. ∵点,A B ''均在反比例函数k y x =的图像上,∴111111k a a b b ⋅==⋅--,∴(1)(1)a a b b -=-,变形因式分解得()(1)0a b a b ---=,∵2a b -=±,∴10a b --=.由210a b a b -=⎧⎨--=⎩解得3212a b ⎧=⎪⎪⎨⎪=-⎪⎩,∴1124(2)133k a a =⋅=⨯-=--; 由210a b a b -=-⎧⎨--=⎩解得1232a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴1124(2)133k a a =⋅=-⨯=--. 综上,43k =-.2. (2017四川宜宾,16,3分)规定:[x ]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(0.5x n ≠+,n 为整数),例如.[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是 .(写出所有正确说法的序号)①当x =1.7时,[x ]+(x )+[x )=6; ②当x =-2.1时,[x ]+(x )+[x )=-7;③方程4[x ]+3(x )+[x )=11的解为1<x <1.5;④当-1<x <1时,函数y =[x ]+(x )+x 的图像与正比例函数y =4x 的图像有两个交点.答案:②③④,解析:①当x =1.7时,[1.7]=1,(1.7)=2,[1.7)=2,故[x ]+(x )+[x )=5;②当x =﹣2.1时,[﹣2.1]=﹣3,(﹣2.1)=﹣2,[﹣2.1)=﹣2,故[x ]+(x )+[x )=-7;③设x =a +b (a >0,且a 为整数,且0<b <1)(1)当0≤b <12时,4a +3(a +1)+a =11,解得a =1,故1<x <1.5; (2)当12<b <1时,4a +3(a +1)+a +1=11,解得a =78(舍). ④当﹣1<x <12-,y =x ﹣1, 当12-<x <0时,y =x ﹣1 当0<x <12时,y =x +1当12<x <1时,y =x +1,结合图像,可知,有2个交点.3. (2017甘肃天水.13.4分)定义一种新的运算:x ❉y =2x y x +,如:3❉1=3213+⨯=53,则(2❉3) ❉2=.答案:2,解析:根据新运算的定义,(2❉3) ❉2=2232+⨯❉2=4❉2=4224+⨯=2.4. (2017四川凉山,26,5分)古希腊数学家把1、3、6、10、15、21、…叫做三角形数,其中1是第一个三角形数,3是第二个三角形数,6是第三个三角形数,…,依此类推,第100个三角形数是______.【答案】5050【解析】设第n 个三角形数为a n ,观察,发现规律:a 1=1,a 2=3=1+2,a 3=6=1+2+3,a 4=10=1+2+3+4,…,∴a n =1+2+…+n =2)1(+n n ,将n =100代入a n ,得:a 100=2)1100(100+=5050.5. (2017黑龙江齐齐哈尔,17,3分)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD 是△ABC 的“和谐分割线”,△ACD 为等腰三角形,△CBD 和△ABC 相似,∠A=46°,则∠ACB 的度数为 .答案:113°或92°解析:∵△CBD 和△ABC 相似,∴∠BCD=∠A=46°.设∠ACB=x ,则∠ACD=x-46°.∵△ACD 为等腰三角形,若AC=AD ,则∠ACD=∠ADC=x-46°,∵46°+x-46°+x-46°=180°,∴x=113°.若AD=CD ,则∠ACD=∠A ,即46°=x-46°,∴x=92°.综上所述,∠ACB 的度数为113°或92°.6. (2017广东乐山,16,3分)对于函数y =x n +x m ,我们定义y’=nx n-1+mx m-1(m 、n 为常数).例如y =x 4+x 2,则y’=4x 3+2x .已知:()x m x m x y 223131+-+=. (1)若方程y’=0有两个相等实数根,则m 的值为 ;(2)若方程41-='m y 有两个正数根,则m 的取值范围为 . 答案:(1)21=m ;(2)43≤m 且21≠m ,解析:(1)y’=x 2+2(m -1)x+m 2,当y’=0时,有x 2+2(m -1)x+m 2=0.若方程y’=0有两个相等实数根,则△=0,即4(m -1)2-m 2=0,解得21=m ;(2)y’=x 2+2(m -1)x+m 2,当41-='m y 时,有x 2+2(m -1)x+m 2-m +41=0.若方程41-='m y 有两个正数根,则⎪⎩⎪⎨⎧>>≥∆⋅+0002121x x x x ,即()()⎪⎪⎪⎩⎪⎪⎪⎨⎧>+->--≥⎪⎭⎫ ⎝⎛+---041012041414222m m m m m m ,解得43≤m 且21≠m .7. 16.(2017内蒙古赤峰,16,3分)在平面直角坐标系中,点P (x ,y )经过某种变换后得到点P '(-y +1,x+2),我们把点P '(-y +1,x +2)叫做点P (x ,y )的终结点.已知点P 1的终结点为P 2,点P 2的终结点为P 3,点P 3的终结点为P 4,这样依次得到P 1、P 2、P 3、P 4、…P n 、…,,若点P 1的坐标为(2,0),则点P 2017的坐标为 .答案:(2,0),解析:本题考查了学习型阅读理解,正确理解已知点的终结点这一新定义是解题的关键. 根据新定义,得P 1(2,0)的终结点为P 2(1,4),P 2(1,4)的终结点为P 3(-3,3),P 3(-3,3)的终结点为P 4(-2,-1),P 4(-2,-1)的终结点为P 5(2,0),P 5(2,0)的终结点为P 4(1,4),……观察发现,4次变换为一循环,2017÷4=504…余1.故点P 2017的坐标为(2,0).说明:原题不清楚,我是根据猜想完成的,有错误请指正.8. (2017贵州六盘水,15,5分)定义:A ={b ,c ,a },B ={c },A ∪B ={a ,b ,c } ,若M ={-1},N ={0,1,-1},则M ∪N ={ }.答案:{0,1,-1}(数字无序),解析:由题意可知新定义:A ∪B 表示A 、B 两集合中所有数的集合,∴M∪N 表示M 、N 两个集合中所有数的集合,∴M ∪N ={0,1,-1}.9. 20. (2017四川巴中,3分)如图,我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,点A 、B 、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,且抛物线的解析式为y=x2-2x-3,则半圆圆心M点的坐标为:.答案:(1,0),解析:解x2-2x-3=0得x1=-1,x2=3,所以抛物线与x轴交于点A(-1,0)、B(3,0),所以AB =4,点M的坐标为(1,0).三、解答题1.(2017山东枣庄19,8分)我们知道,任意一个正整数n都可以进行这样的分解:n p q=⨯(p,q是正整数,且p q≤),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:()pF nq=.例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所有3×4是12的最佳分解,所以F(12)=34.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.思路分析:(1)对任意一个完全平方数m,设m=n2(n为正整数),找出m的最佳分解,确定出F(m)的值即可;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,根据“吉祥数”的定义确定出x与y的关系式,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F(t)的最大值即可.解:(1)证明:对任意一个完全平方数m,设m=n2(n为正整数),∵|n-n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)=nn=1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,∵t是“吉祥数”,∴t′-t=(10y+x)-(10x+y)=9(y-x)=36,∴y=x+4,∵1≤x≤y≤9,x,y为自然数,∴满足“吉祥数”的有:15,26,37,48,59;(3)∵F(15)=35,F(26)=213,F(37)=137,F(48)=63=84,F(59)=159.∵33211 45133759 >>>>,∴所有“吉祥数”中,F(t)的最大值是34.2.(2017浙江金华,23,10分)如图1,将△ABC纸片沿中位线EH折叠,使点A的对称点D落在BC边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形.类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.图1(1)将□ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段_____,_____;S矩形AEFG:S□ABCD=______.(2)□ABCD纸片还可以按图3的方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长.(3)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10.小明把该纸片折叠,得到叠合正方形....请你帮助画出叠合正方形的示意图,并求出AD,BC的长.图2 图3 图4思路分析:(1)观察图形直接得到操作形成的折痕,根据矩形和平行四边形的面积公式与折叠的轴对称性质可得S 矩形AEFG :S □ABCD 的值;(2)由矩形的性质和勾股定理可求得FH 的长,再由折叠的轴对称性质可知HD =HN ,FC =FN ,因此只要证得△AEH ≌△CGF ,可得FC =AH ,进而求得AD 的长;(3)根据叠合矩形定义,画出叠合正方形,然后再求AD ,BC 的长.解:(1)AE ,GF ;1:2.由折叠的轴对称性质,得AD =2AG .∵S 矩形AEFG =AE ·AG ,S □ABCD =AE ·AD ,∴S 矩形AEFG :S □ABCD = AE ·AG :AE ·AD = AE ·AG :AE·2AG =1:2.(2)∵四边形EFGH 是叠合矩形,∴∠FEH =90°.∴FH =22EH EF +=22125+=13.由折叠的轴对称性质可知,HD =HN ,FC =FN ,∠AHE =21∠AHF ,∠CFG =21∠CFH . ∵四边形ABCD 是平行四边形,∴AD ∥BC ,∠A =∠C .∴∠AHF =∠CFH ,∴∠AHE =∠CFG .∵EH =FG ,∴△AEH ≌△CGF .∴FC =AH .∴AD =AH +HD =FC +HN =FN +HN =FH =13.(3)本题有一下两种基本折法,如图1,图2.图5 图6按图5的折法的解法.由折叠的轴对称性质可知,AD =BF ,BE =AE =4,CH =DH =5,FG =CG .∵四边形EBGH 是叠合正方形,∴HG =BG =4.∴CG =3.∴FG =CG =3.∴BF =BG -FG =1,BC =BG +CG =4+3=7.∴AD =1,BC =7.按图6的折法的解法.设AD =x .由折叠的轴对称性质可知,AE =EM =BE =4,MH =AD =x ,DN =HN ,HG =CG ,FC =FH .由DN =HN ,HG =CG ,则GN =21CD =5. ∵四边形EBGH 是叠合正方形,∴EF =FG =GN =5.∴MF =BF =3.∴FC =FH =x +3.∵∠B =∠EFG =∠CGF =90°,∴∠BEF +∠BFE =∠BFE +∠CFG =90°,∴∠BEF =∠CFG .∴△GFC ∽△BEF .∴EF FC BE FG =,即5345+=x ,解得x =413. ∴AD =413,BC =BF +FC =3+413+3=437. 3. (2017重庆,25,10分)(本小题满分10分)对任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n ).例如n =123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以,F (123)=6.(1)计算:F (243),F (617);(2)若s ,t 都是“相异数”,其中s =100x +32,t =150+y (1≤x ≤9, 1≤y ≤9,x ,y 都是正整数),规定:k =()()t F s F .当F (s )+F (t )=18时,求k 的最大值. 思路分析:(1)当n =243,对调百位与十位上的数字得到423,对调百位与个位上的数字得到342,对调十位与个位上的数字得到234,然后计算出新三位数的和,除以111即得F (243)的结果;同理可得 F (617)的结果;(2)按上述操作办法分别计算出F (s )、F (t ),由F (s )+F (t )=18进而判断出x ,y 满足的关系式,再根据限制条件“1≤x ≤9, 1≤y ≤9,x ,y 都是正整数”确定出6组符合条件的x ,y 值;由s ,t 都是“相异数”锁定x ,y 的值,分别代入F (s )、F (t )所满足的关系式,按规则计算出k 的值,问题即可获解.解:(1)F (243)=(423+342+234)÷111=9,F (617)=(176+716+671)÷111=14;(2)∵s ,t 都是“相异数”,∴F (s )=(302+10 x +230+ x +100 x +23)÷111= x +5,F (t )=(510+ y +100 y +51+105+10 y )÷111= y +6,∵F (s )+F (t )=18,∴x +5+ y +6= x + y +11=18,∴x + y =7,∵1≤x ≤9, 1≤y ≤9,x ,y 都是正整数,∴⎩⎨⎧==61y x 或⎩⎨⎧==52y x 或⎩⎨⎧==43y x 或⎩⎨⎧==34y x 或⎩⎨⎧==25y x 或⎩⎨⎧==16y x , ∵s 是“相异数”,∴ x ≠2,x ≠3,∵t 是“相异数”,∴ y ≠1,y ≠5,∴⎩⎨⎧==61y x 或⎩⎨⎧==34y x 或⎩⎨⎧==25y x ,∴()()⎩⎨⎧==126t F s F 或()()⎩⎨⎧==99t F s F 或()()⎩⎨⎧==810t F s F ,∴k =()()t F s F =21或k =()()t F s F =1或k =()()t F s F =45, ∴k 的最大值为45. 