LS 高一数学函数值域求法及例题
函数值域的求法及例题
函数值域的求法在函数概念的三要素中,定义域和对应法则是最基本的,值域是由定义域和对应法则所确定,因此,研究值域仍应注重函数对应法则的作用和定义域对值域的制约,以下试举例说明常用方法.[例1]:求下列函数的值域 (1)y =1-2x (x ∈R ) (2)y =|x |-1 x ∈{-2,-1,0,1,2} (3)y =x 2+4x +3 (-3≤x ≤1) (4)y =|x +1|-|x -2|(5)y =2x -3+134-x(6)y =2224)1(5+++x x x(7)y =521+-x x(8)y =1223222++--x x x x(9)y =3-2x -x 2x ∈[-3,1](10)y =21322+-x x分析:求函数的值域应确定相应的定义域后再根据函数的具体形式及运算确定其值域. 对于(1)(2)可用“直接法”根据它们的定义域及对应法则得到(1)(2)的值域. 对于(3)(4)可借助数形结合思想利用它们的图象得到值域,即“图象法”. 对于(5)(6)可借用整体思想利用“换元法”求得值域.对于(7)可将其分离出一个常数,即利用“分离常数法”求得它的值域. 对于(8)可通过对“Δ”的分析,即利用“判别式”法求得其值域.对于(9)(10)可“通过中间函数的值域去求所求函数的值域”这一方法即“中间媒介法”求得其值域.解:(1)y ∈R(2)y ∈{1,0,-1}(3)画出y =x 2+4x +3(-3≤x ≤1)的图象,如图所示,当x ∈[-3,1]时,得y ∈[-1,8](4)对于y =|x +1|-|x -2|的理解,从几何意义入手,即利用绝对值的几何意义可知,|x +1|表示在数轴上表示x 的点到点-1的距离,|x -2|表示在数轴上表示x 的点到点2的距离,在数轴上任取三个点x A ≤-1,-1<x B <2,x C ≥c ,如图所示,可以看出|x A +1|-|x A -2|=-3-3<|x B +1|-|x B -2|<3,|x C +1|-|x C -2|=3,由此可知,对于任意实数x ,都有-3≤|x +1|-|x -2|≤3所以函数y =|x +1|-|x -2|的值域为y ∈[-3,3](5)对于没有给定自变量的函数,应先考查函数的定义域,再求其值域.∵4x -13≥0 ∴x ∈[413,+∞)令t =134-x 则得:x =4132+t∴y =21t 2+t +27∴y =21(t +1)2+3∵x ≥413∴t ≥0根据二次函数图象可得y ∈[27,+∞)(6)∵函数定义域为x ∈R 由原函数可化得:y =22222224)1(5)1()1(5+++=+++x x x x x x=2222222222)1(11)1(5)1()1(5+-+++=+++x x x x x x =111)1(5222++-+x x 令t =112+x∵x ∈R ∴t ∈(0,1] ∴y =5t 2-t +1=5(t -101)2+2019根据二次函数的图象得当t =101时y min =2019当t =1时,y max =5 ∴函数的值域为y ∈[2019,5](7)∵y =-21+5227+x∵5227+x ≠0 ∴y ≠-21∴函数y 的值域为y ∈(-∞,-21)∪(-21,+∞) (8)由y =1223222++--x x x x 得x ∈R 且可化为:(2y -1)x 2+2(y +1)x +(y +3)=0 ∴当y ≠21时,Δ=[2(y +1)]2-4(2y -1)(y +3)≥0 ∴y 2+3y -4≤0 ∴-4≤y ≤1且y ≠21 又当y =21时,2(1+21)x +(21+3)=0 得:x =-67,满足条件∴函数的值域为y ∈[-4,1] (9)∵-3≤x ≤1 ∴-2≤x +1≤2∴|x +1|≤2即(x +1)2≤4∴y =3-2x -x 2=-(x +1)2+4∈[0,4] ∴函数值域为y ∈[0,4](10)由y =21322+-x x 可知,x ∈R 且yx 2+2y =3x 2-1即(3-y )x 2=2y +1若y =3时,则有0=7,这是不可能的. ∴y ≠3 得:x 2=y y -+312 ∵x 2≥0 ∴yy -+312≥0 解得:-21≤y <3 ∴函数值域为y ∈[-21,3) 评述:(1)求函数的值域是一个相当复杂的问题,它没有现成的方法可套用,要结合函数表达式的特征,以及与所学知识联系,灵活地选择恰当的方法.(2)对于以上例题也可以采取不同的方法求解每一个值域,请读者不妨试一试.(3)除以上介绍的方法求函数值域外,随着学生的继续学习,我们今后还会有“反函数”法、“单调性”法、“三角换元”法、“不等式”法及“导数法”等.二、二次函数(含参数)在区间上的值域问题 [例2]、求下列函数的值域 (1)]1,0(1222∈-++=x a ax x y(2)]1,[142+∈++=t t x x x y三、含参数的其他值域问题[例3]已知函数f (x )=xax x ++22,x ∈[1,+∞)(1)当a =21时,求函数f (x )的最小值.(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.知识依托:本题主要通过求f (x )的最值问题来求a 的取值范围,体现了转化的思想与分类讨论的思想.