电路分析第一章1-4

合集下载

电路分析基础第1章

电路分析基础第1章

手电筒电路:
干 电 池
导线
二、集总假设、电路元件 1. 集总假设:
J不考虑电路中电场与磁场的相互作用; J不考虑电磁波的传播现象; J实际 电路的 尺寸远小于最 高 工作 频 率所对应 的 波
长 时, 可 将它 所 反映 的 物 理 现象 分 别进行 研究, 即 用三种基本元件表示其三种物理现象;
目 录
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第十一章 集总电路中电压、电流的约束关系 网孔分析和节点分析 叠加方法和网络函数 分解方法和单口网络 电容元件和电感元件 一阶电路 二阶电路 阻抗与导纳 耦合电感和理想变压器
第一章 集总电路中的电压、电流约束关系
1-1 电路及集总电路模型 1-2 电路变量,电压,电流及功率 1-3 基尔霍夫定律 1-4 电阻元件 1-5 电压源 1-6 电流源 1-7 受控源 1-8 分压电路,分流电路 1-9 两类约束,支路电压法和支路电流法
掌握基本概念、基本理论、基本方法。
集总电路: 由电 阻 、电容、电感等元件组成的
电路。(电阻电路、动态电路)
集总参数电路:当实际电路的尺寸远小于使用时
其最高工作频率所对应的波长时,可以用“集总参数 元件”来构成实际部、器件的模型。每一种元件只反 映一种基本电磁现象,且可由数学方法加以定义。
例如,无线电调频接收机,若所接收的信号频率为100MHz, 对应波长λ=c/f = 3m,连接接收天线与接收机之间的传输线 即便只有1m长,也不能作为集总电路来处理。 又如,我国电力用电频率为50Hz,对应的波长为6×106m,对 以此为工作频率的用电设备来说,其尺寸远小于这一波长,可 以按集总电路处理,而对于远距离输电线来说,就不能按集总 电路来处理。

电路分析基础第一章 电路模型和电路定律

电路分析基础第一章  电路模型和电路定律

+

+

+
实际方向
实际方向
+
U >0
U<0
上页
下页
电压参考方向的两种表示方式
(1) 用正负极性表示
+
(2) 用双下标表示
U
A
UAB
B
UAB =UA- UB= -UBA
上页 下页
3. 关联参考方向 元件或支路的u,i 采用相同的参考方向称之为关联 采用相同的参考方向称之为 参考方向,即电流从电压的“+”极流入,从“-” 极流出该元件。反之,称为非关联参考方向。 极流出该元件
P6吸 = U 6 I 3 = (−3) × (−1) = 3W
上页 下页

对一完整的电路,发出的功率=吸收的功率
3. 电能(W ,w)
在电压、电流一致参考方向下,在t0到t的时间内 该部分电路吸收的能量为
w(t0 , t ) = ∫ p (τ ) dτ = ∫ u (τ )i (τ ) dτ
t0 t0
电源 Sourse
灯 Lamp
RS US 电路模型
R
Circuit Models 干电池 Battery
上 页 下 页
电路理论中研究的是 理想电路元件构成的电路(模型)。
电路模型,不仅能够反映实际电路及 其器件的基本物理规律,而且能够对 其进行数学描述。这就是电路理论把 电路模型作为分析研究对象的实质所 在。
干电池 Battery 电路理论中,“电路”与“网络”这两个术语可通用。“网络” 的含义较为广泛,可引申至非电情况。
例:手电筒电路
开关 灯泡
10BASE-T wall plate