4. (2017山东济宁,22,11分)定义:点P 是△ABC 内部或边上的点(顶点除外),在△PAB ,△PBC ,△PCA中,若至少有一个三角形与△ABC 相似,则称点P 是△ABC 的自相似点.例如:如图1,点P 在△ABC 的内部,∠PBC =∠A ,∠PCB =∠ABC ,则△BCP ∽△ABC ,故点P 为△ABC 的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M 是曲线C :y =()0x >上的任意一点,点N 是x 轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是,点N的坐标是时,求点P的坐标;(2)如图3,当点M的坐标是,点N的坐标是时,求△MON的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.思路分析:(1)根据两组对应角相等的三角形是全等三角形,很容易证明△ONP∽△OMN,利用相似对应性质得出∠MON=90°,在直角△OPN中利用锐角三角函数即可求出点P的坐标;(2)根据题目给出的自相似点定义,分情况讨论当△P1ON∽△NOM,求出P1坐标,当△P2NM∽△NOM求出P2坐标;(3)存在点M和点N,使△MON 无自相似点,即△MON内无点P能使△ONP或者△PNM与△OMN相似,△MON应为等边三角形,从而得出答案.思路分析:(1)根据两组对应角相等的三角形是全等三角形,很容易证明△ONP∽△OMN,利用相似对应性质得出∠MON=90°,在直角△OPN中利用锐角三角函数即可求出点P的坐标;(2)根据题目给出的自相似点定义,分情况讨论当△P1ON∽△NOM,求出P1坐标,当△P2NM∽△NOM求出P2坐标;(3)存在点M和点N,使△MON无自相似点,即△MON内无点P能使△ONP或者△PNM与△OMN相似,△MON应为等边三角形,从而得出答案.解:(1)在△ONP和△OMN中,∵∠ONP=∠OMN,∠NOP=∠MON∴△ONP∽△OMN∴点P是△M0N的自相似点.过点P作PD⊥x轴于D点.tan3MNPODON∠==∴60AON∠=.∵△ONP∽△OMN,∴90MON∠=,∴90OPN∠=.在Rt△OPN中,3cos602OP ON==.313cos60224OD OP==⨯=.333sin60224PD OP==⨯=.∴33(,)44P.图①如图2,过点M 作MH ⊥x 轴于H 点, ∵ (3,3)M ,(2,0)N∴23OM =,直线OM 的表达式为33y x =.2ON = ∵P 1是△M0N 的自相似点,∴△P 1ON ∽△NOM 过点1P 作1PQ ⊥x 轴于Q 点, ∴111, 1.2PO PN OQ ON === ∵P 1的横坐标为1,∴331.33y =⨯=∴131,3P ⎛⎫⎪ ⎪⎝⎭. 如图3,△P 2NM ∽△NOM , ∴2P N MNON MO=∴2233P N = . ∵P 2的纵坐标为233, ∴23333x =∴2x =,∴2232,3P ⎛⎫⎪ ⎪⎝⎭. 综上所述,31,3P ⎛⎫ ⎪ ⎪⎝⎭或232,3⎛⎫⎪ ⎪⎝⎭. (3)存在,(3,3),(23,0)M N .5. (2017重庆B ,25, 10分)对任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n )。
新定义问题(2016,2017年北京中考模拟)
1.在平面直角坐标系xOy中,对于线段MN的“三等分变换”,给出如下定义:如图1,点P,Q为线段MN的三等分点,即MP=PQ=QN,将线段PM以点P为旋转中心顺时针旋转90°得到PM′,将线段QN以点Q为旋转中心顺时针旋转90°得到QN′,则称线段MN进行了三等分变换,其中M′,N′记为点M,N三等分变换后的对应点.例如:如图2,线段MN,点M的坐标为(1,5),点N的坐标为(1,2),则点P的坐标为(1,4),点Q的坐标为(1,3),那么线段MN三等分变换后,可得:M′的坐标为(2,4),点N′的坐标为(0,3).(1)若点P的坐标为(2,0),点Q的坐标为(4,0),直接写出点M′与点N′的坐标;(2)若点Q的坐标是(0,﹣),点P在x轴正半轴上,点N′在第二象限.当线段PQ的长度为符合条件的最小整数时,求OP的长;(3)若点Q的坐标为(0,0),点M′的坐标为(﹣3,﹣3),直接写出点P与点N的坐标;(4)点P是以原点O为圆心,1为半径的圆上的一个定点,点P的坐标为(,﹣)当点N′在圆O内部或圆上时,求线段PQ的取值范围及PQ取最大值时点M′的坐标.2.在平面直角坐标系中,点Q为坐标系上任意一点,某图形上的所有点在∠Q 的内部(含角的边),这时我们把∠Q的最小角叫做该图形的视角.如图1,矩形ABCD,作射线OA,OB,则称∠AOB为矩形ABCD的视角.(1)如图1,矩形ABCD,A(﹣,1),B(,1),C(,3),D(﹣,3),直接写出视角∠AOB的度数;(2)在(1)的条件下,在射线CB上有一点Q,使得矩形ABCD的视角∠AQB=60°,求点Q的坐标;(3)如图2,⊙P的半径为1,点P(1,),点Q在x轴上,且⊙P的视角∠EQF的度数大于60°,若Q(a,0),求a的取值范围.3.在平面直角坐标系xOy中,点P与点Q不重合,以点P为圆心作经过Q的圆,则称该圆为点P、Q的“相关圆”(1)已知点P的坐标为(2,0)①若点Q的坐标为(0,1),求点P、Q的“相关圆”的面积;②若点Q的坐标为(3,n),且点P、Q的“相关圆”的半径为,求n的值;(2)已知△ABC为等边三角形,点A和点B的坐标分别为(﹣,0)、(,0),点C在y轴正半轴上,若点P、Q的“相关圆”恰好是△ABC的内切圆且点Q在直线y=2x上,求点Q的坐标.(3)已知△ABC三个顶点的坐标为:A(﹣3,0)、B(,0),C(0,4),点P 的坐标为(0,),点Q的坐标为(m,),若点P、Q的“相关圆”与△ABC的三边中至少一边存在公共点,直接写出m的取值范围.4.在平面直角坐标系xOy中,△ABC的顶点坐标分别是A(x1,y1),B(x2,y2),C(x3,y3),对于△ABC的横长、纵长、纵横比给出如下定义:将|x1﹣x2|,|x2﹣x3|,|x3﹣x1|中的最大值,称为△ABC的横长,记作D x;将|y1﹣y2|,|y2﹣y3|,|y3﹣y1|中的最大值,称为△ABC的纵长,记作D y;将叫做△ABC的纵横比,记作λ=.例如:如图1,△ABC的三个顶点的坐标分别是A(0,3),B(2,1),C(﹣1,﹣2),则D x=|2﹣(﹣1)|=3,D y=|3﹣(﹣2)|=5,所以λ==.(1)如图2,点A(1,0),①点B(2,1),E(﹣1,2),则△AOB的纵横比λ1=△AOE的纵横比λ2=;②点F在第四象限,若△AOF的纵横比为1,写出一个符合条件的点F的坐标;③点M是双曲线y=上一个动点,若△AOM的纵横比为1,求点M的坐标;(2)如图3,点A(1,0),⊙P以P(0,)为圆心,1为半径,点N是⊙P 上一个动点,直接写出△AON的纵横比λ的取值范围.5.在平面直角坐标系xOy中,给出如下定义:对于⊙C及⊙C外一点P,M,N是⊙C上两点,当∠MPN最大时,称∠MPN为点P关于⊙C的“视角”.(1)如图,⊙O的半径为1,①已知点A(0,2),画出点A关于⊙O的“视角”;若点P在直线x=2上,则点P关于⊙O的最大“视角”的度数;②在第一象限内有一点B(m,m),点B关于⊙O的“视角”为60°,求点B的坐标.(2)若点P在直线y=﹣x+2上,且点P关于⊙O的“视角”大于60°,求点P 的横坐标x P的取值范围.(3)⊙C的圆心在x轴上,半径为1,点E的坐标为(0,1),点F的坐标为(0,﹣1),若线段EF上所有的点关于⊙C的“视角”都小于120°,直接写出点C的横坐标x C的取值范围.6.如图,在平面直角坐标系中,给出如下定义:已知点A(2,3),点B(6,3),连接AB.如果线段AB上有一个点与点P的距离不大于1,那么称点P是线段AB的“环绕点”.(1)已知点C(3,1.5),D(4,3.5),E(1,3),则是线段AB的“环绕点”的点是;(2)已知点P(m,n)在反比例函数y=的图象上,且点P是线段AB的“环绕点”,求出点P的横坐标m的取值范围;(3)已知⊙M上有一点P是线段AB的“环绕点”,且点M(4,1),求⊙M的半径r的取值范围.7.(1)在图①,②,③中,给出平行四边形ABCD的顶点A、B、D的坐标(如图),写出图①,②,③中的顶点C的坐标,它们分别是,,;(可用含a,b,c,d,e,f的代数式表示)(2)在图④中,给出平行四边形ABCD的顶点A、B、D的坐标(如图),求出顶点C的坐标(C点坐标用含a,b,c,d,e,f的代数式表示);★归纳与发现(3)通过对图①②③④的观察和顶点C的坐标的探究,你会发现:无论平行四边形ABCD处于直角坐标系中哪个位置,当其顶点坐标为A(a,b)、B(c,d)、C(m,n)、D(e,f)(如图④)时,则四个顶点的横坐标a,c,m,e之间的等量关系为;纵坐标b,d,n,f之间的等量关系为(不必证明);★运用与推广(4)在同一直角坐标系中有抛物线y=﹣x2﹣(5c﹣3)x﹣c和三个点G(﹣c,c),S(c,c),H(2c,0)(其中c>0).问当c为何值时,该双曲线上存在点P,使得以G,S,H,P为顶点的四边形是平行四边形?并求出所有符合条件的P点坐标.8.如图,在平面直角坐标系xOy中,点A与点B的坐标分别是(1,0),(7,0).(1)对于坐标平面内的一点P,给出如下定义:如果∠APB=45°,则称点P为线段AB的“等角点”.显然,线段AB的“等角点”有无数个,且A、B、P三点共圆.①设A、B、P三点所在圆的圆心为C,直接写出点C的坐标和⊙C的半径;②y轴正半轴上是否有线段AB的“等角点”?如果有,求出“等角点”的坐标;如果没有,请说明理由;(2)当点P在y轴正半轴上运动时,∠APB是否有最大值?如果有,说明此时∠APB最大的理由,并求出点P的坐标;如果没有请说明理由.9.我们规定:平面内点A到图形G上各个点的距离的最小值称为该点到这个图形的最小距离d,点A到图形G上各个点的距离的最大值称为该点到这个图形的最大距离D,定义点A到图形G的距离跨度为R=D﹣d.(1)①如图1,在平面直角坐标系xOy中,图形G1为以O为圆心,2为半径的圆,直接写出以下各点到图形G1的距离跨度:A(1,0)的距离跨度;B(﹣,)的距离跨度;C(﹣3,﹣2)的距离跨度;②根据①中的结果,猜想到图形G1的距离跨度为2的所有的点组成的图形的形状是.(2)如图2,在平面直角坐标系xOy中,图形G2为以D(﹣1,0)为圆心,2为半径的圆,直线y=k(x﹣1)上存在到G2的距离跨度为2的点,求k的取值范围.(3)如图3,在平面直角坐标系xOy中,射线OP:y=x(x≥0),⊙E是以3为半径的圆,且圆心E在x轴上运动,若射线OP上存在点到⊙E的距离跨度为2,直接写出圆心E的横坐标x E的取值范围.10.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20.(1)已知点A(1,2),B(﹣3,1),P(0,t).①若A,B,P三点的“矩面积”为12,求点P的坐标;②直接写出A,B,P三点的“矩面积”的最小值.(2)已知点E(4,0),F(0,2),M(m,4m),N(n,),其中m>0,n>0.①若E,F,M三点的“矩面积”为8,求m的取值范围;②直接写出E,F,N三点的“矩面积”的最小值及对应n的取值范围.11.在平面直角坐标系xOy中,对于点P(x,y),如果点Q(x,y′)的纵坐标满足y′=,那么称点Q为点P的“关联点”.(1)请直接写出点(3,5)的“关联点”的坐标;(2)如果点P在函数y=x﹣2的图象上,其“关联点”Q与点P重合,求点P的坐标;(3)如果点M(m,n)的“关联点”N在函数y=2x2的图象上,当0≤m≤2时,求线段MN的最大值.12.在平面直角坐标系xOy中,对于双曲线y=(m>0)和双曲线y=(n>0),如果m=2n,则称双曲线y=(m>0)和双曲线y=(n>0)为“倍半双曲线”,双曲线y=(m>0)是双曲线y=(n>0)的“倍双曲线”,双曲线y=(n>0)是双曲线y=(m>0)的“半双曲线”,(1)请你写出双曲线y=的“倍双曲线”是;双曲线y=的“半双曲线”是;(2)如图1,在平面直角坐标系xOy中,已知点A是双曲线y=在第一象限内任意一点,过点A与y轴平行的直线交双曲线y=的“半双曲线”于点B,求△AOB 的面积;(3)如图2,已知点M是双曲线y=(k>0)在第一象限内任意一点,过点M 与y轴平行的直线交双曲线y=的“半双曲线”于点N,过点M与x轴平行的直线交双曲线y=的“半双曲线”于点P,若△MNP的面积记为S△MNP ,且1≤S△MNP≤2,求k的取值范围.13.在平面直角坐标系xOy中,对于任意三点A,B,C,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的覆盖矩形.点A,B,C的所有覆盖矩形中,面积最小的矩形称为点A,B,C的最优覆盖矩形.例如,下图中的矩形A1B1C1D1,A2B2C2D2,AB3C3D3都是点A,B,C的覆盖矩形,其中矩形AB3C3D3是点A,B,C的最优覆盖矩形.(1)已知A(﹣2,3),B(5,0),C(t,﹣2).①当t=2时,点A,B,C的最优覆盖矩形的面积为;②若点A,B,C的最优覆盖矩形的面积为40,求直线AC的表达式;(2)已知点D(1,1).E(m,n)是函数y=(x>0)的图象上一点,⊙P是点O,D,E的一个面积最小的最优覆盖矩形的外接圆,求出⊙P的半径r的取值范围.14.在平面直角坐标系xOy中,对“隔离直线”给出如下定义:点P(x,m)是图形G1上的任意一点,点Q(x,n)是图形G2上的任意一点,若存在直线l:kx+b(k≠0)满足m≤kx+b且n≥kx+b,则称直线l:y=kx+b(k ≠0)是图形G1与G2的“隔离直线”.如图1,直线l:y=﹣x﹣4是函数y=(x<0)的图象与正方形OABC的一条“隔离直线”.(1)在直线y1=﹣2x,y2=3x+1,y3=﹣x+3中,是图1函数y=(x<0)的图象与正方形OABC的“隔离直线”的为;请你再写出一条符合题意的不同的“隔离直线”的表达式:;(2)如图2,第一象限的等腰直角三角形EDF的两腰分别与坐标轴平行,直角顶点D的坐标是(,1),⊙O的半径为2.是否存在△EDF与⊙O的“隔离直线”?若存在,求出此“隔离直线”的表达式;若不存在,请说明理由;(3)正方形A1B1C1D1的一边在y轴上,其它三边都在y轴的右侧,点M(1,t)是此正方形的中心.