错解分析:考生不易考虑把求a 的取值范围的问题转化为函数的最值问题来解决.技巧与方法:解法一运用转化思想把f (x )>0转化为关于x 的二次不等式;解法二运用分类讨论思想解得.(1)解:当a =21时,f (x )=x +x21+2∵f (x )在区间[1,+∞)上为增函数,∴f (x )在区间[1,+∞)上的最小值为f (1)=27.(2)解法一:在区间[1,+∞)上,f (x )=xax x ++22 >0恒成立⇔x 2+2x +a >0恒成立.设y =x 2+2x +a ,x ∈[1,+∞)∵y =x 2+2x +a =(x +1)2+a -1递增,∴当x =1时,y min =3+a ,当且仅当y min =3+a >0时,函数f (x )>0恒成立,故a >-3.解法二:f (x )=x +xa+2,x ∈[1,+∞)当a ≥0时,函数f (x )的值恒为正;当a <0时,函数f (x )递增,故当x =1时,f (x )min =3+a ,当且仅当f (x )min =3+a >0时,函数f (x )>0恒成立,故a >-3.练习一、选择题1.函数y =x 2+x1(x ≤-21)的值域是( )A.(-∞,-47]B.[-47,+∞)C.[2233,+∞)D.(-∞,-3223]2.函数y =x +x 21-的值域是( )A.(-∞,1] B.(-∞,-1]C.RD.[1,+∞)一、1.解析:∵m 1=x 2在(-∞,-21)上是减函数,m 2=x1在(-∞,-21)上是减函数, ∴y =x 2+x1在x ∈(-∞,-21)上为减函数,∴y =x 2+x1(x ≤-21)的值域为[-47,+∞).答案:B2.解析:令x 21-=t (t ≥0),则x =212t -.∵y =212t -+t =-21 (t -1)2+1≤1∴值域为(-∞,1].。
函数值域的求法及例题
函数值域的求法在函数概念的三要素中,定义域和对应法则是最基本的,值域是由定义域和对应法则所确定,因此,研究值域仍应注重函数对应法则的作用和定义域对值域的制约,以下试举例说明常用方法.[例1]:求下列函数的值域 (1)y =1-2x (x ∈R ) (2)y =|x |-1 x ∈{-2,-1,0,1,2} (3)y =x 2+4x +3 (-3≤x ≤1) (4)y =|x +1|-|x -2|(5)y =2x -3+134-x(6)y =2224)1(5+++x x x(7)y =521+-x x(8)y =1223222++--x x x x(9)y =3-2x -x 2x ∈[-3,1](10)y =21322+-x x分析:求函数的值域应确定相应的定义域后再根据函数的具体形式及运算确定其值域. 对于(1)(2)可用“直接法”根据它们的定义域及对应法则得到(1)(2)的值域. 对于(3)(4)可借助数形结合思想利用它们的图象得到值域,即“图象法”. 对于(5)(6)可借用整体思想利用“换元法”求得值域.对于(7)可将其分离出一个常数,即利用“分离常数法”求得它的值域. 对于(8)可通过对“Δ”的分析,即利用“判别式”法求得其值域.对于(9)(10)可“通过中间函数的值域去求所求函数的值域”这一方法即“中间媒介法”求得其值域.解:(1)y ∈R(2)y ∈{1,0,-1}(3)画出y =x 2+4x +3(-3≤x ≤1)的图象,如图所示,当x ∈[-3,1]时,得y ∈[-1,8](4)对于y =|x +1|-|x -2|的理解,从几何意义入手,即利用绝对值的几何意义可知,|x +1|表示在数轴上表示x 的点到点-1的距离,|x -2|表示在数轴上表示x 的点到点2的距离,在数轴上任取三个点x A ≤-1,-1<x B <2,x C ≥c ,如图所示,可以看出|x A +1|-|x A -2|=-3-3<|x B +1|-|x B -2|<3,|x C +1|-|x C -2|=3,由此可知,对于任意实数x ,都有-3≤|x +1|-|x -2|≤3所以函数y =|x +1|-|x -2|的值域为y ∈[-3,3](5)对于没有给定自变量的函数,应先考查函数的定义域,再求其值域.∵4x -13≥0 ∴x ∈[413,+∞)令t =134-x 则得:x =4132+t∴y =21t 2+t +27∴y =21(t +1)2+3∵x ≥413∴t ≥0根据二次函数图象可得y ∈[27,+∞)(6)∵函数定义域为x ∈R 由原函数可化得:y =22222224)1(5)1()1(5+++=+++x x x x x x=2222222222)1(11)1(5)1()1(5+-+++=+++x x x x x x =111)1(5222++-+x x 令t =112+x∵x ∈R ∴t ∈(0,1] ∴y =5t 2-t +1=5(t -101)2+2019根据二次函数的图象得当t =101时y min =2019当t =1时,y max =5 ∴函数的值域为y ∈[2019,5](7)∵y =-21+5227+x∵5227+x ≠0 ∴y ≠-21∴函数y 的值域为y ∈(-∞,-21)∪(-21,+∞) (8)由y =1223222++--x x x x 得x ∈R 且可化为:(2y -1)x 2+2(y +1)x +(y +3)=0 ∴当y ≠21时,Δ=[2(y +1)]2-4(2y -1)(y +3)≥0 ∴y 2+3y -4≤0 ∴-4≤y ≤1且y ≠21 又当y =21时,2(1+21)x +(21+3)=0 得:x =-67,满足条件∴函数的值域为y ∈[-4,1] (9)∵-3≤x ≤1 ∴-2≤x +1≤2∴|x +1|≤2即(x +1)2≤4∴y =3-2x -x 2=-(x +1)2+4∈[0,4] ∴函数值域为y ∈[0,4](10)由y =21322+-x x 可知,x ∈R 且yx 2+2y =3x 2-1即(3-y )x 2=2y +1若y =3时,则有0=7,这是不可能的. ∴y ≠3 得:x 2=y y -+312 ∵x 2≥0 ∴yy -+312≥0 解得:-21≤y <3 ∴函数值域为y ∈[-21,3) 评述:(1)求函数的值域是一个相当复杂的问题,它没有现成的方法可套用,要结合函数表达式的特征,以及与所学知识联系,灵活地选择恰当的方法.(2)对于以上例题也可以采取不同的方法求解每一个值域,请读者不妨试一试.(3)除以上介绍的方法求函数值域外,随着学生的继续学习,我们今后还会有“反函数”法、“单调性”法、“三角换元”法、“不等式”法及“导数法”等.二、二次函数(含参数)在区间上的值域问题 [例2]、求下列函数的值域 (1)]1,0(1222∈-++=x a ax x y(2)]1,[142+∈++=t t x x x y三、含参数的其他值域问题[例3]已知函数f (x )=xax x ++22,x ∈[1,+∞)(1)当a =21时,求函数f (x )的最小值.(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.知识依托:本题主要通过求f (x )的最值问题来求a 的取值范围,体现了转化的思想与分类讨论的思想.错解分析:考生不易考虑把求a 的取值范围的问题转化为函数的最值问题来解决.技巧与方法:解法一运用转化思想把f (x )>0转化为关于x 的二次不等式;解法二运用分类讨论思想解得.(1)解:当a =21时,f (x )=x +x21+2∵f (x )在区间[1,+∞)上为增函数,∴f (x )在区间[1,+∞)上的最小值为f (1)=27.(2)解法一:在区间[1,+∞)上,f (x )=xax x ++22 >0恒成立⇔x 2+2x +a >0恒成立.设y =x 2+2x +a ,x ∈[1,+∞)∵y =x 2+2x +a =(x +1)2+a -1递增,∴当x =1时,y min =3+a ,当且仅当y min =3+a >0时,函数f (x )>0恒成立,故a >-3.解法二:f (x )=x +xa+2,x ∈[1,+∞)当a ≥0时,函数f (x )的值恒为正;当a <0时,函数f (x )递增,故当x =1时,f (x )min =3+a ,当且仅当f (x )min =3+a >0时,函数f (x )>0恒成立,故a >-3.练习一、选择题1.函数y =x 2+x1(x ≤-21)的值域是( )A.(-∞,-47]B.[-47,+∞)C.[2233,+∞)D.(-∞,-3223]2.函数y =x +x 21-的值域是( )A.(-∞,1] B.(-∞,-1]C.RD.[1,+∞)一、1.解析:∵m 1=x 2在(-∞,-21)上是减函数,m 2=x1在(-∞,-21)上是减函数, ∴y =x 2+x1在x ∈(-∞,-21)上为减函数,∴y =x 2+x1(x ≤-21)的值域为[-47,+∞).答案:B2.解析:令x 21-=t (t ≥0),则x =212t -.∵y =212t -+t =-21 (t -1)2+1≤1∴值域为(-∞,1].。
值域_求值域的方法大全及习题加详解
求值域方法函数值域的求法方法有好多,主要是题目不同,或者说稍微有一个数字出现问题,对我们来说,解题的思路可能就会出现非常大的区别.这里我主要弄几个出来,大家一起看一下吧. 函数的值域取决于定义域和对应法则,求函数的值域要注意优先考虑定义域常用求值域方法(1)、直接观察法:利用已有的基本函数的值域观察直接得出所求函数的值域 对于一些比较简单的函数,如正比例,反比例,一次函数,指数函数,对数函数,等等, 其值域可通过观察直接得到。
例1、求函数1,[1,2]y x x =∈的值域。
(★★)例2、求函数x 3y -=的值域。
(★★) 答案:值域是:]3,[-∞ 【同步练习1】函数221xy+=的值域. (★★)解:}210{≤<y y(2)、配方法:二次函数或可转化为形如c x bf x f a x F ++=)()]([)(2类的函数的值域问题,均可用配方法,而后一情况要注意)(x f 的X 围;配方法是求二次函数值域最基本的方法之一。
例1、求函数225,y x x x R =-+∈的值域。
(★★)例2、求函数]2,1[x ,5x 2x y 2-∈+-=的值域。
(★★★) 解:将函数配方得:4)1x (y 2+-=∵]2,1[x -∈ 由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8]例3、求()()22log 26log 62log 222222-+=++=x x x y 。
