模拟乘法器MC1496的模拟调制、解调与混频、倍频的设计与仿真

合集下载

实验1 集成模拟乘法器混频及平衡调幅实验

实验1 集成模拟乘法器混频及平衡调幅实验

集成模拟乘法器混频、平衡调幅实验一、实验目的掌握利用乘法器(MC1496)实现混频,平衡调幅的原理及方法。

二、实验仪器双踪示波器一台、高频电子实验箱一台、万用表一台三、实验原理(1)混频用模拟乘法器实现混频,只要x u 端和y u 端分别加上两个不同频率的信号,相差一中频如,再经过带通滤波器取出中频信号,其原理如图所示:若()cos x s s u t V w t = ()00cos y u t V w t =则()00cos cos c s s u t KVV w t w t = ()()0001cos cos 2s s s KV V w w t w w t =++-⎡⎤⎣⎦ 经带通滤波器后,取差频 ()()0001cos 2s s V t KV V w w t =- 0s i w w w -=为某中频频率。

(2)振幅调制 设载波信号的表达式为()c o s c c m c u t U t ω=,调制信号的表达式为()c o s m u t U t ΩΩ=Ω,调制信号叠加直流电源Q U ,则调幅信号的表达式为 ()()()()000cos 11cos cos cos 22o M Q cm c m c a m c a m c u t A U u t U tU t m U t m U t ωωωωΩ⎡⎤=+⎣⎦=++Ω+-Ω0m M Q cm U A U U =a m ——调幅系数,a m Q m U U Ω=;0cos m c U t ω——载波信号;()01cos 2a m c m U t ω+Ω——上边频分量; ()01cos 2a m c m U t ω-Ω——下边频分量 它们的波形及频谱如图所示。

由图可见,调幅波中载波分量占有很大比重,因此信息传输效率较低,称这种调制为有载波调制。

为提高信息传输效率,广泛采用抑制载波的双边带或单边带振幅调制。

双边带调幅波的表达式为()()()0cos cos 11cos cos 22M m cm c m c m c u t A U t U tU t U t ωωωΩ=Ω⋅=+Ω+-Ω 式中 m M m cm U A U U Ω=⋅⋅四、实验步骤1、混频器实验● 连接好跳线J12、J13、J15、J19、J110(此时J11、J14、J16、J17、J18应断开)。

基于模拟乘法器MC1496的调幅电路设计

基于模拟乘法器MC1496的调幅电路设计

《模数混合实用电路设计》报告题目:基于模拟乘法器MC1496的调幅电路设计专业:班级:学号:姓名:同组人:指导教师:时间: 2013.6.24---2013.7.7一、设计目的1.掌握集成模拟乘法器的基本原理。

2.掌握集成模拟乘法器构成的振幅调制电路的工作原理及特点。

3.学习调制系数M及调制特性(m~Uom)的测量方法,了解m<1和m>1及m=1时的调幅波的波形特点。

二、设计要求学习和掌握振幅调制电路设计方法,学习相关器件的工作原理和基本参数,设计一个振幅调制电路。

学习并掌握电路仿真软件的基本操作。

具体要求1、振幅调制原理分析;2、学习应用EDA工具Multisim软件;3、列出需要的器件清单;4、进行功能仿真,并设计电路图;5、进行电路调试;6、写报告设计。

写上设计仿真过程,附上有关资料与图片及心得体会。

三、原理简述1、振幅调制原理振幅调制是用调制信号去控制载波的振幅,使其随调制信号线性变化,而保持载波的角频率不变。

普通调幅波的波形图:当载波频率ω>>调制信号频率Ω,0<ma<=1,则可其波形,从图中看出调幅波是一个载波振幅按照调制信号大小线性变化的高频振荡调幅信号频谱:将调幅波的数学表达式展开,可得到V(t)=V0(1+macosΩt)cosωt=V0cosωt+1/2maV0cos(ω0+Ω)t+1/2maV0cos(ω0—Ω)t可见V(t)是由ω0、ω0+Ω和ω0—Ω三个不同频率分量的高频振荡由图看出调幅过程实际上是一种频谱搬移过程,即将调制信号的频谱搬移到载波附近,成为对称排列在载波频率两侧的上、下边频,幅度均等于1/2maV0.由上述分析调幅波的波形和频谱可知,调幅前后,输出信号和输入信号的波频率分量都产生变化,即产生了频率变换,因此,振幅调制的实现一定要有非线性器件产生相乘作用才能实现。

2、低通滤波器原理利用电容同高频阻低频,电感通低频阻高频的原理.对于需要截止的高频,利用电容吸收电感、阻碍的方法不使它通过,对于需要的低频,利用电容高阻、电感低阻的特点是它通过。

模拟乘法器MC1496仿真分析

模拟乘法器MC1496仿真分析

科技信息SCIENCE &TECHNOLOGY INFORMATION2010年第29期0引言在高频电子线路中的振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程,在实验中大多使用模拟乘法器MC1496构成相关功能电路;本文利用multisim10对软件仿真平台,以MC1496构成的调幅电路为实例进行软件仿真,分析在不同的条件下对MC1496的外特性的影响。

1创建模拟乘法器MC1496电路模块MC1496是根据双差分对模拟相乘器基本原理制成的乘法器芯片,用来实现调幅电路具有电路简单,调试方便的优点,但在multisim10的仿真元件库中没有这个元器件,因此必须创建MC1496的内部结构图,创建MC1496内部结构如图1所示,子电路如图2所示。

图1MC1496电路模块图2MC1496子电路2MC1496构成的调幅电路及检波电路仿真2.1MC1496构成的调幅电路利用已经生成的MC1496子模块,参考MC1496数据手册或实验指导书选择电路元件,创建双边带调幅仿真电路,如图3所示。

图3MC1496构成的调幅电路实验中,我们主要关注的是电阻R4,引脚5连接的对地电阻R5及2,3引脚间的电阻R23;R5决定了模拟乘法器的静态工作电流,为了保证MC1496工作于小信号放大状态,R5必须选择合适的值;R23来调正调制信号的输入线性动态范围,同时控制乘法器的增益。

2.2仿真电路数据测试(1)MC1496的直流工作点根据MC1496的特性参数,实际应用时,静态偏置电压(输入电压为0时)应满足下列关系(以图3为例,下式中vx 代表芯片x 脚的电压):v 8=v 10,v 1=v 4,v 6=v 1230V ≥v 6(v 12)-v 8(v 10)≥2V 30V ≥v 8(v 10)-v 1(v 4)≥2.7V 30V ≥v 1(v 4)-v 5≥2.7V通过仿真得出乘法器的直流工作点如图4所示:图4静态工作状态测试比较仿真测试值和理论估算值,符合MC1496的应用要求,但在实际调测电路的时候,可能会出现不一致的情况,一般的情况大多数为虚焊、无源器件(电阻)可能选择错误和芯片损坏等情况。

