一元一次不等式知识点及典型例题
一元一次不等式组的知识点及其经典习题讲解
一元一次不等式组的知识点及其经典习题讲解知识点一:一元一次不等式组由含有同一未知数的几个一元一次不等式组合在一起,叫做一元一次不等式组。
如:,。
要点诠释:在理解一元一次不等式组的定义时,应注意两点:(1)不等式组里不等式的个数并未规定,只要不是一个,两个、三个、四个等都行;(2)在同一不等式组中的未知数必须是同一个,不能在这个不等式中是这个未知数,而在另一个不等式中是另一个未知数。
知识点二:一元一次不等式组的解集组成一元一次不等式组的几个不等式的解集的公共部分叫做一元一次不等式组的解集.(1)求几个一元一次不等式的解集的公共部分,通常是利用数轴来确定的,公共部分是指数轴上被各个不等式解集的区域都覆盖的部分。
(2)用数轴表示由两个一元一次不等式组成的不等式组的解集,一般可分为以下四种情况:知识点三:一元一次不等式组的解法求不等式组的解集的过程,叫做解不等式组。
解一元一次不等式组的一般步骤为:(1)分别解不等式组中的每一个不等式;(2)将每一个不等式的解集在数轴上表示出来,找出它们的公共部分;(3)根据找出的公共部分写出这个一元一次不等式组的解集(若没有公共部分,说明这个不等式组无解).要点诠释:用数轴表示不等式组的解集时,要时刻牢记:大于向右画,小于向左画,有等号画实心圆点,无等号画空心圆圈。
知识点四:利用不等式或不等式组解决实际问题列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式或不等式组;(5)解:解出所列的不等式或不等式组的解集;(6)答:检验是否符合题意,写出答案。
要点诠释:在以上步骤中,审题是基础,是根据不等关系列出不等式的关键,而根据题意找出不等关系又是解题的难点,特别要注意结合实际意义对一元一次不等式或不等式组的解进行合理取舍,这是初学者易错的地方。
专题10 一元一次不等式(组)(含解析)
专题10 一元一次不等式(组)一、解读考点二、考点归纳归纳 1:有关概念基础知识归纳:1、不等式:用不等号表示不等关系的式子,叫做不等式.2、不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解.对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.求不等式的解集的过程,叫做解不等式.3、用数轴表示不等式的方法4、一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式.5、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组.几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集.求不等式组的解集的过程,叫做解不等式组.基本方法归纳:判断不等式(组)时只需看未知数的个数及未知数的次数为1即可;不等式的解只需带入不等式是否成立即可;不等式(组)的解集是所有解得集合.注意问题归纳:不等式组的解集是所有解得公共部分.【例1】如图,身高为xcm的1号同学与身高为ycm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x y(用“>”或“<”填空).【答案】<.考点:不等式的定义.归纳 2:不等式基本性质基础知识归纳:1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变.3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变.基本方法归纳:观察不等式的变化再选择应用那个性质.注意问题归纳:不等式两边都乘以(或除以)同一个负数,不等号的方向改变;乘以(或除以)同一个正数,不等号的方向不变.【例2】若x>y,则下列式子中错误..的是()A、x-3>y-3B、x y>33C、x+3>y+3D、-3x>-3y【答案】D.考点:不等式基本性质。
8实际问题与一元一次不等式(基础)知识讲解及其练习 含答案
实际问题与一元一次不等式(基础)知识讲解【学习目标】1.会从实际问题中抽象出不等的数量关系,会用一元一次不等式解决实际问题;2. 熟悉常见一些应用题中的数量关系.【要点梳理】要点一、常见的一些等量关系1.行程问题:路程=速度×时间2.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量3.利润问题:商品利润=商品售价-商品进价,=100%⨯利润利润率进价4.和差倍分问题:增长量=原有量×增长率5.银行存贷款问题:本息和=本金+利息,利息=本金×利率6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+. 要点二、列不等式解决实际问题列一元一次不等式解应用题与列一元一次方程解应用题类似,通常也需要经过以下几个步骤:(1)审:认真审题,分清已知量、未知量及其关系,找出题中不等关系要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“至少”、“不超过”、“超过”等;(2)设:设出适当的未知数;(3)列:根据题中的不等关系,列出不等式;(4)解:解所列的不等式;(5)答:写出答案,并检验是否符合题意.要点诠释:(1)列不等式的关键在于确定不等关系;(2)求得不等关系的解集后,应根据题意,把实际问题的解求出来;(3)构建不等关系解应用题的流程如图所示.(4)用不等式解决应用问题,有一点要特别注意:在设未知数时,表示不等关系的文字如“至少”不能出现,即应给出肯定的未知数的设法,然后在最后写答案时,应把表示不等关系的文字补上.如:若“设还需要B 型车x 辆 ”,而在答中应为“至少需要11辆 B 型车 ”.这一点应十分注意.【典型例题】类型一、行程问题1.爆破施工时,导火索燃烧的速度是0.8cm/s ,人跑开的速度是5m/s ,为了使点火的战士在施工时能跑到100m 以外(包括100m )的安全地区,导火索至少需要多长?【思路点拨】设导火索要xcm 长,根据导火索燃烧的速度为0.8cm/s ,人跑开的速度是5m/s ,为了使点导火索的战士在爆破时能跑到离爆破点100m 的安全地区,可列不等式求解. 【答案与解析】 解:设导火索要xcm 长,根据题意得:1000.85x ≥ 解得:16x ≥答:导火索至少要16cm 长.【总结升华】本题考查一元一次不等式在实际问题中的应用,关键是以100m 的安全距离作为不等量关系列不等式求解.类型二、工程问题2.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要完成多少土方?【思路点拨】假设以后几天平均每天完成x 土方,一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,那么该土方工程还剩300-60=240土方,现在要比原计划至少提前两天完成任务,说明至多4天完成任务,用去一天,还剩4-1=3(天)则列不等式2403x≤ 解得x 即可知以后平均每天至少完成多少土方.解:设以后几天平均每天完成x 土方.由题意得: 30060621x---≤ 解得: x≥80答:现在要比原计划至少提前两天完成任务,以后几天平均每天至少要完成80土方.【总结升华】解本类工程问题,主要是找准正确的工程不等式,如本题,以天数作为基准列不等式.举一反三:【变式】某人计划20天内至少加工400个零件,前5天平均每天加工了33个零件,此后,该工人平均每天至少需加工多少个零件,才能在规定的时间内完成任务?【答案】解:设以后平均每天加工x 个零件,由题意的:5×33+(20﹣5)x≥400,解得:x≥2153. ∵x 为正整数,∴x 取16.答:该工人以后平均每天至少加工16个零件.类型三、利润问题3.水果店进了某种水果1t ,进价是7元/kg .售价定为10元/kg ,销售一半以后,为了尽快售完,准备打折出售.如果要使总利润不低于2000元,那么余下的水果至少可以按原定价的几折出售?【答案与解析】解:设余下的水果可以按原定价的x 折出售,根据题意得:1t =1000kg 10001000(107)(107)20001022x ⨯-⨯+-⨯≥ 解得:8x ≥ 答:余下的水果至少可以按原定价的8折出售.【总结升华】本题考查一元一次不等式的应用,关键以利润作为不等量关系列不等式. 举一反三:【变式】某商品的进价为1000元,售价为2000元,由于销售状况不好,商店决定打折出售,但又要保证利润不低于20%,则商店最多打 折.【答案】六.类型四、方案选择4.(•资阳)某大型企业为了保护环境,准备购买A 、B 两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A 型2台、B 型3台需54万,购买A 型4台、B 型2台需68万元.(1)求出A 型、B 型污水处理设备的单价;(2)经核实,一台A 型设备一个月可处理污水220吨,一台B 型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.【思路点拨】(1)根据题意结合购买A 型2台、B 型3台需54万,购买A 型4台、B 型2台需68万元分别得出等式求出答案;(2)利用该企业每月的污水处理量不低于1565吨,得出不等式求出答案.【答案与解析】解:(1)设A 型污水处理设备的单价为x 万元,B 型污水处理设备的单价为y 万元,根据题意可得:,解得:.答:A 型污水处理设备的单价为12万元,B 型污水处理设备的单价为10万元;(2)设购进a 台A 型污水处理器,根据题意可得:220a+190(8﹣a )≥1565,解得:a ≥1.5,∵A型污水处理设备单价比B型污水处理设备单价高,∴A型污水处理设备买越少,越省钱,∴购进2台A型污水处理设备,购进6台B型污水处理设备最省钱.【总结升华】本题考查了一元一次不等式的应用,二元一次方程组的应用,找准数量关系是解题的关键.实际问题与一元一次不等式(基础)巩固练习【巩固练习】一、选择题1.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的安全区域.甲工人在转移过程中,前40米只能步行,之后骑自行车.已知导火线燃烧的速度为0.01米/秒,步行的速度为1米/秒,骑车的速度为4米/秒.