鸡兔同笼问题的几种基本公式及典型例题.doc
【良心出品】鸡兔同笼问题五种基本公式和例题讲解
鸡兔同笼问题五种基本公式和例题讲解【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。
解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。
(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。
鸡兔同笼问题五种基本公式
鸡兔同笼问题五种基本公式(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”36-14=22(只)……………………………鸡。
36-22=14(只)…………………………兔。
(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(4)得失问题(鸡兔问题的推广题)的解法,能够用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。
每生产一个合格品记4分,每生产一个不合格品不但不记分,还要扣除15分。
某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”解一(4×1000-3525)÷(4+15)=475÷19=25(个)解二 1000-(15×1000+3525)÷(4+15)=1000-18525÷19=1000-975=25(个)(答略)(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不但不给运费,还需要赔成本××元……。
鸡兔同笼问题五种基本公式和例题讲解
鸡兔同笼问题五种基本公式和例题讲解(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)鸡。
解二(4×36-100)÷(4-2)=22(只)鸡;36-22=14(只)兔。
(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。
每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。
鸡兔同笼公式
鸡兔同笼公式解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数) =鸡的只数总只数-鸡的只数=兔的只数解法2:( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数) =兔的只数总只数-兔的只数=鸡的只数解法3:总脚数÷2-总头数=兔的只数总只数-兔的只数=鸡的只数例1 (古典题)鸡兔同笼,头共46,足共128,鸡兔各几只? 分析如果46只都是兔,一共应有4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。
解:①鸡有多少只? (4×6-128)÷(4-2) =(184-128)÷2 =56÷2 =28(只) ②免有多少只? 46-28=18(只) 答:鸡有28只,免有18只。
我们来总结一下这道题的解题思路:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是: 鸡数=(每只兔脚数×兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数) 兔数=鸡兔总数-鸡数当然,也可以先假设全是鸡。
例2 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只? 分析这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢? 假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。
鸡兔同笼
鸡兔同笼问题鸡兔同笼公式解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数总只数-鸡的只数=兔的只数解法2:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数总只数-兔的只数=鸡的只数解法3:总脚数÷2—总头数=兔的只数总只数—兔的只数=鸡的只数例1 (古典题)鸡兔同笼,头共46,足共128,鸡兔各几只?分析如果46只都是兔,一共应有4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。
解:①鸡有多少只?(4×6-128)÷(4-2)=(184-128)÷2=56÷2=28(只)②免有多少只?46-28=18(只)答:鸡有28只,免有18只。
我们来总结一下这道题的解题思路:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是:鸡数=(每只兔脚数×兔总数- 实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数当然,也可以先假设全是鸡。
例2 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?分析这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢?假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。
鸡兔同笼问题四种基本公式
鸡兔同笼问题四种基本公式一、已知总头数和总脚数,求鸡兔各多少:(总脚数-每只鸡的脚数X总头数)+(每只兔的脚数-每只鸡的脚数)=兔数;总头数- 兔数=鸡数。
(每只兔的脚数X总头数-总脚数)+(每只兔的脚数-每只鸡的脚数)=鸡数;总头数- 鸡数=兔数。
例:有鸡兔共36 只,它们共有脚100 只,鸡兔各是多少只?解一:(100- 2X36) -(4-2)=14 (只)”兔;36- 14=22(只),, 鸡。
解二:(4X36-100) - (4-2)=22 (只)”鸡;36-22=14(只),, 兔。
