八年级下册数学 因式分解
初中数学八年级下因式分解
第四章因式分解(yīn shì fēn jiě)一、因式分解(yīn shì fēn jiě)的意义:因式分解是把一个多项式化成几个(jǐɡè)整式的乘积形式注意:①结果(jiē guǒ)应是整式乘积,而不能是分式或者是n个整式(zh ěnɡ shì)的积与某项的和差形式;②因式分解与整式的乘法在运算过程上是完全相反的。
例01.下列四个从左到右的变形,是因式分解的是()A. B.C. D.例02.在下面多项式中,能通过因式分解变形为的是()A. B. C.D.二、因式分解的方法类型一、提公因式法提公因式时应注意:⑴如果多项式的第一项系数是负的一般要提出“-”号,使括号内的第一项系数为正;⑵公因式的系数和字母应分别考虑:①系数是各项系数的最大公约数;②字母是各项共有的字母,并且各字母的指数取次数最低的。
例01.在下面因式分解中,正确的是()A.B.C.D.例02.把分解因式的结果为。
例03.分解因式:.说明(shuōmíng):⑴观察题目(tímù)结构特征⑵对于与的符号有下面(xià mian)的关系:例04.解方程:例05.不解(bù jiě)方程组求:的值.类型(lèixíng)二、公式法1、利用平方差公式因式分解:注意:①条件:两个二次幂的差的形式;②平方差公式中的、可以表示一个数、一个单项式或一个多项式;③在用公式前,应将要分解的多项式表示成的形式,并弄清a、b分别表示什么。
例如:分解因式:(1);(2);(3)2、利用完全平方公式因式分解:注意:①是关于某个字母(或式子)的二次三项式;②其首尾两项是两个符号相同的平方形式;③中间项恰是这两数乘积的2倍(或乘积2倍的相反数);④使用前应根据题目结构特点,按“先两头,后中间”的步骤,把二次三项式整理成公式原型,弄清a、b分别表示的量。
八年级数学下册《因式分解》练习与答案
八年级数学下册《因式分解》练习1.因式分解(1)﹣a2+1;(2)2x3y+4x2y2+2xy3;(3)4(x+2y)2﹣25(x﹣y)2;(4)(a2+a)2﹣8(a2+a)+12.2.因式分解(1)6x2﹣3x;(2)16m3﹣mn2;(3)25m2﹣10mn+n2;(4)9a2(x﹣y)+4b2(y﹣x).3.分解因式:(1)3pq3+15p3q;(2)ab2﹣a;(3)4xy2﹣4x2y﹣y3;(4)(a2+1)2﹣4a2.4.把下列多项式分解因式.(1)3x2﹣3y2.(2)a2b+2ab2+b3.(3)(m﹣1)(m﹣3)+1.(4)2a2+4ab+2b2.5.把下列各式进行因式分解:(1)2(x﹣y)﹣(x﹣y)2;(2)﹣x2+8x﹣15;(3)8m3n+40m2n2+50mn3;(4)a4﹣b4.6.分解因式:(1)12ab2﹣6ab;(2)a2﹣6ab+9b2;(3)x4﹣1;(4)n2(m﹣2)+(2﹣m).7.分解因式:(1)2x2﹣12x+18;(2)a3﹣a;(3)4ab2﹣4a2b﹣b3;(4)m3(a﹣2)+m(2﹣a).8.因式分解(1)(a﹣b)2+4ab;(2)x2﹣2x﹣8;(3)x4﹣6x3+9x2﹣16;(4)(x2+3x+5)(x2+3x+1)+3.9.因式分解:(1)﹣8ab2+6a2b﹣2ab;(2)4a2﹣(a2+1)2;(3)x4﹣8x2﹣9;(4)(2﹣x2)2+2x(x2﹣2)+x2.10.因式分解:(1)ab2﹣a;(2)2xy2﹣12x2y+18x3;(3)a4﹣8a2+16;(4)(x﹣4)(x+1)+3x.(1)a4﹣1;(2)x3﹣2x2y+xy2.12.分解因式:(1)x2(m﹣n)+y2(n﹣m);(2)3x2﹣18xy+27y2.13.因式分解:(1)(a﹣b)(x﹣y)﹣(b﹣a)(x+y);(2)(x2+1)2﹣4x2.14.分解因式:(1)4x2﹣(x2+1)2;(2)3(x﹣1)2﹣18(x﹣1)+27.15.分解因式:(1)9a2(x﹣y)+y﹣x;(2)(x2﹣2xy+y2)+(﹣2x+2y)+1.16.因式分解:(1)﹣10a2bc+15bc2﹣20ab2c;(2)(x2+1)2﹣4x2.17.把下列各式因式分解:(1)x2+2xy+y2﹣c2;(2)b2(a﹣2)+b(2﹣a).18.因式分解:(1)3x3﹣12x;(2)1﹣2x+2y+(x﹣y)2.(1)4x2(x﹣y)+(y﹣x);(2)(x2﹣5)2+8(x2﹣5)+16.20.分解因式:3x2﹣xy﹣2y2﹣x+y.21.因式分解(1)5x2+6y﹣15x﹣2xy;(2)(1+ab)2﹣(a+b)2.22.因式分解:4(x+y)2﹣16(x﹣y)2.23.分解因式:2x3﹣2x2y+8y﹣8x.24.分解因式:a4+4b2c2﹣a2b2﹣4a2c2.25.因式分解:x3+3x2y﹣4x﹣12y.26.分解因式:a4+4b2c2﹣a2b2﹣4a2c2.27.因式分解:(x2+2x)2﹣7(x2+2x)﹣8.28.分解因式:(x2+x+1)(x2+x+2)﹣12.29.因式分解:64a6﹣48a4b2+12a2b4﹣b6.30.请用两种方法对多项式x3﹣4x2+6x﹣4进行因式分解.(拆添项算一种方法)八年级数学下册《因式分解》练习答案1.因式分解(1)﹣a2+1;(2)2x3y+4x2y2+2xy3;(3)4(x+2y)2﹣25(x﹣y)2;(4)(a2+a)2﹣8(a2+a)+12.【解题思路】(1)逆用平方差公式进行因式分解.(2)先逆用平方差公式,再提公因式.(3)先逆用平方差公式,再提公因式.(4)运用十字相乘法进行因式分解,注意分解彻底.【解答过程】解:(1)﹣a2+1=(1+a)(1﹣a).(2)2x3y+4x2y2+2xy3=2xy(x2+2xy+y2)=2xy(x+y)2.(3)4(x+2y)2﹣25(x﹣y)2=[2(x+2y)+5(x﹣y)][2(x+2y)﹣5(x﹣y)]=(2x+4y+5x﹣5y)(2x+4y﹣5x+5y)=(7x﹣y)(﹣3x+9y)=﹣3(7x﹣y)(x﹣3y).(4)(a2+a)2﹣8(a2+a)+12=(a2+a﹣2)(a2+a﹣6)=(a+2)(a﹣1)(a+3)(a﹣2).2.因式分解(1)6x2﹣3x;(2)16m3﹣mn2;(3)25m2﹣10mn+n2;(4)9a2(x﹣y)+4b2(y﹣x).【解题思路】(1)原式提取公因式3x,分解即可;(2)原式提取公因式m,再利用平方差公式分解即可;(3)原式利用完全平方公式分解即可;(4)原式变形后,提取公因式(x﹣y),再利用平方差公式分解即可.【解答过程】解:(1)6x2﹣3x=3x(2x﹣1);(2)16m3﹣mn2=m(16m2﹣n2)=m(4m+n)(4m﹣n);(3)25m2﹣10mn+n2=(5m﹣n)2;(4)9a2(x﹣y)+4b2(y﹣x)=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).3.分解因式:(1)3pq3+15p3q;(2)ab2﹣a;(3)4xy2﹣4x2y﹣y3;(4)(a2+1)2﹣4a2.【解题思路】(1)原式提取公因式3pq即可;(2)原式提取公因式a,再利用平方差公式分解即可;(3)原式提取公因式﹣y,再利用完全平方公式分解即可;(4)原式利用平方差公式,以及完全平方公式分解即可.【解答过程】解:(1)3pq3+15p3q=3pq(q2+5p2);(2)ab2﹣a=a(b2﹣1)=a(b+1)(b﹣1);(3)4xy2﹣4x2y﹣y3=﹣y(y2+4x2﹣4xy)=﹣y(2x﹣y)2;(4)(a2+1)2﹣4a2=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2.4.