若存在直线y=2x+b是函数y=x2﹣2x﹣3(0≤x≤4)的图象与正方形A1B1C1D1的“隔离直线”,请直接写出t的取值范围.15.设平面内一点到等边三角形中心的距离为d,等边三角形的内切圆半径为r,外接圆半径为R.对于一个点与等边三角形,给出如下定义:满足r≤d≤R的点叫做等边三角形的中心关联点.在平面直角坐标系xOy中,等边△ABC的三个顶点的坐标分别为A(0,2),B(﹣,﹣1),C(,﹣1).(1)已知点D(2,2),E(,1),F(﹣,﹣1).在D,E,F中,是等边△ABC的中心关联点的是;(2)如图1,过点A作直线交x轴正半轴于M,使∠AMO=30°.①若线段AM上存在等边△ABC的中心关联点P(m,n),求m的取值范围;②将直线AM向下平移得到直线y=kx+b,当b满足什么条件时,直线y=kx+b上总存在等边△ABC的中心关联点;(直接写出答案,不需过程)(3)如图2,点Q为直线y=﹣1上一动点,⊙Q的半径为.当Q从点(﹣4,﹣1)出发,以每秒1个单位的速度向右移动,运动时间为t秒.是否存在某一时刻t,使得⊙Q上所有点都是等边△ABC的中心关联点?如果存在,请直接写出所有符合题意的t的值;如果不存在,请说明理由.16.在平面直角坐标系xOy中,若点P和点P1关于y轴对称,点P1和点P2关于直线l对称,则称点P2是点P关于y轴,直线l的二次对称点.(1)如图1,点A(﹣1,0).①若点B是点A关于y轴,直线l1:x=2的二次对称点,则点B的坐标为;②若点C(﹣5,0)是点A关于y轴,直线l2:x=a的二次对称点,则a的值为;③若点D(2,1)是点A关于y轴,直线l3的二次对称点,则直线l3的表达式为;(2)如图2,⊙O的半径为1.若⊙O上存在点M,使得点M'是点M关于y轴,直线l4:x=b的二次对称点,且点M'在射线y=x(x≥0)上,b的取值范围是;(3)E(t,0)是x轴上的动点,⊙E的半径为2,若⊙E上存在点N,使得点N'是点N关于y轴,直线l5:y=x+1的二次对称点,且点N'在y轴上,求t的取值范围.17.在平面直角坐标系xOy中,若P,Q为某个菱形相邻的两个顶点,且该菱形的两条对角线分别与x轴,y轴平行,则称该菱形为点P,Q的“相关菱形”.图1为点P,Q的“相关菱形”的一个示意图.已知点A的坐标为(1,4),点B的坐标为(b,0),(1)若b=3,则R(﹣1,0),S(5,4),T(6,4)中能够成为点A,B的“相关菱形”顶点的是;(2)若点A,B的“相关菱形”为正方形,求b的值;(3)⊙B的半径为,点C的坐标为(2,4).若⊙B上存在点M,在线段AC 上存在点N,使点M,N的“相关菱形”为正方形,请直接写出b的取值范围.18.给出如下规定:两个图形G1和G2,点P为G1上任一点,点Q为G2上任一点,如果线段PQ的长度存在最小值时,就称该最小值为两个图形G1和G2之间的“近距离”;如果线段PQ的长度存在最大值时,就称该最大值为两个图形G1和G2之间的“远距离”.请你在学习,理解上述定义的基础上,解决下面问题:在平面直角坐标系xOy中,点A(﹣4,3),B(﹣4,﹣3),C(4,﹣3),D(4,3).(1)请在平面直角坐标系中画出四边形ABCD,直接写出线段AB和线段CD的“近距离”和“远距离”.(2)设直线y=(b>0)与x轴,y轴分别交于点E,F,若线段EF与四边形ABCD的“近距离”是1,求它们的“远距离”;(3)在平面直角坐标系xOy中,有一个矩形GHMN,若此矩形至少有一个顶点在以O为圆心,2为半径的圆上,其余各点可能在圆上或圆内.将四边形ABCD 绕着点O旋转一周,在旋转的过程中,它与矩形GHMN的“远距离”的最大值是;“近距离”的最小值是.19.对于⊙P及一个矩形给出如下定义:如果⊙P上存在到此矩形四个顶点距离都相等的点,那么称⊙P是该矩形的“等距圆”.如图,在平面直角坐标系xOy中,矩形ABCD的顶点A的坐标为(,2),顶点C、D在x轴上,且OC=OD.(1)当⊙P的半径为4时,①在P1(0,﹣3),P2(2,3),P3(﹣2,1)中可以成为矩形ABCD的“等距圆”的圆心的是;②如果点P在直线上,且⊙P是矩形ABCD的“等距圆”,求点P的坐标;(2)已知点P在y上,且⊙P是矩形ABCD的“等距圆”,如果⊙P与直线AD没有公共点,直接写出点P的纵坐标m的取值范围.20.在平面直角坐标系xOy中,图形W在坐标轴上的投影长度定义如下:设点P(x1,y1),Q(x2,y2)是图形W上的任意两点.若|x1﹣x2|的最大值为m,则图形W在x轴上的投影长度l x=M;若|y1﹣y2|的最大值为n,则图形W在y轴上的投影长度l y=n.如图1,图形W在x轴上的投影长度l x=|3﹣1|=2;在y轴上的投影长度l y=|4﹣0|=4.(1)已知点A(3,3),B(4,1).如图2所示,若图形W为△OAB,则l x,l y.(2)已知点C(4,0),点D在直线y=﹣2x+6上,若图形W为△OCD.当l x=l y 时,求点D的坐标.(3)若图形W为函数y=x2(a≤x≤b)的图象,其中0≤a<b.当该图形满足l x=l y ≤1时,请直接写出a的取值范围.21.对于关于x的一次函数y=kx+b(k≠0),我们称函数y[m]=为它的m分函数(其中m为常数).例如,y=3x+2的4分函数为:当x≤4时,y[4]=3x+2;当x>4时,y[4]=﹣3x﹣2.(1)如果y=﹣x+1的2分函数为y[2],①当x=4时,y[2]=;②当y[2]=3时,x=.(2)如果y=x+1的﹣1分函数为y[﹣1],求双曲线y=与y[﹣1]的图象的交点坐标;(3)从下面两问中任选一问作答:①设y=﹣x+2的m分函数为y[m],如果抛物线y=x2与y[m]的图象有且只有一个公共点,直接写出m的取值范围.②如果点A(0,t)到y=﹣x+2的0分函数y[0]的图象的距离小于1,直接写出t 的取值范围.22.如图,在平面直角坐标系xOy中,已知点A(0,1),B(0,﹣1).点P是平面内任意一点,直线PA,PB与直线x=4分别交于M,N两点.若以MN为直径的圆恰好经过点C(2,0),则称此时的点P为理想点.(1)请判断P1(﹣4,0),P2(3,0)是否为理想点;(2)若直线x=﹣3上存在理想点,求理想点的纵坐标;(3)若动直线x=m(m≠0)上存在理想点,直接写出m的取值范围.23.在平面直角坐标系xOy中,点P(a,b)的“变换点”Q的坐标定义如下:当a≥b时,Q点坐标为(b,﹣a);当a<b时,Q点坐标为(a,﹣b).(1)求(﹣2,3),(6,﹣1)的变换点坐标;(2)已知直线l与x轴交于点A(4,0),与y轴交于点B(0,2).若直线l上所有点的变换点组成一个新的图形,记作图形W,请画出图形W,并简要说明画图的思路;(3)若抛物线y=﹣x2+c与图形W有三个交点,请直接写出c的取值范围.24.对于两个已知图形G1,G2,在G1上任取一点P,在G2上任取一点Q,当线段PQ的长度最小时,我们称这个最小长度为G1,G2的“密距”,用字母d表示;当线段PQ的长度最大时,我们称这个最大的长度为图形G1,G2的“疏距”,用字母f表示.例如,当M(1,2),N(2,2)时,点O与线段MN的“密距”为,点O与线段MN的“疏距”为2.(1)已知,在平面直角坐标系xOy中,A(﹣2,0),B(0,4),C(2,0),D (0,1),①点O与线段AB的“密距”为,“疏距”为;②线段AB与△COD的“密距”为,“疏距”为;(2)直线y=2x+b与x轴,y轴分别交于点E,F,以C(0,﹣1)为圆心,1为半径作圆,当⊙C与线段EF的“密距”0<d<1时,求⊙C与线段EF的“疏距”f的取值范围.25.在平面直角坐标系xoy中,⊙C的半径为r,点P是与圆心C不重合的点,给出如下定义:如果点P′为射线CP上一点,满足CP•CP′=r2,那么称点P′为点P 关于⊙C的反演点,图1为点P及其关于⊙C的反演点P′的示意图.(1)如图2,当⊙O的半径为1时,分别求出点M(1,0),N(0,2),T(,)关于⊙O的反演点M′,N′,T′的坐标;(2)如图3:已知点A(1,4),B(3,0),以AB为直径的⊙G的与y轴交于点C,D(点C位于点D下方),E为CD的中点,如果点O,E关于⊙G的反演点分别为O′,E′,求∠E′O′G的大小.26.设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,记作y=f(x).在函数y=f(x)中,当自变量x=a时,相应的函数值y可以表示为f(a).例如:函数f(x)=x2﹣2x﹣3,当x=4时,f(4)=42﹣2×4﹣3=5在平面直角坐标系xOy中,对于函数的零点给出如下定义:如果函数y=f(x)在a≤x≤b的范围内对应的图象是一条连续不断的曲线,并且f(a).f(b)<0,那么函数y=f(x)在a≤x≤b的范围内有零点,即存在c(a≤c≤b),使f(c)=0,则c叫做这个函数的零点,c也是方程f(x)=0在a≤x ≤b范围内的根.例如:二次函数f(x)=x2﹣2x﹣3的图象如图1所示.观察可知:f(﹣2)>0,f(1)<0,则f(﹣2).f(1)<0.所以函数f(x)=x2﹣2x﹣3在﹣2≤x≤1范围内有零点.由于f(﹣1)=0,所以,﹣1是f(x)=x2﹣2x﹣3的零点,﹣1也是方程x2﹣2x﹣3=0的根.(1)观察函数y1=f(x)的图象2,回答下列问题:①f(a)•f(b)0(“<”“>”或“=”)②在a≤x≤b范围内y1=f(x)的零点的个数是.(2)已知函数y2=f(x)=﹣的零点为x1,x2,且x1<1<x2.①求零点为x1,x2(用a表示);②在平面直角坐标xOy中,在x轴上A,B两点表示的数是零点x1,x2,点P为线段AB上的一个动点(P点与A、B两点不重合),在x轴上方作等边△APM和等边△BPN,记线段MN的中点为Q,若a是整数,求抛物线y2的表达式并直接写出线段PQ长的取值范围.27.定义:y是一个关于x的函数,若对于每个实数x,函数y的值为三数x+2,2x+1,﹣5x+20中的最小值,则函数y叫做这三数的最小值函数.(1)画出这个最小值函数的图象,并判断点A(1,3)是否为这个最小值函数图象上的点;(2)设这个最小值函数图象的最高点为B,点A(1,3),动点M(m,m)①直接写出△ABM的面积,其面积是;②若以M为圆心的圆经过A,B两点,写出点M的坐标;③以②中的点M为圆心,以为半径作圆,在此圆上找一点P,使PA+PB的值最小,直接写出此最小值.28.在平面直角坐标系xOy中,对于任意三点A,B,C给出如下定义:如果正方形的任何一条边均与某条坐标轴平行,且A,B,C三点都在正方形的内部或边界上,那么称该正方形为点A,B,C的外延正方形,在点A,B,C所有的外延正方形中,面积最小的正方形称为点A,B,C的最佳外延正方形.例如,图1中的正方形A1B1C1D1,A2B2C2D2,A3B3CD3都是点A,B,C的外延正方形,正方形A3B3CD3是点A,B,C的最佳外延正方形.(1)如图1,点A(﹣1,0),B(2,4),C(0,t)(t为整数).①如果t=3,则点A,B,C的最佳外延正方形的面积是;②如果点A,B,C的最佳外延正方形的面积是25,且使点C在最佳外延正方形的一边上,请写出一个符合题意的t值;(2)如图3,已知点M(3,0),N(0,4),P(x,y)是抛物线y=x2﹣2x﹣3上一点,求点M,N,P的最佳外延正方形的面积的最小值以及点P的横坐标x 的取值范围;(3)如图4,已知点E(m,n)在函数y=(x>0)的图象上,且点D的坐标为(1,1),设点O,D,E的最佳外延正方形的边长为a,请直接写出a的取值范围.29.对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如,下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x﹣1,y=,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2﹣bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q的取值范围;(3)记函数y=x2﹣2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2.函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为.30.如图,点P(x,y1)与Q(x,y2)分别是两个函数图象C1与C2上的任一点.当a≤x≤b时,有﹣1≤y1﹣y2≤1成立,则称这两个函数在a≤x≤b上是“相邻函数”,否则称它们在a≤x≤b上是“非相邻函数”.例如,点P(x,y1)与Q (x,y2)分别是两个函数y=3x+1与y=2x﹣1图象上的任一点,当﹣3≤x≤﹣1时,y1﹣y2=(3x+1)﹣(2x﹣1)=x+2,通过构造函数y=x+2并研究它在﹣3≤x≤﹣1上的性质,得到该函数值的范围是﹣1≤y≤1,所以﹣1≤y1﹣y2≤1成立,因此这两个函数在﹣3≤x≤﹣1上是“相邻函数”.(1)判断函数y=3x+2与y=2x+1在﹣2≤x≤0上是否为“相邻函数”,并说明理由;(2)若函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,求a的取值范围;(3)若函数y=与y=﹣2x+4在1≤x≤2上是“相邻函数”,直接写出a的最大值与最小值.31.P是⊙O内一点,过点P作⊙O的任意一条弦AB,我们把PA•PB的值称为点P关于⊙O的“幂值”.(1)⊙O的半径为5,OP=3.①如图1,若点P恰为弦AB的中点,则点P关于⊙O的“幂值”为;②判断当弦AB的位置改变时,点P关于⊙O的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P关于⊙O的“幂值”的取值范围.(2)若⊙O的半径为r,OP=d,请参考(1)的思路,用含r、d的式子表示点P 关于⊙O的“幂值”或“幂值”的取值范围;(3)在平面直角坐标系xOy中,⊙O的半径为4,若在直线y=x+b上存在点P,使得点P关于⊙O的“幂值”为13,请写出b的取值范围.32.在平面直角坐标系xOy中,对于点P(x,y),以及两个无公共点的图形W1和W2,若在图形W1和W2上分别存在点M (x1,y1)和N (x2,y2),使得P是线段MN的中点,则称点M 和N被点P“关联”,并称点P为图形W1和W2的一个“中位点”,此时P,M,N三个点的坐标满足x=,y=(1)已知点A(0,1),B(4,1),C(3,﹣1),D(3,﹣2),连接AB,CD.