(答略)二、已知总头数和鸡兔脚数的差数,求鸡兔各多少:(1 )当鸡的总脚数比兔的总脚数多时:(每只鸡脚数X总头数-脚数之差)+(每只鸡的脚数+每只兔的脚数)=兔数;总头数- 兔数=鸡数(每只兔脚数X总头数+鸡兔脚数之差) +(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(2)当兔的总脚数比鸡的总脚数多时:(每只鸡的脚数X总头数+鸡兔脚数之差)+(每只鸡的脚数+每只兔的脚数)=兔数;总头数- 兔数=鸡数。
(每只兔的脚数X总头数-鸡兔脚数之差)+(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。
(例略)三、得失问题(鸡兔问题的推广题)的解法:(每只合格品得分数沪品总数-实得总分数)(每只合格品得分数+每只不合格品扣分数)=不合格品数。
总产品数-(每只不合格品扣分数X总产品数+实得总分数)+(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如:灯泡厂生产灯泡的工人,按得分的多少给工资。
每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除1 5分。
某工人生产了1 000只灯泡,共得3525分,问其中有多少个灯泡不合格?解一:(4X1000- 3525) - (4+15)=475+19=25 (个)解二:1000- (15X1000+3525) + (4+15)= 1000- 18525+19=1000- 975=25 (个)(答略)注:“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费XX元,破损者不仅不给运费,还需要赔成本XX元它的解法显然可套用上述公式。
鸡兔同笼公式
鸡兔同笼公式解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数总只数-鸡的只数=兔的只数解法2:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数总只数-兔的只数=鸡的只数解法3:总脚数÷2—总头数=兔的只数总只数—兔的只数=鸡的只数例1 (古典题)鸡兔同笼,头共46,足共128,鸡兔各几只?分析如果46只都是兔,一共应有4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。
解:①鸡有多少只?(4×6-128)÷(4-2)=(184-128)÷2 =56÷2 =28(只)②免有多少只?46-28=18(只)答:鸡有28只,免有18只。
鸡数=(每只兔脚数×兔总数- 实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数1.一个大笼子里关了一些鸡和兔子。
数它们的头,一共有36个;数它们的腿,共100条。
则鸡有多少只,兔有多少只?2.王老师用40元钱买来20枚邮票,全是1元和5元的。
求这两种邮票分别买了多少枚和多少枚。
3.兔妈妈上山采蘑菇,晴天,每天能採30个,雨天,每天能採12个它从4月10号开始,到4月29号,中间没休息,一共採了510个蘑菇。
那么,晴天是多少天?雨天有多少天?4.肖老师带51名学生去公园里划船。
他们一共租了44条船,其中有大船和小船,每条大船坐6人,小船4人。
每条都坐满了人。
他们租的大船有几条,小船有几条?5.一辆汽车参加车赛,9天共行了5000公里。
已知它晴天每天行688公里,雨天平均每天行390公里。
鸡兔同笼问题五种基本公式[1]
鸡兔同笼问题五种基本公式鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。
解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。
(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。
每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。
鸡兔同笼问题基本公式
鸡兔同笼问题基本公式鸡兔同笼问题基本公式和例题讲解第一种题型:已知总头数和总脚数,求鸡、兔各多少:A:假设把所有的兔子当成鸡:看成兔子后退站立,翘起两只前腿(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
B:假设把所有的鸡当成兔子:看成鸡伸出双翅也着地(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
总脚数÷2—总头数=兔的只数总只数—兔的只数=鸡的只数例如:有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。
解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。
第二种题型:已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
第三种题型:已知总头数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。
(总头数+鸡兔脚数之差)÷(2+1)= 兔数。
总头数-兔数=鸡数。
(上面公式实际上转化为和倍问题)例如:鸡兔共40只,兔的脚数比鸡的脚数多70只,问鸡兔各多少只?第四种题型:鸡兔互换问题(已知互换前总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。
鸡兔同笼问题五种基本公式和例题讲解
鸡兔同笼问题五种基本公式和例题讲解【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。
解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。
(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。
鸡兔同笼的多种解法
鸡兔同笼的多种解法一、假设法1. 假设全是鸡- 设鸡和兔共有m个头,n只脚。
如果全是鸡,那么脚的总数应该是2m只。
- 但实际有n只脚,多出来的脚就是兔子比鸡多的脚。
每只兔比每只鸡多4 - 2=2只脚。
- 兔的数量=(实际脚数 - 假设全是鸡的脚数)div(每只兔比鸡多的脚数),即兔的数量=(n - 2m)div2。
- 鸡的数量=m-(n - 2m)div2。