为了确保甲工人的安全,则导火线的长要大于( )米.A .1B .1.2C .1.3D .1.52.(•西宁)某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有( )A .103块B .104块C .105块D .106块3.小红和爸爸、妈妈三人玩跷跷板,三人的体重一共为150kg ,爸爸坐在跷跷板的一端,体重只有妈妈一半的小红和妈妈坐在跷跷板的另一端,这时爸爸那一端仍然着地,小红的体重应小于( )A .49kgB .50kgC .24kgD .25kg4.某商品进价为800元,售价为1200元,由于受市场供求关系的影响,现准备打折销售,但要求利润率100%-⎛⎫=⨯ ⎪⎝⎭售价进价利润率进价不低于5%,则至少可打( ) A .六折 B .七折 C .八折 D .九折5.设“●”“▲”“■”表示三种不同的物体,现用天平称了两次,结果如图所示,那么这三种物体的质量按从大到小的顺序排列应为( )A . ■、●、▲B . ■、▲、●C . ▲、●、■D . ▲、■、●6.现有若干本连环画册分给小朋友,如果每人分8本,那么不够分,现在每人分7本,还多10本,则小朋友人数最少有 ( )A.7人B. 8人C. 10人D.11人二、填空题7.当x_______时,代数式-3x+5的值是正数;当x_______时,它的值不大于4;当x______时,它的值不小于2.8.一家商店计划出售60件衬衫,要使销售总额不低于5100元,则每件衬衫的售价至少应为_______元.9.有10名菜农,每名可种茄子3亩或辣椒2亩,已知茄子每亩的收入是0.5万元,辣椒每亩的收入是0.8万元,要使总收入不低于15.6万元,则最多只能安排________名菜农种茄子.10.用一根长不足160 cm的铁丝围成一个宽是x cm,长是宽的2倍的长方形,则可列不等式_______.11.(春•德州期末)某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对道题,成绩才能在60分以上.12.一个工程队规定在6天内完成300千米的修路工程,第一天完成了60千米,现在接到任务要比原计划至少提前2填完成任务,以后几天平均每天至少完成千米.三、解答题13.某工人计划在15天里加工408个零件,前三天每天加工24个,问以后每天至少加工多少个零件才能在规定时间内超额完成任务?14.某种飞机进行飞行训练,飞出去的速度为1200km/h,飞回机场的速度为1500km/h,飞机油箱中的燃油只能保持2.5h的飞行,则飞机最多飞出多少千米就应返回?(结果精确到10km)15.某商店在一次促销活动中规定:消费者消费满200元或超过200元就可享受打折优惠.一名同学为班级买奖品,准备买6本影集和若干支钢笔.已知影集每本15元,钢笔每支8元,问他至少买多少支钢笔才能打折?16.沃尔玛超市销售每台进价为320元和250元的A、B两种型号的电器,下表是两天的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电器的销售单价;(2)若超市准备用不多于8200元的金额再采购这两种型号的电器共30台,求A种型号的电器最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电器能否实现利润至少为2100元的目标?请给出相应的采购方案;若不能,请说明理由.一、选择题1. 【答案】C ;【解析】解:设导火线的长度为x 米, 由题意得,>+,解得:x >1.3.故选C .2.【答案】C ;【解析】设这批手表有x 块,550×60+(x ﹣60)×500>55000解得x >104∴这批电话手表至少有105块,故选C .3. 【答案】D ;【解析】解:设小红的体重为xkg ,由题意可得: 2150(2)x x x x +<-+,解得:25x <.4. 【答案】B ;【解析】解:设打x 折,由题意得:1200800105%800x ⨯-≥,解得x ≥7,所以至少应打7折.5. 【答案】B ; 【解析】由图可得: 2■>■+▲ ①,●+▲=3● ②,由①②得■>▲,2●=▲, 所以可得:■>▲>●.6. 【答案】D ;【解析】设小朋友人数为x 人,可得:8710x x >+,解得:10x >,所以小朋友至少为11人.二、填空题7.【答案】53<,≥13,≤1; 【解析】 由5350,3x x -+><得;由35x -+≤4得x ≥13;由35x -+≥2得x ≤1. 8.【答案】85;【解析】设售价为x 元,则60x ≥5100得x ≥85.9.【答案】4;【解析】设最多只能安排x 名菜农种茄子,则有(10-x)人种辣椒,那么种茄子的收入为3×0.5x 万元,种辣椒的收入为2×0.8×(10-x)万元,那么总收入为3×0.5x+2×0.8(10-x)万元.根据题意:3×0.5x+2×0.8(10-x)≥15.6,解得x ≤4,故最多安排4名菜农种茄子10.【答案】x+2x <80;11.【答案】x >.【解析】设答对x 道.故6x ﹣2(15﹣x )>60解得:x >所以至少要答对12道题,成绩才能在60分以上.【解析】解:设以后几天平均每天完成x 千米,由题意得:60+(6﹣1﹣2)x≥300,解得:x≥80,故以后几天平均每天至少完成80千米,故答案为:80.三、解答题13.【解析】解:设三天后每天加工x 个零件,根据题意得:24×3+(15-3)x >408,解得 x >28.因为x 为正整数,所以以后每天加工的零件数至少为29个.14.【解析】解:设飞机最多飞出x 千米就应返回,则:2.512001500x x +<. 解得x <216663. ∴x 取1660.∴飞机最多飞出1660千米就应返回.15.【解析】解:设该同学买x 支钢笔,根据题题意,得:15×6+8x ≥200,解得 x ≥3134. 故该同学至少要买14支钢笔才能打折.16.【解析】解:(1)设A 、B 两种型号电器的销售单价分别为x 元和y 元,由题意,得:2x+3y=1700,3x+y=1500,解得x=400元,y=300元,∴A、B 两种型号电器的销售单价分别为400元和300元;(2)设采购A 种型号电器a 台,则采购B 种型号电器(30﹣a )台,依题意,得320a+250(30﹣a )≤8200,解得a≤10,a 取最大值为10,∴超市最多采购A 种型号电器10台时,采购金额不多于8200元;(3)依题意,得(400﹣320)a+(300﹣250)(30﹣a )≥2100,解得 a≥20,∵a 的最大值为10,∴在(2)的条件下超市不能实现利润至少为2100元的目标.。
一元一次不等式(组)知识总结及经典例题分析
一元一次不等式(组)知识总结及经典例题分析一元一次不等式和不等式组【知识要点】一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。
2.一元一次不等式的解集:使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。
一元一次不等式的所有解组成的集合是一元一次不等式的解集。
注:其标准形式: ax+b <0或ax+b ≤0, ax+b >0或ax+b ≥0(a ≠0).二、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a<(x a >或)x a x a ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!x <a x >a x ≤a x ≥a五、不等式组解集的确定方法,可以归纳为以下四种类型(b a <)①⎩⎨⎧>>b x a x 的解集是b x >,如下图: ②⎩⎨⎧<<b x a x 的解集是a x <,如下图:同大取大 同小取小③⎩⎨⎧<>b xa x 的解集是b x a <<,如下图:④⎩⎨⎧><bx a x 无解,如下图:大小交叉取中间 大小分离解为空六、解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.七、一元一次不等式的综合应用1.列不等式解决问题比列方程解决问题的应用更广泛、更实际。
有些问题用方程不能解决,而用不等式却能轻易解决。
一元一次不等式重点、难点和关键及例题解析
一元一次不等式重点、难点和关键及例题解析【重点、难点例题解析】例1按照下列条件,写出仍能成立的不等式,并注明理由.(1)若a<b两边都加-5;(2)若-2a<b两边都除以-2;(3)若3a≤-b两边都除以3;(4)若a≤b两边都加上c;(5)若a<b两边都乘上c.解:(1)a-5<b-5,(不等式基本性质1)(5)因为不等式两边乘以c,而c是字母代替数,因此c有三种情况,①c>0,②c<0,③c=0 当c>0时,ac<bc(基本性质2)当c<0时,ac>bc(基本性质3)当c=0时,ac = bc例2比较下列各题中两个式子的大小:(3)a +b与a-b;(4)-3a与-4a.具体数,能直接判断每一个数的正、负或零,用大小比较法则就可以判断,若含有字母的数,如(2)、(3)、(4),不易判断每一个数的符号,用有理数比较大小的法则就较困难,而用不等式性质来判断就较容易,若已知a-b>0,用性质1,a-b + b>b,即a>b.若已知a-b<0,同理可得a<b,若a-b=0,则a = b.所以两个有理数大小比较可用两数的差的符号来判断.(3)(a+ b)-(a-b)=a +b-a +b=2b当b>0时,2b>0,∴ a +b>a-b;当b<0时,2b<0,∴ a +b<a-b;当b=0时,2b=0,∴ a +b =a-b.(4)(-3a)-(4a)=-3a+4a=a当a>0时,-3a>-4a;当a<0时,-3a<-4a;当a=0时,-3a=-4a.a2≥0, b2≥0∴a2+b2+4>0,即例4解下列不等式(3) -4x<-2 (4)mx≤n(m<0)分析:这几道小题是最简形式的不等式,它是解其他不等式的基础,掌握它的关键是先判断两边乘上一个什么数(或除以什么数),是正数还是负数,容易出错的是两边乘上(或除以)负数时,忘记改变不等号的方向.