《电路分析基础》第一章~第四章练习题

《电路分析基础》第一章~第四章练习题
填空题参考答案:
1、电路;2、理想器件;3、电路模型;4、电路模型;5、集总参数元件;6、几何尺寸;7、用来描述电路性能;8、i u q ψ;9、正电荷;10、参考方向;11、电位差;12、电流参考方向与电压降的选择一致;13、P(t)=dW(t)/ dt;14、吸收功率产生功率;15、能量传输;16、任意选取;17、任意选取;18、一条支路;19、支路电压;20、支路电流;21、节点;22、回路;23、网孔;24、网络;25、拓扑约束;26、元件约束;27、拓扑约束元件约束;28代数和;29、支路电流;30、电压降;31、路径;32、线性;33、原点;34、电导;35、线性电阻非线性电阻;36、P=UI;37电源;38、外电路;39、外电路;40、串联;41、并联;42、分压;43、分流;44、控制受控;45、控制量;46、n-1 b-n+1;47、线性电路;48、线性含源;49、完备性独立性;50、假设;51、网孔分析法;52、KVL;53、独立节点;54、单口网络;55、端口电压与电流的伏安关系等效电路;56、外接电压源外接电流源;57、外接电路;58、非线性电路;59、伏安特性曲线;60、网络内部;61、理想电压源;62、理想电流源;63、一个理想电压源uS;64、一个理想电流源iS;65、大小相等且极性一致;66、大小相等且方向一致;67、线性含源单口网络;68、uOC/iSC;69、外加电源法开路短路法;70、负载RL应与戴维南等效
三、计算分析题
1、电路如图1所示,已知us 12V,试求u2和等效电阻Rin。
2、电路如图2所示,试求电流i和电压u。
3、电路如图3所示,试用叠加定理求电压U和电流I。
4、电路如图4所示,试用叠加定理求电压U。
5、电路如图5所示,试用叠加定理求电压U和电流I。

《电路分析基础》第一章:集总电路中电压(流)的约束关系

《电路分析基础》第一章:集总电路中电压(流)的约束关系

信息学院电子系
10
(3). 功率
中¾ 定义:电路中能量转换的速率 p(t) = dw = u(t)i(t) (关联参考方向) 国dt SI单位:瓦[特](W)
能量传 输方向
海 p(t)>0,吸收功率,功率的实际方向与参考方向一致 洋 p(t)<0,产生功率,功率的实际方向与参考方向相反
大 ¾ 在 t0 到 t 的时刻内所吸收的能量为:
¾ 分类
大 线性电阻与非线性电阻 学 时变电阻与非时变电阻
特性曲线
信息学院电子系
21
(1). 线性电阻元件
¾两端的电压与电流服从欧姆定律
中 形式一: u(t)=Ri(t)
(关联参考方向)
• R 称为电阻,其 SI单位为欧[姆](Ω)
国• 对于非关联参考方向, u(t)=-Ri(t)
• 欧姆定律体现电阻对电流呈现阻力的本质
¾ 受控源的功率根据受控支路计算 p(t)= u2(t) i2(t)
信息学院电子系
29
例 求受控源的功率
中a
I2
国 I3
海洋大学 思路: P=ui;分析电路构成;依据为KCL、KVL和VCR
信息学院电子系
30
If
If
+
中ω
_ RIf
国海洋大学 CCVS 直流发电机
μ = 1+ R2 R1
VCVS 由运放构成比例器
信息学院电子系
4
1.2 电路变量 电流、电压及功率
中电路的特性是由电流、电压和功率等物理量来描述的
(1). 电流
国 ¾ 电量: 带电粒子所带电荷的多少(符号:q或Q,单位:库[仑]( C ))
海 ¾ 电流: 带电粒子定向移动形成电流

电路分析-第1章 电路的基本概念和基本定律

电路分析-第1章 电路的基本概念和基本定律

Uad=φa—φd=10—(—3)=13V
Ubd=Uba+Uad=—2+13=11V
以上用两种思路计算所得结果完全相同,由此可 (1) 两点之间的电压等于这两点之间路径上的
(2) 测Uab和Ubd的电压表应按图(b)所示跨接在 待测电压的两端,其极性已标注在图上。
§1-3 电功率与电能
一 、电功率 1. 定义 图中表示电路中的一部分 a 、 b 段,图中采 用了关联参考方向,设在 dt 时间内,由 a 点转移 到b点的正电荷量为dq,ab间的电压为u,在转移 过程中dq失去的能量为 d udq 因此,ab段电路所消耗的功率为
(a)开路状态;
(b)短路状态
§1-5电压源和电流源
例1.5 某电压源的开路电压 为30V,当外接电阻R后, 其端电压为25V,此时流经 的电流为5A,求R及电压源 内阻RS。 解: 用实际电压源模型表征该 电压源,可得电路如图所示。 即: 设电流及电压的参考方向如图 中所示,根据欧姆定律可得:
+ 30 V - RS R I + U -
U=U -R I S S
(a)
(b)
内阻
电阻Rs表示实际 电源的能量损耗
§1-5电压源和电流源
电路的两种特殊状态 开路状态。如图(a)所示。此时不接负载,电 流为零,端电压等于开路电压。可用开路电压 和内阻两个参数来表征。
+ US - RS - U=UOC + + US - RS ISC = UOC RS
§1-5电压源和电流源
U R I
根据
S S
U R I
25 5 5
U U R I
30 25 1 5
U S U 可得:R S I
§1-5电压源和电流源