2. 假设全是兔- 如果全是兔,脚的总数应该是4m只。
- 实际有n只脚,少的脚就是鸡比兔少的脚。
每只鸡比每只兔少4 - 2 = 2只脚。
- 鸡的数量=(假设全是兔的脚数-实际脚数)div(每只兔比鸡多的脚数),即鸡的数量=(4m - n)div2。
- 兔的数量=m-(4m - n)div2。
二、方程法1. 一元一次方程- 设鸡有x只,因为鸡和兔共有m个头,所以兔有(m - x)只。
- 根据鸡兔脚数总和为n,可列方程2x+4(m - x)=n。
- 展开方程得2x + 4m-4x=n,移项得2x=4m - n,解得x=(4m - n)/(2),这就是鸡的数量,兔的数量为m - x=m-(4m - n)/(2)。
2. 二元一次方程- 设鸡有x只,兔有y只。
- 根据头的总数可得x + y=m,根据脚的总数可得2x+4y=n。
- 由x + y=m可得x=m - y,将其代入2x + 4y=n中,得到2(m -y)+4y=n,展开得2m-2y+4y=n,即2y=n - 2m,解得y=(n - 2m)/(2)。
- 再把y=(n - 2m)/(2)代入x=m - y,得x=m-(n - 2m)/(2)。
三、抬腿法(古人的解法)1. 鸡兔同时抬起两只脚- 让鸡和兔都抬起两只脚,此时共抬起2m只脚。
- 那么剩下的脚n-2m只,这些脚都是兔子的,因为鸡此时已经没有脚在地上了,每只兔还剩下4 - 2 = 2只脚在地上。
- 所以兔的数量=(n - 2m)div2,鸡的数量=m-(n - 2m)div2。
鸡兔同笼问题四种基本公式
鸡兔同笼问题四种基本公式集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)鸡兔同笼问题四种基本公式一、已知总头数和总脚数,求鸡兔各多少:(总脚数?每只鸡的脚数×总头数)÷(每只兔的脚数?每只鸡的脚数)=兔数;总头数?兔数=鸡数。
(每只兔的脚数×总头数?总脚数)÷(每只兔的脚数?每只鸡的脚数)=鸡数;总头数?鸡数=兔数。
例:有鸡兔共36只,它们共有脚100只,鸡兔各是多少只?解一:(100?2×36)÷(4?2)=14(只)……兔;36?14=22(只)……鸡。
解二:(4×36?100)÷(4?2)=22(只)……鸡;36?22=14(只)……兔。
(答略)二、已知总头数和鸡兔脚数的差数,求鸡兔各多少:(1)当鸡的总脚数比兔的总脚数多时:(每只鸡脚数×总头数?脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数?兔数=鸡数(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数?鸡数=兔数。
(例略)(2)当兔的总脚数比鸡的总脚数多时:(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数?兔数=鸡数。
(每只兔的脚数×总头数?鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数?鸡数=兔数。
(例略)三、得失问题(鸡兔问题的推广题)的解法:(每只合格品得分数×产品总数?实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
总产品数?(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如:灯泡厂生产灯泡的工人,按得分的多少给工资。
每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。
鸡兔同笼问题五种基本类型
鸡兔同笼问题五种基本类型(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。
解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。
(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。
每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。
某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”解一(4×1000-3525)÷(4+15)=475÷19=25(个)解二1000-(15×1000+3525)÷(4+15)=1000-18525÷19=1000-975=25(个)(答略)(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……。
鸡兔同笼问题五种基本公式和例题讲解
鸡兔同笼问题五种基本公式和例题讲解【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。
解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。
(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。
完整word版鸡兔同笼问题五种基本公式和例题讲解
鸡兔同笼问题五种基本公式和例题讲解【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。
解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。
(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的兔数;=脚数).总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。
鸡兔同笼的题的解法
鸡兔同笼的题的解法
一、鸡兔同笼问题的解法
1. 假设法
- 题目示例:鸡兔同笼,头共20个,足共62只,求鸡与兔各有多少只?
- 解析:
- 假设笼子里全是鸡,那么每只鸡有2只脚。
因为头共20个,所以脚的总数应该是20×2 = 40只。
- 但实际脚有62只,比假设的情况多了62 - 40=22只脚。
- 这是因为每把一只兔当成鸡就少算了4 - 2 = 2只脚。
- 所以兔的数量就是22÷2 = 11只。
- 鸡的数量就是20 - 11 = 9只。
2. 方程法
- 题目示例:鸡兔同笼,从上面数有35个头,从下面数有94只脚。
问鸡和兔各有多少只?