解:(1)2x>-4∴x>-2∴x>-15(3)-4x<-2(4)mx≤n(m<0)例5 解下列不等式2(x-1)>5(x+2) (去分母)2x-2>5x+10 (去括号)2x-5x>10+2 (移项)-3x>12 (合并同类项)x<-4 (系数化1)18-6x+2+2x>9x (去括号)-6x+2x-9x>-18-2 (移项)-13x>-20 (合并同类项)4(5x+4)-24(1-3x)≥3(24x-1)-8(1-x)20x+16-24+72x≥72x-3-8+8x92x-80x≥-11+812x≥-3说明:解一元一次不等式与解一元一次方程的方法基本一样,解一元一次方程中注意的问题同样在解一元一次不等式时也要注意,而且还要注意不等式两边同乘(或同除)一个负数时,不等号的方向要改变.例6 解下列关于x的不等式(1) 2(x-a +b)≤3(x +a-b)(2)ax-b≥b(x-a)(a-b>0)(4)(m-n)x≤m-n(m-n≠0)(5)(a-1)x≥a-2分析:这是含有字母的不等式,它的解法与不含字母的不等式的解法一样,只是注意不等式两边乘(或除)含有字母的式子时,先判断它的符号.解:(1)2(x-a +b)≤3(x +a-b)2x-2a+2b≤3x+3a-3b2x-3x≤3a-3b+2a-2b-x≤5a-5b∴x≥5b-5a(2)ax-b≥b(x-a)(a-b>0)ax-b≥bx -abax-bx≥-ab +b(a-b)x≥b- ab∵a-b>0∵m<0∴x-2>mnx>mn+2(4)(m-n)x≤m-n(m-n≠0)∵m-n≠0当m-n>0时,x≤1当m-n<0时,x≥1(5)(a-1)x≥a-2分析:因为x的系数(a-1)不知其符号,因此要讨论,有三种可能a-1>0;a-1<0;a-1=0当a-1=0 即a=1时,0x≥a-2,不等式无解.说明:上述讨论方法类似于方程的讨论法,一般情况解不等式ax>b。
专题14不等式的定义性质和一元一次不等式(原卷版)(7大考点)
专题14 不等式的定义、性质和一元一次不等式【考点导航】目录【典型例题】 (1)【考点一 不等式的定义】 (1)【考点二 不等式的性质】 (2)【考点三 一元一次不等式的定义】 (2)【考点四 求一元一次不等式的解集并在数轴上表示】 (2)【考点五 求一元一次不等式的整数解】 (3)【考点六 列一元一次不等式】 (3)【考点七 用一元一次不等式解决实际问题】 (4)【过关检测】 (5)【典型例题】【考点一 不等式的定义】例题:(2023春·全国·七年级专题练习)在下列数学表达式:①20-<,②251y ->,③1m =,④2x x -,⑤2x ≠-,⑥121x x +<-中,是不等式的有( )A .2个B .3个C .4个D .5个【变式训练】⑥2x y ≤,你认为其中是不等式的有( )A .2个B .3个C .4个D .5个 2.(2023春·山东枣庄·八年级校考阶段练习)下列式子:①30>;②450x +>;③3x <;④2x x +;⑤4x =-;⑥21x x +>+,其中不等式有( )A .3个B .4个C .5个D .6个【考点二 不等式的性质】【变式训练】【考点三 一元一次不等式的定义】例题:(2023春·陕西西安·八年级西安市黄河中学校考阶段练习)下列式子:①74>;②321≥+x x ;③1x y +>;④232x x +≤中,是一元一次不等式的有( )A .1个B .2个C .3个D .4个【变式训练】【考点四 求一元一次不等式的解集并在数轴上表示】【变式训练】【考点五 求一元一次不等式的整数解】例题:(2023春·全国·七年级专题练习)不等式543x x ->-的最大整数解是______.【变式训练】1.(2023春·辽宁沈阳·八年级统考阶段练习)满足不等式3520x x -≤+的最小的整数是__.2.(2023春·广东佛山·八年级校考阶段练习)不等式()222x x -≤-的正整数解是______.【考点六 列一元一次不等式】例题:(2023春·全国·七年级专题练习)用不等式表示“m 的3倍与n 的一半的差不大于6”:_________.【变式训练】1.(2023春·陕西西安·八年级西安市黄河中学校考阶段练习)某商品进价为700元,出售时标价为1100元,后由于商品积压,商店准备打折销售,但要保证利润率不低于10%.若打x 折,则可列不等式___________. 2.(2023·山西临汾·统考一模)根据2022年8月16日太原市市政府公布的《太原市推进城市空间立体绿化实施方案》,某小区积极进行小区绿化,计划种植A,B两种苗木共600株.已知A种苗木的数量不小于B种苗木的数量的一半,若设A种苗木有x株,则可列不等式:______.【考点七用一元一次不等式解决实际问题】例题:(2023春·辽宁沈阳·八年级统考阶段练习)某公司购入甲、乙两种商品,2件甲商品和1件乙商品总进价为220元,3件甲商品和2件乙商品的总进价为360元.(1)求甲、乙两种商品的进价分别为多少元;(2)该公司计划购进甲、乙两种商品共70件,且总进价不超过4650元,则甲商品最多购入多少件?【变式训练】1.(2023春·江苏·七年级专题练习)甲、乙两车分别从相距200千米的A、B两地相向而行,甲乙两车均保持匀速行驶,若甲车行驶2小时,乙车行驶3小时,两车恰好相遇:若甲车行驶4小时,乙车行驶1小时,两车也恰好相遇.(1)求甲乙两车的速度(单位:千米/小时)是多少.(2)若甲乙两车同时按原速度行驶了1小时,甲车发生故障不动了,为了保证乙车再经过不超过2小时与甲车相遇,乙车提高了速度,求乙车提速后的速度至少是每小时多少千米?2.(2023春·浙江·七年级专题练习)某社区拟建甲、乙两类摊位以激活“地摊经济”,1个甲类摊位和2个乙类摊位共占地14平方米,2个甲类摊位和3个乙类摊位共占地24平方米.(1)求每个甲、乙类摊位占地各为多少平方米?(2)该社区拟建甲、乙两类摊位共100个,且乙类摊位的数量不多于甲类摊位数量的3倍,求甲类摊位至少建多少个?(3)在(2)的条件下,某社区最多用454平方米拟建甲、乙两类摊位,若建甲类摊位每个需要3000元,乙类摊位每个需要2200元,共有几种建造方案?哪种方案最省钱?【过关检测】三、解答题移项、合并同类项,得22x,1.先阅读以上解题过程,然后解答下列问题.小明的解题过程从哪一步开始出现错误?请写出该步的代号用正确的方法解这个不等式.18.(2023春·浙江·七年级专题练习)某班级为学习成绩进步的学生购买奖品,计划购买同一品牌的钢笔和自动铅笔,到文教店查看定价后发现,购买2支钢笔和5支自动铅笔共需75元,购买3支钢笔和2支自动铅笔共需85元.(1)求该品牌的钢笔、自动铅笔每支的定价分别是多少元;(2)经协商,文教店给予该班级购买一支该品牌钢笔赠送一支自动铅笔的优惠,如果该班级需要自动铅笔的支数是钢笔的支数的2倍还多8支,且班级购买钢笔和自动铅笔的总费用少于670元,那么该班级最多可购买多少支该品牌的钢笔?19.(2023春·江苏·七年级专题练习)5月份是空调销售和安装的高峰时期.某区域售后服务中心现有600台已售空调尚待安装,另外每天还有新销售的空调需要安装.设每天新销售的空调台数相同,每个空调安装小组每天安装空调的台数也相同.若同时安排3个装机小组,恰好60天可将空调安装完毕;若同时安排5个装机小组,恰好20天就能将空调安装完毕.(1)求每天新销售的空调数和每个空调安装小组每天安装空调的台数;(2)如果要在5天内将空调安装完毕,那么该区域售后服务中心至少需要安排几个空调安装小组同时进行安装?(1)若该公司三月份的利润为8.8万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)如果该公司四月份投入成本不超过20万元,该医药公司四月份最多只能生产甲种防疫口罩多少万只?(3)养正学校到该公司购买乙型口罩有如下两种方案,方案一:乙型口罩一律打8折;方案二:购买16.8元会员卡后,乙型口罩一律7折,请帮养正学校设计出合适的购买方案.。
一元一次不等式知识归纳及例题
一元一次不等式知识点及例题1.用不等号>、<表示不等关系的式子,叫不等式。
如120>135 ,x <30 ,120<5x例题:用不等式表示下列数量关系。
(1)a 的一半与-3的和小于或等于1。
解:x 的5倍加16:5x +16其关系不大于:练习用不等式表示:x 的2倍与1的和大于-1为__________,y 的与t 的差的一半是负数为_________2.能使不等式成立的未知数的值,叫不等式的解。
例题:下列各数中,哪些是不等式x+2>5的解?那些不是?-3,-2,-1,0,1.5,2.5,3,3.5,5,73.一个不等式的所有解,组成这个不等式的解的集合,简称为这个不等式的解集。
例题:两个不等式的解集分别为x <2和x ≦2,他们有什么不同?在数组上怎么表示他们的区别?练习:两个不等式的解集分别为x ≦1和x>1,他们有什么不同?在数组上怎么表示他们的区别?4.不等式的性质。
如果(1)a >b ,那么a+c >b+c,a-c >b-c.(2).如果a >b,并且c >0,那么ac >bc. (3).如果a >c ,并且c <0,那么ac <bc.例题: 指出下列各题中不等式的变形依据练习: 把下列不等式变成x>a x<a 的形式。
()的与的差的相反数不小于。
2a 3525-()的相反数的不大于的倍加。
317516x x ()的一半:112a a 与-的和:3123a +-()小于或等于:11231a +-≤()故:1231a +-≤()()的与的差:2352352a a -相反数:-()352a -不小于-:53525--≥-()a 故:---≥-()3525a ()的相反数的:31717x x --≤+17516x x 故:-≤+17516x x5不等号的两边都是整数,而且只含有一个未知数,未知数的最高次数是一次,这样的不等式叫做一元一次不等式。
例题判断下列属于一元一次不等式的是()10>8 2x+1>3y+2 121)1(2->+y y x 2 +3>5 判断下列哪些是一元一次方程,哪些是一元一次不等式x+1<6 x+8=2 x 30 x ≥90 x+1<6 x+2 x ≦3 13 x+1=6 6一元一次方程的解法解一元一次方程有哪些步骤⑴去分母——方程两边同乘以各分母的最小公倍数.⑵去括号——应用分配律、去括号法则,⑶移项—一般把含未知数的项移到方程的左边,常数项移到方程的右边。
初中数学重点梳理:一元一次不等式(组)
一元一次不等式(组)知识定位不等式是一个比较重要的知识点,难度不是很大,在理解的基础上,使用适当的技巧即可解决。
知识梳理一、不等式与不等式的性质1、不等式:表示不等关系的式子。