把下列多项式分解因式.(1)3x2﹣3y2.(2)a2b+2ab2+b3.(3)(m﹣1)(m﹣3)+1.(4)2a2+4ab+2b2.【解题思路】(1)先提公因式,再利用平方差公式即可;(2)先提公因式,再利用完全平方公式即可;(3)先计算多项式乘多项式,整理后,再利用完全平方公式即可;(4)先提公因式,再利用完全平方公式即可;【解答过程】解:(1)原式=3(x2﹣y2)=3(x+y)(x﹣y);(2)原式=b(a2+2ab+b2)=b(a+b)2;(3)原式=m2﹣4m+4=(m﹣2)2;(4)原式=2(a2+2ab+b2)=2(a+b)2.5.把下列各式进行因式分解:(1)2(x﹣y)﹣(x﹣y)2;(2)﹣x2+8x﹣15;(3)8m3n+40m2n2+50mn3;(4)a4﹣b4.【解题思路】(1)直接提取公因式;(2)先加上负括号,再利用十字相乘法;(3)先提取公因式2mn,再利用完全平方公式;(4)利用平方差公式因式分解.【解答过程】解:(1)2(x﹣y)﹣(x﹣y)2=(x﹣y)[2﹣(x﹣y)]=(x﹣y)(2﹣x+y);(2)﹣x2+8x﹣15=﹣(x2﹣8x+15)=﹣(x﹣5)(x﹣3);(3)8m3n+40m2n2+50mn3=2mn(4m2+20mn+25n2)=2mn(2m+5n)2;=(a2+b2)(a2﹣b2)=(a2+b2)(a+b)(a﹣b).6.分解因式:(1)12ab2﹣6ab;(2)a2﹣6ab+9b2;(3)x4﹣1;(4)n2(m﹣2)+(2﹣m).【解题思路】(1)直接提取公因式6ab,进而分解因式即可;(2)直接利用完全平方公式分解因式得出答案;(3)直接利用平方差公式分解因式得出答案;(4)直接提取公因式(m﹣2),再利用平方差公式分解因式即可.【解答过程】解:(1)12ab2﹣6ab=6ab(2b﹣1);(2)a2﹣6ab+9b2=(a﹣3b)2;(3)x4﹣1=(x2+1)(x2﹣1)=(x2+1)(x﹣1)(x+1);(4)n2(m﹣2)+(2﹣m)=n2(m﹣2)﹣(m﹣2)=(m﹣2)(n2﹣1)=(m﹣2)(n+1)(n﹣1).7.分解因式:(1)2x2﹣12x+18;(2)a3﹣a;(3)4ab2﹣4a2b﹣b3;(4)m3(a﹣2)+m(2﹣a).【解题思路】(1)首先提公因式2,再利用完全平方公式进行分解即可;(2)首先提公因式a,再利用平方差公式进行分解即可;(3)首先提公因式﹣b,再利用完全平方公式进行分解即可;(4)首先提公因式m(a﹣2),再利用平方差公式进行分解即可.【解答过程】解:(1)原式=2(x2﹣6x+9)=2(x﹣3)2;(2)原式=a(a2﹣1)=a(a+1)(a﹣1);(3)原式=﹣b(b2﹣4ab+4a2)=﹣b(b﹣2a)2;(4)原式=m(a﹣2)(m2﹣1)=m(a﹣2)(m﹣1)(m+1).8.因式分解(1)(a﹣b)2+4ab;(2)x2﹣2x﹣8;(3)x4﹣6x3+9x2﹣16;(4)(x2+3x+5)(x2+3x+1)+3.【解题思路】(1)先根据完全平方公式展开,再根据完全平方公式分解因式即可;(2)根据十字相乘法分解因式即可;(3)先分组,根据完全平方公式进行计算,再根据平方差公式分解因式,最后根据“十字相乘法”分解因式即可;(4)把x2+3x当作一个整体展开,再根据“十字相乘法”分解因式即可.【解答过程】解:(1)(a﹣b)2+4ab=a2﹣2ab+b2+4ab=(a+b)2;(2)x2﹣2x﹣8=(x﹣4)(x+2);(3)x4﹣6x3+9x2﹣16=(x4﹣6x3+9x2)﹣16=x2(x﹣3)2﹣42=[x(x﹣3)+4][x(x﹣3)﹣4]=(x2﹣3x+4)(x2﹣3x﹣4)=(x2﹣3x+4)(x﹣4)(x+1);(4)(x2+3x+5)(x2+3x+1)+3=(x2+3x)2+6(x2+3x)+5+3=(x2+3x)2+6(x2+3x)+8=(x2+3x+2)(x2+3x+4)=(x+1)(x+2)(x2+3x+4).9.因式分解:(1)﹣8ab2+6a2b﹣2ab;(2)4a2﹣(a2+1)2;(3)x4﹣8x2﹣9;(4)(2﹣x2)2+2x(x2﹣2)+x2.【解题思路】(1)原式提取﹣2ab,利用提公因式法因式分解即可;(2)原式利用平方差公式化简,再利用完全平方公式分解即可;(3)原式利用十字相乘法分解,再利用平方差公式分解即可;(4)利用完全平方公式变形,再利用提公因式分解即可.【解答过程】解:(1)原式=﹣2ab(4b﹣3a+1);(2)原式(2a)2﹣(a2+1)2=(2a+a2+1)(2a﹣a2﹣1)=﹣(a+1)2(a﹣1)2;(3)原式=(x2+1)(x2﹣9)=(x2+1)(x+3)(x﹣3);(4)原式=(x2﹣2)2+2x(x2﹣2)+x2=(x2+x﹣2)2=(x+2)2(x﹣1)2.10.因式分解:(1)ab2﹣a;(2)2xy2﹣12x2y+18x3;(3)a4﹣8a2+16;(4)(x﹣4)(x+1)+3x.【解题思路】(1)提公因式后再利用平方差公式即可;(2)提公因式后再利用完全平方公式即可;(3)利用完全平方公式后再利用平方差公式;(4)根据多项式乘法计算,再利用平方差公式.【解答过程】解:(1)ab2﹣a=a(b2﹣1)=a(b+1)(b﹣1);(2)原式=2x(y2﹣6xy+9x2)=2x(y﹣3x)2;(3)原式=(a2﹣4)2=(a﹣2)2(a+2)2;(4)原式=x2﹣3x﹣4+3x=x2﹣4=(x+2)(x﹣2).11.因式分解:(1)a4﹣1;(2)x3﹣2x2y+xy2.【解题思路】(1)原式利用平方差公式分解即可;(2)原式提取公因式x,再利用完全平方公式分解即可.【解答过程】解:(1)原式=(a2+1)(a2﹣1)=(a2+1)(a+1)(a﹣1);(2)原式=x(x2﹣2xy+y2)=x(x﹣y)2.12.分解因式:(1)x2(m﹣n)+y2(n﹣m);(2)3x2﹣18xy+27y2.【解题思路】(1)首先提取公因式(m﹣n),然后利用平方差公式继续进行因式分解;(2)先提取公因式,再利用完全平方公式把原式进行因式分解即可.【解答过程】解:(1)x2(m﹣n)+y2(n﹣m)=(m﹣n)(x2﹣y2)=(m﹣n)(x+y)(x﹣y);(2)3x2﹣18xy+27y2=3(x2﹣6xy+9y2)=3(x﹣3y)2.13.因式分解:(1)(a﹣b)(x﹣y)﹣(b﹣a)(x+y);(2)(x2+1)2﹣4x2.【解题思路】(1)用提取公因式法分解因式;(2)用平方差公式、完全平方公式分解因式.【解答过程】解:(1)原式=(a﹣b)(x﹣y)+(a﹣b)(x+y)=(a﹣b)[(x﹣y)+(x+y)]=2x(a﹣b),(2)原式=(x2+1)2﹣(2x)2=(x2+1+2x)(x2+1﹣2x)=(x+1)2(x﹣1)2.14.分解因式:(1)4x2﹣(x2+1)2;(2)3(x﹣1)2﹣18(x﹣1)+27.【解题思路】(1)先选择平方差公式分解因式,再运用完全平方公式进行因式分解;(2)先运用提取公因式法分解因式,再运用完全平方公式分解因式.【解答过程】解:(1)原式=(2x)2﹣(x2+1)2=(2x+x2+1)(2x﹣x2﹣1)=﹣(x+1)2(x﹣1)2;(2)原式=3[(x﹣1)2﹣6(x﹣1)+9]=3[(x﹣1)﹣3]2=3(x﹣4)2.15.