模拟乘法器1496芯片的调幅电路的设计2讲解

模拟乘法器1496芯片的调幅电路的设计2讲解

• 将高频已调波经过 频率变换,变为固 定中频已调波,同时 必须保持其调制规 律不变的电路。 (也就是我们常说 的不失真)


模拟
电乘法ຫໍສະໝຸດ 路器由于乘法器可以产生只包含两个输入信号之和频及差 频分量的输出信号,所以用模拟乘法器和带通滤波器可以 方便地实现混频功能。其原理框图下图所示:
• 用模拟乘法器实现混频,就是在Ux端和Uy端分别 加上两个不同频率的信号,两信号相差为中频, 再经过带通滤波器取出中频信号。
模拟乘法器1496芯片的 混频电路的设计
小组成员 :周善辉 1108063055 李亚威 1108063002 周庚嵘 1108063051 钱哲 1108063017
设计要求
• 1:利用模拟乘法器1496芯片 • 2:基于混频电路的设计 • 3:中频输出在465kHz左右
设计原理
• 1.集成模拟乘法器
设计你基础
在乘法器的一个输入端输 入载波信号:
另一输入端输入调制信号:
则经乘法器相乘,可得输出抑制载波的双边带调幅信 号的表达为:
k为调制电路的比 例系数
设计条件
• 在这里,MC1496和其他的芯片不同,采用 双电源供电,其中Vcc=12V,Vdd=-8V.
• 仿真时,载波信号频率为565kHz,幅度为 50mv;调制信号频率为2kHz,幅度为200mv.
R5=R14={(8-0.7)/(1X10-3)}500=6.75KΩ 取标称电阻,则
R5=R14=6.8KΩ
由于共模静态输出电压为:U6=U12=VCC-I5RL 式中U6、U12是6脚与12脚的静态电压。当选U6=U12=8V, VCC=12V,I5=1mA时, RL=(VCC-U6)/I5=(12-8)/(1X10-3)=4KΩ,取标称电阻 RL=R6=R7=3.9KΩ。

模拟乘法器MC14961596设计混频电路

模拟乘法器MC14961596设计混频电路

实用标准文档班级:姓名:学号:指导教师:林森成绩:电子与信息工程学院信息与通信工程系混频器的设计1概述在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频等调制与解调的过程均可视为两个信号相乘的过程,而集成模拟乘法器正是实现两个模拟量,电压或电流相乘的电子器件。

采用集成模拟乘法器实现上述功能比用分立器件要简单得多,而且性能优越,因此集成模拟乘法器在无线通信、广播电视等方面应用较为广泛。

混频器在通信工程和无线电技术中,应用非常广泛,在调制系统中,输入的基带信号都要经过频率的转换变成高频已调信号。

在解调过程中,接收的已调高频信号也要经过频率的转换,变成对应的中频信号。

特别是在超外差式接收机中,混频器应用较为广泛,混频电路是应用电子技术和无线电专业必须掌握的关键电路。

本次设计主要内容是基于MC1496的混频器应用设计与仿真,阐述混频器基本原理,并在电路设计与Multisim仿真环境中创建集成电路乘法器MC1496电路模块,利用模拟乘法器MC1496完成各项电路的设计与仿真,并结合双踪示波器实现对信号的混频,对接收信号进行频率的转换,变成需要的中频信号。

1.1混频器原理混频技术应用的相当广泛,混频器是超外差接收机中的关键部件。

直放式接收机是高频小信号检波,工作频率变化范围大时,工作频率对高频通道的影响比较大(频率越高,放大量越低,反之频率低,增益高),而且对检波性能的影响也较大,灵敏度较低。

采用超外差技术后,将接收信号混频到一固定中频,放大量基本不受接收频率的影响,这样,频段内信号的放大一致性好,灵敏度可以做得很高,选择性也较好。

因为放大功能主要放在中放,因此可以用良好的滤波电路。

采用超外差接收后,调整方便,放大量﹑选择性主要由中频部分决定,且中频较高频信号低,性能指标容易得到满足。

混频器在一些发射设备中也是必不可少的。

在频分多地址信号的合成、微波接力通信、卫星通信等系统中也有其重要地位。

此外,混频器也是许多电子设备、测量仪器(如频率合成器、频谱分析仪等)的重要组成部分。

模拟乘法器1496芯片的调幅电路的设计2

模拟乘法器1496芯片的调幅电路的设计2

• Ux端输入载波信号, Uy端输入调制信号, 调整调制信号的幅度 使调幅波回到m<1的 状态,其中m为调制系 数,然后调节R9,获 得抑制载波的双边带 调幅波
设计结果
设计数据分析
• 1:所得数据 T=223.485us • 2: 数据计算 f=1/T=447.5kHz
参考书籍:1.Multisim 10电路仿真及应用 2.高频通信原理
具体电路设计
电路采用双电源供电,所以⑤脚接Rb 到地。因此,改变R5也可以调节I0的大小, 即:
R5 VEE 0.7 500 I5
则:当VEE=-8V,I5=1mA时,可算 得:(MC1496器件的静态电流一般取I0 =I5=1mA左右)
I0 I5 uEE 0.7V R5 500
谢谢观赏
R5=R14={(8-0.7)/(1X10-3)}500=6.75KΩ 取标称电阻,则 R5=R14=6.8KΩ
由于共模静态输出电压为:U6=U12=VCC-I5RL 式中U6、U12是6脚与12脚的静态电压。当选U6=U12=8V, VCC=12V,I5=1mA时, RL=(VCC-U6)/I5=(12-8)/(1X10-3)=4KΩ,取标称电阻 RL=R6=R7=3.9KΩ。
中频输出在465khz左右设计原理mc1496基本组成32静态工作点设置33基本工作原理mc1496设计电路的分析模拟乘法器混频电路模拟乘法器是一种完成两路互不相关的模拟信号连续变化的两个电压或电流相乘作用的电子器件
模拟乘法器1496芯片的 混频电路的设计
小组成员 :周善辉 1108063055 李亚威 1108063002 周庚嵘 1108063051 钱哲 1108063017
另一输入端输入调制信号:

基于模拟乘法器MC1496的混频器设计解读

基于模拟乘法器MC1496的混频器设计解读

基于模拟乘法器MC1496的混频器设计摘要集成模拟乘法器是继集成运算放大器后最通用的模拟集成电路之一,是一种多用途的线性集成电路。

可用作宽带、抑制载波双边平衡调制器,不需要耦合变压器或调谐电路,还可以作为高性能的SSB乘法检波器,AM调制/解调器、FM解调器、混频器、倍频器、鉴相器等,它与放大器相结合还可以完成许多的数学运算,如乘法、除法、乘方、开方等。