①对于线段AB和线段CD,若点A和C被点P“关联”,则点P的坐标为;②线段AB和线段CD的一“中位点”是Q (2,﹣),求这两条线段上被点Q“关联”的两个点的坐标;(2)如图1,已知点R(﹣2,0)和抛物线W1:y=x2﹣2x,对于抛物线W1上的每一个点M,在抛物线W2上都存在点N,使得点N和M 被点R“关联”,请在图1 中画出符合条件的抛物线W2;(3)正方形EFGH的顶点分别是E(﹣4,1),F(﹣4,﹣1),G(﹣2,﹣1),H(﹣2,1),⊙T的圆心为T(3,0),半径为1.请在图2中画出由正方形EFGH 和⊙T的所有“中位点”组成的图形(若涉及平面中某个区域时可以用阴影表示),并直接写出该图形的面积.33.在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P 关于⊙C的限距点的定义如下:若P′为直线PC与⊙C的一个交点,满足r≤PP′≤2r,则称P′为点P关于⊙C的限距点,如图为点P及其关于⊙C的限距点P′的示意图.(1)当⊙O的半径为1时.①分别判断点M(3,4),N(,0),T(1,)关于⊙O的限距点是否存在?若存在,求其坐标;②点D的坐标为(2,0),DE,DF分别切⊙O于点E,点F,点P在△DEF的边上.若点P关于⊙O的限距点P′存在,求点P′的横坐标的取值范围;(2)保持(1)中D,E,F三点不变,点P在△DEF的边上沿E→F→D→E的方向运动,⊙C的圆心C的坐标为(1,0),半径为r,请从下面两个问题中任选一个作答.问题1问题2若点P关于⊙C的限距点P′存在,且P′随点P 的运动所形成的路径长为πr,则r的最小值为.若点P关于⊙C的限距点P′不存在,则r的取值范围为.34.阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C 上时,此题可解(如图2).(1)请你回答:AP的最大值是.(2)参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,请写出求AP+BP+CP的最小值长的解题思路.提示:要解决AP+BP+CP的最小值问题,可仿照题目给出的做法.把△ABP绕B 点逆时针旋转60,得到△A′BP′.①请画出旋转后的图形②请写出求AP+BP+CP的最小值的解题思路(结果可以不化简).35.对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若存在过点P的直线l交⊙C于异于点P的A,B两点,在P,A,B三点中,位于中间的点恰为以另外两点为端点的线段的中点时,则称点P为⊙C 的相邻点,直线l为⊙C关于点P的相邻线.(1)当⊙O的半径为1时,①分别判断在点D(,),E(0,﹣),F(4,0)中,是⊙O的相邻点有;②请从①中的答案中,任选一个相邻点,在图1中做出⊙O关于它的一条相邻线,并说明你的作图过程;③点P在直线y=﹣x+3上,若点P为⊙O的相邻点,求点P横坐标的取值范围;(2)⊙C的圆心在x轴上,半径为1,直线y=﹣与x轴,y轴分别交于点M,N,若线段MN上存在⊙C的相邻点P,直接写出圆心C的横坐标的取值范围.2018年05月16日139****3005的初中数学组卷参考答案与试题解析一.解答题(共35小题)1.在平面直角坐标系xOy中,对于线段MN的“三等分变换”,给出如下定义:如图1,点P,Q为线段MN的三等分点,即MP=PQ=QN,将线段PM以点P为旋转中心顺时针旋转90°得到PM′,将线段QN以点Q为旋转中心顺时针旋转90°得到QN′,则称线段MN进行了三等分变换,其中M′,N′记为点M,N三等分变换后的对应点.例如:如图2,线段MN,点M的坐标为(1,5),点N的坐标为(1,2),则点P的坐标为(1,4),点Q的坐标为(1,3),那么线段MN三等分变换后,可得:M′的坐标为(2,4),点N′的坐标为(0,3).(1)若点P的坐标为(2,0),点Q的坐标为(4,0),直接写出点M′与点N′的坐标;(2)若点Q的坐标是(0,﹣),点P在x轴正半轴上,点N′在第二象限.当线段PQ的长度为符合条件的最小整数时,求OP的长;(3)若点Q的坐标为(0,0),点M′的坐标为(﹣3,﹣3),直接写出点P与点N的坐标;(4)点P是以原点O为圆心,1为半径的圆上的一个定点,点P的坐标为(,﹣)当点N′在圆O内部或圆上时,求线段PQ的取值范围及PQ取最大值时点M′的坐标.【解答】解:(1)∵PQ=2,根据“三等分变换”的定义,可知M(2,2 ),N′(4,﹣2 ).(2)①当PQ=1时,OQ=在RT△OPQ中,如图1中,∴OP=OQ∴∠OQP=∠OPQ=45°∵∠PQN′=90°PQ=Q N′∴点N’在x轴负半轴上,不在第二象限∴PQ=1不符合题意.②当PQ=2时OP===,此时,点N′在第二象限符合题意.(3)如图2中,由图象可知,P(0,﹣3 ),N(0,3 ).(4)如图3中,过点P作PA⊥x轴于点A.。
新定义问题-中考数学难题突破训练
难题突破专题三 新定义问题所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近 年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力.解决“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其解决问题的思想方法;二是根据问题情境的变化,通过认真思考,合理进行思想方法的迁移.类型1 新法则、新运算型1 [2017·枣庄] 我们知道,任意一个正整数n 都可以进行这样的分解:n =p ×q (p ,q 是正整数,且p ≤q ).在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解.并规定:F (n )=p q.例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F (12)=34.(1)如果一个正整数m 是另外一个正整数n 的平方,我们称正整数m 是完全平方数,求证:对任意一个完全平方数m ,总有F (m )=1;(2)如果一个两位正整数t ,t =10x +y (1≤x ≤y ≤9,x ,y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”;(3)在(2)所得的“吉祥数”中,求F (t )的最大值. 例题分层分析(1)对任意一个完全平方数m ,设m =n 2(n 为正整数),找出m 的最佳分解为________,所以F (m )=________=________;(2)设交换t 的个位上的数与十位上的数得到的新数为t ′,则t ′=________,根据“吉祥数”的定义确定出x 与y 的关系式为________,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F (t )的最大值即可.解题方法点析此类问题在于读懂新定义,然后仿照范例进行运算,细心研读定义,细致观察范例是解题的关键. 类型2 新定义几何概念型2 [2017·金华] 如图Z 3-1,将△ABC 纸片沿中位线EH 折叠,使点A 的对称点D 落在BC 边上,再将纸片分别沿等腰△BED 和等腰△DHC 的底边上的高线EF ,HG 折叠,折叠后的三个三角形拼合形成一个矩形.类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.图Z 3-1(1)将▱ABCD 纸片按图Z 3-2①的方式折叠成一个叠合矩形AEFG ,则操作形成的折痕分别是线段________,________;S 矩形AEFG ∶S ▱ABCD =________.(2)▱ABCD 纸片还可以按图Z 3-2②的方式折叠成一个叠合矩形EFGH ,若EF =5,EH =12,求AD 的长.(3)如图Z 3-2③,四边形ABCD 纸片满足AD ∥BC ,AD <BC ,AB ⊥BC ,AB =8,CD =10.小明把该纸片折叠,得到叠合正方形....请你帮助画出叠合正方形的示意图,并求出AD ,BC 的长.图Z 3-2例题分层分析(1)观察图形直接得到操作形成的折痕,根据矩形和平行四边形的面积公式与折叠的轴对称性质可得S 矩形AEFG ∶S ▱ABCD=________;(2)由矩形的性质和勾股定理可求得FH =________,再由折叠的轴对称性质可知HD =________,FC =______,∠AHE =12______,∠CFG =12________,从而可得∠________=∠________,再证得△AEH ≌△CGF ,可得________,进而求得AD 的长;(3)根据叠合矩形定义,画出叠合正方形,然后再求AD ,BC 的长.解题方法点析解决此类问题的关键在于仔细研读几何新概念,将新的几何问题转化为已知的三角形、四边形或圆的问题,从而解决问题.对于几何新概念弄清楚条件和结论是至关重要的.专 题 训 练1.[2017·潍坊] 定义[x ]表示不超过实数x 的最大整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数y =[x ]的图象如图Z 3-3所示,则方程[x ]=12x 2的解为( )图Z 3-3A .0或 2B .0或2C .1或- 2D .2或- 22.[2017·莱芜] 对于实数a ,b ,定义符号min{a ,b },其意义为:当a ≥b 时,min{a ,b }=b :当a <b 时,min{a ,b }=a .例如min{2,-1}=-1.若关于x 的函数y =min{2x -1,-x +3},则该函数的最大值为( )A.23 B .1 C.43 D .533.[2017·成都] 在平面直角坐标系xOy 中,对于不在坐标轴上的任意一点P (x ,y ),我们把点P ′(1x ,1y)称为点P 的“倒影点”.直线y =-x +1上有两点A ,B ,它们的倒影点A ′,B ′均在反比例函数y =kx的图象上.若AB =2 2,则k =________.4.[2017·齐齐哈尔] 经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图Z 3-4,线段CD 是△ABC 的“和谐分割线”,△ACD 为等腰三角形,△CBD 和△ABC 相似,∠A =46°,则∠ACB 的度数为________.图Z 3-45.[2017·湖州] 对于任意实数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b =2a -b .例如:5⊗2=2×5-2=8,(-3)⊗4=2×(-3)-4=-10.(1)若3⊗x =-2011,求x 的值; (2)若x ⊗3<5,求x 的取值范围.6.[2017·义乌] 定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形. (1)如图Z 3-5①,等腰直角四边形ABCD 中,AB =BC ,∠ABC =90°. ①若AB =CD =1,AB ∥CD ,求对角线BD 的长. ②若AC ⊥BD ,求证:AD =CD .(2)如图Z 3-5②,在矩形ABCD 中,AB =5,BC =9,点P 是对角线BD 上一点,且BP =2PD ,过点P 作直线分别交边AD ,BC 于点E ,F ,使四边形ABFE 是等腰直角四边形.求AE 的长.图Z 3-57.[2017·宁波] 有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图Z 3-6①,在半对角四边形ABCD 中,∠B =12∠D ,∠C =12∠A ,求∠B 与∠C 的度数之和;(2)如图Z 3-6②,锐角三角形ABC 内接于⊙O ,若边AB 上存在一点D ,使得BD =BO ,∠OBA 的平分线交OA 于点E ,连结DE 并延长交AC 于点F ,∠AFE =2∠EAF ,求证:四边形DBCF 是半对角四边形;(3)如图Z 3-6③,在(2)的条件下,过点D 作DG ⊥OB 于点H ,交BC 于点G ,当DH =BG 时,求△BGH 与△ABC 的面积之比.图Z 3-6参考答案类型1 新法则、新运算型 例1 【例题分层分析】 (1)m =n ×n nn 1(2)10y +x y =x +4解:(1)证明:对任意一个完全平方数m , 设m =n 2(n 为正整数),∵|n -n |=0,∴n ×n 是m 的最佳分解,∴对任意一个完全平方数m ,总有F (m )=nn=1.(2)设交换t 的个位上的数与十位上的数得到的新数为t ′,则t ′=10y +x , ∵t 是“吉祥数”,∴t ′-t =(10y +x )-(10x +y )=9(y -x )=36, ∴y =x +4,∵1≤x ≤y ≤9,x ,y 为自然数,∴满足“吉祥数”的为15,26,37,48,59.(3)F (15)=35,F (26)=213,F (37)=137,F (48)=68=34,F (59)=159.∵34>35>213>137>159,∴所有“吉祥数”中,F (t )的最大值是34.类型2 新定义几何概念型 例2 【例题分层分析】 (1)1∶2(2)13 HN FN ∠AHF ∠CFH AHE CFG FC =AH 解:(1)AE ,GF ;1∶2.提示:由折叠的性质,得AD =2AG . ∵S 矩形AEFG =AE ·AG ,S ▱ABCD =AE ·AD , ∴S 矩形AEFG ∶S ▱ABCD =AE·AGAE·AD=1∶2.(2)∵四边形EFGH 是叠合矩形,∴∠FEH =90°, ∴FH =EF 2+EH 2=52+122=13.由折叠的性质可知,HD =HN ,FC =FN ,∠AHE =12∠AHF ,∠CFG =12∠CFH .∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∠A =∠C ,∴∠AHF =∠CFH ,∴∠AHE =∠CFG . ∵EH =FG ,∴△AEH ≌△CGF ,∴FC =AH , ∴AD =AH +HD =FC +HN =FN +HN =FH =13. (3)本题有以下两种基本折法,如图①,图②.①按图①的折法的解法:由折叠的性质可知,AD =BF ,BE =AE =4,CH =DH =5,FG =CG . ∵四边形EBGH 是叠合正方形,∴HG =BG =4, ∴CG =3,∴FG =CG =3,∴BF =BG -FG =1,BC =BG +CG =4+3=7, ∴AD =1,BC =7. ②按图②的折法的解法: 设AD =x .由折叠的性质可知,AE =EM =BE =4,MH =AD =x ,DN =HN ,HG =CG ,FC =FH . 由DN =HN ,HG =CG ,则GN =12CD =5.∵四边形EFGN 是叠合正方形, ∴EF =FG =GN =5,∴MF =BF =3, ∴FC =FH =x +3.