分解因式:(1)9a2(x﹣y)+y﹣x;(2)(x2﹣2xy+y2)+(﹣2x+2y)+1.【解题思路】(1)原式变形后,提取公因式,再利用平方差公式分解即可;(2)原式整理后,利用完全平方公式分解即可.【解答过程】解:(1)原式=9a2(x﹣y)﹣(x﹣y)=(x﹣y)(9a2﹣1)=(x﹣y)(3a+1)(3a﹣1);(2)原式=(x﹣y)2﹣2(x﹣y)+1=(x﹣y﹣1)2.16.因式分解:(1)﹣10a2bc+15bc2﹣20ab2c;(2)(x2+1)2﹣4x2.【解题思路】(1)直接提公因式﹣5bc即可;(2)先利用平方差公式,将原式化为(x2+1+2x)(x2+1﹣2x),再利用完全平方公式得出答案.【解答过程】解:(1)原式=﹣5bc(2a2﹣3c+4ab);(2)原式=(x2+1+2x)(x2+1﹣2x)=(x+1)2(x﹣1)2.17.把下列各式因式分解:(1)x2+2xy+y2﹣c2;(2)b2(a﹣2)+b(2﹣a).【解题思路】(1)先分组,再分解.(2)先将b2(a﹣2)+b(2﹣a)变形为b2(a﹣2)﹣b(a﹣2),再运用提公因式法.【解答过程】解:(1)x2+2xy+y2﹣c2=(x+y)2﹣c2=(x+y+c)(x+y﹣c).(2)b2(a﹣2)+b(2﹣a)=b2(a﹣2)﹣b(a﹣2)=b(a﹣2)(b﹣1).18.因式分解:(1)3x3﹣12x;(2)1﹣2x+2y+(x﹣y)2.【解题思路】(1)先提公因式,再用公式法进行因式分解.(2)先将1﹣2x+2y+(x﹣y)2变形为=1﹣(2x﹣2y)+(x﹣y)2,再用公式法进行因式分解.【解答过程】解:(1)3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2).(2)1﹣2x+2y+(x﹣y)2=1﹣(2x﹣2y)+(x﹣y)2=1﹣2(x﹣y)+(x﹣y)2=[1﹣(x﹣y)]2=(1﹣x+y)2.19.分解因式:(1)4x2(x﹣y)+(y﹣x);(2)(x2﹣5)2+8(x2﹣5)+16.【解题思路】(1)可先将(y﹣x)变形为﹣(x﹣y),再根据因式分解的步骤进行分解即可;(2)将(x2﹣5)看作一个整体,利用完全平方公式进行因式分解,最后再利用平方差公式因式分解即可.【解答过程】解:(1)4x2(x﹣y)+(y﹣x)=4x2(x﹣y)﹣(x﹣y)=(x﹣y)(4x2﹣1)=(x﹣y)(2x+1)(2x﹣1);(2)(x2﹣5)2+8(x2﹣5)+16=(x2﹣5+4)2=(x2﹣1)2=(x+1)2(x﹣1)2.20.分解因式:3x2﹣xy﹣2y2﹣x+y.【解题思路】先将3x2﹣xy﹣2y2﹣x+y分组整理,然后利用公式即可解答.【解答过程】解:原式=(3x2﹣xy﹣2y2)﹣(x﹣y)=(3x+2y)(x﹣y)﹣(x﹣y)=(x﹣y)(3x+2y﹣1).21.因式分解(1)5x2+6y﹣15x﹣2xy;(2)(1+ab)2﹣(a+b)2.【解题思路】(1)将原式分为两组:(5x2﹣15x)、﹣(2xy﹣6y),然后利用提取公因式法进行因式分解;(2)利用平方差公式进行因式分解.【解答过程】解:(1)原式=(5x2﹣15x)﹣(2xy﹣6y)=5x(x﹣3)﹣2y(x﹣3)=(x﹣3)(5x﹣2y);(2)原式=(1+ab﹣a﹣b)(1+ab+a+b)=[(1﹣a)﹣b(1﹣a)][(1+a)+b(1+a)]=(1﹣a)(1﹣b)(1+a)(1+b).22.因式分解:4(x+y)2﹣16(x﹣y)2.【解题思路】首先提公因式4,再利用平方差公式进行分解即可.【解答过程】解:4(x+y)2﹣16(x﹣y)2=4[(x+y)2﹣4(x﹣y)2]=4(x+y+2x﹣2y)(x+y﹣2x+2y)=4(3x﹣y)(3y﹣x).23.分解因式:2x3﹣2x2y+8y﹣8x.【解题思路】两两分组:先分别提取公因式2x2,8;再提取公因式2(y﹣x)进行二次分解;最后利用平方差公式再次进行因式分解即可求得答案.【解答过程】解:原式=2x2(x﹣y)﹣8(x﹣y)=2(x﹣y)(x2﹣4)=2(x﹣y)(x+2)(x﹣2).24.分解因式:a4+4b2c2﹣a2b2﹣4a2c2.【解题思路】先利用分组分解法进行恰当的分组,再利用提公因式法和公式法进行因式分解即可.【解答过程】解:原式=(a4﹣a2b2)﹣(4a2c2﹣4b2c2)=a2(a2﹣b2)﹣4c2(a2﹣b2)=(a2﹣b2)(a2﹣4c2)=(a+b)(a﹣b)(a+2c)(a﹣2c).25.因式分解:x3+3x2y﹣4x﹣12y.【解题思路】分为两组:(x3+3x2y)和(﹣4x﹣12y),然后运用完全平方公式和平方差公式进行因式分解.【解答过程】解:x3+3x2y﹣4x﹣12y=(x3+3x2y)﹣(4x+12y)=x2(x+3y)﹣4(x+3y)=(x+3y)(x2﹣4)=(x+3y)(x+2)(x﹣2).26.分解因式:a4+4b2c2﹣a2b2﹣4a2c2.【解题思路】利用加法的结合律和交换律,把整式的第一项和第三项,第四项和第二项分组,提取公因式后再利用公式.【解答过程】解:原式=(a4﹣a2b2)﹣(4a2c2﹣4b2c2)=a2(a2﹣b2)+4c2(a2﹣b2)=(a2﹣b2)(a2﹣4c2)=(a+b)(a﹣b)(a+2c)(a﹣2c).27.因式分解:(x2+2x)2﹣7(x2+2x)﹣8.【解题思路】原式利用十字相乘法分解后,再利用完全平方公式分解即可.【解答过程】解:原式=(x2+2x﹣8)(x2+2x+1)=(x﹣2)(x+4)(x+1)2.28.分解因式:(x2+x+1)(x2+x+2)﹣12.【解题思路】将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.【解答过程】解:设x2+x=y,则原式=(y+1)(y+2)﹣12=y2+3y﹣10=(y﹣2)(y+5)=(x2+x﹣2)(x2+x+5)=(x﹣1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如令x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.故答案为(x﹣1)(x+2)(x2+x+5)29.因式分解:64a6﹣48a4b2+12a2b4﹣b6.【解题思路】先利用分组分解法分解,再分别利用公式法和提取公因式法分解即可得出答案.【解答过程】解:64a6﹣48a4b2+12a2b4﹣b6=(64a6﹣b6)﹣(48a4b2﹣12a2b4)=(8a3+b3)(8a3﹣b3)﹣12a2b2(4a2﹣b2)=(2a+b)(4a2﹣2ab+b2)(2a﹣b)(4a2+2ab+b2)﹣12a2b2(2a+b)(2a﹣b)=(2a+b)(2a﹣b)[(4a2﹣2ab+b2)(4a2+2ab+b2)﹣12a2b2]=(2a+b)(2a﹣b)[(4a2+b2)2﹣4a2b2﹣12a2b2]=(2a+b)(2a﹣b)[(4a2+b2)2﹣16a2b2]=(2a+b)(2a﹣b)(4a2﹣b2)2=(2a+b)3(2a﹣b)3.30.请用两种方法对多项式x3﹣4x2+6x﹣4进行因式分解.(拆添项算一种方法)【解题思路】分别利用拆添项及配方法和提取公因式法进行分解即可.【解答过程】解:方法一:x3﹣4x2+6x﹣4=(x3﹣2x2)﹣(2x2﹣4x)+(2x﹣4)=x2(x﹣2)﹣2x(x﹣2)+2(x﹣2)=(x﹣2)(x2﹣2x+2);方法二:x3﹣4x2+6x﹣4=x(x2﹣4x2+4+2)﹣4=x(x﹣2)2+2x﹣4=(x﹣2)(x2﹣2x+2).。
