最小油膜厚度hmin

合集下载

机械设计-滑动轴承习题与参考答案

机械设计-滑动轴承习题与参考答案

习题与参考答案一、选择题(从给出的A 、B 、C 、D 中选一个答案)1 验算滑动轴承最小油膜厚度h min 的目的是 。

A. 确定轴承是否能获得液体润滑B. 控制轴承的发热量C. 计算轴承内部的摩擦阻力D. 控制轴承的压强P2 在题2图所示的下列几种情况下,可能形成流体动力润滑的有 。

3 巴氏合金是用来制造 。

A. 单层金属轴瓦B. 双层或多层金属轴瓦C. 含油轴承轴瓦D. 非金属轴瓦 4 在滑动轴承材料中, 通常只用作双金属轴瓦的表层材料。

A. 铸铁 B. 巴氏合金 C. 铸造锡磷青铜 D. 铸造黄铜 5 液体润滑动压径向轴承的偏心距e 随 而减小。

A. 轴颈转速n 的增加或载荷F 的增大 B. 轴颈转速n 的增加或载荷F 的减少 C. 轴颈转速n 的减少或载荷F 的减少 D. 轴颈转速n 的减少或载荷F 的增大6 不完全液体润滑滑动轴承,验算][pv pv 是为了防止轴承 。

A. 过度磨损 B. 过热产生胶合 C. 产生塑性变形 D. 发生疲劳点蚀7 设计液体动力润滑径向滑动轴承时,若发现最小油膜厚度h min 不够大,在下列改进设计的措施中,最有效的是 。

A. 减少轴承的宽径比d l /B. 增加供油量C. 减少相对间隙ψD. 增大偏心率χ 8 在 情况下,滑动轴承润滑油的粘度不应选得较高。

A. 重载 B. 高速C. 工作温度高D. 承受变载荷或振动冲击载荷 9 温度升高时,润滑油的粘度 。

A. 随之升高B. 保持不变C. 随之降低D. 可能升高也可能降低 10 动压润滑滑动轴承能建立油压的条件中,不必要的条件是 。

A. 轴颈和轴承间构成楔形间隙 B. 充分供应润滑油C. 轴颈和轴承表面之间有相对滑动D. 润滑油温度不超过50℃11 运动粘度是动力粘度与同温度下润滑油 的比值。

A. 质量B. 密度C. 比重D. 流速 12 润滑油的 ,又称绝对粘度。

A. 运动粘度B. 动力粘度C. 恩格尔粘度D. 基本粘度 13 下列各种机械设备中, 只宜采用滑动轴承。

机械设计概念练习

机械设计概念练习

螺纹联接1.受轴向载荷的紧螺栓联接,为保证被联接件不出现缝隙,因此()。

A.剩余预紧力F″应小于零 B.剩余预紧力F″应大于零C.剩余预紧力F″应等于零 D.预紧力Fˊ应大于零2.预紧力为F'的单个紧螺栓联接,受到轴向工作载荷F之后,螺栓受到的总载'。

荷F0FF+A.大于 B.等于 C. 小于3.紧联接螺栓按拉伸强度计算时,应将拉伸载荷增大到原来的1.3倍,这是考虑到的影响。

A.螺纹中应力集中 B.扭应力的影响 C.载荷变化和冲击 D. 安全因素4.对于联接螺纹,主要要求联接可靠、自锁性好,故常选用()。

A、升角小、单线三角形螺纹B、升角大、双线三角形螺纹C、升角小、单线梯形螺纹D、升角大、双线梯形螺纹5.在螺纹联接中,当有一个被联接件太厚不宜制成通孔,并需要经常装拆时,宜选用()。

A.螺栓联接 B.双头螺柱联接 C. 螺钉联接 D.紧定螺钉联接6.受轴向载荷的紧螺栓联接,为保证被联接件不出现缝隙,因此()。

A.剩余预紧力F″应小于零 B.剩余预紧力F″应大于零C.剩余预紧力F″应等于零 D.预紧力Fˊ应大于零7.螺纹联接防松的根本问题在于()。

A、增加螺纹联接的轴向力B、增加螺纹联接的横向力C、防止螺纹副的相对转动D、增加螺纹联接的刚度8.为联接承受横向工作载荷的两块薄钢板,一般采用的螺纹联接类型应是()。