本设计主要应用集成模拟乘法器MC1496实现以上功能。

模拟乘法器的主要技术指标是工作象限、线性度和馈通度。

工作象限是指容许输入变量的符号范围。

只容许ux和uy均为正值的相乘器称为一象限的,而容许ux和uy都可以取正、负值的则称为四象限的。

线性度是指相乘器的输出电压uo与输入电压ux(或uy)成线性的程度。

馈通度是指两个输入信号中一个为零时,另一个在输出端输出的大小。

混频是将载波为高频的已调信号,不失真地变换为载波为中间的已调信号,必须保持①调制类型,调制参数不变,即原调制规律不变。

②频谱结构不变,各频率分量的相位大小,相互间隔不变。

由于设计和制作增益高, 选择性好, 工作频率较原载频低的固定中频放大器比较容易, 所以采用混频方式可大大提高接收机的性能。

此设计就是利用仿真软件,采用模拟相乘器实现混频电路的。

关键词:MATLAB,模拟乘法器,混频电路DESING OF MIXER BASED ON THE ANALOG MULTIPLIER MC1496AbstractAfter the integrated operational amplifier in the integrated analog multiplier is one of the most common analog integrated circuit, is a kind of multi-purpose linear integrated circuits.Modulator can be used as a broadband, suppressed carrier bilateral balance, don't need coupling transformeror tuned circuit, also can be used as a high-performance SSB multiplication detector, AM, FM demodulator, mixer/modem modulation, frequency multiplier, and phase discriminator, combiningit with amplifier can also do many mathematical operation, such as multiplication, division, chengfang, root, etc.This design mainly used integrated analog multiplier MC1496 achieve above functions. Analog multiplier is the main technique index quadrant, linearity and feed through work.Work quadrant refers to allow the input variable symbol scope.Only allow both ux and uy positive multiplier is called a quadrant, and allow the ux and uy can take the positive and negative is known as the four quadrants.Linearity refers to the multiplication of the input voltage and output voltage uo ux (or uy) into linear degree.Feed through degree is refers to the two input signals of ais equal to zero, the other in the size of the output terminal output.Mixing is the carrier for the high frequency modulated signal, no distortion for the carrier to transform to the middle of the modulated signal, must be kept in (1) modulation type, modulation parameters are the same, namely the original modulation law remains the same.The phase of each frequency component of the spectrum structure remains the same, (2) the size and the spacing between the same.Due to the design and production of high gain, good selectivity, and working frequency was lower than those of the original carrier frequency fixed intermediate frequency amplifier is easy, so the mixing method can greatly improve the performance of the receiver.This design is the use of simulation software, using analog multiplier to realize mixing circuit..Key words:MA TLAB, Analog multiplier, mixing circuit1.绪论混频技术在高频电子线路和无线电技术中应用的相当广泛。

基于MC1496集成模拟乘法器的非线性幅度调制电路原理

基于MC1496集成模拟乘法器的非线性幅度调制电路原理

一、 实验原理(实验主要内容及原理、设计思想、系统结构等) 基于MC1496集成模拟乘法器的非线性幅度调制电路原理,电路如下图:R81K C30.1USIG+1SIG-423CAR+8CAR-1014OUT+6OUT-12BIAS5VEEGADJGADJ U1M C 1496C10.1UC20.1UR175W 51KC11100U10410447UH2KLED -8V R551R275R31KR451R551R91KR103.9KR113.9KR12110KC9104L347UHC10104LED +12V2KQ13DG6R13510C70.1UFL220UHGNDR76.8KGNDGNDGNDC55/20PC40.1U C60.1U GNDGNDGNDGNDGND载波输入调制输入UOUTTP3+12V+8VINL11、双踪示波器:YB43602、频率计:YB33713、数字万用表:GDM-81354、高频实验箱:EL-GP-III5、高频信号发生器:YB1052B6、幅度调制、解调模块四、实验操作(实验步骤、程序、调试方法、中间结果、异常或错误处理等)1、接通高频实验箱的-8V和+12V电源;2、调节高频信号发生器,使其输出f C=10MHz、振幅为200mV的高频正弦信号接地TP1端作载波信号;从高频信号发生器左下端或高频实验箱的左边的音频信号发生器输出fΩ=1KHz、振幅为600mVpp的正弦调制信号到将双踪示波器的CH1接通Tp2,Ch2接通Tp3;3、仔细调节uΩ的振幅以及W和C5,适当调节示波器的Y轴灵敏度和X轴扫描时间(mS级),使示波出现m<1的调幅波,观察并测量调制系数m(注意m的测量计算方法);4、轻轻仔细调节uΩ的振幅以及W和C5,仔细适当调节示波器的Y轴灵敏度和X轴扫描时间(mS级),示波观察并记录m<1、m=1、m>1时调幅波的波形;5、保持f C=10MHz、振幅为200mV的高频正弦载波信号,fΩ=1KHz的音频信号不变,调节uΩ的大小,用示波器测量和计算m~uΩm曲线五、实验结果(实验最终结果及其分析处理)1、调幅波调制系数的测量记录计算在测量的调幅波中,高频信号发生器产生的载波频率f C=10MHz,振幅u C=200mV,音频信号fΩ=1KHz ,经MC1496最佳调制后,将双踪示波器水平扫描开关置0.2mS/dev 、垂直控制开关置0.2mV/dev 时,在显示屏测定调制波图形如图P-2所示。

基于MC1496的振幅调制、同步检波电路的实现与仿真

基于MC1496的振幅调制、同步检波电路的实现与仿真

基于MC1496的振幅调制、同步检波电路的实现与仿真【摘要】本文分析了一种基于集成模拟乘法器MC1496的振幅调制电路、同步检波电路,具体给出了偏置电流和偏置电压。

详细介绍了抑制载波以及有载波的调幅实现过程,电路的同步检波实现过程,并利用multisim仿真软件对结果做了仿真分析,调制和检波波形正确清晰。

【关键词】MC1496;调制;检波1.引言集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。

在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,采用集成模拟乘法器实现比采用分立器件如二极管和三极管要简单的多,而且性能优越。

目前在无线通信、广播电视等方面也得到了广泛的应用。

集成模拟乘法器的常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。

本文主要分析了一种利用MC1496实现的振幅调制以及同步检波电路,给出了具体的静态偏置电流和偏置电压,给出了具体的调制信号和载波信号频率,并给出了multisim仿真波形。

