拱式桥桥构造与设计

合集下载

梁式桥、拱式桥、悬索桥与斜拉桥的对比分析总结

梁式桥、拱式桥、悬索桥与斜拉桥的对比分析总结

分别从结构构造、力学特性、适用范围、结构内力计算方法以及主要施工工艺五个方面对梁式桥、拱式桥、悬索桥与斜拉桥进行对比分析总结。

一、梁桥以受弯为主的主梁作为主要承重构件的桥梁。

主梁可以是实腹梁或者是桁架梁(空腹梁)。

实腹梁外形简单,制作、安装、维修都较方便,因此广泛用于中、小跨径桥梁。

但实腹梁在材料利用上不够经济。

桁架梁中组成桁架的各杆件基本只承受轴向力,可以较好地利用杆件材料强度,但桁架梁的构造复杂、制造费工,多用于较大跨径桥梁。

桁架梁一般用钢材制作,也可用预应力混凝土或钢筋混凝土制作,但用的较少。

过去也曾用木材制作桁架梁,因耐久性差,现很少使用。

实腹梁主要用钢筋混凝土、预应力混凝土制作,也可以用钢材做成钢钣梁或钢箱梁。

实腹梁桥的最早形式是用原木做成的木梁桥和用石材做成的石板桥。

二、拱桥是以承受轴向压力为主的拱(称为主拱圈)作为主要承重构件的桥梁。

1.按照主拱圈的静力图式,拱轿可分为三铰拱、两铰拱和无铰拱(图3 拱桥形式示意图)。

(1).三铰拱是静定结构,其整体刚度较低,尤其是挠曲线在拱顶铰处产生折角,致使活载对桥梁的冲击增强,对行车不利。

拱顶铰的构造和维护也较复杂。

因此,三铰拱除有时用于拱上建筑的腹拱圈外,一般不用作主拱圈。

(2).两铰拱取消了拱顶铰,构造较三铰拱简单,结构整体刚度较三铰拱为好,维护也较三铰拱容易,而支座沉降等产生的附加内力较无铰拱为小,因此在地基条件较差和不宜修建无铰拱的地方,可采用两铰拱桥。

(3).无铰拱属三次超静定结构,虽然支座沉降等引起的附加内力较大,但在荷载作用下拱的内力分布比较均匀,且结构的刚度大,构造简单,施工方便,因此无铰拱是拱桥中,尤其是圬工拱桥和钢筋混凝土拱桥中普遍采用的形式。

2.按照主拱圈的构成形式,拱又可分为板拱、肋拱、双曲拱、箱形拱、桁架拱等(图4主拱圈的构成形式示意图)。

①板拱:拱圈横截面呈矩形实体截面,它横向整体性较好、拱圈截面高度小、构造简单,但抵抗弯矩能力较差,一般用于圬工拱桥。

拱式组合体系桥主要类型及设计特点

拱式组合体系桥主要类型及设计特点

横梁
桥面板
拱系杆组合结构
图 简支拱式组合桥的主要构造(典型系杆拱)
立柱 a)
纵梁
拱肋
吊杆
拱肋


盖梁
b)
立柱 纵梁
横梁 桥面板
横梁
拱梁组合结构 拱系杆组合结构
吊杆 拱肋
c) 纵梁
图 连续拱式组合桥 (无推力)
第四章、拱式组合体系桥
第一节 主要类型及设计特点(知识点25)
拱式组合体系为在拱式桥跨结构中,将梁和拱两种基
本结构组合起来,共同承受荷载,充分发挥梁受弯,拱受 压的特点,拱式组合体系有多种类型。桁架拱桥拱式组合来自系桥钢筋混凝土整体式拱桥
(有推力拱)
刚架拱桥
拱式组合桥
有推力拱 无推力拱(系杆拱)
一、钢筋混凝土整体式拱桥
空腹段
实腹段
空腹段
空腹段
实腹段
空腹段
图 1 钢筋混凝土整体式拱桥
是一种主拱与拱上结构整体构造的上承式钢筋 混凝土组合式拱桥
图2 桁架拱
空腹段
纵梁
I
斜撑 横系梁
I 拱腿
现浇桥面混凝土
微弯板
实腹肋或纵梁肋
横系梁 II
图3 刚架拱
实腹段 横系梁
二、拱式组合桥
拱肋
吊杆
系杆
纵梁 拱梁组合结构
4-2-70

拱形桥搭建实验报告

拱形桥搭建实验报告

一、实验目的1. 了解拱形桥的结构特点及其受力原理。

2. 通过实践操作,掌握拱形桥的搭建方法。

3. 培养动手能力和创新思维。

二、实验器材1. 冰棒棍:21根2. 玻璃杯:1个3. 清水:1份4. 尺子:1把5. 剪子:1把三、实验原理拱形桥是一种传统的桥梁结构,其特点是采用半圆形的拱结构,通过拱肋的承压作用,将来自桥面和车辆的压力传递到桥墩,从而实现桥梁的稳定和承重。