八年级下册数学因式分解题
八年级下册数学因式分解题一、提取公因式法。
1. 分解因式:6ab + 3ac- 解析:公因式为3a,提取公因式后得到3a(2b + c)。
2. 分解因式:5x^2y-10xy^2- 解析:公因式为5xy,分解结果为5xy(x - 2y)。
3. 分解因式:9m^3n - 3m^2n^2- 解析:公因式为3m^2n,因式分解得3m^2n(3m - n)。
4. 分解因式:4a^3b - 6a^2b^2+2ab^3- 解析:公因式为2ab,分解后为2ab(2a^2-3ab + b^2)。
5. 分解因式:x(a - b)+y(b - a)- 解析:首先将y(b - a)变形为-y(a - b),公因式为(a - b),结果为(a - b)(x - y)。
6. 分解因式:3(x - y)^2-2(y - x)- 解析:将(y - x)变形为-(x - y),公因式为(x - y),得到(x - y)[3(x - y)+2]=(x - y)(3x - 3y + 2)。
7. 分解因式:2m(m - n)^2-8m^2(n - m)- 解析:将(n - m)变形为-(m - n),公因式为2m(m - n),分解结果为2m(m - n)[(m - n)+4m]=2m(m - n)(5m - n)。
二、公式法(平方差公式a^2-b^2=(a + b)(a - b))8. 分解因式:x^2-9- 解析:x^2-9=x^2-3^2,根据平方差公式,分解为(x + 3)(x - 3)。
9. 分解因式:16y^2-25- 解析:16y^2-25=(4y)^2-5^2,因式分解得(4y + 5)(4y - 5)。
10. 分解因式:49 - m^2- 解析:49 - m^2=7^2-m^2,根据平方差公式分解为(7 + m)(7 - m)。
11. 分解因式:(x + 2)^2-y^2- 解析:根据平方差公式a=(x + 2),b = y,分解为(x+2 + y)(x + 2-y)。
北师大版八年级下册数学《因式分解》PPT教学课件
合作探究
探究点三 问题1:因式分解:把一个多项式化成几个 整式 的 积 的形式,这种变形叫 做因式分解.因式分解也可称为 分解因式 . 问题2:你能说明因式分解与整式的乘法有什么关系吗? 多项式的因式分解与整式的乘法互为逆变形过程. 因此可以用整式的乘法来检验分解因式是否正确.
合作探究
探究点四 例1:已知多项式x2-4x+m因式分解的结果为(x+a)(x-6),求2a-m的值 解:(x+a)(x-6)
课程讲授
1 因式分解的定义
问题1:
完成下列题目: x(x-2)=__x_2_-_2_x_ (x+y)(x-y)=__x_2-_y_2__ (x+1)2=_x_2_+_2_x_+_1_
根据左空,解决下列问题: x2-2x=( x )( x-2 ) x2-y2=( x+y )( x-y ) x2+2x+1=( x+1 )2
4.1 因式分解
八年级下册
学习目标
1 经历从分解因数到分解因式的类比过程. 2 了解因式分解的意义,以及它与整式乘法的相互关系. 3 感受因式分解在解决相关问题中的作用.
前置学习
1.下列等式从左到右的变形,属于因式分解的是( D )
A.a(x-y)=ax-ay
B.x²+2x+1=x(x+2)+1
整式乘法
(x+1)(x-1)
课程讲授
1 因式分解的定义
归纳:因式分解与整式乘法是互逆运算,二者是一个 式子的两种不同表现形式.因式分解的等号右边是两个 或几个因式积的形式,整式乘法的等号右边是多项式的 形式.
随堂练习
1. 下列各式中从左到右的变形属于分解因式的是( C ) A. a(a+b-1)=a2+ab-a B. a2-a-2=a(a-1)-2 C. -4a2+9b2=(-2a+3b)(2a+3b) D.2x +1=x(2+ 1 )
八年级数学下册一元二次方程的解法——因式分解法
解下列方程:
1、x 2x 1 0; 2 2、x 4x; 3、x 3 x x 3 0; 2 2 4、 2x 1 x 0
完成书P92练习:1,2,3
练一练
2用因式分解法解下列方程: (1)(x+2)(x-1)=0 (2)(2y+1)(y-3)=0 (3)x2-3x=0 (4)3x2=x (5)2(x-1)+x(x-1)=0 (6)4x(2x-1)=3(2x-1)
概念巩固
1.一元二次方程(x-1)(x-2)=0可化为两个一次 方程为 和 ,方程的根是 . 2.已知方程4x2-3x=0,下列说法正确的是( )
3 A.只有一个根x= 4
B.只有一个根x=0 C.有两个根x1=0,x2=
3 4
D.有两个根x1=0,x2=-
3 4
典型例题
3.方程(x+1)2=x+1的正确解法是( ) A.化为x+1=1 B.化为(x+1)(x+1-1)=0 C.化为x2+3x+2=0 D.化为x+1=0Biblioteka 1、式子ab=0说明了什么?
a 0或b 0
初中数学八年级下册 (苏科版)
4.2一元二次方程的解法 因式分解法 (第5课时)
1、你能用其它方法解方程x2-x = 0吗? 另解:x2-x=0, x(x-1)=0, 于是x=0或x-3=0. ∴x1=0,x2=3
这种解一元二次方程的方法叫做因式分解法 可见,能用因式分解法解的一元二次方程须满足什么 样的条件 ? (1)方程的一边为0 (2)另一边能分解成两个一次因式的积
,x2=2
1.用因式分解法的条件是:方程左边能够 分解,而右边等于零; 2.理论依据是:如果两个因式的积等于零 那么至少有一个因式等于零. 因式分解法解一元二次方程的一般步骤: 一移-----方程的右边=0; 二分-----方程的左边因式分解; 三化-----方程化为两个一元一次方程;
八年级下册数学因式分解
八年级下册数学因式分解
一、因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。
二、因式分解与整式乘法的区别和联系:
1、整式乘法是把几个整式相乘,化为一个多项式;
2、因式分解是把一个多项式化为几个因式相乘。
二、因式分解的方法:
1、提公共因式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
这种分解因式的方法叫做提公因式法。
2、运用公式法:如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
3、分组分解法:利用分组来分解因式的方法叫做分组分解法。
4、十字相乘法。
八年级数学下册数学第四章因式分解同步串讲课件
【例1】下列各题中,从左式到右式的变形,哪
些是分解因式?哪些不是分解因式?为什么? (1)a2+2ab+b2=(a+b)2; (2)x2-3x+2=(x-1)(x-2); (3)(x+2)(x-1)=x2+x-2; (4)x(x+2)=x2+2x; (5)x2-y2=(x+y)(x-y); (6)m2+m-4=(m+3)(m-2)+2.
二.因式分解与整式乘法的关系
1. 示例:
两个互 逆的过 程——
分解因式
(a+b)(a-b) 整式乘法
结合:a2-b2
2.
3. 4.ຫໍສະໝຸດ 乘法:积化和差(体现在“乘”上); 因式分解:和差化积(体现在“分解”上)。 二者是一个互逆的过程,可以互相验算印证 乘法是一种运算;因式分解是为了达到目的 进行的一种变形,是解决问题的工具。
;
. ; ; .
形如a2+2ab+b2与a2–2ab+b2 的式子称为完全平方式.