电路分析基础

电路分析基础

电压源不 能短路!
东北石油大学
4、电压源的功率
P = uSi
i
(1)电压、电流参考方向非关联;
+
+
uS
_
i
物理意义:电流(正电荷 )由低电位向高
u 电位移动,外力克服电场力作功,电源发出
_ 功率。
P = uSi
发出功率,起电源作用
(2)电压、电流参考方向关联;
+ +
uuSS
_
物理意义: 电场力做功,电源吸收功率
i
- P<0 吸收负功率 (实际发出)
- u, i 取非关联参考方向
P = ui 表示元件发出的功率
u
P>0 发出正功率 (实际发出)
i
+
P<0 发出负功率 (实际吸收)
功率平衡
东北石油大学
例:判断图中各元件的功率
1A R
+
4V 4V
-
关联:吸收功率 P=ui=4W 吸收4W功率
R
2A
东北石油大学
二、电路模型
10BASE-T wall plate
Rs
RL
Us
电路模型 反映实际电路部件的主要电磁性质的理想电
路元件及其组合。
东北石油大学
理想电路元件 有某种确定的电磁性能的理想元件。
分类:
消耗电能 供给电能 储存电场能量 储存磁场能量
基本元件:
电阻元件:表示消耗电能的元件。 电感元件:表示产生磁场,储存磁场能量的元件。 电容元件:表示产生电场,储存电场能量的元件。 电源元件:表示将其它形式的能量转变成电能的元件。
P1 = U1I1 =1 2 = 2W(发出2W)

电路分析基础(第一章)教材

电路分析基础(第一章)教材

1
6
I1

+

+
2 U2 -
U4 4 + I2
U5 5 -
I3
3
+

U3
求图示电路中各方框 所代表的元件消耗或 产生的功率。已知: U1 = 1V, U2 = -3V, U3 = 8V, U4 = -4V, U5 = 7V, U6 = -3V I1 = 2A, I2 = 1A, I3 = -1A

P1 U1I1 1 2 2W P4 U4I2 (4)1 4W
第一章 集总(中)参数电路中 电压、电流的约束关系
§1-1 电路及集总电路模型
实际电路: 由电阻器、电容器、电感线圈、电源等元
件和半导体器件等相互连接而构成的电路称 为实际电路。
现代微电子技术可将若干部、器件不可分 离地制作在一起,电气上互联,成为一个整 体,即集成电路。
元件:成份简单的基本初级产品,如电阻、电 容、电感等。
电路的基本组成
电路:电工设备构成的整体,它为电流的流通提供路径
电路组成:主要由电源、中间环节、负载构成
● 电源(source):提供能量或信号(电池、发电 机 、信号发生器) ● 负载(load):将电能转化为其它形式的能量, 或对信号进行处理(电阻、电容、晶体管) ● 中间环节(intermediate):一般由导线、开 关等构成,将电源与负载接成通路(传输线)
平时成绩:20% 课堂:学习状况与出勤 作业:独立完成,集中点评(辅导课)
期中考试:20%
期末考试:60% 教学进度:理论课 (上、下册共17周)
实验课 (8个实验共12周)
电路分析: 专业基础课,内容多、基本概念多、习题多

电路分析基础第一章

电路分析基础第一章

绪论
一、理论来源:
1.电磁学(麦克斯韦、洛伦兹) 2.电子学(半导体器件、二极管、三极管、集 成电路、大规模集成电路、第一代电子计算 机产生、进一步发展)
二、研究方向:
建模 实际电路
分析* 电路模型
设计
专业学科
综合
电路理论
电路行为
三、研究对象:
1.电流、电压 2.电源、负载
四、与前后续课程的联系:
注意
① 分析电路前必须选定电压和电流的参考方向。
② 参考方向一经选定,必须在图中相应位臵标注 ( 包括方向和符号),在计算过程中不得任意改变
③参考方向不同时,其表达式相差一负号,但实际 方向不变。
上 页 下 页
1.3
1.电功率
电路元件的功率
单位时间内电场力所做的功。
dw p dt
dw u dq
u Ri R u i i u R Gu
u、i 取关联 参考方向
0 R
i
+
单位
u