- 解析:
- 设鸡有x只,因为头共有35个,那么兔就有(35 - x)只。
- 根据鸡脚数加上兔脚数等于总脚数的关系,可以列出方程2x+4(35 -
x)=94。
- 展开方程得到2x + 140-4x=94。
- 移项可得2x - 4x=94 - 140,即- 2x=-46。
- 解得x = 23,所以鸡有23只。
- 兔的数量为35 - 23 = 12只。
鸡兔同笼问题讲义
鸡兔同笼问题讲义一、基本知识点总结:解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数总只数-鸡的只数=兔的只数解法2:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数总只数-兔的只数=鸡的只数解法3:用方程思想解决鸡兔同笼问题(重点掌握)二、例题讲解:【例1】(古典题)鸡兔同笼,头共46,足共128,鸡兔各几只?【例2】鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚86只.问:鸡、兔各有几只?【例3】鸡与兔共有200只,鸡的脚比兔的脚少56只,问鸡与兔各多少只?【练习】鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?三、推广应用:【例4】某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分.问:小华做对几道题?【例5】一只货船载重260吨,容积1000米3,现装运甲、乙两种货物,已知甲种货物每吨体积是8米3,乙种货物每吨体积2米3,要使这只船的载重量与容积得到充分利用,甲、乙两种货物应分别装多少吨?【例6】自行车越野赛全程220千米,全程被分为20个路段,其中一部分路段长14千米,其余的长9千米.问:长9千米的路段有多少个?三、学练结合:1. 甲乙两人射击,若命中,甲得4分,乙得5分;若不中,甲失2分,乙失3分,每人各射10发,共命中14发,结算分数时,甲比乙多10分,问甲、乙各中几发?2.有一辆货车运输2000只玻璃瓶,运费按到达时完好瓶子数目计算,每只2角,如有破损,破损1个瓶子还要倒赔1元,结果得到运费379.6元,问这次搬运中玻璃损坏了几只?3.班主任张老师带五年级(2)班50名同学栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树120棵,问几名男生,几名女生?4.刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?。
鸡兔同笼问题公式和例题
鸡兔同笼问题五种基本公式和例题讲解【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。
解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。
(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鸡兔同笼问题的几种基本公式和典型例题
一、已知总头数和总脚数,求鸡、兔各多少只?
例 1:有鸡、兔共36 只,它们共有脚100 只,
兔数 = (总脚数—每只鸡的脚数×总头
鸡、兔各是多少只?
数)÷(每只兔的脚数—每只鸡的脚数);
解:兔:( 100-2 × 36)÷( 4-2 )=14(只);
鸡: 36-14=22 (只)。
二、已知总头数和鸡兔脚数的差数,求鸡、兔各多少只
情况①:当鸡的总脚数比兔的总脚数多时,可用公式:
例 2:鸡、兔共有 120 只,鸡比兔多120 只脚,鸡、兔数 = (每只鸡脚数×总头数—脚数之兔各有多少只
差)÷(每只鸡的脚数+ 每只兔的脚解:兔:( 2× 120-120 )÷( 2+4) =( 240-120 )数);÷ 6 = 120 ÷ 6 = 20 (只)
情况②:当兔的总脚数比鸡的总脚数多时,可用公式:
例 3:鸡兔同笼,鸡、兔共有46 只,兔比鸡多 28 兔数 =(每只鸡的脚数×总头数+ 鸡兔只脚,鸡、兔各有多少只
脚数之差)÷(每只鸡的脚数+ 每只兔解:兔:( 2× 46+28)÷( 2+4) =120÷ 6 = 120 的脚数);÷ 6 = 20 (只)
三、已知总脚数和鸡兔头数的差数,求鸡、兔各多少只
情况①:当鸡的总头数比兔的总头数多时,可用公式:
例 4:鸡兔同笼,鸡、兔共有72 只脚,鸡比兔多
12 只,鸡、兔各有多少只
兔数 =(总脚数—鸡兔头数之差×每只鸡
的脚数)÷(每只鸡的脚数+ 每只兔的
脚数);
解:兔:( 72-12 ×2)÷( 2+4)= 48÷ 6 = 8(只)
情况②:当兔的总头数比鸡的总头数多时,可用公式:
例 5:鸡兔同笼,鸡、兔共有128 只脚,兔比鸡多
兔数 =(总脚数+鸡兔头数之差×每只8 只,鸡、兔各有多少只
鸡的脚数)÷(每只鸡的脚数+每只兔
的脚数);
解:兔:(128+8× 2)÷( 2+4) = 144 ÷ 6 = 24
四、鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用公式:
鸡数 =[ (两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)] ÷ 2;
例 6: 有一些鸡和兔,共有脚44 只,若将鸡数与兔数互换,则共有脚52 只。
鸡兔各是多少只
解:
鸡 :[ (52+44)÷( 4+2) +( 52-44 )÷( 4-2 ) ] ÷ 2=20÷ 2=10(只)
五、鸡兔问题推广题的解法:可用假设法,转化成“鸡兔同笼”问题求解
例 7:篮球每个19 元,排球每个11元,两种球共买了16 个,花了 280 元。
问篮球、排球各买几个
分析:我们假设一种“鸡”有 11只脚,一种“兔子”有19 只脚,它们共有16 个头, 280 只脚。
现在已经把买
球问题,转化成“鸡兔同笼”问题了.
解:利用上面算兔数公式,。