A.螺栓联接 B. 双头螺柱联接 C.螺钉联接 D. 紧定螺钉联接1.在螺栓联接中,当螺栓轴线与被联接件表面不垂直时,螺栓中将产生附加应力。

2.普通紧螺栓联接,受横向载荷作用,则螺栓中受应力和应力作用。

3.螺纹连接常用的防松方法,按其工作原理,有①⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽防松②⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽防松③⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽防松。

1.当螺纹公称直径、牙型角、螺纹线数相同时,细牙螺纹的自锁性比粗牙螺纹的自锁性好。

()2.紧螺栓连接时,螺栓上的扭剪应力主要是由横向力引起的。

机械设计题库10_滑动轴承资料

机械设计题库10_滑动轴承资料

A. 较小的宽径比
B. 较小的轴承压力
C. 较低粘度的润滑油
D. 较小的轴承相对间隙
(18) 动压滑动轴承能建立油压的条件中,不必要的条件是
D。
A. 轴颈和轴承间构成楔形间隙 B. 充分供应润滑油
C. 轴径和轴承表面之间有相对滑动
D. 润滑油温度不超过 50 C
(19) 下列材料中,可作为滑动轴承衬使用的是
h min 时,使
A 可满足此条件。
A. 表面光洁度提高
B. 增大长径比 L / d
C. 增大相对间隙中
(34) 在干摩擦状态下,动摩擦与极限静摩擦力的关系是
C。
A 相等
B 动摩擦力大于极限静摩擦力
C 动摩擦力小于极限静摩擦力
(35) 液体的粘度标志着
B。
A 液体与固体之间摩擦阻力的大小
B 液体与液体之间摩擦阻力的大小
(9) 验算滑动轴承最小油膜厚度 h min 的目的是 确定轴承是否能获得液体磨擦

(10) 采用三油楔或多油楔滑动轴承的目的在于
提高轴承的稳定性 。
(11) 影响润滑油粘度 的主要因素有 温度 和 压力 。
(12) 非液体摩擦滑动轴承的主要失效形式是
磨损与胶合
,在设计时应验算项目的公式为
p [ p ], pv [ pv ], v [ v ] 。
(13) 滑动轴承的润滑作用是减少 不承受 载荷的部位。
摩擦 ,提高 传动效率 ,轴瓦的油槽应该开在
(14) 形成液体动压润滑的必要条件是
两工作表面间必须构成楔形间隙 、 两工作表面间必须充满
具有一定粘度的润滑油或其他流体
、 两工作表面间必须有一定的相对滑动速度,其运动方向必须保证