2.基于MC1496集成模拟乘法器的振幅调制、同步检波电路2.1 MC1496特性分析MC1496是双平衡四象限模拟乘法器,由互补双极性工艺制作而成,它具有以下优良特性:四个独立输入通道,四象限乘法信号,电压输入电压输出,乘法运算无需外部元件,电压输出:W=(X×Y)/2.5V,其中X或Y上的线性度误差仅为0.2%,具有优良的温度稳定性,温度漂移小于0.005%/℃,模拟输入范围为±2.5V,采用±5V电压供电,点噪声电压仅为0.3μV/Hz,Y通道总谐波失真噪声仅为0.02%的,四个8MHz通道的总静止功耗仅为150mW,工作温度范围为-40℃~+85℃。

乘法器的内部非线性是器件的固有误差。

它指的是所有成对输入值的实际输出与理想的线性理论输出值之间的差值。

其定义是在完全没有电流误差时,误差量与满刻度的百分比。

基于模拟乘法器芯片MC1496的调幅与检波电路设计与实现讲解

基于模拟乘法器芯片MC1496的调幅与检波电路设计与实现讲解

湖南大学工程训练HUNAN UNIVERSITY 工程训练报告题目:基于模拟乘法器芯片MC1496的调幅与检波电路设计与实现学生姓名:秦雨晨学生学号: 20110803305专业班级:通信工程1103 指导老师(签名):二〇一四年九月十五日目录1 项目概述---------------------------------------------------------2 1.1引言---------------------------------------------------------21.1 项目简介----------------------------------------------------21.2 任务及要求--------------------------------------------------21.3 项目运行环境------------------------------------------------32 相关介绍--------------------------------------------------------33 项目实施过程----------------------------------------------------53.1 项目原理 ---------------------------------------------------53.2 项目设计内容------------------------------------------------93.2.1 调幅电路仿真--------------------------------------------93.2.2 检波电路仿真-------------------------------------------124 结果分析-------------------------------------------------------144.1调幅电路---------------------------------------------------144.2 检波电路---------------------------------------------------185 项目总结-------------------------------------------------------216 参考文献-------------------------------------------------------227 附录 --------------------------------------------------------231、项目概述1.1引言在高频电子线路中的振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。

基于模拟乘法器MC1496的混频器设计(DOC)

基于模拟乘法器MC1496的混频器设计(DOC)

摘要在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频等调制与解调的过程均可视为两个信号相乘的过程,而集成模拟乘法器正是实现两个模拟量,电压或电流相乘的电子器件。

采用集成模拟乘法器实现上述功能比用分立器件要简单得多,而且性能优越,因此集成模拟乘法器在无线通信、广播电视等方面应用较为广泛。

混频器在通信工程和无线电技术中,应用非常广泛,在调制系统中,输入的基带信号都要经过频率的转换变成高频已调信号。

在解调过程中,接收的已调高频信号也要经过频率的转换,变成对应的中频信号。

特别是在超外差式接收机中,混频器应用较为广泛,混频电路是应用电子技术和无线电专业必须掌握的关键电路。

Multisim10是属于新一代的电子工作平台,是一种电子技术界广泛应用的优秀计算机仿真软件。

主要内容是基于MC1496的混频器应用设计与仿真,阐述混频器基本原理,并在电路设计与Multisim仿真环境中创建集成电路乘法器MC1496电路模块,利用模拟乘法器MC1496完成各项电路的设计与仿真,并结合双踪示波器实现对信号的混频,对接收信号进行频率的转换,变成需要的中频信号。

关键词:MC1496乘法器;混频器;MultisimAbstractIn high frequency electronic circuit course, amplitude modulation,synchronization demodulation, mixer, frequency, frequency modulation and demodulation are regarded as the process of the two signals are multiplied, and the integrated analog multiplier is the realization of two analog electronic device, a voltage or current multiplication. The integrated analog multiplier to achieve the above functions than discrete devices are much more simple, and superior performance, therefore the integrated analog multiplier is widely used in wireless communications, radio and television broadcasting.The mixer in communication engineering and radio technology,application is very extensive, in modulation system, the input of baseband signal are through frequency conversion into a high frequency modulated signal. In the demodulation process, the received modulated high frequency signal after frequency conversion, into intermediate frequency signals corresponding to. Especially in the superheterodyne receiver, mixer is widely used, mixing circuit is the key module of Applied Electronic Technology and professional radio must master.Multisim10 is a new generation of electronic platform belongs to, is an excellent computer widely used an electronic technology field simulation software.The main content is the mixer application design and simulation based on MC1496, expounds the basic principle of mixer, and the circuit design and Simulation in Multisim environment to create integrated circuit MC1496 multiplier circuit module, the analog multiplier MC1496 to complete the design and Simulation of the circuit, and combined with the dual trace oscilloscope to achieve signal mixing, the switching frequency of the received signal the intermediate frequency signal, a need.Key Words:MC1496 multiplier; mixer; Multisim目录摘要 (1)Abstract (II)引言 (1)1.方案分析 (2)2.单元电路的工作原理 (4)2.1 LC正弦波振荡器 (4)2.2 模拟乘法器电路 (6)2.3 选频﹑放大电路 (8)3.电路性能指标的测试 (9)结论 (11)致谢 (12)参考文献 (13)引 言混频技术应用的相当广泛,混频器是超外差接收机中的关键部件。

高频实验报告Mc1496(12-4)

高频实验报告Mc1496(12-4)

振幅调制实验报告
姓名:朱超
学号:2011213495
专业:通信工程
一、实验目的:
(1)掌握集成模拟乘法器MC1496的基本工作原理以及用MC1496实现AM波调幅和DSB波调幅的方法。

(2)掌握调幅系数的测量与计算方法。

(3)掌握电路参数对调幅波形的影响。

(4)研究已调波与载波及调制信号的关系。

二、实验仪器:
直流稳压电源、高频信号发生器、数字频率计、高频毫伏表、双踪示波器、万用表
三、实验原理:
振幅调制原理图
MC1496内部电路:
MC1496是一个双平衡四象限集成模拟乘法器,从V_OHM 和V1_C 分别输入调制信号和载波信号,调节R14至合适的位置,即可从输出端得到调幅波或DSB 波。

波形表达式:
载波信号:cos c c c u U w t =
调制信号:cos u U wt =
()(1cos )cos AM c c u t U m wt w t
=+⨯
四、仿真电路与结果分析:
电路图:
仿真结果:
调制系数m=56%
调制系数m=97%
调制系数 m >100%
五、实验研究思考:
(1)电路设计时,对原件进行合理布局,尽量使原件紧凑。