拱形桥的主要受力构件为拱肋,其受力特点为拱肋承压、支承处有水平推力。

拱形桥的搭建原理主要基于拱形结构的力学特性,即拱形可以有效地将压力转化为外推力,从而增强桥梁的承载能力。

四、实验步骤1. 基础组成单元搭建:- 将21根冰棒棍按照一定的间隔摆放在桌面上。

- 用尺子测量并调整冰棒棍的长度,确保每根冰棒棍的长度一致。

2. 插入冰棒棍:- 在基础组成单元两侧,分别插入冰棒棍,使其与基础单元形成稳定的结构。

- 注意插入的冰棒棍要与基础单元垂直,以确保结构的稳定性。

3. 重复搭建:- 重复步骤2,将剩余的冰棒棍组建在一起,形成拱形结构。

- 搭建过程中,注意保持冰棒棍的垂直和水平,以确保拱形的准确。

4. 拱桥搭建完成:- 当所有冰棒棍都插入并形成拱形结构后,拱桥搭建完成。

5. 承重测试:- 将玻璃杯放在拱桥上,然后慢慢倒水,观察拱桥的承重能力。

- 记录倒水过程中拱桥的变化情况,如变形、坍塌等。

五、实验结果与分析1. 拱桥承重能力:- 通过实验,我们发现搭建的拱桥能够承受一定的重量,且在倒水过程中,拱桥基本保持稳定,没有出现明显的变形或坍塌。

2. 受力分析:- 拱桥在承重过程中,主要依靠拱肋的承压作用来传递压力。

- 当拱桥受到压力时,拱肋会产生水平推力,将压力传递到桥墩,从而保证桥梁的稳定性。

3. 结构优化:- 通过本次实验,我们了解到拱形桥的结构特点和受力原理。

- 在实际应用中,可以通过优化拱肋的形状和尺寸,提高拱桥的承重能力和稳定性。

六、实验结论本次实验成功地搭建了一座拱形桥,并通过实验验证了拱形桥的承重能力和受力原理。

拱式桥桥的构造与设计

拱式桥桥的构造与设计
古代拱桥: 拱轴曲线造型的千变万化,其中最具有代表意义的是建于
公元 595-605年的赵州桥(如图1所示,跨径L=37m)
图1 赵州桥
当代拱桥:结构型式与施工方法的丰富多彩如,97年 建成的重 庆万县长江大桥(图2所示,L=420m), 广州丫髻 沙特大桥(图3,L=360m), 1932建成的澳大利亚 悉尼钢拱桥(图4,L= 503m )及正在建设的鲁浦大 桥(L=550m)。
L0 - 净跨径 L -计算跨径 f0 - 净矢高 f -计算矢高 f/L - 矢跨比
拱式桥
7.1.4、拱桥的主要类型及其特点
建桥材料
圬工拱桥,钢筋混凝土拱桥,钢拱桥
结构体系分
简单体系拱桥:三铰拱,两铰拱,无铰拱 组合体系拱桥:无推力拱桥,有推力拱桥

主拱圈截面形式形式 板拱桥,肋拱桥,双曲拱桥,箱形拱桥
7.2.2、总体布置

确定桥梁长度及分孔
桥面标高,拱顶底面标高,起拱 线标高,基础底面标高


确定桥梁的设计标高和矢跨比 混凝土拱桥矢跨比1/4~1/8

箱型拱桥矢跨比1/6~1/10
正确处理不等分孔问题
采用不同的矢跨比 采用不同的拱脚标高 调整拱上建筑的重力 采用不同的拱跨结构
7.3 主拱圈的构造与尺寸拟定
根据主拱圈截面形式可分为:板拱,肋拱,双曲拱,箱形拱等。
7.3.1、板拱
板拱是指主拱(圈)采用 整体实心矩形截面的拱。 按照主拱所采用的材料, 可分为石板拱、混凝土板 拱和钢筋混凝土板拱等。 这部分主要介绍钢筋混凝 土板拱
•板拱的宽度
•拱圈的厚度 对钢筋混凝土拱
•拱圈截面的变化规律 截面变化规律
•主要缺点: 1)是有推力的结构,而且自重较大,因而水平推力也较大, 增加了下部结构的工程量,对地基 要求也高; 3)由于水平推力较大,在连续多孔的大、中桥中,为防止 一孔破坏而影响全桥的安全,需要采取较复杂的措施,或 设置单向推力墩,增加了造价; 4)上承式拱桥的建筑高度较高。 •拱桥的缺点正在逐步得到改善和克服:200~600m 范围内,拱桥仍然是悬索桥和斜拉桥的竞争对手

钢管混凝土拱桥设计规范

钢管混凝土拱桥设计规范

------------------------------------------------------5
不断更新设计理念,提高设计可靠性
桥梁设计本身就是一项创造性的工作。 桥梁设计是否满足要求的判别标准中,满足规范规定仅是最低 要求,更高的要求应是桥梁结构体系、构造设计的合理性以及 桥梁长期使用安全、耐久性。设计中,需要重新认识桥梁“最 不利”状态,计入一切可能出现的不利因素,提高设计的可靠 性。例如,对于通航河流上的桥梁,通常仅强调通航孔桥墩桥
墩防撞设计,但事实上,非通航孔并不就等于船只一定不会前
往(广东九江桥事故就是一例),且仅靠管理是难以避免的, 设计时必须留有足够余地,以便应对难以预料的风险。
------------------------------------------------------6
精细化设计,提高桥梁设计质量
桥梁设计是一项十分细致的技术工作。
杭州钱江四桥(2004年, 190m×2+85m×9)
------------------------------------------------------安徽太平湖大桥(2007年,352m)
世界上已建的10座最大跨径拱桥
序号 1 2 3 桥名 中国重庆朝天门大桥 中国上海卢浦大桥 中国合江长江一桥 美国新河谷(New River 4 Gorge)桥 美国纽约贝永(Bayonne) 5 桥 澳大利亚悉尼港(Sydney 6 Harbor)桥 7 中国重庆巫山长江大桥 8 中国肇庆西江铁路大桥 9 中国宁波明州大桥 10 湖北支井河特大桥 ------------------------------------------------------主跨 /m 552 550 530 518 510 503 460 450 450 430 结构形式 中承式钢桁拱 中承式箱拱 中承式钢管混凝土拱 上承式钢桁拱 中承式钢桁拱 中承式钢桁拱 中承式钢管混凝土拱 钢箱拱 中承式钢箱拱 上承式钢管混凝土拱 建成 年份 2009 2003 2012 1977 1931 1932 2005 2014 2011 2009