(★★★★)(配方法、换元法)解:………所以当41=x 时,y 有最小值-2。
故所求函数值域为[-2,+∞)。
例4、设02x ≤≤,求函数1()4321xx f x +=-+的值域.解:12()4321(23)8xx x f x +=-+=--,02x ∵≤≤,24x 1∴≤≤.∴当23x =时,函数取得最小值8-;当21x =时,函数取得最大值4-,∴函数的值域为[84]--,. 评注:配方法往往需结合函数图象求值域. 例5、求函数13432-+-=x x y 的值域。
高中数学:求函数值域的方法十三种(一)
2
2
26
又 ∵ 在 [m, n] 上 当
x
增大时
f (x)
也
增
大
所
以
f (x)max f (n) f (x)min f (m)
3n 3m
m 4, n 0
解得
评注:解法 2 利用闭区间上的最值不超过整个定义域上的最值,缩小了 m ,n 的取值范围,
避开了繁难的分类讨论,解题过程简洁、明了。
(2) 求函数 y x(x a) 在 x [1 , 1] 上的最大值。
【解析】(1)二次函数的对称轴方程为 x a ,
当 a
1 2
即a
1 时, 2
f ( x )max
f ( 2 ) 4a 5 ;
当 a 1 2
即 a1 2
时,
f ( x )max f ( 1 ) 2a 2
。
f ( x )max 42aa52,,aa2121 。
y
x2 x2 x
x 1
x2 x x2
11 x 1
1
(x
1 1)2
3
不妨令:
24
f (x) (x 1)2 3 , g(x) 24
1 ( f (x) 0) 从而 f (x)
f
(
x)
3,
4
注意:在本题中应排
除
f
(x)
0 ,因为
f
(x)
作为分母。所以
g(x) 0,
3 4
故
y
1,1
3
f (x)max f (x)min
f (1) f (n)
3n 3m
,无解
④若
,则
f f
( x) max ( x) min
求函数值域 、 周期的方法总结(适合高一)
求函数值域 、 周期的方法总结(适合高一)求值域一、直接法:(从自变量x 的范围出发,推出()y f x =的取值范围)例1.求函数2+=x y 的值域。
二、配方法(是求二次函数值域的基本方法,如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法)例2.求函数242y x x =-++([1,1]x ∈-)的值域。
三、分离常数法(分子、分母是一次函数得有理函数,可用分离常数法,此类问题一般也可以利用反函数法)例3.求函数125x y x -=+的值域。
四、换元法(运用代数代换,将所给函数化成值域容易确定的另一函数,从而求得原函数的值域,如y ax b =+a 、b 、c 、d 均为常数,且0a ≠)的函数常用此法求解。
例4.求函数2y x =五、函数的单调性法(确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域,形如求函数()0>+=k xk x y 的值域(k x <<0时为减函数;k x >时为增函数))例5.求函数y x =六、利用有界性(利用某些函数有界性求得原函数的值域)例6求函数2211x y x -=+的值域。
七、数型结合法(函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法)例7.求函数11-++=x x y 的值域。
除此之外,还有反函数法(即利用函数和它的反函数的定义域与值域的关系,通过求反函数的定义域而得到原函数的值域)和判别式法(即把函数转化成关于x 的二次方程()0,=y x F ,通过方程有实根,0≥∆,从而求得原函数的值域,需熟练掌握一元二次不等式的解法),在今后的学习中,会具体讲述。
周期一.定义:若T 为非零常数,对于定义域内的任一x ,使)()(x f T x f =+恒成立则f (x )叫做周期函数,T 叫做这个函数的一个周期。
二.重要结论1、()()f x f x a =+,则()y f x =是以T a =为周期的周期函数;2、 若函数y=f(x)满足f(x+a)=-f(x)(a>0),则f(x)为周期函数且2a 是它的一个周期。
求函数值域(知识点+例题+习题)精编word版
求函数的值域
1.常见函数的定义域和值域:
2.函数值域的求法
对于函数(),y f x x A =∈,与x 的值相对应的y 值叫做函数值.函数值的集合{()|}f x x A ∈叫函数的值域.
(1)观察法:从自变量x 的范围出发,推出()y f x =的取值范围.
(2)二次函数在区间上的值域:画出简图,找到对称轴和对应取值区间来求值域.
(3)换元法:通过对函数解析式进行适当换元,通常把无理函数转化为有理函数,换元后应先确定新元的取值范围.
(4)分离常数法:将形如ax b
y cx d
+=+的有理分式转化为“反比例函数”的形式a k y c cx d =++,
确定函数值域为{|}a
y y c
≠.
(5)判别式法:把函数转化为关于x 的二次方程,通过方程有实根,判别式0∆≥,从而求得原函数的值域.
(6)单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域.