(2)焊板过程中,对照原理图仔细检查电路,确认没有问题后按照布局图进行电路的焊接。

(3)在电路焊接过程中留出测试点,以便调试与修改。

(4)通过实验,加深了对理论知识的理解和掌握。

实验电路仿真,焊接电路板,实验调试及问题的分析和处理,对高频电路的设计的流程有了一定的了解和体会。

模拟乘法器MC1496的模拟调制、解调与混频、倍频的设计与仿真

模拟乘法器MC1496的模拟调制、解调与混频、倍频的设计与仿真

模拟乘法器MC1496的模拟调制、解调与混频、倍频的设计与仿真学号:************名:***年级专业:测控工程指导老师:***摘要集成模拟乘法器是继集成运算放大器后最通用的模拟集成电路之一,是一种多用途的线性集成电路。

可用作宽带、抑制载波双边平衡调制器,不需要耦合变压器或调谐电路,还可以作为高性能的SSB乘法检波器,AM调制/解调器、FM解调器、混频器、倍频器、鉴相器等,它与放大器相结合还可以完成许多的数学运算,如乘法、除法、乘方、开方等。

本设计主要应用集成模拟乘法器MC1496实现以上功能。

目录摘要 (1)第一章模拟乘法器MC1496/1596 (3)第二章,集成模拟乘法器的应用 (5)2.1 利用乘法器实现振幅调制 (5)2.2利用乘法器实现同步检波 (6)2.3利用乘法器实现混频 (6)2.4利用乘法器实现倍频 (6)第三章电路仿真与结果 (8)3.1振幅调制与解调电路的仿真 (8)3.2 混频电路的仿真 (9)3.3倍频器电路的仿真 (11)第四章仿真电路的参数和结果分析 (12)第四章仿真电路的参数和结果分析 (13)4.1 振幅的调制与解调 (13)4.2混频电路 (13)4.3倍频器电路 (13)第五章心得体会 (14)第六章参考文献 (15)第一章 模拟乘法器MC1496/1596单片集成模拟乘法器MC1496/1596的内部电路如图1-1所示。

图1-1 单片集成模拟相乘器MC1496/1596的内部电路图中晶体管VT 1~VT 4组成双差分放大器,VT 5、VT 6组成单差分放大器,用以激励VT 1~VT 4;VT 7、VT 8、VD 及相应的电阻等组成多路电流源电路、VT 7、VT 8分别给VT 5、VT 6、提供I 0/2的恒流电流;R 为外接电阻,可用以调节I 0/2的大小。

另外,由VT 5、VT 6两管的发射级引出接线端2和3,外接电阻R y ,利用R y 的负反馈作用可以扩大输入电压u 2的动态范围。

基于模拟乘法器MC1496的混频器设计概述

基于模拟乘法器MC1496的混频器设计概述

基于模拟乘法器MC1496的混频器设计摘要集成模拟乘法器是继集成运算放大器后最通用的模拟集成电路之一,是一种多用途的线性集成电路。

可用作宽带、抑制载波双边平衡调制器,不需要耦合变压器或调谐电路,还可以作为高性能的SSB乘法检波器,AM调制/解调器、FM解调器、混频器、倍频器、鉴相器等,它与放大器相结合还可以完成许多的数学运算,如乘法、除法、乘方、开方等。

本设计主要应用集成模拟乘法器MC1496实现以上功能。

模拟乘法器的主要技术指标是工作象限、线性度和馈通度。

工作象限是指容许输入变量的符号范围。

只容许ux和uy均为正值的相乘器称为一象限的,而容许ux和uy都可以取正、负值的则称为四象限的。

线性度是指相乘器的输出电压uo与输入电压ux(或uy)成线性的程度。

馈通度是指两个输入信号中一个为零时,另一个在输出端输出的大小。

混频是将载波为高频的已调信号,不失真地变换为载波为中间的已调信号,必须保持①调制类型,调制参数不变,即原调制规律不变。

②频谱结构不变,各频率分量的相位大小,相互间隔不变。

由于设计和制作增益高, 选择性好, 工作频率较原载频低的固定中频放大器比较容易, 所以采用混频方式可大大提高接收机的性能。

此设计就是利用仿真软件,采用模拟相乘器实现混频电路的。

关键词:MATLAB,模拟乘法器,混频电路DESING OF MIXER BASED ON THE ANALOG MULTIPLIER MC1496AbstractAfter the integrated operational amplifier in the integrated analog multiplier is one of the most common analog integrated circuit, is a kind of multi-purpose linear integrated circuits.Modulator can be used as a broadband, suppressed carrier bilateral balance, don't need coupling transformeror tuned circuit, also can be used as a high-performance SSB multiplication detector, AM, FM demodulator, mixer/modem modulation, frequency multiplier, and phase discriminator, combiningit with amplifier can also do many mathematical operation, such as multiplication, division, chengfang, root, etc.This design mainly used integrated analog multiplier MC1496 achieve above functions. Analog multiplier is the main technique index quadrant, linearity and feed through work.Work quadrant refers to allow the input variable symbol scope.Only allow both ux and uy positive multiplier is called a quadrant, and allow the ux and uy can take the positive and negative is known as the four quadrants.Linearity refers to the multiplication of the input voltage and output voltage uo ux (or uy) into linear degree.Feed through degree is refers to the two input signals of ais equal to zero, the other in the size of the output terminal output.Mixing is the carrier for the high frequency modulated signal, no distortion for the carrier to transform to the middle of the modulated signal, must be kept in (1) modulation type, modulation parameters are the same, namely the original modulation law remains the same.The phase of each frequency component of the spectrum structure remains the same, (2) the size and the spacing between the same.Due to the design and production of high gain, good selectivity, and working frequency was lower than those of the original carrier frequency fixed intermediate frequency amplifier is easy, so the mixing method can greatly improve the performance of the receiver.This design is the use of simulation software, using analog multiplier to realize mixing circuit..Key words:MA TLAB, Analog multiplier, mixing circuit1.绪论混频技术在高频电子线路和无线电技术中应用的相当广泛。

MC1496集成电路模拟乘法器的应用

MC1496集成电路模拟乘法器的应用

:一.主要内容用集成模拟乘法器MC1496设计调幅器和同步检波器二.基本要求1:电源电压12v 集成模拟乘法器MC1496载波频率 f c=5MHZ 调制信号频率 fΩ=1KHZ2:完成课程设计说明书,说明书应含有课程设计任务书,设计原理说明,设计原理图,要求字迹工整,叙述清楚,图纸齐备。