R 称为电阻,单位: (Ohm) G 称为电导,单位: S(Siemens)
上 页 下 页
注意
欧姆定律
①只适用于线性电阻( R 为常数); ②如电阻上的电压与电流参考方向非关 联公式中应冠以负号; ③说明线性电阻是无记忆、双向性的元 件。 i R
I1
+ 2 U2 - + U3 3
+

P3 U 3 I1 8 2 16W(吸收)
P4 U 4 I 2 (4) 1 4W(发出)
I2
P5 U 5 I 3 7 (1) 7W(发出)
注意
P6 U 6 I 3 (3) (1) 3W(吸收)

电路分析基础第一章

电路分析基础第一章

1.理想电压源
1.1 基本性质:(1)端电压是定值或是固定的时间函 数,与流过的电流无关;(2)流过电压源的电流 由与之相连接的外电路决定。
u
1.2 伏安特性
o
us

us

i

u

us
Us
+ -
i

i
i1
i2

输出电压u0 u s与电阻R1、R2无关, 但流过电源的电流i 与R1、R2 有关。
时变(time-varying),非时变(time-invariant) 非时变:伏安特性曲线不随时间而变化。
u
t1 t2
O
u
t1 t2
i
O
i
2.电压电流关系
A
i

u
30 20 10 -20 -10
v
i/mA
B

正向特性
二极管 二极管具有单向导电性。
-2 O 0.5 -4 -6 反向特性 i/uA
dq i (t ) dt
1.电流(current)及其参考方向
方向:正电荷流动的方向。 表示:箭头,双下标 iAB 。
A
i
元件
B
1.2 电流的参考方向(reference direction)
任意选定的方向(正方向)。
根据计算结果确定电流的真实方向
若 i0
真实方向与参考方向一致
i0
真实方向与参考方向相反
i1
A i2 B
i3
C
i6 i1 i3
对于D节点:
(1) (2)
i4
i5
D
i6
i4 i5 i6

电路分析基础第一章

电路分析基础第一章

理想电流源 输出电流恒 定,两端电 压由它和负 载共同决定
(b)可以用电压或电流按数学方式描述; (c)不能被分解为其他元件。
三. 集总参数电路(lumped parameter circuit)
指由集总参数元件连接组成的电路,即用理想元件的组 合取代实际电路元器件和设备所得到的理想电路,又称电路 模型,简称电路。 • 集总参数元件:实际元件的电能消耗及电、磁能的贮存等现
对于电视天线及其传输线来说,其工作频率为108Hz数
量级,譬如某频道,工作频率约为200MHz,相应的工作波 长为1.5m,这时0.2m长的传输线也不能看作是集总参数电
路。对于不符合集总化假设的实际电路,就需要用分布
(distributed)参数电路理论或电磁场理论来研究,这将会 在以后见到。本书只讨论集中参数电路,而今后所说的 “元件”、“电路”均指理想化的集总参数的元件和电路。
它们分析和解决电路中的实际问题。
• 电路分析是“电路理论”学科的重要分支
电路理论(circuit theory)是物理学中电磁
学的一个分支,若从欧姆定律(1827年)和基尔
霍夫定律(1845年)的发表算起,至今已有170多
年的历史。随着电力和通信工程技术的发展,电
路理论逐渐形成一门比较系统且应用广泛的工程 学科。自20世纪60年代以来,新的电子器件不断 涌现,集成电路、大规模集成电路、超大规模集 成电路的飞跃发展、计算机技术的迅猛发展和广 泛应用等等,
l
这样,可以认为传送到实际电路各处的电磁能量是同时 到达的。这时,与电磁波的波长相比,电路尺寸可以忽略不 计。从电磁场理论的观点来看,整个实际电路可看作是电磁 空间的一个点,这与经典力学中把小物体看作质点是相类似 的。