(表示不等关系的常用符号:≠,<,>)。
2、不等式的性质:(l )不等式的两边都加上(或减去)同一个数,不等号方向不改变,如a > b , c 为实数⇒a +c >b +c(2)不等式两边都乘以(或除以)同一个正数,不等号方向不变,如a >b , c >0⇒ac >bc 。
(3)不等式两边都乘以(或除以)同一个负数,不等号方向改变,如a >b ,c <0⇒ac <bc.注:在不等式的两边都乘以(或除以)一个实数时,一定要养成好的习惯、就是先确定该数的数性(正数,零,负数)再确定不等号方向是否改变,不能像应用等式的性质那样随便,以防出错。
3、任意两个实数a ,b 的大小关系(三种):(1)a – b >0⇔ a >b(2)a – b=0⇔a=b(3)a–b <0⇔a <b4、(1)a >b >0⇔b a >(2)a >b >0⇔22b a <二、不等式(组)的解、解集、解不等式1、能使一个不等式(组)成立的未知数的一个值叫做这个不等式(组)的一个解。
不等式的所有解的集合,叫做这个不等式的解集。
不等式组中各个不等式的解集的公共部分叫做不等式组的解集。
2.求不等式(组)的解集的过程叫做解不等式(组)三、不等式(组)的类型及解法1、一元一次不等式:(l )概念:含有一个未知数并且含未知数的项的次数是一次的不等式,叫做一元一次不等式。
(2)解法:与解一元一次方程类似,但要特别注意当不等式的两边同乘以(或除以)一个负数时,不等号方向要改变。
2、一元一次不等式组:(l )概念:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。
(2)解法:先求出各不等式的解集,再确定解集的公共部分。
注:求不等式组的解集一般借助数轴求解较方便。
10一元一次不等式组(基础) 知识讲解及其练习 含答案
一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x,请你根据题意写出x必须满足的不等式.【思路点拨】由题意知,x必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得:8482(8)34.x x >⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.举一反三:【变式】直接写出解集:(1)2,3x x >⎧⎨>-⎩的解集是______; (2)2,3x x <⎧⎨<-⎩的解集是______; (3)2,3x x <⎧⎨>-⎩的解集是_______;(4)2,3x x >⎧⎨<-⎩的解集是_______. 【答案】(1)2x >;(2)3x <-;(3)32x -<<;(4)空集.类型二、解一元一次不等式组2.(•莆田)解不等式组:. 【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集.【答案与解析】 解:解:.由①得x ≤1;由②得x <4;所以原不等式组的解集为:x ≤1.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.【变式】解不等式组,并把解集在数轴上表示出来. 【答案】 解:,∵解不等式①得:x≤1,解不等式②得:x >﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x 名学生,则由第一种植树法,知道一共有(4x +37)棵树;第二种植树法中,前(x-1)名学生中共植6(x-1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式.到此,不等式组即建立起来了,接下来就是解不等式组.【答案与解析】解:设有x 名学生,根据题意,得:4376114376132x x x x +>-⎧⎨+--<⎩()()()()(), 不等式(1)的解集是:x <2121; 不等式(2)的解集是:x >20, 所以,不等式组的解集是:20<x <2121, 因为x 是整数,所以,x=21,4×21+37=121(棵)答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系. 举一反三: 【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内?解:设这件商品原价为x 元,根据题意可得:88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩ 解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4. “全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可;(2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可.【答案与解析】解:(1)设每本文学名著x 元,动漫书y 元, 可得:, 解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:, 解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本;方案二:文学名著27本,动漫书47本;方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少?【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x xx +-≥⎧⎨+-≥⎩,解得57x ≤≤,又x 为整数,所以5x =或6或7,∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆;方案2:租甲种货车6辆,乙种货车4辆;方案3:租甲种货车7辆,乙种货车3辆.(2)运输费用:方案1:2000×5+1300×5=16500(元);方案2:2000×6+1300×4=17200(元);方案3:2000×7+1300×3=17900(元).∴方案1运费最少,应选方案1.一元一次不等式组(基础)巩固练习【巩固练习】一、选择题1.下列选项中是一元一次不等式组的是( )A .B .C .D .2.不等式组312840x x ->⎧⎨-≤⎩的解集在数轴上表示为 ( ).3.(•来宾)已知不等式组的解集是x≥1,则a 的取值范围是( ) A .a <1 B .a ≤1C .a ≥1D .a >1 4.不等式32015x -<≤的整数解有( ). A .4个 B .3个 C .2个 D .1个5.现用甲、乙两种运输车将46t 抗旱物资运往灾区,甲种运输车载重5t ,乙种运输车载重4t ,安排车辆不超过10辆,则甲种运输车至少应安排( ).A .4辆B .5辆C .6辆D .7辆6.如果|x+1|=1+x ,|3x+2|=-3x-2,那么x 的取值范围是( ).A .213x -≤≤-B .1x ≥-C .23x ≤-D .213x -≤≤- 二、填空题7.如果a <2,那么不等式组2x a x >⎧⎨>⎩的解集为_______,2x a x <⎧⎨>⎩的解集为_______. 8.(•广东)不等式组x x x x --⎧⎪⎨-⎪⎩1222132≤>的解集是 . 9.不等式组34125x +-≤<的所有整数解的和是______. 10. 如图所示,在天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m(g)的取值范围为 .11.从彬彬家步行到学校的路程是2400米,如果彬彬7时离家,要在7时30分至40分间到达学校,那么步行的速度x (米/分)的范围是________.12. 在△ABC 中,三边为a 、b 、c ,如果a 3x =,b 4x =,c 28=,那么x 的取值范围是 .三、解答题13.解下列不等式组,并将其解集在数轴上表示出来.(1)2(1)31134x x x x +≤-⎧⎪+⎨<⎪⎩;(2)1<3x-2<4;14.若关于x 、y 的二元一次方程组中,x 的值为负数,y 的值为正数,求m 的取值范围.15.郑老师想为希望小学四年级(3)班的同学购买学习用品,了解到某商店每个书包价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)郑老师计划用1000元为全班40位学生每人购买一件学习用品(一个书包或一本词典)后,余下不少于100元且不超过120元的钱购买体育用品.共有哪几种购买书包和词典的方案?【答案与解析】一、选择题1. 【答案】D ;【解析】解:A 、含有两个未知数,错误;B 、未知数的次数是2,错误;C 、含有两个未知数,错误;D 、符合一元一次不等式组的定义,正确;故选D.2. 【答案】A ;【解析】解不等式组可得:1,2x x >≥且.3. 【答案】A ;4. 【答案】B ;【解析】32053215x x -⎧<⎪⎪⎨-⎪≤⎪⎩,解得:312x -≤<,所以整数解:-1,0,1. 5. 【答案】C ;【解析】设甲种运输车安排x 辆,5x+4(10-x )≥46,x≥6,故至少要甲种运输车6辆.6. 【答案】A ;【解析】由10320x x +≥⎧⎨--≥⎩,解得213x -≤≤-. 二、填空题7. 【答案】x >2,无解;8. 【答案】﹣3<x≤1;【解析】解不等式①得:x≤1,解不等式②得:x >-3,所以不等式组的解集是:﹣3<x≤1.9. 【答案】-5;【解析】所有整数解:-3,-2,-1,0,1,所以和为-5.10.【答案】1<m <2;【解析】由第一幅图得m >1,由第二幅图得m <2,故1<m <211.【答案】60<x <80; 【解析】设步行速度为x 米/分,依题意可得:3240042400x x <⎧⎨>⎩,得60<x <80 12.【答案】4<x <28;【解析】4x-3x <28<4x+3x ,即4<x <28.三、解答题13.【解析】解:(1)由①得解集为x ≥3,由②得解集为x <3,在数轴上表示①、②的解集,如图, 所以不等式组无解.(2)不等式组的解集为1<x <2,表示在数轴上如图:14.【解析】 解:,①+②得2x=4m ﹣2,解得x=2m ﹣1,②﹣①得2y=2m+8,解得y=m+4,∵x 的值为负数,y 的值为正数, ∴,∴﹣4<m <.15.【解析】解:(1)设每个书包的价格为x 元,则每本词典的价格为(x-8)元.根据题意得:3x+2(x-8)=124解得:x =28.∴ x-8=20.答:每个书包的价格为28元,每本词典的价格为20元.(2)解:设购买书包y 个,则购买词典(40-y)本.根据题意得:1000[2820(40)]1001000[2820(40)]120y y y y -+-≥⎧⎨-+-≤⎩, 解得:10≤y ≤12.5.因为y 取整数,所以y 的值为10或11或12.所以有三种购买方案,分别是:①书包10个,词典30本;②书包11个,词典29本;③书包12个,词典28本.。