各种桥梁构造图解

各种桥梁构造图解

各种桥梁构造图解各种桥梁构造图解箱型梁桥:(xiang xing liang qiao) box-girder bridge 箱梁结构的基本概念在于全部上部结构变为整体的空心梁,而当主要荷载通过桥上的任何位置时,空心梁的所有各部分(梁肋,顶板和底板)作为整体同时参加受力。

其结果可节省材料,成为薄壁结构,提高了抗扭强度。

箱梁桥可分为单室,双室,多室几种。

组合梁桥:(zhu he liang qiao) composite beam bridge指以梁式桥跨作为基本结构的组合结构桥,既两种以上体系重叠后,整体结构的反力性质仍与以受弯作用负载的梁的特点相同。

这类桥的特点主要表现在设计计算工作繁重,构造细节及内力复杂。

空腹拱桥:(kong fu gong qiao) open spandrel arch bridge 在拱桥拱圈上设置小拱,横墙或支柱来支撑桥面系,从而减轻桥梁恒载并增大桥梁泻水面积者称为空腹拱桥。

实腹拱桥:(shi fu gong qiao) filled spandrel arch bridge在拱桥拱圈上腹部两侧填实土壤或粒料后铺装路面,这种拱桥称为实腹拱桥。

小跨径的砖,石,混凝土拱常采用这种构造形式。

无铰拱桥:(wu jiao gong qiao) hingless arch bridge如图,在整个拱上不设铰,属外部三次超静定结构。

由于无铰,结构整体钢度大,构造简单,施工方便,维护费用少,因此在实际中使用最广泛。

但由于超静定次数高,温度变化,材料收缩,结构变形,特别是墩台位移会产生较大附加应力。

混凝土空腹无铰拱桥三铰拱桥:(san jiao gong qiao) three-hinged arch bridge 如图,在拱桥的两个拱脚和拱的中间各设一铰称为三铰拱。

属外部静定结构构。

因而温度变化,支座沉陷等不会在拱内产生附加应力,故当地质条件不良,可以采用三铰拱,但铰的存在使其构造复杂,施工困难,维护费用高,而且减小了整体刚度降低了抗震能力,因此一般较少使用。

第篇拱桥的构造

第篇拱桥的构造
• 为了使压力正对中心,并且能承受势力,设置穿过垫板 中心而又不妨碍铰转动的锚杆。为承受局部压力,在墩 台帽内以及邻近铰的拱段,需用螺旋钢筋或钢筋网加强, 拱的混凝土标号不低于25号。在计算铅垫板时,其压力 作为沿垫板全宽均匀分布。
精品文档
• 内于弧形铰的构造较复杂,铰面的加 工既费工又难以保证质量,因此,对于 空腔式拱上建筑的腹拱圈,由于跨径较 小,可以采用(cǎiyòng)构造简单的平 铰。平铰是平面相接,直接抵承。平铰 的接缝间可用低标号的砂浆砌,也可垫 付油毛毡或直接于砌接头。
精品文档
• 对于跨径不大(如腹拱圈(ɡǒnɡ quān)) 或在轻型的结构物中(如人行桥),可以 采用不完全铰。由于拱的截面急剧地减 窄,保证了支承截面处的转动而起到铰 的作用。在减窄的截面内,由于受压不 均勾,因此将发生很大的应力。颈缩部 分可能开裂,有时须配以斜钢筋,斜钢 筋应根据总的纵向力及剪力来计算。
• 对于片·石拱,其拱石的厚度不小于150mm,将尖 锐突出部分敲击即可。各类拱石,石料层面应与拱 轴线垂直。
精品文档
第二章 拱桥(gǒngqiáo)的构造及设计
2.1 主拱圈(ɡǒnɡ quān) 2.1.1 板拱的—构—造石拱桥构造
拱石编号
等截面圆弧拱的拱石编号
五角石
变截面拱圈的拱石编号
精品文档
截面抗弯、抗扭刚度大,拱圈整体性好;
单条箱肋稳定性好,能单箱肋成拱, 便于无支架施工; 箱形截面能适应主拱圈各截面抵抗正负弯矩的需要; 自重相对较轻;
制作要求较高,吊装设备较多, 主要适用于大跨径拱桥。
精品文档
第二章 拱桥(gǒngqiáo)的构造及设计
2.1 主拱圈(ɡǒnɡ quān)的构造
2.1.3 箱形拱 箱形拱的组成方式: 由多条U形肋组成多室箱形截面;

各种桥梁构造图解

各种桥梁构造图解

各种桥梁构造图解箱型梁桥:(xiang xing liang qiao) box-girder bridge 箱梁结构的基本概念在于全部上部结构变为整体的空心梁,而当主要荷载通过桥上的任何位置时,空心梁的所有各部分(梁肋,顶板和底板)作为整体同时参加受力。