第1章 电路分析基础

第1章 电路分析基础


b
支路:共 ?条
I2 结点:共 ?个
6条 4个
I1
a I6 R6
c
I5 回路:共 ?个 独立回路:?个
I4
I3 d
+E _ 3
R3
3个
有几个网眼就有几个独立回路
基尔霍夫电流定律(KCL) 在任何电路中,任何结点上的所有支路电流的代数 和在任何时刻都等于0:
i 0
基尔霍夫电流定律同样适用于任一闭合面。
I1 I 2 I 3 0
(2) 选定单孔回路Ⅰ和Ⅱ为顺时针方向,得回路电压方程
U S1 R1 I1 R2 I 2 U S 2 0 U S 2 R2 I 2 R3 I 3 U S 3 0
(3) 将已知数据代入各方程式,整理后得
I1 I 2 I 3 0 20 10 3 I1 60 10 3 I 2 4 0 60 10 3 I 2 30 10 3 I 3 24 0
基尔霍夫电压定律
对电路中的任一回路,沿任意循行方向转一周,其电位降 等于电位升,或电压的代数和为 0。
I1
R1 + U1 - #1 I3
a R #3 b
3
+ #2 _ U2
I2 R2
U 0 即:
电位降为正 电位升为负
例如: 回路#1
I1R1 I3R3 U 1
电位降
对回路#2:
对回路#3:
列电流方程 结点a:
I 3 I 4 I1
结点b:
结点c:
I1 I 6 I 2
I 2 I5 I3
+
U3
d
R3 结点d:
I 4 I6 I5

李瀚荪《电路分析基础》(第4版)课后习题详解-第一章至第四章【圣才出品】

李瀚荪《电路分析基础》(第4版)课后习题详解-第一章至第四章【圣才出品】

第2部分课后习题详解说明:本部分对李瀚荪编写的《电路分析基础》(第4版)教材每一章的课后习题进行了详细的分析和解答,并对个别知识点进行了扩展。

课后习题答案经过多次修改,质量上乘,非常标准,特别适合应试作答和临考冲刺。

第1章集总参数电路中电压、电流的约束关系§1-2电路变量电流、电压及功率1-1接在图1-1所示电路中电流表A的读数随时间变化的情况如图中所示。

试确定t =1s、2s及3s时的电流i。

图1-1解:因图中以箭头所示电流i的参考方向是从电流表负端到正端,所以t=1s,i=-1At=2s,i=0At=3s,i=1A1-2设在图1-2所示元件中,正电荷以5C/s的速率由a流向b。

(1)如电流的参考方向假定为由a至b,求电流。

(2)如电流的参考方向假定为由b至a,求电流。

(3)如流动的电荷为负电荷,(1)、(2)答案有何改变?图1-2解:(1)根据电流的定义,5C/s=5A,实际流动方向为a→b,若参考方向假定为a→b,两者吻合,该电流应记为i=5A(2)若参考方向假定为b→a,而电流实际流向为a→b,两者不吻合,该电流应记为i=-5A(3)以上均系指正电荷而言,若流动的是负电荷,则(1)、(2)的答案均须改变符号。

1-3各元件的情况如图1-3所示。

(1)若元件A吸收功率10W,求(2)若元件B吸收功率10W,求(3)若元件C吸收功率-10W,求(4)试求元件D吸收的功率;(5)若元件E提供的功率为10W,求(6)若元件F提供的功率为-10W,求(7)若元件G提供的功率为10mW,求(8)试求元件H提供的功率。

图1-3解:元件A、C、E、G的u和i为关联参考方向,在取关联参考方向前提下,可以使用P=ui,功率为正表示这段电路吸收功率,功率为负表示该段电路提供功率。

而元件B、D、F、H的u和i为非关联参考方向,应注意在使用的公式中加负号,即使用P=-ui。

(该元件吸收功率为-20μw,即提供功率20μw);(该元件提供功率为4mW)。

电路分析基础课后习题答案(1-4章)-周围主编

电路分析基础课后习题答案(1-4章)-周围主编
鹿胎膏的价格 /
R2

5 = A ⋅ (40 + 200)Ω = 48 5(V) 5
2
功率及其正、负号的意义
u 、i 关联参考方向 ⇒ p = ui u 、i 非关联参考方向 ⇒ p =-ui ⎧ p>0 ⎪ ⇒⎨ ⎪ p<0 ⎩ 吸收(消耗)功率 产生(供出)功率
1-43 :如图所示电路,求: ()已知图(a)中U ab = −5V,求U s = ??。 1 ()已知图(b)中U ab = 2V,求R 2
解:
+ 5V
i1
⎫ i= + 0.5U1 ⎪ ⎬ U1 = 0.5U1 × 4 + (−5) ⎪ ⎭ ⎧i = 3.5 A ⇒⎨ ⎩U1 = 5 V