∵∠B =∠EFG =∠CGF =90°,∴∠BEF +∠BFE =∠BFE +∠CFG =90°, ∴∠BEF =∠CFG ,∴△GFC ∽△BEF , ∴FG BE =FC EF ,即54=x +35,解得x =134, ∴AD =134,BC =BF +FC =3+134+3=374.专题训练1.A [解析] 由函数图象可知,当-2≤x <-1时,y =-2,即有[x ]=-2,此时方程无解;当-1≤x <0时,y =-1,即有[x ]=-1,此时方程无解;当0≤x <1时,y =0,即有[x ]=0,此时方程为0=12x 2,解得x =0;当1≤x<2时,y =1,即有[x ]=1,此时方程为1=12x 2,解得x =2或x =-2(不在x 的取值范围内,舍去).综上可知,方程[x ]=12x 2的解为0或 2.2.D [解析] 当2x -1≥-x +3时,x ≥43,y =min {2x -1,-x +3}=-x +3,最大值为53.当2x -1<-x +3时,x <43,y =min {2x -1,-x +3}=2x -1,y 的值都小于53.综上,该函数的最大值为53.3.-43 [解析] A ,B 两点在直线y =-x +1上,设A (a ,-a +1),B (b ,-b +1),∴AB 2=(a -b )2+(-a +1+b -1)2=2(a -b )2=(2 2)2,∴(a -b )2=4,∴a -b =±2.A ,B 两点的“倒影点”分别为A ′(1a ,11-a ),B ′(1b ,11-b).∵点A ′,B ′均在反比例函数y =k x 的图象上,∴1a ·11-a =k =1b ·11-b ,∴a (1-a )=b (1-b ),变形得(a -b )(1-a -b )=0,∵a -b =±2,∴1-a -b =0.由⎩⎪⎨⎪⎧a -b =2,1-a -b =0解得⎩⎪⎨⎪⎧a =32,b =-12,∴k =1a ·11-a =23×(-2)=-43;由⎩⎪⎨⎪⎧a -b =-2,1-a -b =0解得⎩⎪⎨⎪⎧a =-12,b =32,∴k =1a ·11-a =(-2)×23=-43.综上,k =-43.4.113°或92° [解析] ∵△CBD 和△ABC 相似, ∴∠BCD =∠A =46°.设∠ACB =x ,则∠ACD =x -46°.∵△ACD 是等腰三角形,又∠ADC >∠BCD ,∴∠ADC >∠A ,即AC ≠CD . ①若AC =AD ,则∠ACD =∠ADC =x -46°, ∵46°+x -46°+x -46°=180°, ∴x =113°.②若AD =CD ,则∠ACD =∠A , 即46°=x -46°, ∴x =92°.综上所述,∠ACB 的度数为113°或92°. 5.解:(1)根据题意,得2×3-x =-2011, 解这个方程,得x =2017. (2)根据题意,得2x -3<5, 解得x <4,即x 的取值范围是x <4.6.解:(1)①∵AB =CD =1且AB ∥CD ,∴四边形ABCD 是平行四边形, 又∵AB =BC ,∴四边形ABCD 是菱形. ∵∠ABC =90°,∴四边形ABCD 是正方形, ∴BD =AC =12+12= 2. ②证明:如图①中,连结AC ,BD . ∵AB =BC ,AC ⊥BD ,∴∠ABD =∠CBD , ∵BD =BD ,∴△ABD ≌△CBD ,∴AD =CD .(2)若EF ⊥BC ,则AE ≠EF ,BF ≠EF ,∴四边形ABFE 不表示等腰直角四边形,故不符合条件. 若EF 与BC 不垂直,①当AE =AB 时,如图②,此时四边形ABFE 是等腰直角四边形,∴AE =AB =5.②当BF =AB 时,如图③,此时四边形ABFE 是等腰直角四边形,∴BF =AB =5,∵DE ∥BF ,BP =2PD ,∴BF ∶DE =2∶1,∴DE =2.5,∴AE =9-2.5=6.5.综上所述,满足条件的AE 的长为5或6.5.7.解:(1)在半对角四边形ABCD 中,∠B =12∠D ,∠C =12∠A ,∵∠A +∠B +∠C +∠D =360°,∴3∠B +3∠C =360°,∴∠B +∠C =120°, 即∠B 与∠C 的度数之和为120°. (2)证明:在△BED 和△BEO 中, ⎩⎪⎨⎪⎧BD =BO ,∠EBD =∠EBO,BE =BE ,∴△BED ≌△BEO (SAS ), ∴∠BDE =∠BOE .又∵∠BCF =12∠BOE ,∴∠BCF =12∠BDE .如图,连结OC ,设∠EAF =α,则∠AFE =2α,∴∠EFC =180°-∠AFE =180°-2α. ∵OA =OC ,∴∠OAC =∠OCA =α, ∴∠AOC =180°-2α, ∴∠ABC =12∠AOC =12∠EFC ,∴四边形DBCF 是半对角四边形. (3)如图,作OM ⊥BC 交BC 于点M . ∵四边形DBCF 是半对角四边形,∴∠ABC +∠ACB =120°,∴∠BAC =60°,∴∠BOC =2∠BAC =120°. ∵OB =OC ,∴∠OBC =∠OCB =30°, ∴BC =2BM =3BO =3BD . ∵DG ⊥OB ,∴∠HGB =∠BAC =60°.∵∠DBG =∠CBA ,∴△DBG ∽△CBA , ∴△DBG的面积△ABC的面积=(BD BC )2=13. ∵DH =BG ,BG =2HG , ∴DG =3HG , ∴△BHG的面积△BDG的面积=13, ∴△BHG的面积△ABC的面积=19.。
2017广西中考数学第二轮新定义问题专项突破重难点题型
重难点题型( 二 ) 新定义问题1. (2015?永州)定义 [x]为不超过x的最大整数,如[3.6]=3,[0.6]=0,[- 3.6]=- 4.对于任意实数x,下列式子中错误的是(C)A. [x]= x(x为整数 ) B.0≤x- [x]< 1 C . [x+y] ≤[x]+[y] D. [n+ x]=n+[x](n为整数 )2. (2015?宜宾)在平面直角坐标系中,任意两点A(x1,y1),B(x2, y2),规定运算:①A?B=(x1+ x2,y1+ y2);②A?B=x1x2+y1y2;③当x1= x2且 y1= y2时,A= B.有以下四个命题:(1)若 A(1,2), B(2,-1),则A? B= (3,1),A ?B=0; (2)若A? B=B? C,则A=C;(3)若A?B=B?C,则A=C;(4)对任意点A,B,C,均有 (A? B)? C=A? (B? C)成立.其中正确命题的个数为 (C)A.1个B.2个C.3个D.4个3. (20 16?梅州)对于实数a、 b,定义一种新运算“? ”为: a? b =1a- b2,这里等式右边是实数运算.比方:1 ?3=11-32=-18.则方程x?(-2)=2x-4-1的解是 (B)A.x=4B.x= 5 C .x=6D.x=7 4. (2016?岳阳)对于实数a,b,我们定义符号max{a,b}的意义为当a≥b时,max{a, b}=a;当a<b时,max{a,b}=b;如:max{4,- 2}=4,max {3,3}=3,若关于x的函数为y= max {x+3,-x+1},则该函数的最小值是 (B)A.0B.2C.3D. 4 5. (2016? 湖州)定义:若点 P(a ,b)在函数y=1x的图象上,将以 a为二次项系数, b为一次项系数构造的二次函数y= ax2 + bx称为函数y=1x的一个“派生函数”.例如:点(2,12)在函数y = 1x的图象上,则函数y=2x2+12x称为函数y = 1x的一个“派生函数”.现给出以下两个命题:(1)存在函数y=1x的一个“ 派生函数”,其图象的对称轴在y轴的右边;(2)函数y= 1x的全部“派生函数”的图象都经过同一点.下列判断正确的选项是(C)A.命题(1)与命题(2)都是真命题B.命题(1)与命题 (2)都是假命题C.命题(1)是假命题,命题(2)是真命题D.命题 (1)是真命题,命题(2)是假命题6. (2016?乐山 )高斯函数[x],也称为取整函数,即[x]表示不超过x的最大整数.例如: [2.3]=2,[- 1.5]=- 2.则下列结论:①[ - 2.1]+ [1]=-2;②[x]+[-x]=0;③若 [x+1]=3,则x的取值范围是2≤x<3;④ 当- 1≤x<1时,[x+1]+ [-x+ 1]的值为0、 1、 2.此中正确的结论有①③(写出全部正确结论的序号).7. (2016?常德)平面直角坐标系中有两点M(a ,b),N (c, d),规定(a,b) ? (c, d)= (a +c,b+ d),则称点Q(a+c,b+ d)为M , N的“和点”.若以坐标原点O与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形”,现有点A(2,5), B(-1, 3),若以O,A,B,C四点为极点的四边形是“和点四边形”,则点C的坐标是(1, 8).8. (2016?株洲)已知点P是△ABC内一点,且它到三角形的三个极点距离之和最小,则P点叫△ABC 的费马点(Fermatpoint),已经证明:在三个内角均小于120°的△ABC中,当∠APB =∠APC =∠BPC =120°时,P就是△ABC 的费马点,若点P 是腰长为2的等腰直角三角形DEF 的费马点,则PD +PE +PF =3+1.9. (2016?兰州)对于一个矩形ABCD 及⊙M给出如下定义:在同一平面内,如果矩形 ABCD的四个顶点到⊙M上一点的距离相等,那么称这个矩形 ABCD 是⊙M的“伴侣矩形”.如图,在平面直角坐标系 xOy 中,直线l:y= 3x-3交x 轴于点M,⊙M的半径为2,矩形ABCD沿直线l 运动 (BD 在直线 l上), BD=2,AB∥y轴,当矩形ABCD 是⊙M的“伴侣矩形” 时,点 C的坐标为(3-12,- 332)或(3+ 32, 32).。
全国各地2017年中考数学分类解析专题59:新定义和跨学科问题
2017年全国中考数学试题分类解析汇编(159套63专题)专题59:新定义和跨学科问题一、选择题1. (2017浙江丽水、金华3分)如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是【】A.①B.②C.⑤D.⑥【答案】 A。
【考点】生活中的轴对称现象。
【分析】如图,根据入射线与水平线的夹角等于反射线与水平线的夹角,可求最后落入①球洞。
故A。
2. (2017福建漳州4分)在公式I=UR中,当电压U一定时,电流I与电阻R之间的函数关系可用图象大致表示为【】A. B.C.D.【答案】D。
【考点】跨学科问题,反比例函数的图象。
【分析】∵在公式I=UR中,当电压U一定时,电流I与电阻R之间的函数关系不反比例函数关系,且R为正数,∴选项D正确。
故选D。
3. (2017湖北随州4分)定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1、l2的距离分别为a、b,则称有序非实数对(a,b)是点M的“距离坐标”,根据上述定义,距离坐标为(2,3)的点的个数是【】A.2B.1C. 4D.3【答案】C。
【考点】新定义,点的坐标,点到直线的距离。
【分析】画出两条相交直线,到l1的距离为2的直线有2条,到l2的距离为3的直线有2条,看所画的这些直线的交点有几个即为所求的点的个数:如图所示,所求的点有4个。
故选C。
4. (2017湖南长沙3分)某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.图表示的是该电路中电流I与电阻R之间函数关系的图象,则用电阻R表示电流I的函数解析式为【】A.2I=RB.3I=RC.6I=RD.6I=R【答案】C。
【考点】跨学科问题,待定系数法,曲线上点的坐标与方程的关系。
【分析】设kI=R,那么点(3,2)满足这个函数解析式,∴k=3×2=6。
∴6I=R。
故选C。
中考专题复习之新定义题
2017年中考专题复习之——新定义题一.选择题共2小题1.连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图扇形、菱形、直角梯形、红十字图标中“直径”最小的是A.B.C. D.2.对平面上任意一点a,b,定义f,g两种变换:fa,b=a,﹣b.如f1,2=1,﹣2;ga,b=b,a.如g1,2=2,1.据此得gf5,﹣9=A.5,﹣9 B.﹣9,﹣5 C.5,9 D.9,5二.填空题共2小题3.我们把四边形两条对角线中点的连线段称为奇异中位线.现有两个全等三角形,边长分别为3cm,4cm,5cm.将这两个三角形相等的边重合拼成凸四边形,如果凸四边形的奇异中位线的长不为0,那么奇异中位线的长是cm.4.在△ABC中,P是AB上的动点P异于A,B,过点P的一条直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线.如图,∠A=36°,AB=AC,当点P在AC的垂直平分线上时,过点P的△ABC的相似线最多有条.三.解答题共16小题5.定义:对于实数a,符号a表示不大于a的最大整数.例如:=5,5=5,﹣π=﹣4.1如果a=﹣3,则a的取值范围为;2如果=4,求满足条件的所有正整数x.6.我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.1写出你所学过的特殊四边形中是勾股四边形的两种图形的名称, ;2如图,已知格点小正方形的顶点O0,0,A3,0,B0,4,请你画出以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB.7.我们定义:有一组对角相等而另一对角不相等的凸四边形叫做“等对角四边形”.已知:在“等对角四边形”ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4,求对角线AC的长.8.提出问题:1如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH于点O,求证:AE=DH;类比探究:2如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG 于点O,探究线段EF与HG的数量关系,并说明理由;综合运用:3在2问条件下,HF∥GE,如图3所示,已知BE=EC=2,EO=2FO,求图中阴影部分的面积.9.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.1请你在图1中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;若两种方法分得的三角形成3对全等三角形,则视为同一种2△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并直接写出x所有可能的值;3如图2,△ABC中,AC=2,BC=3,∠C=2∠B,请画出△ABC的三分线,并求出三分线的长.10.