其结果可节省材料,成为薄壁结构,提高了抗扭强度。

箱梁桥可分为单室,双室,多室几种。

组合梁桥:(zhu he liang qiao) composite beam bridge指以梁式桥跨作为基本结构的组合结构桥,既两种以上体系重叠后,整体结构的反力性质仍与以受弯作用负载的梁的特点相同。

这类桥的特点主要表现在设计计算工作繁重,构造细节及内力复杂。

空腹拱桥:(kong fu gong qiao) open spandrel arch bridge 在拱桥拱圈上设置小拱,横墙或支柱来支撑桥面系,从而减轻桥梁恒载并增大桥梁泻水面积者称为空腹拱桥。

实腹拱桥:(shi fu gong qiao) filled spandrel arch bridge在拱桥拱圈上腹部两侧填实土壤或粒料后铺装路面,这种拱桥称为实腹拱桥。

小跨径的砖,石,混凝土拱常采用这种构造形式。

无铰拱桥:(wu jiao gong qiao) hingless arch bridge如图,在整个拱上不设铰,属外部三次超静定结构。

由于无铰,结构整体钢度大,构造简单,施工方便,维护费用少,因此在实际中使用最广泛。

但由于超静定次数高,温度变化,材料收缩,结构变形,特别是墩台位移会产生较大附加应力。

混凝土空腹无铰拱桥三铰拱桥:(san jiao gong qiao) three-hinged arch bridge 如图,在拱桥的两个拱脚和拱的中间各设一铰称为三铰拱。

属外部静定结构构。

因而温度变化,支座沉陷等不会在拱内产生附加应力,故当地质条件不良,可以采用三铰拱,但铰的存在使其构造复杂,施工困难,维护费用高,而且减小了整体刚度降低了抗震能力,因此一般较少使用。

拱桥概述

拱桥概述

3
缺点
自重较大,相应的水平推力大; 支架施工多、施工工序多、不便于 机械化施工、施工周期长;
多孔拱桥需设单向推力墩; 上承式拱桥建筑高度高。
拱桥的缺点正在逐步得到改善和克服:
1)从结构体系、构造形式上采取措施; 2)用轻质材料减轻自重; 3)设法提高地基的承载能力; 4)提高预制构件所占的比重,大块件制造与运输方法 200~600m范围内,拱桥仍然是悬索桥和斜拉桥的竞争对手 4

17
箱拱与桥台形成无铰拱
18
2、组合体系拱桥
组合体系拱桥:在拱式桥跨中,行车系与拱
组合,共同受力。同样,组合拱可以做成上承 式、中承式和下承式。常用的有以下几种形式:
无推力拱(使用较广泛): 拱的推力由系杆承受,墩台不受水平推力
19
柔性系杆刚性拱(简称系杆拱,图a) 刚性系杆柔性拱(即蓝格尔拱,图b) 刚性系杆刚性拱(图c)。 对于有斜吊杆的柔性系杆刚性拱桥,又可称为尼尔森拱(图 d)。
19、长寿长江大桥
30、巫山长江大桥
20、渝怀铁路长寿大桥 31、巴东长江大桥
21、涪陵长江大桥
32、西陵长江大桥
22、涪陵李渡长江大桥 33、夷陵长江大桥
9
第二节 拱桥的组成及主要类型
一、拱桥的主要组成
拱桥的组成
拱圈
桥跨结构
拱上建筑
桥墩
下部结构 桥台
基础
10
1-主拱圈 2-拱顶 3-拱脚
4-拱轴线 5-拱腹 6-拱背
上承式拱桥,中承式拱桥,下承式拱桥
实腹式拱桥,空腹式拱桥
13
(一)按照结构体系分类
1、简单体系拱桥和组合体系拱桥
简单体系拱桥:主要承重结
构是裸拱,桥面系结构不参与 主拱受力

各种桥梁构造图解

各种桥梁构造图解

各种桥梁构造图解箱型梁桥:(xiang xing liang qiao) box-girder bridge 箱梁结构的根本概念在于全部上部结构变为整体的空心梁,而当主要荷载通过桥上的任何位置时,空心梁的所有各局部(梁肋,顶板和底板)作为整体同时参加受力。

其结果可节省材料,成为薄壁结构,提高了抗扭强度。

箱梁桥可分为单室,双室,多室几种。

组合梁桥:(zhu he liang qiao) composite beam bridge指以梁式桥跨作为根本结构的组合结构桥,既两种以上体系重叠后,整体结构的反力性质仍与以受弯作用负载的梁的特点相同。

这类桥的特点主要表现在设计计算工作繁重,构造细节及内力复杂。

空腹拱桥:(kong fu gong qiao) open spandrel arch bridge 在拱桥拱圈上设置小拱,横墙或支柱来支撑桥面系,从而减轻桥梁恒载并增大桥梁泻水面积者称为空腹拱桥。

实腹拱桥:(shi fu gong qiao) filled spandrel arch bridge在拱桥拱圈上腹部两侧填实土壤或粒料后铺装路面,这种拱桥称为实腹拱桥。

小跨径的砖,石,混凝土拱常采用这种构造形式。

无铰拱桥:(wu jiao gong qiao) hingless arch bridge如图,在整个拱上不设铰,属外部三次超静定结构。

由于无铰,结构整体钢度大,构造简单,施工方便,维护费用少,因此在实际中使用最广泛。

但由于超静定次数高,温度变化,材料收缩,结构变形,特别是墩台位移会产生较大附加应力。

混凝土空腹无铰拱桥三铰拱桥:(san jiao gong qiao) three-hinged arch bridge 如图,在拱桥的两个拱脚和拱的中间各设一铰称为三铰拱。