练习题:
答案解析:
答案:
1
[,33]
8
14
解析:原函数可化为
2
(1)
11
y x
x x
=≥
++-
1
x+与1
x-均为在[1,)
+∞上的增函数
则112
x x
++-≥,
2
02
11
x x
∴<≤
++-
.答案:(0,2]
数学浪子整理制作,侵权必究。
高中函数值域的经典例题 12种求法
一.观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1求函数y=3+√(2-3x) 的值域。
点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。
解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。
∴函数的知域为.点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧练习:求函数y=[x](0≤x≤5)的值域。
(答案:值域为:{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例2求函数y=(x+1)/(x+2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数练习:求函数y=(10x+10-x)/(10x-10-x)的值域。
(答案:函数的值域为{y∣y<-1或y>1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域例3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。
此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
配方法是数学的一练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})四.判别式法若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。
最全函数值域的12种求法(附例题,习题)
+x+2≤函数的值域是
点评:
求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。
练习:
求函数y=2x-5+√15-4x的值域.(
答案:
值域为{y∣y≤3})
四.判别式法
若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。
练习:
求函数y=(10x+10-x)/(10x-10-x)的值域。(
答案:
函数的值域为{y∣y<-1或y>1})
三.配方法
当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域
例3:求函数y=√(-x+x+2)的值域。
点拨:
将被开方数配方成完全平方数,利用二次函数的最值求。
解:
由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2
例4求函数y=(2x2
-2x+3)/(x2
-x+1)的值域。
点拨:
将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。
解:
将上式化为(y-2)x2
-(y-2)x+(y-3)=0(*)
当y≠2时,由Δ=(y-2)2
-4(y-2)x+(y-3)≥0,解得:2<x≤2当y=2时,方程(*)无解。∴函数的值域为2<y≤。
点拨:
先求出原函数的反函数,再求出其定义域。
解:
显然函数y=(x+1)/(x+2)的反函数为:
x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。
高中函数值域的12种解法(含练习题)
高中函数值域的12 种求法一、观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1 求函数y=3+√ (2-3x)的值域。
点拨:根据算术平方根的性质,先求出√(2-3x)的值域。
解:由算术平方根的性质,知√(2-3x)≥ 0,故3+√(2-3x)≥ 3。
∴函数的知域为[3 ,+∞]。
点评:算术平方根具有双重非负性,即:( 1 )被开方数的非负性,(2 )值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0 ≤ x≤ 5)的值域。
(答案:值域为:{0,1,2,3,4,5})二、反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例2 求函数y=(x+1)/(x +2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x +2)的反函数为:x=(1 -2y)/ (y-1 ),其定义域为y≠ 1 的实数,故函数y 的值域为{y∣ y≠ 1,y∈ R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10 x+10 -x)/(10 x-10-x)的值域。
(答案:函数的值域为{y∣ y<- 1 或y> 1 })三、配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域。
例3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥ 0,可知函数的定义域为x∈[-1 ,2]。
此时-x2+x+2=-(x-1/2)2+9/4 ∈ [0,9/4] ,∴ 0≤√ (-x2+x+2)≤ 3/2, 函数的值域是[0,3/2] 。
点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
函数值域的求法及例题
函数值域的求法及例题
函数值域是一个重要的概念。
它指函数的定义域中的所有可能函数值的集合。
了解函数值域的求法,可以帮助我们更有效地使用函数,对解决实际问题也很有帮助。
函数值域的求法有两种:直接和间接。
直接求法:如果可以确定函数的解析式,则可以直接求出函数值域。
具体步骤如下:
(1) 求函数定义域:即可以使用此函数的所有自变量x的取值范围
(2)求函数值域:即当自变量x在定义域内任意取值时,函数的值的取值范围。
例子:若函数:y=3x+2,
它的定义域为x∈R
那么,函数值域就是y∈R
间接求法:当不能确定函数的解析式时,可以采用间接的求法,即分情况求解。
即将函数定义域上的所有取值情况分类讨论,将其分解为一些能求出函数值域的子问题。
例子:若函数:y=x²,
它的定义域为x∈R
这里分情况讨论:
当x ≥ 0 时,y ≥ 0;
当 x<0 时,y<0;
即函数值域为y∈[0,+∞) ∪ (-∞,0],
总之,了解函数值域的求法是有必要的,有助于我们理解函数的概念,也有助于解决各种函数问题。
最全函数值域的12种求法(附例题,习题)
通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1 求函数y=3+√ (-2 3x)的值域。
点拨:根据算术平方根的性质,先求出√(2-3x)的值域。
解:由算术平方根的性质,知√(2-3x)≥,0故3+√(2-3x)≥。
3∴ 函数的知域为.点评:算术xx 具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0 ≤x≤的5值)域。
(答案:值域为:{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例2 求函数y=(x+1)/(x+2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为 { y∣y≠1,∈y R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。
(答案:函数的值域为{ y∣y<-1 或y>1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域例3:求函数y=√-(x+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥0可, 知函数的定义域为x∈[-1,2]。
此时-x2+x+2=-(x-)2+∈[0,∴ 0≤√-x2+x+2≤函数的值域是点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
配方法是数学的一种重要的思想方法。
练习:求函数y=2x-5+√15-4x 的值域.(答案:值域为{y∣ y≤3})四.判别式法若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。
函数值域求法总结及练习题