一元一次不等式知识点及典型例题
一元一次不等式考点一、不等式的概念 (3分)1、不等式:用不等号表示不等关系的式子,叫做不等式。
2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4、求不等式的解集的过程,叫做解不等式。
5、用数轴表示不等式的方法考点二、不等式基本性质 (3~5分)1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立; 考点三、一元一次不等式 (6--8分)1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x 项的系数化为1 考点四、一元一次不等式组 (8分)1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x 都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
6、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。
一元一次不等式知识要点及典型题目讲解-
一元一次不等式知识要点及典型题目讲解一、全章教学内容及要求1、理解不等式的概念和基本性质2、会解一元一次不等式,并能在数轴上表示不等式的解集3、会解一元一次不等式组,并能在数轴上表示不等式组的解集二、技能要求1、会在数轴上表示不等式的解集。
2、会运用不等式的基本性质(或不等式的同解原理)解一元一次不等式。
3、掌握一元一次不等式组的解法,会运用数轴确定不等式组的解集。
三、重要的数学思想:1、通过一元一次不等式解法的学习,领会转化的数学思想。
2、通过在数轴上表示一元一次不等式的解集与运用数轴确定一元一次不等式组的解集,进一步领会数形结合的思想。
四、主要数学能力1、通过运用不等式基本性质对不等式进行变形训练,培养逻辑思维能力。
2、通过一元一次不等式解法的归纳及一元一次方程解法的类比,培养思维能力。
3、在一元一次不等式,一元一次不等式组解法的技能训练基础上,通过观察、分析、灵活运用不等式的基本性质,寻求合理、简捷的解法,培养运算能力。
五、类比思想:把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。
这种数学思想通常称为“类比”,它体现了“不同事物之间存在内部联系”的唯物辩证观点,是发现数学真理和解题方法的重要手段之一,在数学中有着广泛的运用。
在本章中,类比思想的突出运用有:1、不等式与等式的性质类比。
对于等式(例如a=b)的性质,我们比较熟悉。
不等式(例如a>b或a<b)与等式虽然是不同的式子,表达的也是不同的数量关系,但它们在形式上显然有某些相同或类似的地方,于是可推断在性质上两者也可能有某些相同或类似之处。
这就是“类比”思想的运用之一,它也是我们探索不等式性质的基本途径。
等式有两个基本性质:1、等式两边都加上(或减去)同一个数或同一个整式,等号不变。
(即两边仍然相等)。
2、等式两边都乘以(或除以)同一个不等于0的数,符号不变(即两边仍然相等)。
一元一次不等式经典例题透析
经典例题透析类型一:考查不等式的性质1、判断正误.(1)若a>b,则ac2>bc2.()(2)若ac2>bc2,则a>b.()(3)若ab>c,则a>.()(4)若a-b>a,则b>0.()(5)若ab>0,则a>0,b>0.()思路点拨:判断时,要先弄清楚它是以哪条不等式性质为依据的,特别注意的是不等式两边同时乘(或除以)的数或式子的正负.解析:(1)×.当c=0时,ac2=bc2.(2)√.此题c≠0.(3)×.当b<0时,a<.(4)×.根据不等式的基本性质1,不等式两边都减去a,不等号方向不改变,所以a-b-a>a-a,即-b >0.再根据不等式基本性质3,不等式两边都乘-1,不等号方向改变,即b<0.(5)×.ab>0,则a>0,b>0或a<0,b<0.总结升华:要特别注意在不等式的两边都乘或除以同一个数时,必须先认清这个数的符号,如果这个数是正数,那么不等号的方向不变;如果这个数是负数,那么不等号方向改变,另外,在不等式两边不能乘0,乘0后不等式变为等式.举一反三:【变式1】如果a2x>a2y(a≠0),那么x_______y。
【答案】>解析:因为a≠0所以a2>0,故x>y。
【变式2】如果ax>b的解集为x>,则a_____0.【答案】>解析:由于ax>b的解集为x>,∴a>0【变式3】a是任意实数,下列判断一定正确的是()A、a>-aB、<aC、a3>a2D、a2≥0【答案】D解析:数a可以是一个正数、零、负数,当a为零时,A、B、C均不成立,而任意数的平方都是非负数,a2≥0.【变式4】如果a<b<0,那么()A、B、ab<0C、>1D、<1【答案】C解析:因为a<b<0,取a=-2,b=-1,由此,,知A不正确;又ab=2>0,,B、D不正确,所以正确答案为C。
类型二:求不等式的解集2、解不等式:,并把它的解集在数轴上表示出来。
思路点拨:按基本步骤进行,注意避免漏乘、移项变号,特别注意当不等式两边同时乘以或除以一个负数时,不等号的方向要改变。
一元一次不等式知识点及典型例题
A cb>abB ac>abC cb<abD c+b<a+b ..2)求10-4(x-3)≥2(x-1)的非负整数解,并在数轴上表示出来。
4)设不等式2x-a≤0只有3个正整数解,求正整数题型二:不等式与方程的综和题例 关于X的不等式2x-a≤-1的解集如图,求a的取值范围。
不等式组{1591+++x x m x 的解集是x>2,则m的取值范围是?若关于X、Y的二元一次方程组{31350=+=-+y x p y x 的解是正整数,求整数P的值。
题型三 确定方程或不等式中的字母取值范围例 k为何值时方程5x-6=3(x+k)的值是非正数已知关于x 的方程3k -5x =-9的解是非负数,求k 的取值范围已知在不等式3x-a≤0的正整数解是1,2,3,求a的取值范围。
若方程组{ky x y x =-=+34532的解中x>y ,求K 的范围。
如果关于x 的方程x+2m-3=3x+7的解为不大于2的非负数,求m 的范围。
若|2a+3|>2a+3,求a 的范围。
若(a+1)x >a+1的解是x <1,求a 的范围。
X 除以2的商加上2,至多为5。
A 与b 两数和的平方不可能大于3。
例 x取何值时,2(x-2)-(x-3)-6的值是非负数?题型七 解不定方程例 求方程4X +y-20=0的正整数解。
已知{ax a x >--<-223无解,求a的取值范围。
题型八 比较两个代数式值的大小例 已知A=a+2,B=a2-a+5,C=a2+5a-19,求B与A,C与A的大小关系8、常见题型 一、选择题在平面直角坐标系中,若点P (m -3,m +1)在第二象限,则m 的取值范围为( ) A .-1<m <3 B .m >3 C .m <-1 D .m >-1 已知关于的一元二次方程有两个不相等的实数根,则实数的取值范围是( )A . B . C . D .四个小朋友玩跷跷板,他们的体重分别为P 、Q 、R 、S ,如图3所示, 则他们的体重大小关系是( )A 、B 、C 、D 、把不等式组的解集表示在数轴上正确的是( )..不等式的解集是()A.B.C.D.若不等式组有实数解,则实数的取值范围是()A.B.C.D.若,则的大小关系为()A.B.C. D.不能确定不等式—x—5≤0的解集在数轴上表示正确的是()不等式<的正整数解有( )(A)1个(B)2个(C)3个(D)4个把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是()A.B.C.D.不等式组,的解集是()A. B. C. D.无解不等式组的解集在数轴上可表示为()A B C D实数在数轴上对应的点如图所示,则,,的大小关系正确的是()A.B.C. D.如图,a、b、c分别表示苹果、梨、桃子的质量.同类水果质量相等,则下列关系正确的是()A.a>c>b B.b>a>c C.a>b>c D.c>a>b不等式组的解集在数轴上表示正确的是()把不等式组的解集表示在数轴上,正确的为图3中的()A. B. C. D.用表示三种不同的物体,现放在天平上比较两次,情况如图所示,那么这三种物体按质量从大到小的顺序排列应为()不等式组的解集在数轴上可表示为()..在数轴上表示不等式组的解集,正确的是()二、填空题已知3x+4≤6+2(x-2),则的最小值等于________.不等式组的解集为.不等式组的整数解的个数为.已知关于的不等式组的整数解共有3个,则的取值范围是.不等式组的解集是.1已知不等式组的解集为-1<x<2,则(m+n)2008=__________.三、简答题解不等式组解不等式组并写出该不等式组的最大整数解.若不等式组的整数解是关于x的方程的根,求a的值。
一元一次不等式试题(大全5篇)
一元一次不等式试题(大全5篇)第一篇:一元一次不等式试题10.(2012湖北随州4分)若不等式组⎨⎧x-b<0⎩x+a>0的解集为2A.-2,3B.2,-3C.3,-2D.-3,2【答案】A。
【考点】解一元一次不等式组【分析】∵解不等式x-b<0得:x<b,解不等式x+a>0得:x >-a,∴不等式组的解集是:-a<x<b,∵不等式组⎨⎧x-b<0 ⎩x+a>0解集为2<x<3,∴-a=2,b=3,即a=-2,b=3。
故选A。
11.(2012湖北孝感3分)若关于x的一元一次不等式组⎨范围是【】⎧x-a>0⎩1-2x>x-2无解,则a的取值A.a≥1B.a>1C.a≤-1D.a<-1【答案】A。
【考点】解一元一次不等式组。