属外部静定结构构。

因而温度变化,支座沉陷等不会在拱内产生附加应力,故当地质条件不良,可以采用三铰拱,但铰的存在使其构造复杂,施工困难,维护费用高,而且减小了整体刚度降低了抗震能力,因此一般较少使用。

梁式桥、拱式桥、悬索桥与斜拉桥的对比分析总结

梁式桥、拱式桥、悬索桥与斜拉桥的对比分析总结

梁式桥、拱式桥、悬索桥与斜拉桥的对比分析总结引言桥梁工程作为连接不同地域、促进经济发展的重要基础设施,在现代交通网络中扮演着至关重要的角色。

梁式桥、拱式桥、悬索桥和斜拉桥作为四种常见的桥梁类型,各有其独特的结构特点和适用场景。

本文旨在对这四种桥梁类型进行对比分析,总结各自的优势与局限性。

桥梁类型概述梁式桥梁式桥是一种以梁作为主要承重结构的桥梁,其特点是结构简单、施工方便,适用于跨度较小的桥梁工程。

拱式桥拱式桥通过拱形结构将荷载传递到桥台或桥墩上,其特点是造型美观、结构稳定,适用于中等跨度的桥梁工程。

悬索桥悬索桥以悬索为主要承重结构,通过主塔将荷载传递到锚碇上,其特点是跨度大、结构轻盈,适用于跨越宽阔水域或峡谷的桥梁工程。

斜拉桥斜拉桥通过斜拉索将荷载传递到主塔上,其特点是结构合理、跨度大,适用于跨越大江大河的桥梁工程。

结构特点对比梁式桥结构简单:梁式桥由简支梁或连续梁组成,结构简单,易于施工。

适用性:适用于小至中等跨度,地形条件简单的桥梁工程。

拱式桥结构稳定:拱形结构具有良好的稳定性,能够承受较大的荷载。

美观性:拱式桥具有优美的曲线,是桥梁美学的代表。

悬索桥跨度大:悬索桥可以实现非常大的跨度,是世界上跨度最大的桥梁类型之一。

结构轻盈:悬索桥结构轻盈,材料用量相对较少。

斜拉桥跨度大:斜拉桥同样可以实现较大的跨度,适应性强。

结构合理:斜拉桥通过斜拉索与主塔的合理配合,实现结构的平衡。

施工技术对比梁式桥施工简便:梁式桥施工技术成熟,施工过程相对简单。

成本控制:由于结构简单,梁式桥的建设成本相对较低。

拱式桥施工难度:拱式桥的施工技术要求较高,特别是拱圈的搭建。

成本考量:拱式桥的建设成本受材料和施工技术的影响较大。

悬索桥技术要求:悬索桥的施工技术要求极高,特别是主塔和锚碇的建设。

成本投入:悬索桥的建设成本较高,但随着技术的进步,成本有所降低。

斜拉桥施工复杂:斜拉桥的施工过程较为复杂,需要精确控制斜拉索的张力。

浅谈拱式桥

浅谈拱式桥

浅谈拱式桥班级:学号:姓名:目录一拱式桥的发展二拱式桥在各个时期特点三拱式桥的种类四拱式桥的结构特点五拱式桥的优缺六拱式桥未来的发展方向一拱式桥的发展拱桥,在桥梁的发展史上曾经占有重要地位,迄今为止,已有三千多年的历史,并因其形态美、造价低、承载潜力大而得到广泛的应用。

在拱桥发展的早期,生产力发展水平十分低下,其发展十分缓慢。

国外的石拱桥鼎盛于古罗马时代。

现存较为著名的两座石拱桥为Pout-du-Gard桥和Alcantara桥。

前者建于公元14年,由三层半圆拱组成,其中底层6拱、中层11拱、顶层33拱,总长达270m;后者建于公元98年,共有16个半圆拱,跨径从13.5m到28.2m不等。

拱桥在中国也有着悠久的历史。

早在公元前282年就有了关于石拱桥的文字记载,考古发现公元前250年周末的墓穴中就有了砖拱。

修建于公元606年的河北赵县安济桥代表着中国古代石拱桥建造的最高成就。

安济桥跨径37.4m,矢高7.23m,宽约9m,在跨度方面曾保持记录达1350年之久(1956年建成松树坡铁路桥,跨度38m),且至今保存完好。

文艺复兴时期以后,特别是18世纪的工业革命以来,科学技术有了长足的进步,桥梁建设也逐步开始走上了科学的道路。

这一时期的拱桥在各个方面都得到了空前的发展。

具有代表性的大跨度钢拱桥有3座:悉尼港大桥(503m,澳大利亚,1932年)、Bayanne桥(503.6m,美国,1931年)和New River Gorge桥(518.3m,美国,1976年)。