注意:完全平方公式中的a与b不仅可以表示单项式,也可以表示多项式
一.利用平方差公式因式分解
1. 2. 3. 公式:a2-b2=(a+b)(a-b) 特征:左边是两项式,两项符号相反,能写 成平方差的形式。 文字语言:两数平方的差,等于这两数和与 差的乘积。
8a 2c+ 2b c - 4a 3b3 + 6 a2 b - 2ab
- 2x2 –12xy2 +8xy3
第三单元:公式法
填空:
(1)(a+b)(a–b) = ;
(2)(a+b)2=
(3)(a–b)2 = 根据上面式子填空: (1)a2–b2= (2)a2–2ab+b2 = (3)a2+2ab+b2 =
北师大版八年级数学(下册)优秀教学案例:4.1因式分解
三、教学策略
(一)情景创设
为了让学生更好地理解因式分解的概念和意义,我将通过创设丰富多样的教学情景,引导学生从生活中发现数学的影子。例如,通过实际生活中的物品购买问题,让学生体会因式分解在简化计算方面的作用;或者通过设计有趣的数学故事,将因式分解融入其中,激发学生的学习兴趣。此外,利用多媒体教学手段,如动画、图片等,形象直观地展示因式分解的过程,帮助学生形成直观的认识。
1.例题1:(a+b)×(a+b)
例题2:(x+y)×(x-y)
例题3:a^2+2ab+b^2
2.讨论要求:
(1)各小组讨论并确定解题方法。
(2)各小组派代表展示解题过程及答案。
(3)讨论过程中,鼓励学生提问、质疑,分享解题心得。
(四)总结归纳
在总结归纳环节,我会带领学生回顾本节课所学的因式分解方法,总结各方法的优缺点及适用场景。
2.因式分解的意义:因式分解可以帮助我们简化计算,解决实际问题。
3.因式分解的方法:介绍提取公因式法、十字相乘法、平方差公式等常用的因式分解方法。
在讲解过程中,结合具体例题,让学生直观地感受因式分解的过程,并强调各方法的适用条件及注意事项。
(三)学生小组讨论
在学生小组讨论环节,我会给出几个具有代表性的例题,让学生分组讨论,共同完成因式分解的任务。
北师大版八年级数学(下册)优秀教学案例:4.1因式分解
一、案例背景
因式分解北师大数学八年级下册PPT课件
C. − = −
D. + = + +
)
课堂检测
基础巩固题
2.
如果多项式
+
么另一个因式是( B
)
A. c−b+5ac
B.c+b−5ac
1
C. ac
5
1
D. ac
5
− 的一个因式是 ,那
= ( + ) − ( − ) −
= ++ +− −+ −−
∵ , , 是△ABC的三边,
∴ + + > , + − > , − + > , − − < ,
∴原式< ,即( + − ) − < .
北师大版 八年级 数学 下册
4.1 因式分解
导入新知
630可以被哪些整数整除?
解决这个问题,需要对630进行分解质因数
= × × ×
思考:既然有些数能分解因数,那么类似地,有些多项
式可以分解成几个整式的积吗?
素养目标
2. 理解因式分解与整式乘法之间的联系与区
别.
1. 理解掌握因式分解的意义,会判断一个变
.
探究新知
3.观察下面拼图过程,写出相应的关系式.
(2)
x
x
x
x+1
1
x
1
1
1
x+1
+ +
=
北师大版八年级数学下册课件:--因式分解
因式分解 整式乘法 整式乘法
因式分解 整式乘法 因式分解 因式分解
1.检验下列因式分解是否正确:
1m 2 nm m m n 正确 2a 2 b2 a ba b 正确 3x 2 x 2 x 2x 1 不正确
2.分解因式.
(1) am+bm
1.检验下列因式分解是否正确:
1m 2 nm m m n 正确
2a2 b2 a ba b
正确
3x 2 x 2 x 2x 1 不正确
2.智力抢答
1 872 87 13 8787 13 87100 8700
利用了因式分解
21012 992 101 99101 99 200 2 400
第四章 因式分解
1 因式分解
忆一忆
1.在小学里,我们学过: 2×3×5=30 ( 整数乘法 ) 30 = 2×3×5 ( 因数分解 )
2.第三章里,我们学过:
x (x + y) = x2 + xy( 整式乘法 )
x2 + xy = x (x + y) ( 因式?分解 )
学习目标
1.理解因式分解的定义;并能用几何图形解 释因式分解的意义; 2.初步体会因式分解与整式乘法的关系; 3.感受类比与互逆的思想方法解决问题。
下列 代数式变形中,哪些是因式分解?哪些不是?为什么?
① 3a(a+2)=3a²+6a ② 3a²+6a= 3a(a+2)
③ x²-4=(x+3x=(x+2)(x- 2)+3x
⑤a²-2ab+b²= (a-b)² ⑥2a²b-ab = ab(2a-1)
北师大版初二数学下册数学八年级下北师大第四章因式分解
6.(x+y+z)²-(x-y-z)²=(x+y+z+x-y-z)(x+y+z-x+y+z) =2x(2y+2z)
7.4xy²-4x²y-y³=y(4xy-4x²-y²)
8.x²-6x+8=(x-2)(x-4)
1.把下列各式分解因式. (1) 5a²-20b²; (2) p²(a-1)+p(1-a)²; (3)a²(x-y) + 9b²(y-x); (4)(a²-4)²+6(a²-4)+9 .
1. b²- 2b-8=b (b-2 ) – 8; 2. 2x3 4x 2 2x =2x(x²+2x); 3.x(x+y)(x-y)-x(x+y)²=x(x+y)(x-y-x-y); 4.p4 - 1=(p²+1)(p²-1); 5.mn(m-n)-m(n-m)²=mn(m-n)+m(m-n)²
提公因式法 运用公式法
平方差公式 a2 b2 (a b)(a b)
完全平方公式 a2 2ab b2 (a b)2
如果把乘法公式反过来,那 么就可以用来把某些多项式 分解因式,这种分解因式的 方法叫做运用公式法。
下列各式的因式分解是否正确?如果不正确, 应怎样改正?你能从中得到什么启示?
2.你能把下列各式分解因式吗?