机械设计习题与答案22滑动轴承

机械设计习题与答案22滑动轴承

二十二章滑动轴承习题与参考答案一、选择题(从给出的A 、B 、C 、D 中选一个答案)1 验算滑动轴承最小油膜厚度h min 的目的是 。

A. 确定轴承是否能获得液体润滑B. 控制轴承的发热量C. 计算轴承内部的摩擦阻力D. 控制轴承的压强P2 在题2图所示的下列几种情况下,可能形成流体动力润滑的有 。

3 巴氏合金是用来制造 。

A. 单层金属轴瓦B. 双层或多层金属轴瓦C. 含油轴承轴瓦D. 非金属轴瓦 4 在滑动轴承材料中, 通常只用作双金属轴瓦的表层材料。

A. 铸铁 B. 巴氏合金 C. 铸造锡磷青铜 D. 铸造黄铜 5 液体润滑动压径向轴承的偏心距e 随 而减小。

A. 轴颈转速n 的增加或载荷F 的增大 B. 轴颈转速n 的增加或载荷F 的减少 C. 轴颈转速n 的减少或载荷F 的减少 D. 轴颈转速n 的减少或载荷F 的增大6 不完全液体润滑滑动轴承,验算][pv pv 是为了防止轴承 。

A. 过度磨损 B. 过热产生胶合 C. 产生塑性变形 D. 发生疲劳点蚀7 设计液体动力润滑径向滑动轴承时,若发现最小油膜厚度h min 不够大,在下列改进设计的措施中,最有效的是 。

A. 减少轴承的宽径比d l /B. 增加供油量C. 减少相对间隙ψD. 增大偏心率χ 8 在 情况下,滑动轴承润滑油的粘度不应选得较高。

A. 重载 B. 高速C. 工作温度高D. 承受变载荷或振动冲击载荷 9 温度升高时,润滑油的粘度 。

A. 随之升高B. 保持不变C. 随之降低D. 可能升高也可能降低 10 动压润滑滑动轴承能建立油压的条件中,不必要的条件是 。

A. 轴颈和轴承间构成楔形间隙 B. 充分供应润滑油C. 轴颈和轴承表面之间有相对滑动D. 润滑油温度不超过50℃11 运动粘度是动力粘度与同温度下润滑油 的比值。

A. 质量B. 密度C. 比重D. 流速 12 润滑油的 ,又称绝对粘度。

A. 运动粘度B. 动力粘度C. 恩格尔粘度D. 基本粘度 13 下列各种机械设备中, 只宜采用滑动轴承。

13滑动轴承习题与参考答案.

13滑动轴承习题与参考答案.