世界上第一座钢筋混凝土拱桥建于1898年。

目前,在跨度方面,万县长江大桥(420m,中国,1986年)为同类之最。

世界上最大的石拱桥--湖南凤凰乌巢河桥,跨度120米,1990年建成二拱式桥在各个时期特点在拱桥发展的早期,生产力发展水平十分低下,其发展十分缓慢。

这一时期的拱桥主要有以下特征:(1)拱桥的设计、建造以经验为主;(2)所用的材料多为石材;(3)结构形式以圆弧、实腹式拱桥为主。

拱桥的设计建造原理

拱桥的设计建造原理

拱桥的设计建造原理:拱桥指的是在竖直平面内以拱作为结构主要承重构件的桥梁。

拱桥在容器内的粉料层中如果形成能承受上方粉料的压力而不将此压力传递给下方的面,此面即称为拱桥。

拱桥是向上凸起的曲面,其最大主应力沿拱桥曲面作用,沿拱桥垂直方向的最小主应力为零。

在重力作用下进行的粉料流出过程中可能反复出现拱桥的形成和崩解过程,此种拱桥称为动拱桥。

最早出现的拱桥是石拱桥,借着类似梯形石头的小单位,将桥本身的重量和加诸其上的载重,水平传递到两端的桥墩。

各个小单位互相推挤时,同时也增加了桥体本身的强度。

第一章拱桥概述

第一章拱桥概述

拱的矢跨比一般为1/6~1/10。一般将矢跨比大于或等
于1/5的拱称为陡拱,矢跨比小于1/5的称为坦拱。
(6)如何处理拱桥不等跨分孔的问题 多孔拱桥最好选用等跨分孔的方案。 在受地形、地质、通航等条件的限制,或引 桥很长,考虑与桥面纵坡协调一致时,可以考虑 不等跨分孔办法处理。 不等跨拱桥, 由于相邻孔的恒载推力不相 等,使桥墩和基础增加了恒载的不平衡推力。为 了减小不平衡推力,改善桥墩基础受力状况,可 采用的措施有:
桥可减少圬工用料与自重,适用于大跨度拱桥。
截面抗扭刚度大,横向整体性和稳定性好,特别
适用于无支架施工。
三、拱桥的总体布置
总体布置需要考虑的主要问题: 总体布置所需设计资料 确定结构体系及结构形式 确定桥梁长度和孔数 确定设计标高、矢跨比、拱圈宽度与 高度 确定墩台尺寸、基础形式与埋置深度
5、施工技术
(1)拱架法 (2)移动托架悬浇法
(3)预制节段吊装悬拼法
(4)转体施工法
(5)劲性骨架法
(6)大跨拱桥施工的缆索吊装悬拼法。
(1)转体施工法
(2)拱架法
(3)大跨拱桥施工的缆索吊装悬拼法。
(4)劲性骨架法
(5)预制节段吊装悬拼法
6、拱桥主要缺点:
(1)有推力的结构,自重较大,水平推力大,增加 了下部结构的工程量,对地基要求高;
本篇教学目的:
1、掌握常用的圬工及钢筋混凝土拱式桥 的结构体系、构造原理、计算理论和主 要施工方法;
2 、了解现代大跨度混凝土拱桥的构造、 计算和施工特点。
修建公路 以人为本
第一章
概 述
第一节 拱桥的发展与现状
1、拱桥的特点 2、拱桥的发展历史概述 3、增大拱桥跨度的途径及现状 4、理论跨度 5、施工技术 6、拱桥缺点 7、桥梁的耐久性问题

纸拱式桥设计思路简短范文

纸拱式桥设计思路简短范文

纸拱式桥设计思路简短范文①招募组员;关于队员选择:“道不同不相为谋,玩的好的不一定是最好的队友。

”(另外在做纸桥的过程中:1、要充分利用组员的特长进行合理分工,使每一个成员都找到存在感,这也是团结到底的关键;2、当组内产生予盾时,要及时化解,防止成员流失;3、做的过程中可能遇到很多问题,但方法总比困难多,切勿半途而废)②大致构思(发散思维);关于用蜂窝管作为基本单元,后来查阅相关资料后发现蜂窝结构Q具有很多优点,这才确定下蜂窝结构。

桥的整体结构采用单孔圆拱,后面作具体介绍。

(关于做纸桥,其实构思是雏形,这一步一定要大胆想象,也许会有好几个方向,但后期用批判性思维进行淘汰时,剩下的便是最好的。

)③绘制图纸;要想做出优秀的纸桥,起初必须做出精确的图纸作为指引。

关于图纸,完全可以用CAD绘制,有能力的话可以用有限元进行受力分析!(关于卷蜂窝管所用纸条宽度,是由已知桥高桥长后做圆弧量出的)④制作蜂窝管;工具:刮出明显棱角的铅笔(六角形扳手)、电吹风、白胶。

制作过程:将纸条绕在铅笔上,绕第一圈时一定要用手压出棱角,每卷一层上一次胶,上胶一定要均匀且适量,卷完后用光滑的笔滚出清晰的棱角,且能挤出多余的胶!做完一定量的蜂窝管后及时用热风烘干。

(叙述比较简单,真正怎么做合适,自己动手做几个就知道了。

)制作过程很看重动手能力,一定要细心、耐心,才能出精品!关于纸条长度(我用的是297/2mm)即管厚以及管径我并未做具体测定,我也只是做了几个实验。

⑤蜂窝管组合;用热风干燥的同时,一定要施加一定压力,确保各个蜂窝管之间粘连紧密,同时还能减轻桥重!⑥桥面加固;我采用的是瓦楞板(手工A4)加固,上下各两层。

至于手工瓦楞板怎么做,我就不多说了,工具非常常见,毕竟有些东西只有自己研究出来了才有那种喜悦。

至于只铺了一小块瓦楞板,是出于美观的考虑.参数:净矢高107mm、净跨距360mm、矢跨比21:3.6、自重0.62kg(承重至少215kg)蜂窝管数:822根。