通过锐角三角比的学习,我们已经知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长比与角的大小之间可以相互转化.类似的我们可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对sad.如图在△ABC 中,AB=AC,顶角A的正对记作sadA,这时sadA=.我们容易知道一个角的大小与这个角的正对值也是互相唯一确定的.根据上述角的正对定义,解下列问题:1sad60°=;sad90°=.2对于0°<A<180°,∠A的正对值sadA的取值范围是.3试求sad36°的值.11.若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.1如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线;2如图2,在12×16的网格图上每个小正方形的边长为1有一个扇形BAC,点A.B.C均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;3四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.12.对x,y定义一种新运算T,规定:Tx,y=其中a、b均为非零常数,这里等式右边是通常的四则运算,例如:T0,1==b.1已知T1,﹣1=﹣,T4,2=1.①求a,b的值;②若关于m的不等式组恰好有5个整数解,求实数p的取值范围;2若Tx,y=Ty,x对任意实数x,y都成立这里Tx,y和Ty,x均有意义,则a,b 应满足怎样的关系式13.探究发现如图1,△ABC是等边三角形,∠AEF=60°,EF交等边三角形外角平分线CF所在的直线于点F,当点E是BC的中点时,有AE=EF成立;数学思考某数学兴趣小组在探究AE、EF的关系时,运用“从特殊到一般”的数学思想,通过验证得出如下结论:当点E是直线BC上B,C除外任意一点时其它条件不变,结论AE=EF仍然成立.假如你是该兴趣小组中的一员,请你从“点E是线段BC上的任意一点”;“点E是线段BC延长线上的任意一点”;“点E是线段BC反向延长线上的任意一点”三种情况中,任选一种情况,在备用图1中画出图形,并证明AE=EF.拓展应用当点E在线段BC的延长线上时,若CE=BC,在备用图2中画出图形,并运用上述结论求出S△ABC :S△AEF的值.14.如图1,P为∠MON平分线OC上一点,以P为顶点的∠APB两边分别与射线OM和ON交于A、B两点,如果∠APB在绕点P旋转时始终满足OAOB=OP2,我们就把∠APB叫做∠MON的关联角.1如图2,P为∠MON平分线OC上一点,过P作PB⊥ON于B,AP⊥OC于P,那么∠APB ∠MON的关联角填“是”或“不是”.2①如图3,如果∠MON=60°,OP=2,∠APB是∠MON的关联角,连接AB,求△AOB的面积和∠APB的度数;②如果∠MON=α°0°<α°<90°,OP=m,∠APB是∠MON的关联角,直接用含有α和m的代数式表示△AOB的面积.3如图4,点C是函数y=x>0图象上一个动点,过点C的直线CD分别交x 轴和y轴于A,B两点,且满足BC=2CA,直接写出∠AOB的关联角∠APB的顶点P的坐标.15.如图1,抛物线y=ax2+bx+ca>0的顶点为M,直线y=m与x轴平行,且与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M称为碟顶,点M到线段AB的距离称为碟高.1抛物线y=x2对应的碟宽为;抛物线y=4x2对应的碟宽为;抛物线y=ax 2a >0对应的碟宽为 ;抛物线y=ax ﹣22+3a >0对应的碟宽为 ;2抛物线y=ax 2﹣4ax ﹣a >0对应的碟宽为6,且在x 轴上,求a 的值; 3将抛物线y=a n x 2+b n x+c n a n >0的对应准蝶形记为F n n=1,2,3…,定义F 1,F 2,…,F n 为相似准蝶形,相应的碟宽之比即为相似比.若F n 与F n ﹣1的相似比为,且F n 的碟顶是F n ﹣1的碟宽的中点,现将2中求得的抛物线记为y 1,其对应的准蝶形记为F 1.①求抛物线y 2的表达式;②若F 1的碟高为h 1,F 2的碟高为h 2,…F n 的碟高为h n ,则h n = ,F n 的碟宽右端点横坐标为 ;F 1,F 2,…,F n 的碟宽右端点是否在一条直线上若是,直接写出该直线的表达式;若不是,请说明理由.16.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.1请用直尺和圆规画一个“好玩三角形”;2如图在Rt△ABC中,∠C=90°,tanA=,求证:△ABC是“好玩三角形”;3如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB﹣BC和AD﹣DC向终点C运动,记点P经过的路程为s.当β=45°时,若△APQ是“好玩三角形”,试求的值.17.对于平面直角坐标系xOy中的点P和⊙C,给出如下的定义:若⊙C上存在两个点A、B,使得∠APB=60°,则称P为⊙C的关联点.已知点D,,E0,﹣2,F2,0.1当⊙O的半径为1时,①在点D、E、F中,⊙O的关联点是.②过点F作直线l交y轴正半轴于点G,使∠GFO=30°,若直线l上的点Pm,n 是⊙O的关联点,求m的取值范围;2若线段EF上的所有点都是某个圆的关联点,求这个圆的半径r的取值范围.18.问题探究1如图①,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条件的一个等腰三角形△APD,并求出此时BP的长;2如图②,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为边AB、AC的中点,当AD=6时,BC边上存在一点Q,使∠EQF=90°,求此时BQ 的长;问题解决3有一山庄,它的平面图为如图③的五边形ABCDE,山庄保卫人员想在线段CD上选一点M安装监控装置,用来监视边AB,现只要使∠AMB大约为60°,就可以让监控装置的效果达到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,问在线段CD上是否存在点M,使∠AMB=60°若存在,请求出符合条件的DM的长,若不存在,请说明理由.19.某景区内的环形路是边长为800米的正方形ABCD,如图1和图2.现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车上、下车的时间忽略不计,两车速度均为200米/分.探究:设行驶寸间为t分.1当0≤t≤8时,分别写出1号车、2号车在左半环线离出口A的路程y1,y2米与t分的函数关系式,并求出当两车相距的路程是400米时t的值;2t为何值时,1号车第三次恰好经过景点C并直接写出这一段时间内它与2号车相遇过的次数.发现:如图2,游客甲在BC上的一点K不与点B,C重合处候车,准备乘车到出口A,设CK=x米.情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.比较哪种情况用时较多含候车时间决策:己知游客乙在DA上从D向出口A走去.步行的速度是50米/分.当行进到DA上一点P 不与点D,A重合时,刚好与2号车迎面相遇.1他发现,乘1号车会比乘2号车到出口A用时少,请你简要说明理由:2设PA=s0<s<800米.若他想尽快到达出口A,根据s的大小,在等候乘1号车还是步行这两种方式中.他该如何选择20.问题情境如图1,在△ABC中,AB=AC,点P为边BC上的任一点,过点P 作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.结论运用如图2,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;迁移拓展图3是一个航模的截面示意图.在四边形ABCD中,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,且ADCE=DEBC,AB=8,AD=3,BD=7;M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.2017年04月14日马赛的初中数学组卷参考答案与试题解析一.选择题共2小题1.2013常德连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图扇形、菱形、直角梯形、红十字图标中“直径”最小的是A.B.C. D.分析先找出每个图形的“直径”,再根据所学的定理求出其长度,最后进行比较即可.解答解:连接BC,则BC为这个几何图形的直径,过O作OM⊥BC于M,∵OB=OC,∴∠BOM=∠BOC=60°,∴∠OBM=30°,∵OB=2,OM⊥BC,∴OM=OB=1,由勾股定理得:BM=,∴由垂径定理得:BC=2;连接AC、BD,则BD为这个图形的直径,∵四边形ABCD是菱形,∴AC⊥BD,BD平分∠ABC,∵∠ABC=60°,∴∠ABO=30°,∴AO=AB=1,由勾股定理得:BO=,∴BD=2BO=2;连接BD,则BD为这个图形的直径,由勾股定理得:BD==2;连接BD,则BD为这个图形的直径,由勾股定理得:BD==,∵2>>2,∴选项A、B、D错误,选项C正确;故选C.点评本题考查了菱形性质,勾股定理,含30度角的直角三角形性质,扇形性质等知识点的应用,主要考查学生的理解能力和推理能力.2.2013乌鲁木齐对平面上任意一点a,b,定义f,g两种变换:fa,b=a,﹣b.如f1,2=1,﹣2;ga,b=b,a.如g1,2=2,1.据此得gf5,﹣9=A.5,﹣9 B.﹣9,﹣5 C.5,9 D.9,5分析根据两种变换的规则,先计算f5,﹣9=5,9,再计算g5,9即可.解答解:gf5,﹣9=g5,9=9,5.故选D.点评本题考查了点的坐标,理解新定义的变化规则是解题的关键.二.填空题共2小题3.2014杨浦区二模我们把四边形两条对角线中点的连线段称为奇异中位线.现有两个全等三角形,边长分别为3cm,4cm,5cm.将这两个三角形相等的边重合拼成凸四边形,如果凸四边形的奇异中位线的长不为0,那么奇异中位线的长是cm.分析首先利用勾股定理的逆定理得出边长分别为3cm,4cm,5cm的三角形是直角三角形,然后将这两个直角三角形相等的边重合拼成凸四边形,如果凸四边形的奇异中位线的长不为0,那么只有一种情况,画出图形,根据正弦函数的定义求出OA,由中点的定义得出AM,再根据OM=AM﹣OA即可求解.解答解:∵32+42=9+16=25=52,∴边长分别为3cm,4cm,5cm的三角形是直角三角形.如图,将两个全等的直角△ABC与△DEF的斜边AC与DF重合,拼成凸四边形ABCE,AC与BE交于点O,M为AC的中点.∵△ABC≌△DEF,∴AB=AE=3cm,∠BAC=∠EDF,∴BO=OE,AO⊥BE.在Rt△AOB中,∵∠AOB=90°,∴OA=ABcos∠BAO=3×=,∵AM=AC=,∴OM=AM﹣OA=﹣=.即奇异中位线的长是cm.故答案为.点评本题考查了勾股定理的逆定理,图形的拼组,等腰三角形的性质,锐角三角函数的定义,难度适中.根据题目要求画出符合题意的图形是解题的关键.4.2013淄博在△ABC中,P是AB上的动点P异于A,B,过点P的一条直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线.如图,∠A=36°,AB=AC,当点P在AC的垂直平分线上时,过点P的△ABC的相似线最多有 3 条.分析根据相似三角形的判定方法分别利用平行线以及垂直平分线的性质得出对应角相等即可得出.解答解:当PD∥BC时,△APD∽△ABC,当PE∥AC时,△BPE∽△BAC,连接PC,∵∠A=36°,AB=AC,点P在AC的垂直平分线上,∴AP=PC,∠ABC=∠ACB=72°,∴∠ACP=∠PAC=36°,∴∠PCB=36°,∴∠B=∠B,∠PCB=∠A,∴△CPB∽△ACB,故过点P的△ABC的相似线最多有3条.故答案为:3.点评此题主要考查了相似三角形的判定,正确掌握相似三角形的判定方法作出辅助线是解题关键.三.解答题共16小题5.定义:对于实数a,符号a表示不大于a的最大整数.例如:=5,5=5,﹣π=﹣4.1如果a=﹣3,则a的取值范围为﹣3≤a<﹣2 ;2如果=4,求满足条件的所有正整数x.分析1根据a=﹣3,得出﹣3≤a<﹣2,求出a的解即可;2根据题意得出4≤<5,求出x的取值范围,从而得出满足条件的所有正整数的解.解答解:1∵a=﹣3,∴a的取值范围是﹣3≤a<﹣2;2根据题意得:4≤<5,解得:7≤x<9.则满足条件的所有正整数为7,8.点评此题考查了一元一次不等式组的应用,解题的关键是根据题意列出不等式组,求出不等式的解.6.2010秋无锡校级期末我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.1写出你所学过的特殊四边形中是勾股四边形的两种图形的名称矩形, 正方形;2如图,已知格点小正方形的顶点O0,0,A3,0,B0,4,请你画出以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB.分析1根据定义和特殊四边形的性质,则有矩形或正方形或直角梯形;2根据要求和图形,分析知该四边形即为矩形,画图即可.解答解:1矩形、正方形;2根据要求和图形,则该四边形即为矩形,根据上述定义可知只要有一个角为直角的四边形就是勾股四边形,∵∠BOA为直角,∴点M在点3,4时四边形OAMB为勾股四边形,∴点M横纵坐标分别为3,4,由勾股定理知AM2+AO2=OM2∴OM=5∵由勾股定理得AB也为5,∴对角线相等,∴OA,OB为勾股边且对角线相等的勾股四边形OAMB,点M坐标还有3,4,4,3.点评此题考查了学生对新定义的理解以及特殊四边形的性质.7.2016厦门模拟我们定义:有一组对角相等而另一对角不相等的凸四边形叫做“等对角四边形”.已知:在“等对角四边形”ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4,求对角线AC的长.分析分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,先用含30°角的直角三角形的性质求出AE,得出DE,再用三角函数求出CD,由勾股定理求出AC;②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,则∠AMD=90°,四边形BNDM是矩形,先求出AM、DM,再由矩形的性质得出DN=BM=3,BN=DM=2,求出CN、BC,根据勾股定理求出AC即可.