习题与参考答案一、选择题(从给出的A 、B 、C 、D 中选一个答案)1 验算滑动轴承最小油膜厚度h min 的目的是 A 。

A. 确定轴承是否能获得液体润滑B. 控制轴承的发热量C. 计算轴承内部的摩擦阻力D. 控制轴承的压强P2 在题2图所示的下列几种情况下,可能形成流体动力润滑的有 B 、E 。

3 巴氏合金是用来制造 B 。

A. 单层金属轴瓦B. 双层或多层金属轴瓦C. 含油轴承轴瓦D. 非金属轴瓦 4 在滑动轴承材料中, B 通常只用作双金属轴瓦的表层材料。

A. 铸铁 B. 巴氏合金 C. 铸造锡磷青铜 D. 铸造黄铜 5 液体润滑动压径向轴承的偏心距e 随 B 而减小。

A. 轴颈转速n 的增加或载荷F 的增大 B. 轴颈转速n 的增加或载荷F 的减少 C. 轴颈转速n 的减少或载荷F 的减少 D. 轴颈转速n 的减少或载荷F 的增大6 不完全液体润滑滑动轴承,验算][pv pv 是为了防止轴承 B 。

A. 过度磨损 B. 过热产生胶合 C. 产生塑性变形 D. 发生疲劳点蚀7 设计液体动力润滑径向滑动轴承时,若发现最小油膜厚度h min 不够大,在下列改进设计的措施中,最有效的是 A 。

A. 减少轴承的宽径比d l /B. 增加供油量C. 减少相对间隙ψD. 增大偏心率χ 8 在 B 情况下,滑动轴承润滑油的粘度不应选得较高。

A. 重载 B. 高速C. 工作温度高D. 承受变载荷或振动冲击载荷 9 温度升高时,润滑油的粘度 C 。

A. 随之升高B. 保持不变C. 随之降低D. 可能升高也可能降低 10 动压润滑滑动轴承能建立油压的条件中,不必要的条件是 D 。

A. 轴颈和轴承间构成楔形间隙 B. 充分供应润滑油C. 轴颈和轴承表面之间有相对滑动D. 润滑油温度不超过50℃11 运动粘度是动力粘度与同温度下润滑油 B 的比值。

A. 质量B. 密度C. 比重D. 流速 12 润滑油的 B ,又称绝对粘度。

最小油膜厚度计算公式

最小油膜厚度计算公式

最小油膜厚度计算公式
最小油膜厚度计算公式是机械工程中非常重要的一个公式,它可以帮助我们计算机械设备中的油膜厚度,从而保证机械设备的正常运转。

在本文中,我们将详细介绍最小油膜厚度计算公式的相关知识。

我们需要了解什么是油膜厚度。

油膜厚度是指在机械设备中,润滑油在摩擦表面上形成的一层润滑膜的厚度。

这层润滑膜可以减少机械设备中的摩擦和磨损,从而延长机械设备的使用寿命。

最小油膜厚度是指在机械设备中,润滑油形成的润滑膜的最小厚度。

如果油膜厚度小于最小油膜厚度,那么机械设备就会出现摩擦和磨损,从而影响机械设备的正常运转。

最小油膜厚度计算公式是根据机械设备的工作条件和润滑油的性质来计算的。

具体公式如下:
hmin = 0.025 × (C/P) × (V/μ)
其中,hmin表示最小油膜厚度,单位为毫米;C表示机械设备的载荷,单位为牛顿;P表示机械设备的接触面积,单位为平方米;V 表示机械设备的运动速度,单位为米/秒;μ表示润滑油的粘度,单位为帕·秒。

通过这个公式,我们可以计算出机械设备中润滑油的最小油膜厚度。

如果计算出来的最小油膜厚度小于机械设备的要求,那么就需要更
换润滑油或者采取其他措施来保证机械设备的正常运转。

最小油膜厚度计算公式是机械工程中非常重要的一个公式,它可以帮助我们计算机械设备中的油膜厚度,从而保证机械设备的正常运转。

在实际应用中,我们需要根据机械设备的工作条件和润滑油的性质来计算最小油膜厚度,从而选择合适的润滑油和采取相应的措施来保证机械设备的正常运转。

滑动轴承复习题

滑动轴承复习题

选择题 1、验算滑动轴承最小油膜厚度hmin的目的是__。 A、确定轴承是否能获得液体摩擦 B、控制轴承的发热量 C、计算轴承内部的摩擦阻力 D、控制轴承的压强p 2、巴氏合金用来制造__。 A、单层金属轴瓦 B、双层或多层金属轴瓦 C、含油轴承轴瓦 D、非金属轴瓦 3、在滑动轴承材料中,__通常只用作双金属轴瓦的表层材料。 A、铸铁 B、巴氏合金 C、铸造锡磷青铜 D、铸造黄铜 4、液体摩擦动压径向轴承的偏心距e随__而减小。 A、轴颈转速n的增加或载荷F的增大 B、轴颈转速n的增加或载荷F的减少 C、轴颈转速n的减少或载荷F的减少 D、轴颈转速n的减少或载荷F的增加 5、非液体摩擦滑动轴承,验算pv<[pv]是为了防止轴承__。 A、过度磨损 B、过热产生胶合 C、产生塑性变形 D、发生疲劳点蚀
1.滑动轴承的半径间隙与轴承的半径之比称为 轴承的偏心距与半径间隙的比值称为
间隙, 。 。
2.随着轴转速的提高,液体动压向心滑动轴承的偏心率会 3.液体摩擦动压滑动轴承的轴瓦上的油孔、油沟的位置应开 在 。
4.对非液体摩擦滑动轴承,为防止边界膜破裂,轴承过度磨损, 应校核 ,为防止轴承温升过高产生胶合,应校 核 。 5.液体动压润滑滑动轴承的偏心率X的值在0一1之间变化,当 X值越大时,最小油膜厚度hmin ,轴承的承载量 系数Cp 。
10.问:在不完全液体润滑滑动轴承设计中,限制pv 值的主要目的是什么? 11.问:液体动压油膜形成的必要条件是什么? 12.问:保证液体动力润滑的充分条件是什么? 13.问:试分析液体动力润滑轴承和不完全液体润滑轴 承的区别,并讨论它们各自适用的场合。 14.问:在设计滑动轴承时,相对间隙ψ的选取与速度 和载荷的大小有何关系? 15.问:止推滑动轴承常用的结构形式有哪些? 16.问:为什么止推轴承通常不用实心式轴颈? 17.问:验算滑动轴承的压力p、速度v和压力与速度 的乘积pv,是不完全液体润滑轴承设计中的内容,对 液体动力润滑轴承