拱式桥的受力特点

拱式桥的受力特点

拱式桥的受力特点
嘿,今天咱们来聊聊拱式桥的受力特点啊。

听说拱式桥可是咱们建筑设计里面的一大亮点呢,咱来看看它的受力特点吧。

拱式桥的受力特点可真不简单啊。

嗨,它整个桥身受力均匀,像是一只大型的弯弓呀。

就像咱们小时候玩的弹弓一样,拱式桥的受力也是很有弹性的呢。

哎呀,说到拱式桥的受力,得提一提它的受压和受拉啊。

看,桥下面的拱形结构受到挤压,而上面的桥面则受到拉力,形成了一种平衡状态。

唉呦,这就好比咱们穿的皮带一样,一端受力,一端受压,才能保持平衡呢。

嗨,拱式桥的受力特点还包括了它的稳定性啊。

它的桥墩和桥面形成了一个完整的结构体系,哎,就像人体的骨骼一样,支撑着整个桥身的重量。

这样一来,桥就不会轻易倒塌了。

唉,拱式桥还有一个特点,就是它的美观性啊。

天哪,看着那个优美的拱形,真是美轮美奂呀。

这种设计不仅能够保证桥身的受力均匀,还能够为城市增添一道亮丽的风景线呢。

咦,说到这,咱还得提一提拱式桥在建筑设计上的应用啊。

它不仅仅是一座桥,还可以用来设计成建筑物的一部分,嗯,就像大型的建筑拱门一样,妙不可言。

哎,不得不承认,拱式桥的受力特点实在是妙不可言啊。

它的魅力不仅仅在于设计的奇妙,更在于它的受力特点能够保证桥的稳定和美观。

真是一项了不起的建筑工程呢。

拱形桥的概念

拱形桥的概念

拱形桥的概念
拱形桥是一种建筑工程结构,它的主要特点是由一组连续的拱形构成的横向支撑体系,用于横跨两个支点之间的跨度。

拱形桥可以通过通过地面、水体或其他障碍物,以提供通行的道路。

拱形桥的设计原则基于力学原理,力图将桥墩的受力均匀分布到拱石上,以保证桥的稳定性和承载能力。

拱形桥可以采用不同的材料来建造,包括石头、混凝土、钢铁等。

根据桥梁的设计和所处环境的要求,拱形桥可以具有不同的形状和结构,如单孔拱桥、多孔拱桥、斜拉拱桥等。

拱形桥在历史上广泛应用,其优点包括结构稳定、承载能力强、耐久性高等。

它们被广泛应用于城市道路、铁路、高速公路等交通工程中,并且成为很多城市的地标建筑。

随着现代科技和建筑技术的进步,拱形桥的设计和建造变得更加创新和多样化,同时也加强了对环境保护和可持续发展的考虑。

拱形桥结构原理

拱形桥结构原理

拱形桥结构原理
拱形桥结构是一种以弧形构成的桥梁结构。

其原理是利用拱形的特性,将桥面上的荷载通过弧形的固结方式传递到拱脚上,再由拱脚传递到地基上,形成一个整体稳定的结构。

拱形桥结构的主要原理是弧形的受力性能,它能够将桥面上的荷载分
散到整个拱形结构上,使得桥面上的荷载分布均匀,避免出现单点负荷高
度集中的情况,从而增加了桥梁的使用寿命和安全性。

同时,拱形桥结构还具有优良的受力性能和刚度,能够适应不同形式
的荷载条件和外部环境的影响,保证桥梁的稳定和可靠。

此外,拱形桥结
构也具有美观的外观和建筑风格,是城市景观的重要组成部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
古代拱桥: 拱轴曲线造型的千变万化,其中最具有代表意义的是建于
公元 595-605年的赵州桥(如图1所示,跨径L=37m)
图1 赵州桥
第1页/共38页
当代拱桥:结构型式与施工方法的丰富多彩如,97年 建成的重 庆万县长江大桥(图2所示,L=420m), 广州丫髻 沙特大桥(图3,L=360m), 1932建成的澳大利亚 悉尼钢拱桥(图4,L= 503m )及正在建设的鲁浦大 桥(L=550m)。
AI
其中 N自拱顶向拱脚逐渐增大,但M变化复杂与结构体系和截 面惯性矩I有关,下图为结构体系和截面惯性矩对弯矩的影响。
第16页/共38页
无铰拱通常可用惯性矩从拱顶向拱脚逐渐增大的变化(见下 图),计算公式可采用Ritter公式:
I
1ቤተ መጻሕፍቲ ባይዱ
(1
Id
n)
cos
上式中:I为任意截面的惯性矩;
Id为拱顶截面的惯性矩;
推力任由墩台承受。
第10页/共38页
7.2.2、总体布置