(1)x²-y²-2y-1 (2) m²-4mn+3n²
解:(1)原式=x²-(y²+2y+1 ) =x²-(y+1) ² =(x+y+1)(x-y-1)
(2)原式= m²-4mn+4n²-n² =(m-2n) ²-n² =(m-2n+n)(m-2n-n) =(m-n)(m-3n)
八年级数学因式分解知识点
八年级数学因式分解知识点在八年级数学学习中,因式分解是一个重要的知识点。
它是解决一元二次方程的基础,同时也是其他数学题目中常用的方法。
因此,掌握因式分解是十分必要的。
本文将从何为因式分解、如何因式分解、应用因式分解三方面进行讲解。
何为因式分解?因式分解,顾名思义,就是把一个算式分解成不可再分的因式之积。
例如,4x^2+8x=4x(x+2),其中4x和x+2就是因式,它们的积就是原算式。
因式分解不仅可以用于解一次、二次方程,还可以用于化简分式、求最大公因数等方面。
所以,学生在学习因式分解时,要注意理解其定义及其用途,以便后续学习中灵活地应用。
如何因式分解?因式分解的方法有很多种,我们在学习中一般采用分拆因式法、提公因式法、配方法等三种。
下面我们来分别介绍这三种方法:1.分拆因式法分拆因式法就是把一个数分解成两个因数的积,这种方法常用于多项式分解。
例如,x^2+3x+2可以分解成(x+1)(x+2),x^3-1可以分解成(x-1)(x^2+x+1)等。
2.提公因式法提公因式法就是提取多项式中的公因式,因为分解后的公因式可以被其它项相乘而得到原多项式。
例如,2x+4y可以分解成2(x+2y),12a^3+18a^2可以分解成6a^2(2a+3)等。
3.配方法配方法就是把多项式分成两组相乘再合并,从而得到分解后的式子。
例如,x^2+5x+6可以分解成(x+2)(x+3)等。
应用因式分解因式分解可以应用于很多数学题目中。
下面我们来看几个例子:1.求最大公因数求两个数的最大公因数时,我们可以先分别把它们分解成质数的乘积再把它们相同的因数取出来相乘即可。
2.化简分数当一个分数的分子、分母可以因式分解时,我们就可以把分子、分母分别分解,最后把它们的公因数约掉,得到化简后的分数。
3.解一元二次方程解一元二次方程需要用到配方法,通过配方法把方程化成(x+a)(x+b)=0的形式,然后再解得x的值。
总结以上就是因式分解的知识点。
北师大版数学八年级下册4.1《因式分解》教案
北师大版数学八年级下册4.1《因式分解》教案一. 教材分析北师大版数学八年级下册4.1《因式分解》是初中数学的重要内容,主要让学生掌握因式分解的方法和应用。
因式分解是代数运算的基础,对于提高学生的数学思维能力和解决问题的能力具有重要意义。
本节课的内容包括提公因式法、公式法、分组分解法等因式分解方法,通过这些方法的学习,使学生能够灵活运用因式分解解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了整式的乘法运算,具备了一定的代数基础。
但因式分解较为抽象,对于部分学生来说,理解起来存在一定的困难。
因此,在教学过程中,要关注学生的学习差异,针对不同层次的学生进行教学,提高他们的学习兴趣和自信心。
三. 教学目标1.知识与技能目标:使学生掌握因式分解的方法,能够灵活运用各种方法进行因式分解。
2.过程与方法目标:通过小组合作、讨论交流,培养学生的团队协作能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:因式分解的方法。
2.难点:灵活运用各种方法进行因式分解,解决实际问题。
五. 教学方法1.情境教学法:通过创设生活情境,激发学生的学习兴趣。
2.启发式教学法:引导学生主动思考,培养学生的创新能力。
3.小组合作学习:培养学生团队协作能力和解决问题的能力。
六. 教学准备1.准备相关教案、PPT、教学素材等。
2.准备黑板、粉笔、投影仪等教学用品。
3.提前让学生预习本节课的内容,了解因式分解的基本概念。
七. 教学过程1. 导入(5分钟)利用生活实例或趣味数学问题,引入因式分解的概念,激发学生的学习兴趣。
2. 呈现(10分钟)通过PPT展示因式分解的方法,包括提公因式法、公式法、分组分解法等。
引导学生了解各种方法的特点和应用。
3. 操练(10分钟)对学生进行分组,每组选定一个因式分解问题,运用所学的methods进行解决。
教师巡回指导,解答学生的疑问。
人教版八年级下册数学专题复习及练习(含解析):因式分解
专题14.3因式分解1.因式分解把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.2.因式分解方法(1)提公因式法:找岀最大公因式.(2)公式法:①平方差公式:a2-b2=(a+b)(a-b) ②完全平方公式:a2±2ab+b2=(a±b)23.分解因式的一般步骤若有公因式,先提公因式;然后再考虑用公式法(平方差公式:孑一歹=(a+b)(a-2>),完全平方公式: /±2曰b+F=(a±bF)或英它方法分解;直到每个因式都不能再分解为止.【例题1】因式分解:ab-a= __________ •【例题2]把多项式4子-1分解因式,结果正确的是( )A. (4M1) (4a-1) B・(2M1) (2”1)C. (2a- 1) 2D・(2亦1) 2【例题3]分解因式3/ - 27/= __________ .【例题4】分解因式:xf - 2xy^x= _________ .【例题5】因式分解:/-9= _________ .【例题6】分解因式:_________________ ・一.选择题1.a'b - 6a'bTa:b分解因式得正确结果为( )A. a"b (a* - 6a+9) B・ a-b (a - 3) (a+3) C・ b (a" - 3) D・ a"b (a - 3)2.把多项式x2 - 6x+9分解因式,结果正确的是()A・(x - 3 ) 2 B・(x - 9)=C・(x+3) ( x - 3 ) D・(x+9) ( x - 9)3.多项式77x: - 13x - 3 0可因式分解成(7 x+a ) ( bx+c儿其中a > b、c均为整数,求a+b + c之值为何?( )A. 0 B・ 10 C・ 12 D・ 224.已知甲、乙、丙均为x的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘为X3- 4,乙与丙相乘为x=+15x - 34,则甲与丙相加的结果与下列哪一个式子相同?( )A. 2x+19 B・ 2x - 19 C・ 2x+15 D・ 2x - 155.把8a'-8a:+2a进行因式分解,结果正确的是( )A. 2a ( 4a: - 4a+l) B・ 8a: ( a - 1)C. 2a ( 2a - 1) 2 D・ 2a (2a+l) 26.多项式77x" - 13x - 30可因式分解成(7x-ra ) ( bx+c ),其中a. b c均为整数,求a+b + c之值为何?( )A. 0 B・ 10 C・ 12 D・ 227.已知甲、乙、丙均为x的一次多项式,且英一次项的系数皆为正整数.若甲与乙相乘为x c- 4,乙与丙相乘为x=+15x - 34,则甲与丙相加的结果与下列哪一个式子相同?( )A. 2x+19B. 2x - 19 C ・ 2x+15 D. 2x・ 158.把多项式亍+ax+b分懈因式,得(x+1) (x-3)则a, b的值分别是( )A. a=2t b=3 B・ a= - 2, b二・3 C・ a= - 2, b=3 D・ a=2, b= - 39.分解因式:16-丘二( )A. (4 - x) (4+x) B・(x - 4) (x+4) C. (8+x) (8 - x) D. (4 - x):10.将下列多项式因式分解,结果中不含有因式a+1的是( )A. a" - 1 B・ a"+a C・ a"+a - 2 D・(a+2) " - 2 (a+2) +1二、填空题11.分解因式:1-¥= _________ .12.分解因式:3a'b十6卅二__ ・13.分解因式X3—9x= _____1 0 114•已知实数x满足x+_=3,则x2 + —的值为___________ -X X15•因式分解:£・6a+9二____ ・16.分解因式:2^2 - 8/= ______________ .17.因式分解:a2 -2a = _________ .18.分解因式:x2 +x-2 = __________ ・19.分解因式.4丘一9二 _____ ・20.分解因式:a^b —ab= _______ ・21.分解因式:ax= - ay== ______________ .22.分解因式:a-16a= ________________ ・23.把多项式9a5 - ab:分解因式的结果是__________ .24._______________________________________ •把多项式ax:+2a*a'分解因式的结果是.25.分解因式3m l - 48= ____________ ・26・分解因式:ab 1 - 4ab:+4ab:= ______________ ・27.分解因式:(m+1) (m- 9) +8m二__________ ・28•将/ (x-2) +加(2-.Y)分解因式的结果是________________三、解答题29•已知a+b二3, ab=2,求代数式a5b+2aV+ab3的值.专题14.3因式分解1.因式分解把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.2.因式分解方法(1)提公因式法:找岀最大公因式.(2)公式法:①平方差公式:a2-b2=(a+b)(a-b) ②完全平方公式:a2±2ab+b2=(a±b)23.分解因式的一般步骤若有公因式,先提公因式;然后再考虑用公式法(平方差公式:孑一歹=(a+b)(a-2>),完全平方公式: /±2曰b+F=(a±bF)或英它方法分解;直到每个因式都不能再分解为止.【例题1】因式分解:ab-a= ___________•【答案】a (6-1).【解析】提公因式a即可.ab- a=a (.b ■ 1 )・【点拨】本题考査了提取公因式法因式分解.关键是求岀多项式里各项的公因式,提公因式.【例题2】把多项式4/ - 1分解因式,结果正确的是( )A. (4亦1) (4a- 1)B. (2M1) (2”1)C. (2a- 1) 2D・(2M1) 2【答案】B【解析】如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.平方差公式:=(a+6) (a- b)i完全平方公式:a:±2aM6:= (a±b) 5:4a:- 1= (2a+l) (2a- 1),【点拨】本题考査了分解因式,熟练运用平方差公式是解题的关键。