【分析】解出两个不等式,再根据“大大小小找不到”的原则解答即可:⎧x-a>0①,由①得:x>a,由②得:x<1。
⎨1-2x>x-2②⎩∵不等式组无解,∴a≥1。
故选A。
12.(2012湖北襄阳3分)若不等式组⎨⎧1+x>a⎩2x-4≤0有解,则a的取值范围是【】A.a≤3B.a<3C.a<2D.a≤2【答案】B。
【考点】解一元一次不等式组。
【分析】先求出不等式的解集,再不等式组有解根据“同大取大,同小取小,大小小大中间找,大大小小解不了(无解)”即可得到关于a的不等式,求出a的取值范围即可:由1+x>a得,x>a﹣1;由2x-4≤0得,x≤2。
∵此不等式组有解,∴a﹣1<2,解得a<3。
故选B。
20.(2012四川凉山4分)设a、b、c表示三种不同物体的质量,用天枰称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是【】A.c<b<aB.b<c<aC.c<a<bD.b<a<c【答案】A。
30.(2012山东淄博4分)若a>b,则下列不等式不一定成立的是【】(A)a+m>b+m(B)a(m2+1)>b(m2+1)(C)-a2<-b2(D)a2>b2x+2⎧4+x>⎪32的解集为x<2,则a的取值范9.(2012湖北鄂州3分)若关于x的不等式组⎪⎨⎪x+a<0⎪⎩2围是▲.12.(2012四川广安3分)不等式2x+9≥13.(2012四川达州3分)若关于x、y的二元一次方程组⎨⎧2x+y=3k-1⎩x+2y=-2的解满足x+y>1,则k的取值范围是▲.3(x+2)的正整数解是14.(2012四川绵阳4分)如果关于x的不等式组:⎨⎧3x-a≥0⎩2x-b≤0,的整数解仅有1,2,那么适合这个不等式组的整数a,b组成的有序数对(a,b)共有▲个。
一元一次不等式(组)典型例题分类讲解
一元一次不等式(组)典型例题分类讲解一元一次不等式(组)典型例题分类讲解类型一:不等式性质1.若,则的大小关系为( ) A . B . C . D .不能确定2.若x y >,则下列式子错误的是( )A .33x y ->-B .33x y ->-C .32x y +>+D .33x y > 类型二:比较大小1.若01x <<,则21x x x ,,的大小关系是( ) A .21x x x << B .21x x x << C .21x x x << D .21x x x <<2.实数在数轴上对应的点如图所示,则,,的大小关系正确的是( )A .B .C .D .类型三:解一元一次不等式 1.不等式的解集为 .2.解不等式:2(x +)-1≤-x +9类型四:不等式中字母的取值范围1.关于x 的方程x kx 21=-的解为正实数,则k 的取值范围是2.已知2ab =.(1)若3-≤b ≤1-,则a 的取值范围是____________.(2)若0b >,且225a b +=,则a b +=____________.3.关于x 的不等式2x -a ≤-1的解集如图2所示,则a 的取值是( )。
A 、0B 、-3C 、-2D 、-1类型五:解一元一次不等式组1.不等式组3(2)412 1.3x x x x --⎧⎪+⎨>-⎪⎩≥,的解集是 .2.解不等式组:3221317.22x x x x ->+⎧⎪⎨--⎪⎩,≤ 类型六:解一元一次不等式组及解集在数轴上的表示1.不等式组2201x x +>⎧⎨--⎩≥的解集在数轴上表示为( )A .B . 0 1 -1-2 (图2) 1 2 3 -10 1 2 3 -1 0 -2 1 2 3 -1 0 1 2 3 -1 0 -2C .D .2.不等式组213351x x +>⎧⎨-⎩≤的解集在数轴上表示正确的是( )类型七:不等式组的整数解1.不等式组2752312x x x x -<-⎧⎪⎨++>⎪⎩的整数解是 . 2.不等式组26623212x x x x -<-⎧⎪⎨++>⎪⎩的整数解是( )A .1,2B .1,2,3C .331<<x D .0,1,2 3.解不等式组并写出该不等式组的最1 2 0 A . B . 1 2 0 C . 1 2 0 D . 1 2 0大整数解.4.解不等式组并求出所有整数解的和.类型八:已知不等式组的整数解,求字母的取值范围1.已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有四个整数解,则实数a 的取值范围是 .2.若不等式组有实数解,则实数的取值范围是( ) A . B . C . D . 3.若不等式组的解集为,则a 的取值范围为( ) A . a >0 B . a =0 C . a >4D . a =44.如果一元一次不等式组3x x a >⎧⎨>⎩的解集为3x >.则a 的取值范围是( )A .3a >B .a ≥3C .a ≤3D .3a <类型九:利用不等式组的解集求值1.如果不等式组2223x a x b ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b+的值为 .2.若不等式组220x a b x ->⎧⎨->⎩的解集是11x -<<,则2009()a b += .3.若不等式组, 的整数解是关于x 的方程的根,求a 的值4.已知不等式组的解集为-1<x <2,则(m +n)2008=_______________.类型十:不等式应用题1:一般不等式应用题1.在保护地球爱护家园活动中,校团委把一批树苗分给初三(1)班同学去栽种.如果每人分2棵,还剩42棵;如果前面每人分3棵,那么最后一人得到的树苗少于5棵(但至少分得一棵).(1)设初三(1)班有x 名同学,则这批树苗有多少棵?(用含x 的代数式表示).(2) 初三(1)班至少有多少名同学?最多有多少名2.北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%=⨯利润成本)3.某校积极推进“阳光体育”工程,本学期在九年级11个班中开展篮球单循环比赛(每个班与其它班分别进行一场比赛,每班需进行10场比赛).比赛规则规定:每场比赛都要分出胜负,胜一场得3分,负一场得1-分.(1)如果某班在所有的比赛中只得14分,那么该班胜负场数分别是多少?(2)假设比赛结束后,甲班得分是乙班的3倍,甲班获胜的场数不超过5场,且甲班获胜的场数多于乙班,请你求出甲班、乙班各胜了几场.4.已知一件文化衫价格为18元,一个书包的价格是一件文化衫的2倍还少6元.(1)求一个书包的价格是多少元?(2)某公司出资1800元,拿出不少于350元但不超过400元的经费奖励山区小学的优秀学生,剩余经费还能为多少名山区小学的学生每人购买一个书包和一件文化衫?5. 1月底,某公司还有11000千克椪柑库存,这些椪柑的销售期最多还有60天,60天后库存的椪柑不能再销售,需要当垃圾处理,处理费为0.05元/吨。
初二数学一元一次不等式知识点及经典例题
一元一次不等式重点:不等式的性质和一元一次不等式的解法。
难点:一元一次不等式的解法和一元一次不等式解决在现实情景下的实际问题。
知识点一:不等式的概念1. 不等式:用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号的类型:①“≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;②“>”读作“大于”,它表示左边的数比右边的数大;③“<”读作“小于”,它表示左边的数比右边的数小;④“≥”读作“大于或等于”,它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”,它表示左边的数不大于右边的数;(2) 等式与不等式的关系:等式与不等式都用来表示现实世界中的数量关系,等式表示相等关系,不等式表示不等关系,但不论是等式还是不等式,都是同类量比较所得的关系,不是同类量不能比较。
(3) 要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。
知识点二:不等式的基本性质基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
符号语言表示为:如果,那么。
基本性质2:不等式的两边都乘上(或除以)同一个正数,不等号的方向不变。
符号语言表示为:如果,并且,那么(或)。
基本性质3:不等式的两边都乘上(或除以)同一个负数,不等号的方向改变。
符号语言表示为:如果,并且,那么(或)要点诠释:(1)不等式的基本性质1的学习与等式的性质的学习类似,可对比等式的性质掌握;(2)要理解不等式的基本性质1中的“同一个整式”的含义不仅包括相同的数,还有相同的单项式或多项式;(3)“不等号的方向不变”,指的是如果原来是“>”,那么变化后仍是“>”;如果原来是“≤”,那么变化后仍是“≤”;“不等号的方向改变”指的是如果原来是“>”,那么变化后将成为“<”;如果原来是“≤”,那么变化后将成为“≥”;(4)运用不等式的性质对不等式进行变形时,要特别注意性质3,在乘(除)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,要记住不等号的方向一定要改变。
一元一次不等式及与一次函数(9类热点题型讲练)(原卷版) 八年级数学下册