函 数 值 域 求 法1.重难点归纳.(1)求函数的值域.此类问题主要利用求函数值域的常用方法 配方法、分离变量法、单调性法、图像法、换元法、不等式法等 无论用什么方法求函数的值域,都必须考虑函数的定义域.(2)函数的综合性题目.此类问题主要考查函数值域、单调性、奇偶性、反函数等一些基本知识相结合的题目 此类问题要求考生具备较高的数学思维能力和综合分析能力以及较强的运算能力 在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强.(3)运用函数的值域解决实际问题. 2.值域的概念和常见函数的值域.函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域.常见函数的值域:一次函数()0y kx b k =+≠的值域为R .二次函数()20y ax bx c a =++≠,当0a >时的值域为24,4ac b a ⎡⎫-+∞⎪⎢⎣⎭,当0a <时的值域为24,4ac b a ⎛⎤--∞ ⎥⎝⎦. 反比例函数()0ky k x=≠的值域为{}0y R y ∈≠. 指数函数()01xy aa a =>≠且的值域为{}0y y >.对数函数()log 01a y x a a =>≠且的值域为R .正,余弦函数的值域为[]1,1-,正,余切函数的值域为R .3.求函数值域(最值)的常用方法.一、观察法(根据函数图象、性质能较容易得出值域(最值)的简单函数) 1、求242-+-=x y 的值域.2、求函数11y x =++的值域.二、配方法(当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求值域) 1、求函数][)4,0(422∈+--=x x x y 的值域.2、若,42=+y x 0,0>>y x ,试求xy 的最大值。
三、反表示法(分子、分母只含有一次项的函数,也可用于其它易反解出自变量的函数类型)对于存在反函数且易于求得其反函数的函数,可以利用“原函数的定义域和值域分别为其反函数的值域和定义域”这一性质,先求出其反函数,进而通过求其反函数的定义域的方法求原函数的值域。
高中函数求值域的九种方法和例题讲解
一.观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1求函数y=3+√(2-3x)的值域。
点拨:根据算术平方根的性质,先求出√(2-3x)的值域。
解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。
∴函数的知域为.点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0≤x≤5)的值域。
(答案:值域为:{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例2求函数y=(x+1)/(x+2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。
(答案:函数的值域为{y∣y<-1或y>1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域例3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。
此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
配方法是数学的一种重要的思想方法。
练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})四.判别式法若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。
高中数学求值域的10种方法
求函数值域的十种方法一.直接法(察看法):对于一些比较简单的函数,其值域可经过察看获得。
例 1.求函数y x1的值域。
【分析】∵ x0 ,∴x11,∴函数 y x1的值域为[1,) 。
【练习】1.求以下函数的值域:① y 3x 2( 1 x 1) ;② f ( x)2 4 x ;x;○4y21,0,1,2 。
③ y x 1 1 , xx1【参照答案】① [ 1,5];② [2,);③ (,1)(1,) ;{1,0,3} 。
4二.配方法:合用于二次函数及能经过换元法等转变为二次函数的题型。
形如F (x) af 2 ( x) bf ( x) c 的函数的值域问题,均可使用配方法。
例 2.求函数y x24x 2( x[ 1,1] )的值域。
【分析】y x24x 2( x2)2 6 。
∵ 1 x 1 ,∴ 3 x2 1 ,∴1 (x2)29,∴ 3(x 2)2 6 5 ,∴ 3 y 5。
∴函数 y x24x 2 ( x[ 1,1])的值域为 [3,5]。
例 3 .求函数y2x24x( x0, 4 ) 的值域。
【分析】本题中含有二次函数可利用配方法求解,为便于计算不如设:f (x)x2 4 x( f (x)0) 配方得: f (x)(x2)24(x0, 4 ) 利用二次函数的有关知识得f (x)0, 4,从而得出: y0,2 。
说明:在求解值域 (最值 ) 时,碰到分式、根式、对数式等种类时要注意函数自己定义域的限制,本题为:f ( x)0 。
例 4 .若x 2 y4, x0, y0,试求 lg x lg y 的最大值。
【剖析与解】 本题可当作第一象限内动点P(x, y) 在直线 x 2 y 4 上滑动时函数 lg x lg y lg xy 的最大值。
利用两点(4,0) , (0,2) 确立一条直线,作出图象易得:x (0,4), y (0,2), 而 lg x lg y lg xy lg[ y(4 2y)] lg[ 2( y 1)2 2] ,y=1 时, lg xlg y 取最大值 lg 2 。
求值域的五种方法及例题
求值域的五种方法及例题求值域的五种方法如下:1. 集合法:将函数的所有可能输出值组成一个集合。
例题:对于函数 f(x) = x^2,求其值域。
解答:可以发现,x^2 的结果只能是大于等于 0 的数,因此值域为[0, +∞)。
2. 平移法:通过将函数的图像在纵轴方向上进行平移来确定值域。
例题:对于函数 f(x) = x^2 + 1,求其值域。
解答:函数 x^2 + 1 的图像是一个向上开口的抛物线,平移后的抛物线的顶点就是值域的最小值,因此值域为[1, +∞)。
3. 导数法:通过求函数的导数,判断其单调性,进而找到值域的最大值和最小值。
例题:对于函数 f(x) = x^3,求其值域。
解答:f'(x) = 3x^2,可以看出当 x > 0 时,f'(x) > 0,即函数是单调递增的。
当 x < 0 时,f'(x) < 0,即函数是单调递减的。
因此,最小值为负无穷,最大值为正无穷,值域为 (-∞, +∞)。
4. 逢边法:对于有界区间上的函数,将端点的函数值作为值域的边界。
例题:对于函数 f(x) = sin(x),求其在区间[0, π] 上的值域。
解答:f(0) = 0,f(π) = sin(π) = 0,在区间[0, π] 上,sin(x) 的最小值和最大值都为 0,因此值域为 [0, 0],即 {0}。
5. 图像法:通过观察函数的图像来确定其值域。
例题:对于函数f(x) = √x,求其值域。
解答:可以发现,√x 的结果只能是大于等于 0 的数,因此值域为[0, +∞)。
这些方法提供了不同的途径来求解函数的值域,根据具体情况选择合适的方法。
函数值域求法(例题)
函数值域求法(例题)在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。
研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。
确定函数的值域是研究函数不可缺少的重要一环。
对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。
本文就函数值域求法归纳如下,供参考。
1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到。
例1. 求函数x 1y =的值域。
解:∵0x ≠ ∴0x 1≠显然函数的值域是:),0()0,(+∞-∞例2. 求函数x 3y -=的值域。
解:∵0x ≥3x 3,0x ≤-≤-∴故函数的值域是:]3,[-∞2. 配方法配方法是求二次函数值域最基本的方法之一。
例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。
解:将函数配方得:4)1x (y 2+-=∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max =故函数的值域是:[4,8]3. 判别式法例4. 求函数22x 1x x 1y +++=的值域。
解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+-(1)当1y ≠时,R x ∈0)1y )(1y (4)1(2≥----=∆解得:23y 21≤≤(2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211故函数的值域为⎥⎦⎤⎢⎣⎡23,21例5. 求函数)x 2(x x y -+=的值域。
解:两边平方整理得:0y x )1y (2x 222=++-(1)∵R x ∈∴0y 8)1y (42≥-+=∆解得:21y 21+≤≤-但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥∆求出的X 围可能比y 的实际X 围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。
(经典高一)求函数的值域的常用方法及练习
例2.求下列函数的值域:
1 x (5) y ; 2x 5
7 1 7 (2 x 5) 1 2 2 2 解:由 y 2x 5 2 2x 5 7 1 2 0, y . 2x 5 2
故函数的值域为 ( , 1 ) ( 1 , ).