八年级数学下册《因式分解法解一元二次方程》教案、教学设计
4.设计不同难度层次的习题,使学生在巩固基础知养其创新思维。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热情,激发学生学习数学的积极性;
2.培养学生勇于面对困难,敢于挑战自我的精神,使其在解决问题中增强自信心;
4.家长签字确认,加强对学生学习情况的了解和关注。
4.加强团队合作指导,提高学生的沟通协作能力;
5.关注学生个体差异,实施差异化教学,激发学生的学习兴趣和潜能。
三、教学重难点和教学设想
(一)教学重难点
1.重点:因式分解法解一元二次方程的步骤和方法,以及在实际问题中的应用。
2.难点:
(1)理解一元二次方程的根的判别式及其与因式分解的关系;
(2)灵活运用因式分解法解决各种类型的一元二次方程;
4.能够根据一元二次方程的特点,选择合适的解法,提高解题效率;
5.通过练习,提高学生的运算速度和准确性。
(二)过程与方法
在本章节的教学过程中,教师将采用以下过程与方法:
1.引导学生通过观察、分析、归纳一元二次方程的特点,发现因式分解法解一元二次方程的规律;
2.通过讲解、示范、练习等多种方式,帮助学生掌握因式分解法解一元二次方程的方法;
(4)注重课堂反馈,及时调整教学进度和策略,提高教学效果。
3.教学评价:
(1)采用过程性评价与终结性评价相结合的方式,全面评估学生的学习效果;
(2)关注学生在小组合作中的表现,评价其团队协作能力和沟通能力;
(3)设置开放性问题,评价学生的创新思维和解决问题的能力;
(4)鼓励学生自我评价和相互评价,提高学生的自我认知和反思能力。
八年级数学下册《因式分解法解一元二次方程》教案、教学设计
八年级数学下册第四章:因式分解(一)
(4m 8)(4m 2) 4(m 2) 2(2m 1) 8(m 2)(2m 1) 被 8 整除。
(2) (x y2 )(x y2 )(x2 y4 ) (x2 y4 )(x2 y4 ) x4 y8 xm yn m 4 , n 8 。
跟踪训练二:计算下列题目。
。
参考答案:(1) (3m 3)2 36 (3m 3)2 62 [(3m 3) 6][(3m 3) 6] (3m 3 6)(3m 3 6)
(3m 9)(3m 3) 3(m 3) 3(m 1) 9(m 3)(m 1) 被 9 整除。
(2) (a2 b2 )(a2 b2 )(a4 b4 ) (a4 b4 )(a4 b4 ) a8b8 am bn m 8 , n 8 。
参考答案:(1)16x2 81 42 x2 92 (4x)2 92 (4x 9)(4x 9) ;
(2) x4 1 (x2 )2 12 (x2 1)(x2 1) (x2 1)(x2 12 ) (x2 1)(x 1)(x 1) ;
(3) a6 16a2b4 a2 (a4 16b4 ) a2[(a2 )2 42 (b2 )2 ] a2[(a2 )2 (4b2 )2 ] a2 (a2 4b2 )(a2 4b2 )
(3) (4x2 9)(2x 3)(2x 3) (4x2 9)(4x2 9) 16x4 81 (2x)4 81 (2x)n 81 n 4 。
第二部分:完全平方公式
例题一:对下列代数式进行因式分解。
(1) 9x2 30x 25 ;(2) 36x2 60x 25 ;(3) 4x2 y4 12x2 y2 9x2 。
例题二:计算下列题目。
(1)对于任何整数 m ,多项式 (4m 5)2 9 都能(
)
(完整版)八年级数学因式分解知识点
第四章 因式分解把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。
因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下:一、提公因式法.如多项式),(c b a m cm bm am ++=++其中m 叫做这个多项式各项的公因式, m 既可以是一个单项式,也可以是一个多项式.二、运用公式法.运用公式法,即用))((,)(2),)((223322222b ab a b a b a b a b ab a b a b a b a +±=±±=+±-+=-三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
解:原式=)()(bn bm an am +++=)()(n m b n m a +++ 每组之间还有公因式!=))((b a n m ++思考:此题还可以怎样分组?此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提。
例2、分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。
第二、三项为一组。
解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+-=)5()5(2y x b y x a --- =)2(5)2(b a y b a x ---=)2)(5(b a y x -- =)5)(2(y x b a --(二)分组后能直接运用公式例3、分解因式:ay ax y x ++-22分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。
八年级数学因式分解方法
八年级数学因式分解方法一.提取公因式法(一)公因式是单项式的因式分解1.分解因式确定公因式的方法①系数:取各项系数的最大公因数;②字母(或多项式):取各项都含有的字母(或多项式);③指数:取相同字母(或多项式)的最低次幂.注意:公因式可以是单独的一个数或字母,也可以是多项式,当第一项是负数时可先提负号,当公因式与多项式某一项相同时,提公因式后剩余项是1,不要漏项.解:原式=一4m²n(m²一4m+7).(二)公因式是多项式的因式分解2.因式分解15b(2a一b)²+25(b一2a)²解:原式=15b(2a一b)²+25(2a一b)²=5(2a一b)²(3b+5)二.公式法(一)直接用公式法3.分解因式(1).(x²+y²)²一4x²y²(2).(x²十6x)²+18(x²+6x)十81解:(1)原式=(x²+y²+2xy)(x²+y²一2xy)=(x十y)²(x一y)²(2)原式=(x²十6x+9)²=[(x+3)²]²=(二)先提再套法4.分解因式(三)先局部再整法5.分解因式9x²一16一(x十3)(3x+4)解:原式=(3x十4)(3x一4)一(x十3)(3x十4)=(3x+4)[(3x一4)一(x+3)]=(3x十4)(2x一7)(四)先展开再分解法6.分解因式4x(y一x)一y²解:原式=4xy一4x²一y²=一(4x²一4xy+y²)=一(2x一y)²三.分组分解法7.分解因式x²一2xy+y²一9解:原式=(x一y)²一9=(x一y十3)(x一y一3)四.拆、添项法8.分解因式五.整体法(一)"提"整体9.分解因式a(x+y一z)一b(z一x一y)一c(x一z+y)解:原式=a(x十y一z)十b(x十y一z)一c(x十y一z)=(x十y一z)(a+b一c)(二)"当"整体10.分解因式(x+y)²一4(x+y一1)解:原式=(x+y)²一4(x+y)+4=(x十y一2)²(三)"拆"整体11.分解因式ab(c²+d²)+cd(a²+b²)解:原式=abc²+abd²+cda²+cdb²=(abc²+cda²)+(abd²+cdb²)=ac(bc十ad)+bd(ad+bc)=(bc十ad)(ac+bd)(四)"凑"整体12.分解因式x²一y²一4x+6y一5解:原式=(x²一4x十4)一(y²一6y+9)=(x一2)²+(y一3)²=[(x一2)十(y一3)][(x一2)一(y一3)]=(x+y一5)(x一y十1)六.换元法13.分解因式(a²十2a一2)(a²+2a+4)+9解:设a²+2a=m,则原式=(m一2)(m+4)十9=m²十4m一2m一8+9=m²+2m十1=(m+1)²=(a²+2a十1)²=七.十字相乘法公式:x²十(a十b)x十ab=(x+a)(x十b)或对于一个三项式若能象上边一样中间左侧上下相乘得x²,中间右侧上下相乘得ab,中间上下斜对角相乘之和为(a+b)x,则能进行分解,如:14.x²一5x一14解:原式=(x一7)(x十2)十字相乘法分解因式非常重,在以后有关代数式的运算,解方程等知识中常常用到.八.待定系数法15.分解因式x²+3xy+2y²十4x+5y+3解:因为x²+3xy+2y²=(x+y)(x+2y)设原式=(x+y+m)(x+2y十n)=x²十3xy+2y²十(m+n)x+(2m+n)y+mn.∴m=1,n=3∴原式=(x+y+1)(x+2y+3)【总结】因式分解的知识在代数中有着重要的地位,同学们要多加强这方面的练习,为以后的学习奠定扎实的基础。
北师大版八年级下册数学《提公因式法》因式分解PPT教学课件
(3)8a3b2-12ab3c+ab;(4)-24x3+12x2-28x.
(3)8a3b2-12ab3c+ab
(4)-24x3+12x2-28x
=ab·8a2b-ab·12b2c+ab·1
=-( 24x3-12x2+28x)
=ab(8a2b-12b2c+l);
=-(4x·6x2-4x·3x+4x·7)
第四章 因式分解
提公因式法
知识回顾
1. 因式分解的概念
把一个多项式化为几个整式的积的形式,这种变形叫做把这
个多项式分解因式 .