3:设计时间为一周。

三.主要参考资料1:李银华电子线路设计指导北京航天航空大学出版社2005.62:谢自美电子线路设计实验测试华中科技大学出版社2003.103:张肃文高频电子线路高等教育出版社2004.11完成期限:2010.6.21-2010.6.27指导教师签名:课程负责人签名:王新金2010年 6月20日目录一设计要求 (2)二设计的作用及目的 (2)三设计的具体实现 (3)3.1 MC1496的工作原理及电路图 (4)3.2调幅器的工作原理及电路图 (5)3.3 检波器的工作原理及电路图 (6)五心得体会 (13)六参考文献 (14)集成电路模拟乘法器的应用一设计要求本设计要求用集成模拟乘法器MC1496设计调幅器和同步检波器,其具体要求如下:1.电源电压12v2. 集成模拟乘法器MC14963.载波频率 f c=5MHZ4. 调制信号频率 fΩ=1KHZ二设计作用及目的通过本课题的设计,提高学生实际动手能力,巩固所学理论知识,进一步深入了解集成模拟乘法器的工作原理,掌握调幅器与检波器的设计原理用来实现全载波调幅、测量调幅系数,实现调幅波形的变换,学会分析实验现象。

掌握这些后对调幅波信号进行解调,采用设计的二极管包络检波器、低道滤波器电路来实现。

了解二极管包络检波器、滤波器的主要指标,对检波频率及波形进行分析。

在此次设计中,综合运用了所学知识,构成了新的知识框架,提高了对知识的理解与实际运用能力,进一步熟悉常用电子器件的类型和特性,掌握合理选用的原则,提高了知识运用的综合能力。

三设计的具体实现3.1 MC1496的工作原理及电路图1)MC1496的内部结构图为MC1496的内部电路及引脚图MC1496是四象限模拟乘法器,其内部电路图和引脚图如图10-1所示。

模拟乘法器MC1496 课程设计

模拟乘法器MC1496 课程设计

目录摘要 (2)1 模拟乘法器MC1496简介 (3)1.1模拟乘法器MC1496电路分析 (3)1.2模拟乘法器MC1496电路结构 (4)1.3MC1496的性能指标 (5)1.3.1 载漏抑制度CFT (6)1.3.2 信漏抑制度SFT (6)1.3.3 MC1496外接直流偏置的估算方法 (6)2 集成模拟乘法器MC1496设计调幅器 (7)2.1调幅的简介 (7)2.2集成模拟乘法器调幅原理图 (7)2.3集成模拟乘法器的调幅原理 (9)2.4集成模拟乘法器调幅电路参数计算 (10)3 集成模拟乘法器MC1496设计同步检波器 (11)3.1检波的简介 (11)3.2同步检波器的原理图 (11)3.3同步检波器的工作原理 (13)课程设计总结 (15)参考文献 (16)附录A MC1496主要参数(TA= 25℃) (17)附录B 元件引脚图 (18)附录C 元件清单 (19)摘要在调制过程中,音频信号需要高频信号来运载,这里的高频信号称为载波信号,音频信号称为调制信号。

将音频信号“装载”于高频信号的过程称为调制。

调幅波的解调亦称检波,是调幅的逆过程,即从调幅波提取调制(音频)信号的过程称为解调或检波。

集成模拟电路通过MC1496可以实现电路的调幅,亦可通过MC1496对其实现同步检波。

1 模拟乘法器MC1496简介1.1 模拟乘法器MC1496电路分析能够实现乘法功能的电路很多,但由于集成电路的迅速发展,差分对乘法器应用愈来愈广。

图是差分对模拟乘法器的原理电路。

图中T1与T2组成差分对放大器,T3为受v 2控制的电流源。

根据晶体管电流与电压的关系式,并考虑到差分管T1与T2的对称性可以写出i E 1=i sekT QE v 1i E 2=i s ekT QE v 2因此的集电极电流为 =+=+=)1(121210ii i i i i E E E E E i E 1(1+E kTqv-1) 或i E 1=ei kTqv 110-+式中v 1=v BE 1-v BE 2同理可得:i E 2=e i kTqv 110+.由于 =i C 1a i E 1,=i C 2a i E 2.所以以上二试可以写为=i C 1ei Za -+10 =i C 2e i Za +10。

模拟乘法器1496实验报告.

模拟乘法器1496实验报告.

实验课程名称:_高频电子线路五.实验原理与电路设计仿真1、集成模拟乘法器1496的内部结构集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。

在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。

采用集成模拟乘法器实现上述功能比采用分立器件如二极管和三极管要简单的多,而且性能优越。

所以目前在无线通信、广播电视等方面应用较多。

集成模拟乘法器的常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。

下面介绍MC1496集成模拟乘法器。

(1)MC1496的内部结构MC1496 是目前常用的平衡调制/解调器。

它的典型应用包括乘、除、平方、开方、倍频、调制、混频、检波、鉴相、鉴频、动态增益控制等。

MC1496 的和内部电路与外部引脚图如图1(a)(b)所示。

(a)1496内部电路 (b)1496引脚图图1 MC1496的内部电路及引脚图它内部电路含有 8 个有源晶体管,引脚 8 与 10 接输入电压 VX、1与 4接另一输入电压VY,6 与12 接输出电压 VO。

一个理想乘法器的输出为VO=KVXVY,而实际上输出存在着各种误差,其输出的关系为:VO=K(VX +VXOS)(VY+VYOS)+VZOX。

为了得到好的精度,必须消除 VXOS、VYOS与 VZOX三项失调电压。

引脚 2 与 3 之间需外接电阻,对差分放大器 T5与 T6产生交流负反馈,可调节乘法器的信号增益,扩展输入电压的线性动态范围。

各引脚功能如下:1:SIG+ 信号输入正端 2: GADJ 增益调节端3:GADJ 增益调节端 4: SIG- 信号输入负端5:BIAS 偏置端 6: OUT+ 正电流输出端 7: NC 空脚 8: CAR+ 载波信号输入正端9: NC 空脚 10: CAR- 载波信号输入负端11: NC 空脚 12: OUT- 负电流输出端13: NC 空脚 14: V- 负电源(2)Multisim建立MC1496电路模块启动multisim11程序,Ctrl+N新建电路图文件,按照MC1496内部结构图,将元器件放到电子工作平台的电路窗口上,按住鼠标左键拖动,全部选中。

模拟乘法器1496实验报告

模拟乘法器1496实验报告

实验课程名称:高频电子线路同组者实验目的、意义1•了解模拟乘法器(MC149®的电路组成结构与工作原理。

2 •掌握利用乘法器实现振幅调制、同步检波、倍频与混频等几种频率变换电路的原理及设计方法。

3 •学会综合地、系统地应用已学到模、数字电与高频电子线路技术的知识,掌握对振幅 调制、同步检波、混频和倍频电路的制作与仿真技术,提高独立设计高频单元电路和解决问题 的能力。

二. 设计任务与要求(1)设计任务:用模拟乘法器实现振幅调制 (含AM 与 DSB 卜同步检波、混频、倍频等频率变换电路的设计, 已知:模拟乘法器为 1496,采用双电源供电, Vcc=12V Vee=-8V.(2)设计要求:① 全载波振幅调制与抑制载波振幅调制电路的设计与仿真:基本条件:高频载波:500KHZ/100mV 调制信号:1KHz/300mV,模拟乘法器采用 LM149& 并按信号流程记录各级信号波形。