滑动轴承油膜厚度计算

滑动轴承油膜厚度计算

1 滑动轴承的工程分析下面是径向动压滑动轴承的一组计算公式。

1.最小油膜厚度h minh min =C-e=C(1-ε)=r ψ(1-ε) (1)式中C=R -r ——半径间隙,R 轴承孔半径;r 轴颈半径;ε=e/C ——偏心率;e 为偏心距;ψ=C/r ——相对间隙,常取ψ=(0.6-1)×10-3(v)1/4, v 为轴颈表面的线速(m/s )设计时,最小油膜厚度h min 必须满足:h min /(R z1+R z2)≥2-3 [1](2)式中R z1、R z2为轴颈和轴承的表面粗糙度。

2.轴承的特性系数(索氏系数)S=μn /(p ψ2)(3)式中μ——润滑油在轴承平均工作温度下的动力粘度(Pa ·s );n ——轴颈的转速(r/s );p ——平均压强 (N/m 2) 用来检验轴承能否实现液体润滑。

ε值可按下面简化式求解。

A ε2+E ε+C=0 (4) 其中A=2.31(B/d)-2,E=-(2.052A +1), C=1+1.052A -6.4088S. 上式中d ——轴径的直径(m );B ——轴承的宽度(m )通常ε选在0.5-0.95之间,超出0-1间的值,均非ε的解[1]。

3.轴承的温升油的平均温度t m 必须加以控制,否则,润滑油的粘度会降低,从而破坏轴承的液体润滑。

油的温升为进出油的温度差,计算式为:)5()(vK vBd Qc fpT S ψπψρψ+=∆式中 f —摩擦系数;c —润滑油的比热,通常取1680-2100 J/kg ℃;ρ—润滑油的密度,通常取850-900kg/m 3;Q —耗油量(m 3/s),通常为承载区内流出的端泄量;K S —为轴承体的散热系数[1,2]上式中的(f/ψ)、(Q/ψνBd )值,如ε=0.5-0.95可按f/ψ=0.15+1.92 (1.119-ε)[1+2.31 ( B/d )-2(1.052-ε)] (6)Q/ψνBd=ε(0.95-0.844ε)/[(B/d)-2+2.34-2.31ε] [2](7)求解,上式中的B ,d 的单位均为m ,p 的单位为N/m 2,ν为油的运动粘度,单位为m/s. 轴承中油的平均温度应控制在t m =t 1+△T/2≤75℃ (8)其中t 1为进油温度;t m 为平均温度2 径向动压滑动轴承稳健设计实例设计过程中可供选择的参数及容差较多,在选用最佳方案时,必须考虑各种因素的影响和交互作用。

河科大机械设计作业第12.13章作业解答[1]

河科大机械设计作业第12.13章作业解答[1]

第十二章滑动轴承一、分析与思考题12-20 在滑动轴承上开设油孔和油槽时应注意哪些问题?答: 1、应开设在非承载区;2、油槽沿轴向不能开通。

12-21 一般轴承的宽径比在什么范围内?为什么宽径比不宜过大或过小?答:一般B/d为0.3—1.5;B/d过小,承载面积小,油易流失,导至承载能力下降。

但温升低;B/d过大,承载面积大,油易不流失,承载能力高。

但温升高。

12-22 滑动轴承常见的失效形式有哪些?答:磨粒磨损,刮伤,咬粘(胶合),疲劳剥落和腐蚀。

12-23 对滑动轴承材料的性能有哪几方面的要求?答: 1、良好的减摩性,耐磨性和抗咬粘性。

2、良好的摩擦顺应性,嵌入性和磨合性。

3、足够的强度和抗腐蚀能力。

4、良好的导热性、工艺性、经济性。

12-24 在设计滑动轴承时,相对间隙ψ的选取与速度和载荷的大小有何关系?答:速度愈高,ψ值应愈大;载荷愈大,ψ值应愈小。

12-25 验算滑动轴承的压力p、速度v和压力与速度的乘积pv,是不完全液体润滑滑轴承设计的内容,对液体动力润滑滑动轴承是否需要进行此项验算?为什么?答:也应进行此项验算。