第02讲一元一次不等式及与一次函数(9类热点题型讲练)1.经历一元一次不等式概念的形成过程.2.能解数字系数的一元一次不等式,并能在数轴上表示出解集.3.初步认识一元一次不等式的应用价值,发展学生分析问题、解决问题的能力;初步感知实际问题对不等式解集的影响,积累利用一元一次不等式解决简单实际问题的经验.4.应用一元一次不等式解决实际问题.知识点01一元一次不等式的定义(1)一元一次不等式的定义:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.(2)概念解析一方面:它与一元一次方程相似,即都含一个未知数且未知项的次数都是一次,但也有不同,即它是用不等号连接,而一元一次方程是用等号连接.另一方面:它与不等式有区别,不等式中可含、可不含未知数,而一元一次不等式必含未知数.但两者也有联系,即一元一次不等是属于不等式.知识点02解一元一次不等式根据不等式的性质解一元一次不等式基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.以上步骤中,只有①去分母和⑤化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.注意:符号“≥”和“≤”分别比“>”和“<”各多了一层相等的含义,它们是不等号与等号合写形式.知识点03一元一次不等式的整数解解决此类问题的关键在于正确解得不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式的整数解.可以借助数轴进行数形结合,得到需要的值,进而非常容易的解决问题.知识点04由实际问题抽象出一元一次不等式用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.因此建立不等式要善于从“关键词”中挖掘其内涵,不同的词里蕴含这不同的不等关系.知识点05一元一次不等式的应用(1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.(2)列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.(3)列一元一次不等式解决实际问题的方法和步骤:①弄清题中数量关系,用字母表示未知数.②根据题中的不等关系列出不等式.③解不等式,求出解集.④写出符合题意的解.知识点06利用一次函数的图象得到一元一次不等式的解集(1)一元一次不等式kx+b>0的解集,一次函数的图象在x轴上方的点的横坐标所组成的集合.(2)一元一次不等式kx+b<0的解集,一次函数的图象在x轴下方的点的横坐标所组成的集合.(3)一元一次不等式k1x+b1>k2x+b2的解集,一次函数y=k1x+b1图象在一次函数y=k2x+b2图象上方的点的横坐标所组成的集合.(4)一元一次不等式k1x+b1<k2x+b2的解集,一次函数y=k1x+b1图象在一次函数y=k2x+b2图象下方的点的横坐标所组成的集合.题型01一元一次不等式的识别【变式训练】题型02利用一元一次不等式的定义题型03求一元一次不等式的解集并在数轴上表示不等式的解集【变式训练】题型04求一元一次不等式的整数解【变式训练】题型05解|x|≥a型的不等式【变式训练】解:(1)当30x -≥,即3x ≥时:34x -≤解这个不等式,得:7x ≤由条件3x ≥,有:37x ≤≤(2)当30x -<,即3x <时,(3)4x --≤解这个不等式,得:1x ≥-由条件3x <,有:13x -≤<∴如图,综合(1)、(2)原不等式的解为17x -≤≤根据以上思想,请探究完成下列2个小题:(1)|1|2x +≤;(2)|2|1x -≥.题型06列一元一次不等式题型07用一元一次不等式的解决实际问题【例题】(2023上·黑龙江哈尔滨·九年级哈尔滨市第四十七中学校考阶段练习)47中计划购买排球、篮球,已知购买1个排球与1个篮球的总费用为180元;3个排球与2个篮球的总费用为420元.(1)求购买1个排球、1个篮球的费用分别是多少元?(2)若该学校计划购买此类排球和篮球共60个,且该学校购买排球和篮球的总费用不超过6000元,求至少需要购买多少个排球?【变式训练】1.(2023下·七年级课时练习)甲、乙两厂家生产的课桌和座椅的质量、价格一致,每张课桌200元,每把椅子50元,甲、乙两个厂家推出各自销售的优惠方案,甲:买一张课桌送1把椅子;乙:课桌和椅子全部按原价的9折优惠.现某学校要购买60张课桌和()60x x 把椅子,则什么情况下该学校到甲工厂购买更合算?2.(2023上·黑龙江哈尔滨·九年级校考阶段练习)某中学计划为生物兴趣小组购买大、小两种显微镜,若购买1个大显微镜和3个小显微镜需用1360元;若购买2个大显微镜和1个小显微镜需用1320元.(1)求每个大显微镜和每个小显微镜各多少元;(2)学校决定购买以上两种显微镜共30个,总费用不超过9600元,那么该中学最少可以购买多少个小显微镜?题型08由直线与坐标轴的交点求不等式的解集【例题】(2023上·江苏徐州·八年级校考阶段练习)已知一次函数y kx b =+的图象(如图),当0x >时,y 的取值范围是()A .2y >-B .0y <C .20y -<<D .2y <-【变式训练】1.(2023下·吉林长春·八年级期中)在平面直角坐标系中,若一次函数()0y kx b k =+≠的图像如图所示,则不等式4kx b +<的解集为()A .0x <2.(2023下·上海杨浦x 的取值范围是题型09根据两条直线的交点求不等式的解集【例题】(2023下·湖北十堰则关于x 的不等式0mx <【变式训练】1.(2023上·吉林长春·八年级长春外国语学校校考期末)则不等式23x kx ≥+的解集为2.(2023上·浙江宁波式2mx kx b +<+的解集为3.(2023下·安徽宿州·八年级校考期中)如图,根据图中信息解答下列问题:(1)求关于x 的不等式1mx n +<的解集;(2)当12y y ≤时,求x 的取值范围;(3)当210y y <<时,求x 的取值范围.一、单选题1.(2023上·浙江·八年级校联考期末)一个不等式的解表示在数轴上如图所示,则这个不等式可以是()A .26x ≥B .30x -<C .30x -<D .30x +>2.(2023下·全国·七年级专题练习)下列式子:①30>;②450x +>;③3x <;④22x x +<;⑤4x =-;⑥221x x +>+,其中一元一次不等式有()个.A .3B .4C .5D .63.(2023上·湖南娄底·八年级统考阶段练习)不等式213x -<-的解集在数轴上表示正确的是()....2023下·四川眉山·七年级校考期中)如果关于x的不等式()20232023a x a+>+的解集为1x<,那么A.方程x a bx-+=B.不等式x a-+<C.不等式组bx-D.方程组y x y bx+⎧⎨-10.(2023下·重庆江津·七年级统考期末)已知11.(2023上·江苏苏州·八年级苏州工业园区星湾学校校考阶段练习)12.(2023上·重庆江津式11145x x+-<-的正偶数解,则该三角形的周长为三、解答题13.(2023下·陕西榆林16.(2023上·安徽合肥·八年级合肥市五十中学西校校考期中)画出函数26y x =+的图象,结合图象:(1)求方程260x +=的解;(2)求不等式260x +<的解集;(3)若23y -≤≤,直接写出x 的取值范围.17.(2023上·甘肃兰州·八年级校考期中)已知函数()322y m x m =--+,(1)当m 为何值时,该函数图象经过原点;(2)若该函数图象与y 轴交点在x 轴上方,求m 的取值范围;(3)若该函数图象经过一、二、四象限,求m 的取值范围.18.(2023下·辽宁营口·七年级统考期末)某学校准备购买若干台A 型电脑和B 型打印机.如果购买一台A 型电脑,2台B 型打印机,一共需要花费5900元;如果购买2台A 型电脑,2台B 型打印机,一共需要花费9400元.(1)求每台A 型电脑和每台B 型打印机的价格分别是多少元?(2)如果学校购买A 型电脑和B 型打印机的预算费用不超过20000元,并且购买B 型打印机的台数要比购买A 型电脑的台数多1台,那么该学校至多能购买多少台B 型打印机?参考阅读材料,解答下列问题:x-=的解为____________ (1)32。
一元一次不等式经典例题
1. 解不等式:2x - 5 ≤3x + 7
解法:将x的系数移到一边,常数移到另一边,得到-x ≤12,再将不等式两边乘以-1,即可得到x ≥-12,所以解集为[-12, +∞)。
2. 解不等式:3x + 5 > 2x - 3
解法:将x的系数移到一边,常数移到另一边,得到x > -8,所以解集为(-8, +∞)。
3. 解不等式:4x - 7 ≤5x + 3
解法:将x的系数移到一边,常数移到另一边,得到-x ≤10,再将不等式两边乘以-1,即可得到x ≥-10,所以解集为[-10, +∞)。
4. 解不等式:2x + 3 > 5x - 1
解法:将x的系数移到一边,常数移到另一边,得到-3x > -4,再将不等式两边乘以-1并改变不等号的方向,即可得到x < 4/3,所以解集为(-∞, 4/3)。
5. 解不等式:-2x + 5 ≤3x - 7
解法:将x的系数移到一边,常数移到另一边,得到-5x ≤-12,再将不等式两边乘以-1并改变不等号的方向,即可得到x ≥12/5,所以解集为[12/5, +∞)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7、不等式的解集:一元一次不等式①能使不等式成立的未知数的值,叫做不等式的解。
考点一、不等式的概念 (3 分)②一个含有未知数的不等式的所有解,组成这个不等式的解集。
1、不等式:用不等号表示不等关系的式子,叫做不等式。
③求不等式解集的过程叫做解不等式。
2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值, 知识点与典型基础例题都叫做这个不等式的解。
一 不等式的概念:3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这 例 判断下列各式是否是一元一次不等式?个不等式的解集。
4、求不等式的解集的过程,叫做解不等式。
-x≥5 2x-y<02x 34x 5x22 x535、用数轴表示不等式的方法二 不等式的解 :考点二、不等式基本性质 (3~5 分)三 不等式的解集:1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
例 判断下列说法是否正确,为什么?2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
X=2 是不等式 x+3<2 的解。
X=2 是不等式 3x<7 的解。
3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
不等式 3x<7 的解是 x<2。
X=3 是不等式 3x≥9 的解4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改四 一元一次不等式:变。