计算此条件时的 AM 调制信号的调制度 m=?,分析AM 与 DSB信号m> 100%时,过零点的特性。

② 同步检波器电路设计与仿真实现对DSB 信号的解调。

基本条件;载波信号 UX f=500KHZ /50mV调制信号 Uy : f=2KHz/200mV ,并按信号流程记录各级信号波形。

③ 混频器电路设计与仿真 实现对信号的混频。

基本条件:AM 信号条件:(载波信号 UX f=565KHZ /50mV ,调制信号 Uy : f=2KHz/200mV ,M=30%)中频信号:465KHZ 本地载波:按接收机制式自定。

记录各级信号波形。

④ 倍频器电路设计与仿真 实现对信号的倍频。

基本条件:Ux=Uy (载波信号 UX f=500KHZ /50mV ,) 并记录各级信号波形。

推证输入、输出信号的关系。

三. 主要仪器设备及耗材1 •双踪示波器2 •计算机与仿真软件 四、实验内容 实现振幅调制( AM/DSB 电路,观察输出点波形。

基于MC1496调幅调制仿真实验

基于MC1496调幅调制仿真实验

实验报告课程名称:高频电子线路实验名称:调幅调制器姓名:辛安文专业班级:应用电子(2)一、实验目的1.掌握用集成模拟乘法器实现全载波调幅和抑制载波双边带调幅的方法与过程,并研究已调波与二输入信号的关系2.掌握测量调幅系数的方法3.通过实验中波形的变换,学会分析实验现象二、实验电路说明本实验采用集成模拟乘法器1496来构成调幅器,下图1为1496芯片内部的电路图,它是一个四象限模拟乘法器的基本电路,电路采用两组差动对由Q1-Q4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即Q5,Q6,因此恒流源的控制电压可正可负,以此实现了四象限工作。

D1、Q7、Q8为差分放大电路的恒流源。

进行调幅时,载波信号加在Q1-Q4的输入端,即引脚8、10之间,调制电压加在差动放大器Q5,Q6的输入端,即引脚的1、4,在2、3脚接1KΩ电阻,以扩大调制信号动态范围,以调制信号取自双差动放大器的两集电极输出(即引出脚6-12之间)输出。

用1496集成电路构成的调幅器电路图如下图2所示,图中RP1用来调节引出脚,1、4的平衡,RP2用来调节引出脚8、10的平衡。

图1 1496芯片内部图2 1496构成的调幅器三、实验内容及其结果1.直流调制特性(1)调RP2电位器使载波输入端平衡:在调制信号输入端IN2加峰值为100mv, 频率为1kHz的正弦信号,调节RP2电位器使输出端信号最小,然后去掉输入信号。

(2)在载波输入端IN1加峰值V(C)为10mv,频率100kHz的正弦信号,用万用表测量a,b之间的电压V(a,b),用示波器观察OUT输出端的波形,以V(a,b)=为步长,记录RP1由一端跳到另一端的输出波形及其峰值电压,注意观察相位的变化,根据公式V(-)=K*V(a,b)*V(c)计算出系数K值,并填入下表:实验结果V(a,b) 【V】 1V(-)【V】K直流调制特性曲线2.实现全载波调幅(AM)(1) 调节RP1使V(a,b)=,载波信号仍为VC(t)=10sin2π×10^5t(mV),将低频信号Vs(t)= Vssin2π×10^3t(mV)加至调制器输入端IN2,画出VS=30mA 和100mA时的调幅波形(标明峰峰值和谷谷值),并测出其调制度m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模拟乘法器MC1496的模拟调制、解调与混频、倍频的设计与仿真学号: 20090855012姓名:司鹏飞年级专业:测控工程指导老师:张宝玲摘要集成模拟乘法器是继集成运算放大器后最通用的模拟集成电路之一,是一种多用途的线性集成电路。

可用作宽带、抑制载波双边平衡调制器,不需要耦合变压器或调谐电路,还可以作为高性能的SSB乘法检波器,AM调制/解调器、FM解调器、混频器、倍频器、鉴相器等,它与放大器相结合还可以完成许多的数学运算,如乘法、除法、乘方、开方等。

本设计主要应用集成模拟乘法器MC1496实现以上功能。

目录摘要 (1)第一章模拟乘法器MC1496/1596 (3)第二章,集成模拟乘法器的应用 (5)2.1 利用乘法器实现振幅调制 (5)2.2利用乘法器实现同步检波 (6)2.3利用乘法器实现混频 (6)2.4利用乘法器实现倍频 (6)第三章电路仿真与结果 (8)3.1振幅调制与解调电路的仿真 (8)3.2 混频电路的仿真 (9)3.3倍频器电路的仿真 (11)第四章仿真电路的参数和结果分析 (12)第四章仿真电路的参数和结果分析 (13)4.1 振幅的调制与解调 (13)4.2混频电路 (13)4.3倍频器电路 (13)第五章心得体会 (14)第六章参考文献 (15)第一章 模拟乘法器MC1496/1596单片集成模拟乘法器MC1496/1596的内部电路如图1-1所示。

图1-1 单片集成模拟相乘器MC1496/1596的内部电路图中晶体管VT 1~VT 4组成双差分放大器,VT 5、VT 6组成单差分放大器,用以激励VT 1~VT 4;VT 7、VT 8、VD 及相应的电阻等组成多路电流源电路、VT 7、VT 8分别给VT 5、VT 6、提供I 0/2的恒流电流;R 为外接电阻,可用以调节I 0/2的大小。

另外,由VT 5、VT 6两管的发射级引出接线端2和3,外接电阻R y ,利用R y 的负反馈作用可以扩大输入电压u 2的动态范围。

R C 为外接负载电阻。

MC1496型模拟乘法器只适用与频率比较低的场合,一般工作在1MHZ 一下的频率。

双差分对模拟乘法器MC1496/1495的差值输出电流为:22x y yT v v i th R V ⎛⎫≈ ⎪⎝⎭MC1496/1596广泛用于调幅及解调、混频等电路中,但应用时VT 1、VT 2 、VT 3、VT 4 、VT 5、VT 6晶体管的基极均需外加偏置电压(即在8与10端、1与4端间加直流电压),方能正常工作。

通常把8、10端称为X 端Y 端,输入参考电压1v ;4、1端称为Y 输入端,输入信号电压2v 。

集成模拟乘法器MC1496/1596参数:第二章,集成模拟乘法器的应用2.1 利用乘法器实现振幅调制有集成模拟乘法器MC1496/1596构成的振幅调制电路,可以实现普通条幅或抑制载波的双边带条幅,如图2-1所示图2-1 集成模拟乘法器MC1496构成的振幅调制电路X通道两输入端⑧、⑩脚直流电位均为6V,可作为载波输入通道,Y 通道两输入端①、④脚之间有外接调零电路;输出端⑥脚外可接调谐于载频的带通滤波器;②、③脚之间外接Y通道负反馈电阻R8。