(3) y
(4) y
2 ; x2 (-∞,0 )∪(0, + ∞ ) 值域为 ____________________________;
[0, + ∞ ) x 2 值域为 ____________.
{-1, 0, 1 } 值域为 ____________
直接观察法:由函数解析式直接看出.
求函数的值域五种常用方法
• 内容简介: • 求函数值域的五种常用方法及练习 •
常用以下方法: ①直接观察法; ②分离常数法;
③利用配方法; ④换元法; ⑤数形结合(图像)法;
例1.求下列函数的值域: R (1) y 1 2x; 值域为 ________
(2) y | x | 1, x {2, 1,0,1,2};
(2) y = | 2x+1 | + | x -2 |
zxxkw zxxkw 学.科.网
(3) y 1 x 2x 5
(4) y=2x-3
学.科.网
4 x 13
x 1 1 x 1 x 1
学.科.网
2
-1
o
-2
1
x
由图知:-2≤y≤2. 故函数的值域为[-2, 2 ]. 数形结合法:利用图象
求函数的值域,常用以下方法: ①利用观察法; ②分离常数法;
③利用配方法; ④换元法; ⑤数形结合(图像)法;
高中数学:求函数值域的方法十三种(三)
高中数学:求函数值域的方法十三种(三)八、函数的单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域。
【例1】求函数y x =-的值域。
【解析】∵当x 增大时,12x -随x 的增大而减少,x 的增大而增大,∴函数y x =1(,]2-∞上是增函数。
∴1122y ≤-=,∴函数y x =-的值域为1(,2-∞。
【例2】求函数xx y 1+=在区间()+∞∈,0x 上的值域。
【解析】任取()+∞∈,0,21x x ,且21x x <,则()()()()212121211x x x x x x x f x f --=-,因为210x x <<,所以:0,02121><-x x x x ,当211x x <≤时,0121>-x x ,则()()21x f x f >;当1021<<<x x 时,0121<-x x ,则()()21x f x f <;而当1=x 时,2min =y 于是:函数xx y 1+=在区间()+∞∈,0x 上的值域为),2[+∞。
构造相关函数,利用函数的单调性求值域。
【例4】求函数()x x x f -++=11的值域。
【解析】因为110101≤≤-⇒⎩⎨⎧≥-≥+x x x ,而x +1与x -1在定义域内的单调性不一致。
现构造相关函数()x x x g --+=11,易知)(x g 在定义域内单调增。
()21max ==g g ,()21min -=-=g g ,()2≤⇒x g ,()202≤≤x g ,又()()422=+x g x f,所以:()422≤≤x f,()22≤≤x f 。
【例5】求函数y =【解析】此题可以看作v u y +=和63+=x u ,x v --=8的复合函数,显然函数63+=x u 为单调递增函数,易验证x v --=8亦是单调递增函数,故函数x x y --+=863也是单调递增函数。
LS 高一数学函数值域求法及例题
君子有三乐,而王天下不与存焉。
父母俱存,兄弟无故,一乐也;仰不愧于天,俯不怍于人,二乐也;得天下英才而教育之,三乐也。
函数值域(最值)的常用方法姓名:一、基本函数的值域:一次函数()0y kx b k =+≠的值域为R .二次函数()20y ax bx c a =++≠,当0a >时的值域为24,4ac b a ⎡⎫-+∞⎪⎢⎣⎭,反比例函数(k y k x=≠指数函数(0x y a a =>(最值)的简单函数)1、求242-+-=x y 的值域.2、求函数y =的值域.二、配方法(当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求值域)1、求函数][)4,0(422∈+--=x x x y 的值域.说明:在求解值域(最值)时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制.2、若,42=+y x 0,0>>y x ,试求xy 的最大值。
三、反表示法反函数的值域和定义域”原函数的值域。
12x2四、判别式法(分子、分母中含有二次项的函数类型,此函数经过变形后可以化为0)()()(2=++y C x y B x y A 的形式,再利用判别式加以判断)1、求函数3274222++-+=x x x x y 的值域.2、求函数2122x y x x +=++的值域.君子有三乐,而王天下不与存焉。
父母俱存,兄弟无故,一乐也;仰不愧于天,俯不怍于人,二乐也;得天下英才而教育之,三乐也。
3、五、换元法(通过简单的换元把一个函数变为简单函数,其题型特征是无理函数、三角函数(用三角代换)等)1、求函数x x y 41332-+-=的值域.六、数形结合法(对于一些能够准确画出函数图像的函数来说,可以先画出其函数图像,然后利用函数图像求其值域)1、求函数13y x x =-+-的值域。
七、不等式法,)1a b +≥a >0,b >0,且能取到a =b .八、部分分式法(分离常数法)(分式且分子、分母中有相似的项,通过该方法可将原函数转化为为)(x f k y ±=(为k 常数)的形式)1、求函数122+--=x x x x y 的值域.九、单调性法(利用函数在给定的区间上的单调递增或单调递减求值域)十、利用导数求函数的值域(若函数f 在(a 、b )内可导,可以利用导数求得f 在(a 、b )内的极值,然后再计算f 在a ,b 点的极限值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
君子有三乐,而王天下不与存焉。
父母俱存,兄弟无故,一乐也;仰不愧于天,俯不怍于人,二乐也;得天下英才而教育之,三乐也。
函数值域(最值)的常用方法
姓名:
一、基本函数的值域:
一次函数()0y kx b k =+≠的值域为R .