2. 整式乘法与分解因式之间的关系.
互为逆运算
获取新知
1.多项式ma+mb+mc有哪几项?
ma, mb, mc
2.每一项的因式都分别有哪些?
依次为m, a和m, b和m, c
-
1
2
时此式的值.
解:x(x+y)(x-y)-x(x+y)2
=x(x+y)[(x-y)-(x+y)]
=-2xy(x+y).
1
2
当x+y=1,xy=- 时,
1
原式=-2×(-
2
)×1=1.
随堂练习
1.多项式a(m-2)+(m-2)分解因式等于( B
)
A.2(m-2)
B.(m-2)(a+1)
C.(m-2)(a-1)
解:原式=(a-1)(7+x).
(4)(2a+b)(2a-3b)-3a(2a+b).
解:原式= (2a+b)(2a-b-3a)
=-(2a+b)(a+3b).
请在下列各式等号右边填入“+”或“-”号,使等式成立.
(1) 2-a=____(
- a-2)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.x2-xy+x=x(x-y)B.a3-2a2b+ab2=a(a-b)2
C.x2-2x+4=(x-1)2+3D.ax2-9=a(x+3)(x-3)
思路分析:利用提公因式法分解因式和完全平方公式分解因式进行分解即可得到答案.
解:A、x2-xy+x=x(x-y+1),故此选项错误;
例4(2013•湖州)因式分解:mx2-my2.
思路分析:先提取公因式m,再对余下的多项式利用平方差公式继续分解.
解:mx2-my2,
=m(x2-y2),
=m(x+y)(x-y).
点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
对应训练
2.(2013•温州)因式分解:m2-5m=
3.(2013•西宁)下列分解因式正确的是()
A.3x2-6x=x(3x-6)B.-a2+b2=(b+a)(b-a)
C.4x2-y2=(4x+y)(4x-y)D.4x2-2xy+y2=(2x-y)2
2.(2013•滨州)分解因式:5x2-20=
3.(2013•泰安)分解因式:m3-4m=
4.(2013•莱芜)分解因式:2m3-8m=
5.(2013•东营)分解因式:2a2-8b2=
6.(2013•烟台)分解因式:a2b-4b3=
7.(2013•威海)分解因式:-3x2+2x- =
8.(2013•菏泽)分解因式:3a2-12ab+12b2=
八年级下册数学因式分解
因式分解
考点一:因式分解的概念
例1(2013•株洲)多项式x2+mx+5因式分解得(x+5)(x+n),则m=
,n=
.
思路分析:将(x+5)(x+n)展开,得到,使得x2+(n+5)x+5n与x2+mx+5的系数对应相等即可.
解:∵(x+5)(x+n)=x2+(n+5)x+5n,∴x2+mx+5=x2+(n+5)x+5n
4.(2013•北京)分解因式:ab2-4ab+4a=
考点三:因式分解的应用
例5(2013•宝应县一模)已知a+b=2,则a2-b2+4b的值为4
.
点评:本题考查了利用平方差公式分解因式,利用平方差公式和提公因式法整理出a+b的形式是求解本题的关键,同时还隐含了整体代入的数学思想.
真题训练
1.(2013•临沂)分解因式4x-x2=
9.(2013•鹰潭模拟)已知ab=2,a-b=3,则a3b-2a2b2+ab3=
1.(泉州市中考题)分解因式: =。
2.(荆州市中考题)分解因式: =。
3.(常德市中考题)分解因式: =。
4.(四川省中考题) =。
5.(十堰市中考题)填上适当的数,使等式成立:
6.(眉山市中考题)分解因式: =。
7.(绵阳市中考题)在有理数范围内,下列各多项式能用公式法进行因式分解的是()
14. () .
15.若多项式4a2+M能用平方差公式分解因式,则单项式M=____(写出一个即可).
16.在多项式 加上一个单以是.
17.已知:x+y=1,则 的值是___________.
18.若 的值为_____________.
20.如图所示,边长为a米的正方形广场,扩建后的正方形边长比原来的长2米,则扩建后的广场面积增加了_______米2.
三、解答题
21.分解因式:
(1) ;(2)2x2-18;
(3) ;(4) .
22.请你从下列各式中,任选两式作差,并将得到的式子进行因式分解. .
23.设n为整数.求证:(2n+1)2-25能被4整除.
24.在直径D1=1 8mm的圆形零件上挖出半径为D2=14mm的圆孔,则所得圆环形零件的底面积是多少?(结果保留整数).
5.(2013•太原)分解因式:a2-2a=
6.(2013•广州)分解因式:x2+xy=
7.(2013•盐城)因式分解:a2-9=
8.(2013•厦门)x2-4x+4=
9.(2013•绍兴)分解因式:x2-y2=
10.(2013•邵阳)因式分解:x2-9y2=
12.(2013•南充)分解因式:x2-4(x-1)=
13.(2013•遵义)分解因式:x3-x=
14.(2013•舟山)因式分解:ab2-a=
15.(2013•宜宾)分解因式:am2-4an2=
16.(2013•绵阳)因式分解:x2y4-x4y2=
17.(2013•内江)若m2-n2=6,且m-n=2,则m+n=
18.(2013•廊坊一模)已知x+y=6,xy=4,则x2y+xy2的值为
A. B. C. D.
8.(沈阳市中考题)分解因式 =。
9.(上海市中考题)分解因式 =。
10.(宁波市中考题)分解因式 =。
一、选择题
1.(2013•张家界)下列各式中能用完全平方公式进行因式分解的是()
A.x2+x+1B.x2+2x-1C.x2-1D.x2-6x+9
2.(2013•佛山)分解因式a3-a的结果是()
A. B. C.2 D.
4.分解因式: =()
A. B. C. D.
5. 是下列哪一个多项式因式分解的结果().
A. B.- C. D.-
6.若 ,则 的值是()
A.8B.16 C.2D.4
7.因式分解 ,正确的结果是()
A. B. C. D.
8.把多项式 分解因式的结果是()
A. B. C. D.
∴ ,∴ ,
故答案为6,1.
点评:本题考查了因式分解的意义,使得系数对应相等即可.
对应训练
1.(2013•河北)下列等式从左到右的变形,属于因式分解的是()
A.a(x-y)=ax-ayB.x2+2x+1=x(x+2)+1
C.(x+1)(x+3)=x2+4x+3D.x3-x=x(x+1)(x-1)
考点二:因式分解
19.(2013•凉山州)已知(2x-21)(3x-7)-(3x-7)(x-13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b=
1.下列各式由左边到右边的变形中,是因式分解的为()
A. B.
C. D.
2.下列多项式中,能用提公因式法分解因式的是()
A. B. C. D.
3.把多项式 提取公因式 后,余下的部分是()
B、a3-2a2b+ab2=a(a-b)2,故此选项正确;
C、x2-2x+4=(x-1)2+3,不是因式分解,故此选项错误;
D、ax2-9,无法因式分解,故此选项错误.
故选:B.
点评:此题主要考查了公式法和提公因式法分解因式,关键是注意口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.
A.a(a2-1)B.a(a-1)2C.a(a+1)(a-1)D.(a2+a)(a-1)
3.(2013•恩施州)把x2y-2y2x+y3分解因式正确的是()
A.y(x2-2xy+y2)B.x2y-y2(2x-y)C.y(x-y)2D.y(x+y)2
二、填空题
4.(2013•自贡)多项式ax2-a与多项式x2-2x+1的公因式是
例2(2013•无锡)分解因式:2x2-4x=2x(x-2)
.
思路分析:首先找出多项式的公因式2x,然后提取公因式法因式分解即可.
解:2x2-4x=2x(x-2).
故答案为:2x(x-2).
点评:此题主要考查了提公因式法分解因式,关键是掌握找公因式的方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.
9.若 ,则 的值为()
A.-5 B.5 C.-2 D.2
10.下列因式分解中,错误的是()
A. B.
C. D.
二、填空题
11.多项式 各项的公因式是______________.
12.已知x+y=6,xy=4,则x2y+xy2的值为.
13.一个长方形的面积是 平方米,其长为 米,用含有 的整式表示它的宽为________米.