解答解:分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,如图1所示:∵∠ABC=90°,∠DAB=60°,AB=5,∴∠E=30°,∴AE=2AB=10,∴DE=AE﹣AD=10﹣4═6,∵∠EDC=90°,∠E=30°,∴CD=2,∴AC===2;②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,如图2所示:则∠AMD=90°,四边形BNDM是矩形,∵∠DAB=60°,∴∠ADM=30°,∴AM=AD=2,∴DM=2∴BM=AB﹣AM=5﹣2=3,∵四边形BNDM是矩形,∴DN=BM=3,BN=DM=2,∵∠BCD=60°,∴CN=,∴BC=CN+BN=3,∴AC==2;综上所述:AC的长为2或2.点评此题考查了新定义、四边形内角和定理、勾股定理、矩形的判定与性质等知识,需要进行分类讨论,通过作辅助线运用三角函数和勾股定理才能得出结果.8.2014衢州提出问题:1如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH于点O,求证:AE=DH;类比探究:2如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG 于点O,探究线段EF与HG的数量关系,并说明理由;综合运用:3在2问条件下,HF∥GE,如图3所示,已知BE=EC=2,EO=2FO,求图中阴影部分的面积.分析1由正方形的性质得AB=DA,∠ABE=90°=∠DAH.所以∠HAO+∠OAD=90°,又知∠ADO+∠OAD=90°,所以∠HAO=∠ADO,于是△ABE≌△DAH,可得AE=DH;2EF=GH.将FE平移到AM处,则AM∥EF,AM=EF,将GH平移到DN处,则DN∥GH,DN=GH.根据1的结论得AM=DN,所以EF=GH;3易得△AHF∽△CGE,所以,由EC=2得AF=1,过F作FP⊥BC 于P,根据勾股定理得EF=,因为FH∥EG,所以,根据2①知EF=GH,所以FO=HO,再求得三角形FOH与三角形EOG的面积相加即可.解答解:1∵四边形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAH.∴∠HAO+∠OAD=90°.∵AE⊥DH,∴∠ADO+∠OAD=90°.∴∠HAO=∠ADO.∴△ABE≌△DAHASA,∴AE=DH.2EF=GH.将FE平移到AM处,则AM∥EF,AM=EF.将GH平移到DN处,则DN∥GH,DN=GH.∵EF⊥GH,∴AM⊥DN,根据1的结论得AM=DN,所以EF=GH;3∵四边形ABCD是正方形,∴AB∥CD∴∠AHO=∠CGO∵FH∥EG∴∠FHO=∠EGO∴∠AHF=∠CGE∴△AHF∽△CGE∴∵EC=2∴AF=1过F作FP⊥BC于P,根据勾股定理得EF=,∵FH∥EG,∴根据2知EF=GH,∴FO=HO.∴,,∴阴影部分面积为.点评本题考查了三角形的综合知识.用到全等三角形的判定与性质、相似三角形的判定与性质、勾股定理等综合性较强,难度较大.9.2016秋宜兴市校级期中定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.1请你在图1中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;若两种方法分得的三角形成3对全等三角形,则视为同一种2△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并直接写出x所有可能的值;3如图2,△ABC中,AC=2,BC=3,∠C=2∠B,请画出△ABC的三分线,并求出三分线的长.分析145°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和°,再以°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形;2用量角器,直尺标准作30°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C在同一直线上,易得2种三角形ABC,根据图形易得x 的值;3因为∠C=2∠B,作∠C的角平分线,则可得第一个等腰三角形.而后借用圆规,以边长画弧,根据交点,寻找是否存在三分线,易得如图4图形为三分线.则可根据外角等于内角之和及腰相等等情况列出等量关系,解方程可知三分线的长.解答解:1如图所示:2如图所示:①当AD=AE时,∵2x+x=30°+30°,∴x=20°;②当AD=DE时,∵30°+30°+2x+x=180°,∴x=40°;3如图所示,CD、AE就是所求的三分线.设∠B=α,则∠DCB=∠DCA=∠EAC=α,∠ADE=∠AED=2α,此时△AEC∽△BDC,△ACD∽△ABC,设AE=AD=x,BD=CD=y,∵△AEC∽△BDC,∴x:y=2:3,①∵△ACD∽△ABC,∴2:x=x+y:2,②由①和②解得或舍去,∴AE=,CD=,即三分线的长分别为和.点评此题是相似形的综合题,主要考查了三角形内角、外角间的关系及等腰三角形知识,掌握相似三角形的判定与性质,根据成比例的线段联立方程解决问题.10.2014宝山区一模通过锐角三角比的学习,我们已经知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长比与角的大小之间可以相互转化.类似的我们可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对sad.如图在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadA=.我们容易知道一个角的大小与这个角的正对值也是互相唯一确定的.根据上述角的正对定义,解下列问题:1sad60°= 1 ;sad90°=.2对于0°<A<180°,∠A的正对值sadA的取值范围是0<sadA<2 .3试求sad36°的值.分析1根据等腰三角形的性质,求出底角的度数,判断出三角形为等边三角形,再根据正对的定义解答进而得出sad90°的值;2求出0度和180度时等腰三角形底和腰的比即可;3作出等腰△ABC,构造等腰三角形BCD,根据正对的定义解答.解答解:1根据正对定义,当顶角为60°时,等腰三角形底角为60°,则三角形为等边三角形,则sad60°==1.根据正对定义,当顶角为90°时,等腰三角形底角为45°,则三角形为等腰直角三角形,则sad90°==故答案为:1,.2当∠A接近0°时,sadA接近0,当∠A接近180°时,等腰三角形的底接近于腰的二倍,故sadA接近2.于是sadA的取值范围是0<sadA<2.故答案为:0<sadA<2.3如图所示:已知:∠A=36°,AB=AC,BC=BD,∴∠A=∠CBD=36°,∠ABC=∠C=72°,∴△BCD∽△ABC,∴=,∴=,解得:BC=CD,∴sad36°==.点评本题考查了解直角三角形:利用三角函数的定义和相似三角形的判定与性质,根据题意得出BC与CD的关系是解题关键.11.2013宁波若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.1如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线;2如图2,在12×16的网格图上每个小正方形的边长为1有一个扇形BAC,点A.B.C均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;3四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.分析1要证明BD是四边形ABCD的和谐线,只需要证明△ABD和△BDC是等腰三角形就可以;2根据扇形的性质弧上的点到顶点的距离相等,只要D在中点时构成的四边形ABDC就是和谐四边形;连接BC,在△BAC外作一个以AC为腰的等腰三角形ACD,构成的四边形ABCD就是和谐四边形,3由AC是四边形ABCD的和谐线,可以得出△ACD是等腰三角形,从图4,图5,图6三种情况运用等边三角形的性质,正方形的性质和30°的直角三角形性质就可以求出∠BCD的度数.解答解:1∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADB=∠DBC.∵∠BAD=120°,∴∠ABC=60°.∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠ABD=∠ADB,∴△ADB是等腰三角形.在△BCD中,∠C=75°,∠DBC=30°,∴∠BDC=∠C=75°,∴△BCD为等腰三角形,∴BD是梯形ABCD的和谐线;2由题意作图为:图2,图33∵AC是四边形ABCD的和谐线,∴△ACD是等腰三角形.∵AB=AD=BC,如图4,当AD=AC时,∴AB=AC=BC,∠ACD=∠ADC∴△ABC是正三角形,∴∠BAC=∠BCA=60°.∵∠BAD=90°,∴∠CAD=30°,∴∠ACD=∠ADC=75°,∴∠BCD=60°+75°=135°.如图5,当AD=CD时,∴AB=AD=BC=CD.∵∠BAD=90°,∴四边形ABCD是正方形,∴∠BCD=90°如图6,当AC=CD时,过点C作CE⊥AD于E,过点B作BF⊥CE于F,∵AC=CD.CE⊥AD,∴AE=AD,∠ACE=∠DCE.∵∠BAD=∠AEF=∠BFE=90°,∴四边形ABFE是矩形.∴BF=AE.∵AB=AD=BC,∴BF=BC,∴∠BCF=30°.∵AB=BC,∴∠ACB=∠BAC.∵AB∥CE,∴∠BAC=∠ACE,∴∠ACB=∠ACE=∠BCF=15°,∴∠BCD=15°×3=45°.点评本题是一道四边形的综合试题,考查了和谐四边形的性质的运用,和谐四边形的判定,等边三角形的性质的运用,正方形的性质的运用,30°的直角三角形的性质的运用.解答如图6这种情况容易忽略,解答时合理运用分类讨论思想是关键.12.对x,y定义一种新运算T,规定:Tx,y=其中a、b均为非零常数,这里等式右边是通常的四则运算,例如:T0,1==b.1已知T1,﹣1=﹣,T4,2=1.①求a,b的值;②若关于m的不等式组恰好有5个整数解,求实数p的取值范围;2若Tx,y=Ty,x对任意实数x,y都成立这里Tx,y和Ty,x均有意义,则a,b应满足怎样的关系式分析1①已知两对值代入T中计算求出a与b的值;②根据题中新定义化简已知不等式,根据不等式组恰好有5个整数解,求出p的范围即可;2由Tx,y=Ty,x列出关系式,整理后即可确定出a与b的关系式.解答解:1①根据题意得:T1,﹣1==﹣,即a﹣b=﹣1,①T=4,2==1,即2a+b=7,②联立①②,解得:a=2,b=3;②根据题意得:,由①得:m≥﹣;由②得:m<,∴不等式组的解集为﹣≤m<,∵不等式组恰好有5个整数解,即m=0,1,2,3,4.∴4<≤5,解得:﹣≤p<﹣11;2由Tx,y=Ty,x,得到=,整理得:x2﹣y22b﹣a=0,∵Tx,y=Ty,x对任意实数x,y都成立,∴2b﹣a=0,即a=2b.点评此题考查了分式的混合运算,解二元一次方程组,以及一元一次不等式组的整数解,弄清题中的新定义是解本题的关键.13.2014东营探究发现如图1,△ABC是等边三角形,∠AEF=60°,EF交等边三角形外角平分线CF所在的直线于点F,当点E是BC的中点时,有AE=EF 成立;数学思考某数学兴趣小组在探究AE、EF的关系时,运用“从特殊到一般”的数学思想,通过验证得出如下结论:当点E是直线BC上B,C除外任意一点时其它条件不变,结论AE=EF仍然成立.假如你是该兴趣小组中的一员,请你从“点E是线段BC上的任意一点”;“点E是线段BC延长线上的任意一点”;“点E是线段BC反向延长线上的任意一点”三种情况中,任选一种情况,在备用图1中画出图形,并证明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新定义问题【专题点拨】新定义运算、新概念问题一般是介绍新定义、新概念,然后利用新定义、新概念解题,其解题步骤一般都可分为以下几步:1. 阅读定义或概念,并理解;2. 总结信息,建立数模;3. 解决数模,回顾检查.“新概念”试题,其设计新颖,构思独特,思维容量大,既能考查学生的阅读、分析、推理、概括等能力,又能考查学生知识迁移的能力和数学素养,同时还兼具了区分选拔的功能.【解题策略】具体分析新颖问题→弄清问题题意→向已知知识点转化→利用相关联知识查验→转化问题思路解决【典例解析】类型一:规律题型中的新定义例题1:(2015?永州,第10 题3 分)定义[x] 为不超过x 的最大整数,如[3.6]=3 ,[0.6]=0 ,[ ﹣3.6]= ﹣4.对于任意实数x,下列式子中错误的是()A.[x]=x (x 为整数)B .0≤x﹣[x] <1C.[x+y] ≤[x]+[y] D.[n+x]=n+[x] (n为整数)【解析】:根据“定义[x] 为不超过x 的最大整数”进行计算【解答】:解:A、∵ [x] 为不超过x 的最大整数,∴当x 是整数时,[x]=x ,成立;B、∵ [x] 为不超过x 的最大整数,∴ 0≤x﹣[x] < 1,成立;C、例如,[ ﹣5.4 ﹣3.2]=[ ﹣8.6]= ﹣9,[ ﹣5.4]+[ ﹣3.2]= ﹣6+(﹣4)=﹣10,∵﹣9> ﹣10,∴[ ﹣5.4 ﹣3.2] >[ ﹣5.4]+[ ﹣3.2] ,∴ [x+y] ≤[x]+[y] 不成立,D、[n+x]=n+[x] (n 为整数),成立;故选:C.【点评】本题考查了一元一次不等式组的应用,解决本题的关键是理解新定义.新定义解题是近几年中考常考的题型.变式训练1:(2015?山东潍坊,第12 题3 分)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C (3,1).规定“把正方形ABCD先沿x 轴翻折,再向左平移1 个单位”为一次变换.如此这样,连续经过2014 次变换后,正方形ABCD的对角线交点M的坐标变为()A.( —2012,2) B .(一2012,一2)C. ( —2013, —2)D. ( —2013,2)类型运算题型中的新定义例题2:(2016·四川宜宾)规定:log a b(a> 0,a≠ 1,b>0)表示a,b 之间的一种运算.现有如下的运算法则:log n a n=n.log N M= ( a> 0,a≠ 1,N> 0,N≠ 1,NM> 0 ).例如:log 223=3,log 25= ,则log 1001000=解析】实数的运算.先根据log N M= (a> 0,a≠ 1,N>0,N≠ 1,M> 0)将所求式子化成以10 为底的对数形式,再利用公式进行计算.【解答】解:log 1001000= = = .故答案为:.变式训练2:(2016 四川省乐山市第16 题)在直角坐标系xOy 中,对于点P(x,y)和Q(x,y′),给出如下定义:若y y(x 0),则称点Q为点P的“可控变点”.y(x 0)例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)若点(﹣1,﹣2)是一次函数y x 3 图象上点M的“可控变点”,则点M的坐标为;解析】考点:黄金分割的识别解答】:由作图方法可知DF= 5 CF,所以CG=( 5 1)CF ,且GH=CD=2C,F从而得出黄金矩形径画弧,交BC的延长线与点A.矩形ABFE .矩形EFCDC.矩形EFGH .矩形DCGHCG=( 5 1)CF , GH=2CF ∴ CG ( 5 1)CF 5 1 ∴矩形 DCGH 是黄金矩形。