确定桥梁长度及分孔
桥面标高,拱顶底面标高,起拱 线标高,基础底面标高


确定桥梁的设计标高和矢跨比 混凝土拱桥矢跨比1/4~1/8

箱型拱桥矢跨比1/6~1/10
正确处理不等分孔问题
采用不同的矢跨比 采用不同的拱脚标高 调整拱上建筑的重力 采用不同的拱跨结构
拱式桥
上承式拱桥的基本组成
桥第梁6与页/道共3路8页结构
L0 - 净跨径 L -计算跨径 f0 - 净矢高 f -计算矢高 f/L - 矢跨比
拱式桥
7.1.4、拱桥的主要类型及其特点
建桥材料
圬工拱桥,钢筋混凝土拱桥,钢拱桥
结构体系分
简单体系拱桥:三铰拱,两铰拱,无铰拱 组合体系拱桥:无推力拱桥,有推力拱桥
第11页/共38页
第12页/共38页
7.3 主拱圈的构造与尺寸拟定
根据主拱圈截面形式可分为:板拱,肋拱,双曲拱,箱形拱等。
7.3.1、板拱
板拱是指主拱(圈)采用 整体实心矩形截面的拱。 按照主拱所采用的材料, 可分为石板拱、混凝土板 拱和钢筋混凝土板拱等。 这部分主要介绍钢筋混凝 土板拱
•板拱的宽度
第13页/共38页
第14页/共38页
•拱圈的厚度 对钢筋混凝土拱
•拱圈截面的变化规律 截面变化规律
拱顶厚度 hd (1/ 60 ~ 1/ 70)L
拱脚厚度 hj hd / cos j
其中 j 2tg1(2 f / L)
等截面(常用) 变截面(构造复杂)
第15页/共38页
拱截面正应力 N My
桥第梁4与页/道共3路8页结构
7.1.3、拱桥的组成 根据行车道的位置,拱桥可以分成:上承式、下承
式和中承式三种类型如下图所示:
拱桥的基本图示
一般上承式拱桥,桥跨结构是由主拱圈、拱上建筑 等组成。
第5页/共38页
1-主拱圈 2-拱顶 3-拱脚
4-拱轴线 5-拱腹 6-拱背
7-起拱线 11-拱上建筑
为任意截面的拱轴线倾角;
n拱厚变化系数,可用拱脚处的边界条件=1求得:
第17页/共38页
n Id
I j cos j
Ij和j分别为拱脚截面的惯性矩和倾角
• 钢筋混凝土板拱的构造
配筋
纵向受力钢筋:最小配筋率0.2%~0.4% 箍筋,应将上下缘主筋连系起来 分布钢筋:应设在主筋内侧
第18页/共38页
2、板肋拱
桥第梁8与页/道共3路8页结构
2、组合体系拱桥 组合体系拱桥:在拱式桥跨中,行车系与拱组合,共同受力。
同样,组合拱可以做成上承式、中承式和下承式。常用的有以下 几种形式: 无推力拱(使用较广泛):拱的推力由系杆承受,墩台不受水平推力
第9页/共38页
有推力拱:此种组合体系拱没有系杆,有单独的梁和拱共同受力,拱的水平
承式,下承式,均为有推力拱。 三铰拱:静定结构,在地基差的地区可 采用。但构造复杂,施工困难,整体刚 度小,主拱圈一般不采用。 无铰拱:三次超静定结构。拱的内力分布 较均匀,材料用量较三铰拱省;构造简单, 施工方便,整体刚度大,实际中使用广泛。 但超静定次数高,会产生附加内力,一般 拱桥按受力图式的分类 希望修建在地基良好处。跨径增大,附加 力影响变小,故钢筋混凝土无铰拱仍是大 跨径桥梁的主要型式之一。 两铰拱:一次超静定结构,介于三铰拱和无铰拱之间。
肋拱:拱圈截面由板和肋组成的拱桥。
第19页/共38页
7.3.2、肋拱
肋拱:用两条或多条分离的平行窄拱圈即拱肋作为主拱圈的拱具有自 重轻,恒载内力小,可以充分发挥钢筋混凝土等材料的性能,在 大中型拱桥中得到广泛应用
肋拱截面形式
矩形,肋高h=(1/40~1/60)L,宽b=(0.5~2.0)h
工字形截面肋高h=(1/25~1/35)L,宽b=(0.4~0.5)h 管形肋拱 箱形肋拱(后面介绍)
•主要缺点: 1)是有推力的结构,而且自重较大,因而水平推力也较大, 增加了下部结构的工程量,对地基 要求也高; 3)由于水平推力较大,在连续多孔的大、中桥中,为防止 一孔破坏而影响全桥的安全,需要采取较复杂的措施,或 设置单向推力墩,增加了造价; 4)上承式拱桥的建筑高度较高。 •拱桥的缺点正在逐步得到改善和克服:200~600m 范围内,拱桥仍然是悬索桥和斜拉桥的竞争对手
图2 1997建成的四川万县长江大桥
(L=420m)

第2页/共38页
图3 360m 广州丫髻沙特大桥
图 4 1932澳大利亚503m悉尼钢拱桥
7.1.1 拱桥的受力特点
•承重结构:主拱
•支承处不仅产生竖 向反力,还产生水 平推力,从而使拱 主要受压
拱桥的基本图示
第3页/共38页
拱式桥
7.1.2、拱桥的基本特点: •主要优点 跨越能力大;能充分做到就地取材;耐久性好,养护、维修 费用小;外形美观;构造较简单,有利于广泛采用。

主拱圈截面形式形式 板拱桥,肋拱桥,双曲拱桥,箱形拱桥

拱轴线型式
圆弧拱桥,抛物线拱桥,悬链线桥
桥面位置
上承式拱桥,中承式拱桥,下承式拱桥
拱上建筑形式
实腹式拱桥,空腹式拱桥
桥第梁7与页/道共3路8页结构
拱式桥
7.2 拱桥的结构体系与总体布置
7.2.1、拱式桥梁的结构体系 简单体系拱桥:可以做成上承式,中
第20页/共38页
第21页/共38页
7.3.3、箱形拱
箱形板拱:主拱圈由多室箱构成的拱,箱形拱通常采用预制拼装
施工。
主要特点 截面组成方式
截面挖空率大 中性轴居中 抗弯和抗扭刚度大,整体性好
相关文档
最新文档