二次函数()2
0y ax bx c a =++≠,当0a >时的值域为24,4ac b a ⎡⎫-+∞⎪⎢⎣⎭, 当0a <时的值域为24,4ac b a ⎛⎤--∞ ⎥⎝⎦
. 反比例函数()0k y k x
=≠的值域为{}0y R y ∈≠. 指数函数()01x y a a a =>≠且的值域为{}0y y >.
对数函数()log 01a y x a a =>≠且的值域为R .
正,余弦函数的值域为[]1,1-,正,余切函数的值域为R .
二、其它函数值域
一、观察法(根据函数图象、性质能较容易得出值域(最值)的简单函数)
1、求242-+-=x y 的值域.
2
、求函数y =
的值域.
二、配方法(当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求值域)
1、求函数][)4,0(422∈+--=x x x y 的值域.
说明:在求解值域(最值)时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制.
2、若,42=+y x 0,0>>y x ,试求xy 的最大值。
三、反表示法(分子、分母只含有一次项的函数,也可用于其它易反解出自变量的函数类型)
对于存在反函数且易于求得其反函数的函数,可以利用“原函数的定义域和值域分别为其反函数的值域和定义域”这一性质,先求出其反函数,进而通过求其反函数的定义域的方法求原函数的值域。
1、求函数1
2+=
x x y 的值域.
2、求函数2241x y x +=-的值域.
四、判别式法(分子、分母中含有二次项的函数类型,此函数经过变形后可以化为
0)()()(2=++y C x y B x y A 的形式,再利用判别式加以判断)
1、求函数3
274222++-+=x x x x y 的值域.
2、求函数2122
x y x x +=
++的值域. 3、
五、换元法(通过简单的换元把一个函数变为简单函数,其题型特征是无理函数、三角函数(用
三角代换)等)
1、求函数x x y 41332-+-=的值域.
六、数形结合法(对于一些能够准确画出函数图像的函数来说,可以先画出其函数图像,然后利用函数图像求其值域)
1、求函数13y x x =-+-的值域。
七、不等式法(能利用几个重要不等式及推论来求得最值.(如:ab b a ab b a 2,222≥+≥+),
利用此法求函数的值域,要合理地添项和拆项,添项和拆项的原则是要使最终的乘积结果中不含自变量,同时,利用此法时应注意取""=成立的条件.)
1、求函数1(0)y x x x =+>的值域.
君子有三乐,而王天下不与存焉。
父母俱存,兄弟无故,一乐也;仰不愧于天,俯不怍于人,二乐也;得天下英才而教育之,三乐也。
注意:在使用此法时一定要注意a b +≥a >0,b >0,且能取到a =b .
八、部分分式法(分离常数法)(分式且分子、分母中有相似的项,通过该方法可将原函数转化为为)(x f k y ±=(为k 常数)的形式)
1、求函数1
22+--=x x x x y 的值域.
九、单调性法(利用函数在给定的区间上的单调递增或单调递减求值域)
十、利用导数求函数的值域(若函数f 在(a 、b )内可导,可以利用导数求得f 在(a 、b )内
的极值,然后再计算f 在a ,b 点的极限值。
从而求得f 的值域)
十一、最值法(对于闭区间[a ,b ]上的连续函数y =f (x ),可求出y =f (x )在区间[a ,b ]内的极值,
并与边界值f (a )、f (b )作比较,求出函数的最值,可得到函数y 的值域)
十二、构造法(根据函数的结构特征,赋予几何图形,数形结合)
十三、比例法(对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函数,进而求出原函数的值
求函数的值域
①31y x =+, x∈{1,2,3,4,5 }.( 观察法 )
②246y x x =-+,x ∈[)1,5.( 配方法 :形如2y ax bx c =++ )
③2y x =-( 换元法
:形如y ax b =+±) ④1x y x =
+.( 分离常数法:形如cx d y ax b
+=+ )
⑤221y x x =+. ( 判别式法:形如21112222a x b x c y a x b x c ++=++ )
变式1.求下列函数的值域
①2243y x x =-+.
②y x =
③ y =213
x x +-. ④2224723x x y x x +-=++.
⑤37y x x =-++. ⑥93(0)4y x x x =+>。