U S = i × 2 + U1 = 12 V
I U
I2
+ 0.4V −
鹿胎膏的价格 /
I
0.6 Ω
− U +
24
第二章 等效变换分析法
解:
员工自评范文 /
2-18:求如图所示电路的电流 I 。
−10 + 2 I ×1 + 2 I + I ×1 = 0 ⇒ I = 2 A 即所求
1Ω
= 9−3 = 6 V
U1 Ω 6 V I= = =6A 1Ω 1Ω
⎧ P3 V = 3 V × 6 A=18 W ⎫ ⎪ ⎪ ⎨ P Ω = 6 V × 6 A=36 W ⎪ 1 ⎬ ⇒ I = 4 A 即所求 ⎪ ⎪ ⎩ P9 V = − ( 9 V × I ) ⎪ P3 V + P Ω + P9 V = 18 W ⎭ 1
R ab2 = 40 Ω
15

电路分析第一章集总参数电路中电压、电流的约束关系

电路分析第一章集总参数电路中电压、电流的约束关系
根据电流源的性质得电流i2a为求出电流源的功率必须首先计算电流源的端压u由kvl得电流源的端电压为u252v12v故电流源的功率为12v2a24w0为产生功率故电阻的功率5w20w0为吸收功率电压源的功率2v2a4w0为吸收功率求电流源的功率必须计算电流源的端电压2a小结恒压源恒流源ab的大小方向均是恒定的外电路对ab无影响
1.性质:入门性技术基础课。 2.内容:研究电路组成、定律、定理和分析方法。 3.授课时间:本学期 4.授课内容:一、总论和电阻电路的分析(1、2、3、4) 二、动态电路的时域分析(6、7、) 工三、动态电路的相量分析法和S域分析法(9、10) 3.实验地点:6号楼101电路实验室
三、学习方法:
重视听课;抓概念、抓规律;重视作业实验 作业要认真、规范(必须抄题,画电路图; 按解题步骤一步步求解)
◆在电路分析中,常将理想电路元件简称为电
路元件。常用的电路元件只有几种,它们可以 用来表征千千万万种实际器件。
2. 连线模型—— 理想导线 导线电阻、电感、电容近似为零。 3.理想电路元件的特点 (1)在不同的工作条件下,同一实际器件可 用一种或几种理想电路元件近似表征。 具有相近电磁性能的实际器件,也可用同 一种理想电路元件近似表征。 (2)理想电路元件都有各自精确的数学定义, 在电路图中用规定的符号表示。
1-2 电路变量 电流、电压及功率
一、电流 i
i
1. 定义:单位时间内流过导体横截面的电荷量。
dq 2. 定义式: i(t ) dt
电流 大小 方向
说明:
(1)方向:正电荷移动的方向。 (2)大小方向不随时间变化叫直流。DC 大小方向都随时间变化叫交流。AC (3)符号意义:大写 U、I ——表示直流 小写 u、i ——表示交流

电路分析基础(第四版)课后答案第1章

电路分析基础(第四版)课后答案第1章

示。 由KCL推广形式可知I1=0;由KVL对回路A列方程, 有
6I-5-5+4I=0
55 I 1A 46
自a点沿任何一条路径巡行至b点, 沿途各段电路电压之代数 和即是电压Uab。 Uab=6I-5+10I1+5-3=3 V
19
第1章 电路基本概念 1.7 求图示各电路中的电流I。 解 图(a)电路中, 由KVL, U=2I-2=6 V 所以
41
第1章 电路基本概念
题解1.12图
42
第1章 电路基本概念
由KCL推广可知I1=0, 应用KVL, 由回路Ⅰ求得电压

Us=(2+1+3)×2=12 V
由回路Ⅱ
6 I 1.2 A 5
所以节点a Va=2×1+5-6=1 V
43
第1章 电路基本概念 1.13 求图示各电路ab端的等效电阻Rab。
32
第1章 电路基本概念
1.10
求图示各电路中的电流I。
题解1.10图
33
第1章 电路基本概念
解 图(a):
I 100 2A [50 / /50 6 / /30] / /60 / /20 40
图(b): 在图示电路中设节点a及电流I1、I2、I3、I4的参 考方向,如题解1.10图(b)所示。 应用电阻串并联等效, 得 电流
图(b): 在图示电路中设电压U1的参考方向, 如题解1.8
图(b)所示。 应用电阻串并联等效及分压关系式, 得电压
(2 4) / /3 U1 9 6V (2 4) / /3 1
所以
4 2 U U1 6 4 V 24 3
27
第1章 电路基本概念 图(c): 在图示电路中设电流I1、 I2的参考方向, 如题解