GH 2CF 2变式训练 3:(2014?山东济南,第 14 题,3 分)现定义一种变换:对于一个由有限个数 组成的序列 S 0,将其中的每个数换成该数在 S 0 中出现的次数,可得到一个新序列 S 1,例如序 列 S 0:(4,2,3,4,2),通过变换可生成新序列 S 1:(2,2,1, 2,2),若 S 0可以为任意序 列,则下面的序列可作为 S 1 的是()A .(1,2,1,2,2)B .(2,2,2,3,3)C .(1,1,2,2,3)D .(1,2,1,1,2) 类型四: 开放题型中的新定义例题 4: (2016 山西省第 19 题) (本题 7 分)请阅读下列材料,并完成相应的任务: 阿基米德折弦定理阿基米德( Archimedes ,公元前 287~公元 212 年,古希腊)是有史以来最伟大的数学家 之一.他与牛顿、高斯并称为三大数子.阿拉伯 Al-Biruni ( 973 年 ~1050 年)的译文中保存了阿基米德折弦定理的内容,苏联在 1964 年根据 Al-Biruni 译本出版了俄文版《阿基米德全集》 ,第一题就是阿基米德的折弦定 理.阿基米德折弦定理 :如图 1,AB 和 BC 是 O 的两条弦(即折线 ABC 是圆的一条折弦) , BC>AB ,M 是 ABC 的中点,则从 M 向 BC 所作垂线的垂足 D 是折弦 ABC 的中点,即 CD=AB+B .D下面是运用“截长法”证明 CD=AB+BD 的部分证明过程.证明:如图 2,在 CB 上截取 CG=AB ,连接 MA ,MB ,MC 和 MG .∵ M 是 ABC 的中点, 任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图(3),已知等边△ ABC 内接于 O ,AB=2,D 为 O 上一点, ABD 45 , AE⊥BD与点E,则△ BDC的长是.【答案】(1)、证明过程见解析;(2)、2+2 2【解析】考查了圆的证明。
(1)已截取CG=AB ∴只需证明BD=DG 且MD⊥ BC,所以需证明MB=MG故证明△ MBA≌△ MGC即可(2)AB=2,利用三角函数可得BE= 2 由阿基米德折弦定理可得BE=DE+DC 则△BDC周长=BC+CD+BD=BC+DC+DE+BE=BC+(DC+DE)+BE=BC+BE+BE=BC+2BE然后代入计算可得答案【解答】:(1)证明:又∵ A C ,∴ △MBA≌△ MGC.∴ MB=M.G又∵ MD⊥BC,∵ BD=GD.∴ CD=CG+GD=AB+.BD(2) 、2 2 2变式训练4:(2015?浙江嘉兴,第24 题14 分)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”(1)概念理解如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形” . 请写出你添加的一个条件.(2)问题探究①小红猜想:对角线互相平分的“等邻边四边形”是菱形. 她的猜想正确吗?请说明理由。
②如图2,小红画了一个Rt△ ABC,其中∠ ABC=90°,AB=2,BC=1,并将Rt△ABC 沿∠ ABC的平分线BB'方向平移得到△ A'B'C',连结AA',BC'. 小红要是平移后的四边形ABC'A'是“等邻边四边形”,应平移多少距离(即线段BB'的长)?(3)应用拓展如图3,“等邻边四边形” ABCD中,AB=AD,∠ BAD+∠ BCD==90°,AC,BD为对角线,AC= AB.试探究BC,CD,BD的数量关系类型五:阅读材料题型中的新定义例题5:(2016·浙江省湖州市·3 分)定义:若点P(a,b)在函数y= 的图象上,将以a 为二次项系数,b 为一次项系数构造的二次函数y=ax2+bx 称为函数y= 的一个“派生函数”.例如:点(2,)在函数y= 的图象上,则函数生函数”.现给出以下两个命题:(1)存在函数y= 的一个“派生函数”,其图象的对称轴在y 轴的右侧(2)函数y= 的所有“派生函数”,的图象都进过同一点,下列判断正确的是()A.命题(1)与命题(2)都是真命题2y=2x2称为函数y= 的一个“派B.命题(1)与命题(2)都是假命题C.命题(1 )是假命题,命题(2 )是真命题D.命题(1 )是真命题,命题(2 )是假命题【解析】命题与定理.(1)根据二次函数y=ax 2+bx 的性质a、b 同号对称轴在y 轴左侧,a、b异号对称轴在y 轴右侧即可判断.(2)根据“派生函数”y =ax2+bx,x=0 时,y=0,经过原点,不能得出结论.【解答】解:(1)∵P(a,b)在y= 上,∴a和b 同号,所以对称轴在y 轴左侧,∴存在函数y= 的一个“派生函数”,其图象的对称轴在y 轴的右侧是假命题.(2)∵函数y= 的所有“派生函数”为y=ax2+bx,∴ x=0 时,y=0,∴所有“派生函数”为y=ax2+bx 经过原点,∴函数y= 的所有“派生函数”,的图象都进过同一点,是真命题.故选C.变式训练5:(2016·重庆市A卷· 10分)我们知道,任意一个正整数n 都可以进行这样的分解:n=p×q(p,q 是正整数,且p≤q),在n 的所有这种分解中,如果p,q 两因数之差的绝对值最小,我们就称p×q是n 的最佳分解.并规定:F(n)= .例如12 可以分解成1×12,2×6 或3×4,因为12﹣1>6﹣2>4﹣3,所有3×4是12 的最佳分解,所以F(12)= .(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t ,t=10x+y (1≤x≤y≤9,x,y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18 ,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”中F(t )的最大值.【能力检测】1.(2015?甘肃天水,第10 题,4 分)定义运算:a?b=a(1﹣b).下面给出了关于这种运算的几种结论:① 2?(﹣2)=6,②a?b=b?a,③若a+b=0,则(a?a)+(b?b)=2ab,④若a?b=0,则a=0 或b=1,其中结论正确的序号是()A .①④ B.①③ C.②③④ D .①②④2.(2013 浙江台州,16,5 分)任何实数a,可用a 表示不超过a的最大整数,如4 =4,3 =1,现对72 进行如下操作:72 第1次72 =8 第2次8 =2 第3次2 =1,这样对72只需进行3 次操作后变为1,类似地,①对81 只需进行次操作后变为1;②只需进行3 次操作后变为1 的所有正整数中,最大的是.3.(2016·重庆市B卷· 10 分)我们知道,任意一个正整数n 都可以进行这样的分解:n=p×q (p,q 是正整数,且p≤q),在n 的所有这种分解中,如果p,q 两因数之差的绝对值最小,我们就称p×q是n 的最佳分解.并规定:F(n)= .例如12 可以分解成1×12,2×6 或3×4,因为12﹣1>6﹣2>4﹣3,所有3×4是12 的最佳分解,所以F(12)= .(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a 是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t ,t=10x+y (1≤x≤y≤9,x,y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18 ,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”中F(t )的最大值.4.(2015?江苏盐城,第27 题12 分)知识迁移我们知道,函数y=a(x﹣m)2+n(a≠0,m> 0,n>0)的图象是由二次函数y=ax2的图象向右平移m个单位,再向上平移n 个单位得到;类似地,函数y= +n(k≠0,m> 0,n >0)的图象是由反比例函数y=的图象向右平移m个单位,再向上平移n 个单位得到,其对称中心坐标为(m,n).理解应用函数y= +1 的图象可由函数y=的图象向右平移个单位,再向上平移个单位得到,其对称中心坐标为.灵活应用如图,在平面直角坐标系xOy中,请根据所给的y= 的图象画出函数y= ﹣2 的图象,并根据该图象指出,当x 在什么范围内变化时,y≥﹣1?实际应用某老师对一位学生的学习情况进行跟踪研究,假设刚学完新知识时的记忆存留量为1,新知识学习后经过的时间为x,发现该生的记忆存留量随x 变化的函数关系为y1= ;若在x=t(t≥4)时进行第一次复习,发现他复习后的记忆存留量是复习前的 2 倍(复习的时间忽略不计),且复习后的记忆存留量随x 变化的函数关系为y2= ,如果记忆存留量为时是复习的“最佳时机点”,且他第一次复习是在“最佳时机点”进行的,那么当x 为何值时,是他第二次复习的“最佳时机点”?5.(2014?吉林,第26 题10 分)如图①,直线l :y=mx+n(m>0,n< 0)与x,y 轴分别相交于A,B两点,将△ AOB绕点O逆时针旋转90°,得到△ COD,过点A,B,D的抛物线P叫做l 的关联抛物线,而l 叫做P 的关联直线.(1)若l :y=﹣2x+2,则P 表示的函数解析式为;若P:y=﹣x 2﹣3x+4,则l 表示的函数解析式为(2)求P的对称轴(用含m,n 的代数式表示);(3)如图②,若l :y=﹣2x+4,P 的对称轴与CD相交于点E,点F在l 上,点Q在P 的对称轴上.当以点C,E,Q,F 为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;(4)如图③,若l :y=mx﹣4m,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM= ,直接写出l ,P 表示的函数解析式.参考答案】变式训练1:(2015?山东潍坊,第12 题3 分)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C (3,1).规定“把正方形ABCD先沿x 轴翻折,再向左平移1 个单位”为一次变换.如此这样,连续经过2014 次变换后,正方形ABCD的对角线交点M的坐标变为()A.(—2012,2) B .(一2012,一2)C. (—2013, —2)D. (—2013,2)【解答】:∵正方形ABCD,点A(1 ,3)、B(1,1)、C(3,1).∴ M的坐标变为(2,2)∴根据题意得:第1 次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2 次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3 次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第2014 次变换后的点M的对应点的为坐标为(2-2014,2 ),即(-2012 ,2 )故答案为A.变式训练2:(2016 四川省乐山市第16 题)在直角坐标系xOy 中,对于点P(x,y)和Q(x,y′),y(x 0)给出如下定义:若y ,则称点Q为点P 的“可控变点”.y(x 0)例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)若点(﹣1,﹣2)是一次函数y x 3 图象上点M的“可控变点”,则点M的坐标为;(2)若点P在函数y x2 16 (5 x a )的图象上,其“可控变点”Q 的纵坐标y′的取值范围是16 y 16 ,则实数a 的取值范围是.【答案】(1)(﹣1,2);(2)0≤a≤ 4 2 .解析】考查的考点: 1.二次函数图象上点的坐标特征; 2.一次函数图象上点的坐标特征; 3.新定义.解答】( 1)根据“可控变点”的定义可知点M 的坐标为(﹣ 1,2);2 ) 依 题 意 , yx 216 图 象 上 的 点 P 的 “ 可 控 变 点 ” 必 在 函 数16 x 216或16 x 216,∴ x=0 或 x=4 2 ,当 y ′=﹣16 时, 16x 216 或16 x 2 16 ,∴x= 4 2 或 x=0,∴ a 的取值范围是 0≤a ≤4 2 .故答案为:( 1)(﹣ 1,2);( 2) 0≤ a ≤ 4 2 .变式训练 3:(2014?山东济南,第 14题,3 分)现定义一种变换:对于一个由有限个数 组成的序列 S 0,将其中的每个数换成该数在S 0 中出现的次数,可得到一个新序列 S 1,例如序列 S 0:(4,2,3,4,2),通过变换可生成新序列 S 1:(2,2,1, 2,2),若 S 0可以为任意序 列,则下面的序列可作为 S 1 的是()A .(1,2,1,2,2)B .(2,2,2,3,3)C .(1,1,2,2,3)D .(1,2,1,1,2)解答】:A 、∵ 2有 3个,∴不可以作为 S 1,故选项错误;2x 2 16 (x 0)2x 216 ( 5 x 0)的图象上, 如图所示,16 y 16,当 y ′=16 时 ,B 、∵2 有 3 个,∴不可以作为 S 1,故选项错误;C 、3只有 1 个,∴不可以作为 S 1,故选项错误 D 、符合定义的一种变换,故选项正确. 故选: D .变式训练 4:(2015?浙江嘉兴,第 24 题 14 分)类比等腰三角形的定义,我们定义:有 一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解如图 1,在四边形 ABCD 中,添加一个条件使得四边形 ABCD 是“等邻边四边形” . 请写出 你添加的一个条件 .(2)问题探究①小红猜想: 对角线互相平分的“等邻边四边形”是菱形 . 她的猜想正确吗?请说明理由。