②如果不等式乘以 0,那么不等号改为等号所以在题目中,要求出乘以的数,那么 例 判断下列各式是否是一元一次不等式就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为 0, 否则不等式不成立;-x<5 2x-y<02x 3x22 x5≥3x考点三、一元一次不等式 (6--8 分)例 五.不等式的基本性质问题1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是 1,且 例 1 指出下列各题中不等式的变形依据不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)1)由3a>2得a>2 32) 由 3+7>0 得 a>-7将 x 项的系数化为 1 考点四、一元一次不等式组(8 分)3)由-5a<1得a>-1 54)由 4a>3a+1 得 a>11、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不 例 2 用>”或<”填空,并说明理由等式组。
如果 a<b 则 1)a-2( )b-22、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
2)-a 2-b 23)-3a-5( )-3b-53、求不等式组的解集的过程,叫做解不等式组。
例 3 把下列不等式变成 x>a x<a 的形式。
4、当任何数 x 都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
5、一元一次不等式组的解法X+4>75x<1+4x-4 5x>-12x+5<4x-2(1)分别求出不等式组中各个不等式的解集例 4 已知实数 a/b/c/在数轴上的对应点如图,则下列式子正确的是( )(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
6、不等式与不等式组A cb>ab B ac>ab C cb<ab D c+b<a+b不等式:①用符号〉,=,〈号连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
③不等式的两边都乘以或者除以一个正数,不等号方向例5当0<x<1时x2,x,1 x,之间的大小关系是。
不变。
④不等式的两边都乘以或除以同一个负数,不等号方向相反。
例 将下列不等式的解集在数轴上表示出来。
X≥2x<12 3x<3 的非负整数解-11 3x21 2六 在数轴上表示不等式的解集:例 解下列不等式并把解集在数轴上表示出来2x+3<3x+2-3x+2≤5- 1 x ≠2 3x 5 1 3x 2238-2(x+2)<4x-23-x 1 423( x1) 85-x+x 3<1-2 x3 2x 1 3题型一:求不等式的特殊解 例1) 求 x+3<6 的所有正整数解2)求 10-4(x-3)≥2(x-1)的非负整数解,并在数轴上表示出来。
3)求不等式3 x 210的非负整数解。
4)设不等式2x-a≤0只有3个正整数解,求正整数 题型二:不等式与方程的综和题 例 关于X的不等式2x-a≤-1的解集如图,求a的取值围。
x 95 x 1 不等式组{ x m 1 的解集是x>2,则m的取值围是?5 x3 y31 若关于X、Y的二元一次方程组{ x y p0 的解是正整数,求整数P的值。
xab已知关于x的不等式组{2 xa2b1的解集为3≤x<5,求a b的值。
题型三 确定方程或不等式中的字母取值围 例 k为何值时方程5x-6=3(x+k)的值是非正数已知关于 x 的方程 3k-5x=-9 的解是非负数,求 k 的取值围已知在不等式3x-a≤0的正整数解是1,2,3,求a的取值围。
4 x 3 y k 若方程组{ 2x3 y5 的解中 x>y,求 K 的围。
如果关于 x 的方程 x+2m-3=3x+7 的解为不大于 2 的非负数,求 m 的围。
若|2a+3|>2a+3,求 a 的围。
若(a+1)x>a+1 的解是 x<1,求 a 的围。
x 8 4 x 1若{ x a的解集为>3,求a的取值围。
已知关于x的方程x-2xm 32x 3的解是非负数,m是正整数,求m的值。
9xa0 如果{ 8 x b 0 的整数解为1、2、3,求整数a、b的值。
题型五 求最小值问题例x取什么值时,代数式5x4 6的值不小于7 81 x 3的值,并求出 X的最小值。
题型六 不等式解法的变式应用 例 根据下列数量关系,列不等式并求解 。
X的1 3与x的2倍的和是非负数。
C 与 4 的和的 30﹪不大于-2。
X 除以 2 的商加上 2,至多为 5。
A 与 b 两数和的平方不可能大于 3。
例 x取何值时,2(x-2)-(x-3)-6的值是非负数?例x取哪些非负整数时,3x2 5的值不小于2x 3与1的差。
题型七 解不定方程 例 求方程4x+y-20=0的正整数解。
x2a 已知{ x 3a 2 无解,求a的取值围。
题型八 比较两个代数式值的大小 例 已知A=a+2,B=a2-a+5,C=a2+5a-19,求B与A,C与A的大 小关系答案:C 不等式题型九 不等式组解的分类讨论ax4..83ax 例 解关于x的不等式组{ (a2) x2..2(1a) x4A. 若不等式组的解集是( ) B.C.D.有实数解,则实数 的取值围是( )答案:C8、常见题型一、选择题在平面直角坐标系中,若点 P(m-3,m+1)在第二象限,则 m 的取值围为( )A.-1<m<3 B.m>3C.m<-1D.m>-1 答案:AA.B.C.D.若,则的大小关系为( )A.B.C.D.不能确定不等式—x—5≤0 的解集在数轴上表示正确的是()答案:A 答案:A已知关于 的一元二次方程有两个不相等的实数根,则实数 的取值围是( )A.B.C.D.答案:D四个小朋友玩跷跷板,他们的体重分别为 P、Q、R、S,如图 3 所示, 则他们的体重大小关系是( D )答案:B不等式<的正整数解有()(A)1 个(B)2 个(C)3 个(D)4 个 答案:C把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是( )A.B.C.D.A、B、C、D、把不等式组的解集表示在数轴上正确的是( )答案:B不等式组 A.不等式组,的解集是( )B.C.D.无解 答案:C的解集在数轴上可表示为( )ABCD答案:D实数 在数轴上对应的点如图所示,则 , , 的大小关系正确的是( )A. 答案:B用B.C.D.表示三种不同的物体,现放在天平上比较两次,情况如图所示,那么这三种物体按质量从大到小的顺序排列应为( )A.B.C.D.答案:D如图,a、b、c 分别表示苹果、梨、桃子的质量.同类水果质量相等,则下列关系正确的是()答案:A不等式组A.a>c>b b答案:CB.b>a>cC.a>b>cD.c>a>不等式组的解集在数轴上表示正确的是( )的解集在数轴上可表示为( )答案:C 把不等式组的解集表示在数轴上,正确的为图 3 中的( )答案:A 在数轴上表示不等式组的解集,正确的是( )则关于 的不等式的解集为.答案:A 二、填空题已知 3x+4≤6+2(x-2),则的最小值等于________. 答案:1如图,已知函数 解集为和 .的图象交点为 ,则不等式答案: <-1 13.已知不等式组 三、简答题 的解不等式组的解集为-1<x<2,则(m+n)2008=__________.答案:1不等式组答案: 的解集为. 答案:解:解不等式(1),得 原不等式组的解是. 解不等式(2),得..解不等式组并写出该不等式组的最大整数解.不等式组的整数解的个数为. 答案:4解:解不等式 x+1>0,得 x>-1解不等式 x≤,得 x≤2∴不等式得解集为-1<x≤2∴该不等式组的最大整数解是 26.已知关于 的不等式组 答案:的整数解共有 3 个,则 的取值围是若不等式组 .a 的值。
解:解不等式得的整数解是关于 x 的方程 ,则整数解 x=-2 代入方程得 a=4。
的根,求9.不等式组 10.直线的解集是 与直线. 答案: 在同一平面直角坐标系中的图象如图所示,解方程。
由绝对值的几何意义知,该方程表示求在数轴上与 1 和-2 的距离之和为 5 的点对应的 x 的值。
在数轴上,1 和-2 的距离为 3,满足方程的 x 对应点在 1 的右边或-2 的左边,若 x 对应点在 1 的右边,由图(17)可以看出 x=2;同理,若 x 对应点在-2 的左边,可得 x=-3,故原方程的解是 x=2 或 x=-3参考阅读材料,解答下列问题:(1)方程的解为的解集是:所以原不等式的解集是:………………………………………(3 分)解集表示如图…………………………………………………………………(5 分)(2)解不等式≥9;(3)若≤a 对任意的 x 都成立,求 a 的取值围解:(1)1 或 . (2) 和 的距离为 7,因此,满足不等式的解对应的点 3 与 的两侧.当 在 3 的右边时,如图(2), 易知.当 在 的左边时,如图(2),易知.原不等式的解为(3)原问题转化为: 大于或等于或 最大值.当时,,当,随 的增大而减小,当时,故.,即的最大值为 7.解不等式组解:由不等式(1)得: <5 由不等式(2)得: ≥3所以:5>x≥3解不等式组:并判断是否满足该不等式组.解:原不等式组的解集是:,满足该不等式组.解不等式 3x-2<7,将解集在数轴上表示出来,并写出它的正整数解.解:3x-2<7 3x<7+2 3x<9 x<3解不等式组并把解集表示在下面的数轴上.解不等式组,并写出它的所有整数解.解:的解集是:解:解不等式组并求出所有整数解的和.解:解不等式①,得,解不等式②,得.原不等式组的解集是.则原不等式组的整数解是.所有整数解的和是:不等式复习 1 一:知识点回顾 1、一元一次不等式(组)的定义: 2、一元一次不等式(组)的解集、解法: 3、求不等式组的解集的方法 : 若 a<b,当时,x>b;(同大取大)当时,x<a;(同小取小)A, 1 B, 0 C, -1 D, 3当时,a<x<b;(大小小大取中间) 当时无解,(大大小小无解) 二:小试牛刀2、不等式 2x+1<a 有 3 个正整数解,则 a 的取值围是?1、不等式 8-3x≥0 的最大整数解是_______________.2、若 (a 1)x a 1 的解集是 x 1,则 a 必须满足_______3、关于x的不等式组x a 0 1 x 0的整数解共有3个,则a的取值围是多少?3、若不等式组x x 4, a的解集是4xa,则a的取值围是________.4、若方程组3x y 2k yx3,的解满足x1,且y1 ,求整数k的取值围。