电路分析基础第一章

电路分析基础第一章
在电路分析过程中电流的参考方向是可以任意 假定的,通常将选定的参考方向称为电流的正方 向。
I =-2A
在求解电路中的电流时,应该首先选定电流的 参考方向(正方向),然后根据假设的电流方向进 行分析求解。 若求得I > 0,则电流的实际方向与参考方向一致 若求得I < 0,则电流的实际方向与参考方向相反
二、受控源的类型
电压控制电压源(VCVS) 电压控制电流源(VCCS) 电流控制电压源(CCVS); 电流控制电流源(CCCS)
三、受控源的符号
+ u1 + + u1 -
u1


u1

电压控制电压源
电压控制电流源
i1
i1

i1
gi1
电流控制电压源
电流控制电流源
1-4 基尔霍夫定律
在电路理论中,电路元件的电压、电流受自身伏安关系的 约束。当各元件联接成一个电路以后,电路中的电压、电流除 了必须满足元件自身的约束方程以外,还必须同时满足电路结 构的约束。这种约束体现为基尔霍夫的两个定律,即基尔霍夫 电流定律(Kirchhoff’s Current Law),简写为KCL)和基尔 霍夫电压定理(Kirchhoff’s Voltage Law),简写为KVL。
1-2 电路的基本变量
1-2-1 电流
一、电流的定义
电荷的定向移动形成电流,电流的大小 用电流强度来描述,符号为I或i。电流强度 定义为电位时间流过导体横截面的电量,即
dq i dt
如果电流的大小方向随时间变化,称为交流电 流;若电流的大小方向不随时间变化,称为直流电 流。在这种情况下,通过导体横截面的电量Q与时间 t呈正比,即
i iS u / RS
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
u (t ) i (t ) = = G u (t ) R
(1.3-3)
R和G都是电阻元件的参数。
集总参数电路中电压、 第一章 集总参数电路中电压、电流的约束关系 开路与短路: 开路与短路: 1 开路
u + -
当一个线性电阻元件的端电压不论 为何值时,流过它的电流恒为零值, 为何值时,流过它的电流恒为零值,就 把它称为“开路” 把它称为“开路”。 开路的伏安特性在u- 平面上与电 开路的伏安特性在 -i平面上与电 压轴重合。 压轴重合。
集总参数电路中电压、 第一章 集总参数电路中电压、电流的约束关系 (3)非线性电阻 阻值非常数 (4)时不变电阻与时变电阻 特性曲线随时间变化的电阻称为时变 电阻,否则为是不变电阻 图1-25,图1-26,图1-27
集总参数电路中电压、 第一章 集总参数电路中电压、电流的约束关系 2 电阻元件上吸收的功率与能量: 电阻元件上吸收的功率与能量: 电阻R上吸收 吸收电功率为(关联参考方向) 吸收 (关联参考方向)
i≠0 u=0 R = 0 or G = ∞
集总参数电路中电压、 第一章 集总参数电路中电压、电流的约束关系 (1)如果电阻R上的电流电压参考方向非关联,如图所示,则 VCR中应冠以负号, 即 或
u (t ) = − Ri (t ) i (t ) = −Gu (t )
(2)在参数值不等于零、不等于无限大的电阻、电导上,电流 与电压是同时存在、同时消失的。或者说,在这样的电阻、 电导上,t 时刻的电压(或电流)只决定于t 时刻的电流(或电压)。 这说明电阻、电导上的电压(或电流)不能记忆电阻、电导上 的电流(或电压)在“历史”上(t 时刻以前)所起过的作 用。所以说电阻、电导元件是无记忆性元件 无记忆性元件,又称即时元件 即时元件。 无记忆性元件 即时元件
p(t ) = u (t )i (t ) = Ri (t ) ⋅ i (t ) = Ri 2 (t )
(1.3-4a) (1.3-4b)

可得电导G上吸收 吸收电功率为 吸收
p(t ) = Gu 2 (t )
u (t ) u 2 (t ) = p(t ) = u (t )i (t )
(1.3-1)
非关联 式中R是电阻元件的参数,称为电阻,R是一个正实常数, 单位是欧姆(Ω)。电阻不是线性的就是非线性的。
u( t ) = − Ri ( t )
集总参数电路中电压、 第一章 集总参数电路中电压、电流的约束关系
u/V i(t) R