若实现普通条幅,可通过调节10电位器RP1使①脚电位比④脚高V y,调制信号()tvΩ与直流电压V y叠加后输入Y通道,调节电位器可改变V y大小,即改变调制指数Ma;若实现DSB调制,通过调节10KΩ电位器RP1使①、④脚之间直流电流等电位,即Y通道输入信号仅为交流调制信号。

为了减小流经电位器的电流,便于调零准确,可加大两个750Ω电阻阻值,比如各增大10KΩ。

MC1496线性区和饱和区的临界点在15~20mV左右,仅当输入信号电压均小于26mV时,器材才有理想的相乘作用,否则输出电压中会出现较大的非线性误差。

显然,输入线性动态范围的上限值太小,不适应实际需要。

为此,可在发射极引出端口②脚和③脚之间根据需要接入反馈电阻(R 8=1k Ω),从而调整(扩大)调制信号的输入线性动态范围,该反馈电阻同时也影响调制器增益。

增大反馈电阻,会使器件增益下降,但能改善调制信号输入的动态范围。

MC1496可以采用单电源,也可以采用双电源供电,其直流偏置由外接元器件来实现。

2.2利用乘法器实现同步检波乘积性型同步检波是直接把本地恢复载波与调幅信号相乘,用低通滤波器滤除无用的高频分量,提取有用的的低频信号,它要求恢复载波与发射端的载波同频同相,佛则将使恢复出来的调制信号产生失真。

显然,本实验电路的输出电流中,除了解调所需要的低频分量外,其余所有分量都属于高频范围,很容易滤波,因此不需要载波调零电路,而且可采用单电源供电。

本电路可以解调DSB 或SSB 信号,亦可解调AM 信号。

MC1496/1596⑩脚输入载波信号,可用大信号输入,一般100~500mV ;①脚输入已调信号,信号电平应使放大器保持在线性工作区内,一般在100mV 一下。

2.3利用乘法器实现混频本设计采用设计电路振幅调制电路是一样的,实验中的不同点主要在于输入信号及输出选频网络不同。

2.4利用乘法器实现倍频如果输出信号频率c f 是输入信号频率s f 的整数倍,即c f =n sf (n=1,2,3…),则这种频率变换电路称为倍频电路。

例如,当n=2时,c f =2s f ,称为二倍频电路。

若()cos c sm c v t v t ω=。

则模拟乘法器的输出电流为()()22221cos 1cos 22c sm c sm c i kv t kv t kv t ωω===+式中,k为乘法器的乘积系数。

从式中可以看出乘法器输出电流中包含有直流和二倍频分量,通过隔直流电容滤出直流分量,便可在负载上得到二倍频输出,其实现电路可采用调幅电路,将电路的载波输入端口与音频信号输入端口并接后,输入频率为s f的载波信号电压即可构成二倍频电路。

第三章电路仿真与结果3.1振幅调制与解调电路的仿真振幅调制与解调电路的仿真用Systemview软件来实现。

仿真电路入如图3-1所示。

用了两个乘法器,一个巴特沃斯滤波器和一个运放。

仿真结果分别如图3-2载波信号波形、图3-3调制信号波形、图3-4调幅信号波形和图3-5解调信号波形。

图3-1振幅调制与解调电路的仿真电路图图3-2载波信号波形图3-3 调制信号波形图3-4 调幅信号波形图3-5解调信号波形3.2 混频电路的仿真混频电路的仿真用Multisim10.软件来仿真,其仿真电路如图3-6所示。

图3-7和图3-8分别为分别为电路中的示波器和频率计的显示波形和频率大小。

图3-6 混频电路的仿真电路图3-7 示波器的波形图3-8 频率计示数3.3倍频器电路的仿真本电路的仿真也是用Multisim10.软件来仿真,其仿真电路如图3-9所示。

图3-10和图3-11分别为分别为电路中的频率计和示波器的频率大小和显示波形。

图3-9 混频电路的仿真电路图3-8 频率计示数图3-11 示波器的波形第四章仿真电路的参数和结果分析4.1 振幅的调制与解调调制信号频率:10Hz,振幅:1V,载波信号频率:100Hz,振幅:1V。

Ma≈0.8。

解调出来的波形相对于原来的波形有滞后。

4.2混频电路混频器电路有两个乘法器,第一个乘法器产生一个调幅波,第二个乘法器起混频的作用,把高频已调波转成中频波。

第二个乘法器输入的频率为1.6M Hz,经混频器后输出频率约为465k Hz。

4.3倍频器电路本电路为二倍频电路,输入信号频率:100k Hz,经过乘法器后频率约为:200k Hz。

证明乘法器可以作为倍频器。

第五章心得体会经过本次课程设计,我体会到平时的理论知识大概有印象,但到具体的计算时,总发觉很难,而且理论知识学的也不踏实,有的地方分析起来很吃力。

以后一定要认真的对待。

本次课程设计我应用了Systemview和Multisim10两个软件来仿真电路,发现以后要多动手,当仿真结果出现时,真的很高兴。

我还对乘法器有了进一步的了解。

作为一个电子方面的大学生,在今后的工作中难免需要很强的实践动手能力,所以这次课程设计实践对我来说是很值得珍惜的好机会。

这次课程设计,虽然短暂,但却给了我一次自主设计电路的机会。

在设计过程中,以前书本上的内容第一次完完全全的在实际中实现,并且遇到了书本中不曾学到的情况。

通过本次设计,留给我印象最深的是要设计一个成功的电路,必须要有耐心,要有坚持的毅力。

在整个电路的设计过程中,花费时间最多的是各个单元电路的连接及电路的细节设计上。

在设计过程中,我们仔细比较分析其原理以及可行的原因,最后还是在老师的耐心指导下,使整个电路可稳定工作。

实习过程中,我深刻的体会到在设计过程中,需要反复实践,其过程很可能相当烦琐,有时花很长时间设计出来的电路还是需要重做,那时心中未免有点灰心,有时还特别想放弃,此时更加需要静下心,查找原因。

在摸索该如何设计电路使之实现所需功能的过程中,特别有趣,培养了我的设计思维,增加了实际操作能力。

在让我体会到了设计电路的艰辛的同时,更让我体会到成功的喜悦和快乐。

第六章参考文献[1] 张肃文.高频电子线路.高等教育出版社.354-370.[2]杨霓清.高频电子线路实验及综合设计.机械工业出版社.152-161.。

相关文档
最新文档