θ=arctgR i/A
W = pt = 40 × 16 × 5 × 4 × 30 = 384000W ⋅ h = 384kW ⋅ h
集总参数电路中电压、 第一章 集总参数电路中电压、电流的约束关系 例 1.6-3 某学校有5个大教室,每个大教室配有16个额定 功率为 40W、额定电压为 220V的日光灯管,平均每天用 4h(小时),问每月(按30天计算)该校这5个大教室共用电多少 kW·h? 解 kW·h读作千瓦小时,它是计量电能的一种单位。 1000W的用电器具加电使用1h,它所消耗的电能为1kW·h, 即日常生活中所说的1度电,1度=1000瓦×3600秒=3.6 × 度 106焦耳。有了这一概念,计算本问题就是易事。
u(t)
_
图 1.3-1 理想电阻模型及其伏安特性
常把电阻元件简称为电阻。因此,“电阻”一词不仅指电 路元件,而且是描述该电路电路元件的参数。
集总参数电路中电压、 第一章 集总参数电路中电压、电流的约束关系 电阻元件也可以用参数G来表征,它是电阻R的倒数,
1 G = R
(1.3-2)
电导,其单位是西门子(S)。从物理概 G称为电阻元件的电导 电导 念上看,电导是反映材料导电能力强弱的参数。电阻、电导 是从相反的两个方面来表征同一材料特性的两个电路参数, 所以,定义电导为电阻之倒数是有道理的。应用电导参数来 表示电流和电压之间关系时,欧姆定律形式可写为
(1.3-5a) (1.3-5b)

i 2 (t ) p(t ) = G
从功率表达式可见,由于R和G是正实常数,故任一时刻t, 电阻吸收的功率p(t)恒为非负值,所以线性电阻元件是耗能 耗能 元件,并且p不会小于零,即不会向外提供能量,所以又称 元件 无源元件。 无源元件
集总参数电路中电压、 第一章 集总参数电路中电压、电流的约束关系 电阻(或其他的电路元件)上吸收的能量与时间区间相关。 设从t0~t区间电阻R吸收的能量为w(t), 则它应等于从t0到t对它 吸收的功率p(t)作积分, 即
| I |=
P 1 A = 100mA = R 100
−3
| U |= R | I |= 100 × 100 × 10
= 10V
集总参数电路中电压、 第一章 集总参数电路中电压、电流的约束关系 例 1.6-2 求一只额定功率为100W、额定电压为220V 的灯泡的额定电流及电阻值。 解 由
U2 P = UI = R P 100 I= = = 0.455 A U 220 U 2 2202 R= = = 484Ω P 100
w(t ) = ∫ p(ξ )dξ
t0
t
为避免积分上限t与积分变量t相混淆,将积分变量换为ξ。
w (t ) =

t
t
t0
Ri 2 (ξ ) d ξ
(1.3-6)
u 2 (ξ ) w( t ) = ∫ dξ t0 R
集总参数电路中电压、 第一章 集总参数电路中电压、电流的约束关系 例1.6-1 有一100 、1W的碳膜电阻使用于直流电路,问 在使用时电流电压不能超过多大的值。 额定值:电压、电流、 额定值:电压、电流、功率的限额值
i
i (t ) ≡ 0
u (t )
i=0 u≠0 R = ∞ or G = 0
2 短路
i (t )
u
+ -
u (t ) ≡ 0
i
当流过一个线性电阻元件的电流 不论为何值时,它端电压恒为零值, 不论为何值时,它端电压恒为零值, 就把它称为“短路” 就把它称为“短路”。 短路的伏安特性在u- 平面上与 短路的伏安特性在 -i平面上与 电流轴重合。 电流轴重合。
集总参数电路中电压、 第一章 集总参数电路中电压、电流的约束关系
§1-5 电阻元件 -
电阻元件(Resistor)是从实际电阻器抽象出来的模型, 是表征材料或器件对电流呈现阻力、损耗能量的元件。 1.线性电阻元件定义(伏安特性) 1.线性电阻元件定义(伏安特性) 线性电阻元件定义 在电压和电流取关联参考方向下,在任何时刻其两 端的电压和电流成比例(欧姆定律,Ohm's Law )
相关文档
最新文档