因在起动和停车阶段,滑动轴承仍处在不完全液体润滑状态。

另外,液体动力润滑滑动轴承材料的选取也是根据[p]、[pv]、[v]值选取。

12-26 试说明液体动压油膜形成的必要条件。

答: 相对滑动的两表面间必须形成收敛的楔形间隙;有相对速度,其运动方向必须使油由大端流进,小端流出; 润滑油必须有一定的粘度,且充分供油; 12-27 对已设计好的液体动力润滑径向滑动轴承,试分析在仅改变下列参数之一时,将如何影响该轴承的承载能力。

⑴ 转速n=500r/min 改为n=700r/min ; ⑵ 宽径比B/d 由1.0改为0.8;⑶ 润滑油由采用46号全损耗系统用油改为68号全损耗系统用油 ⑷ 轴承孔表面粗糙度由R z =6.3μm 改为R z =3.2μm 。

答:(1)承载能力↑ (2)承载能力↓ (3)η↑,承载能力↑(4)R Z ↓,允许h min ↓,偏心率↑,承载能力↑。

球轴承最小油膜厚度-概述说明以及解释

球轴承最小油膜厚度-概述说明以及解释

球轴承最小油膜厚度-概述说明以及解释1.引言【1.1 概述】球轴承是一种广泛应用于机械设备中的关键零部件,其作用是减少摩擦和改善运动的平稳性。

油膜厚度是球轴承性能评价的重要指标之一,它影响着轴承的寿命和运行效率。

本文旨在探讨球轴承最小油膜厚度的研究与应用。

通过对油膜厚度的定义、影响因素以及确定最小油膜厚度的方法进行论述,旨在为相关领域的工程师和研究人员提供指导和参考。

首先,我们将介绍球轴承的作用。

球轴承作为一种安装在机械设备中的旋转部件,可承受轴的旋转载荷。

它通过在轴和轴承之间形成一层润滑油膜,减少摩擦和磨损,从而实现轴的平稳运转。

接下来,我们会详细阐述油膜厚度的定义。

油膜厚度是指球轴承中润滑油形成的涂层的厚度,通常以纳米为单位。

油膜厚度的大小直接影响着轴承表面的接触状况和润滑效果。

因此,研究和确定最小油膜厚度至关重要。

此外,我们还将探讨影响油膜厚度的因素。

包括轴承负荷、润滑油性能、轴承速度、轴承几何形状等。

这些因素的变化都会对油膜厚度产生一定的影响,需要进行综合分析和考虑。

最后,我们会强调油膜厚度的重要性。

它直接关系着轴承的运行寿命、稳定性和效率。

因此,准确确定最小油膜厚度对于确保球轴承的正常运行具有重要意义。

我们将介绍一些确定最小油膜厚度的方法,并展望油膜厚度在未来的应用和发展方向。

通过本文的研究,读者可以深入了解球轴承最小油膜厚度的相关知识,并在实际应用中准确确定油膜厚度,以提高轴承的使用寿命和性能稳定性。

进一步推动球轴承领域的技术发展和应用创新。

1.2文章结构文章结构如下:1.2 文章结构本文将分为三个主要部分来探讨球轴承最小油膜厚度的问题。

第一部分是引言部分,主要介绍了文章的背景和目的。

在概述部分,我们将对球轴承和油膜厚度进行简要介绍,以便读者了解这两个概念的基本含义。

接下来,我们将介绍文章的结构,让读者对整篇文章的组织有一个清晰的认识。

最后,我们将明确文章的目的,即探究球轴承最小油膜厚度的重要性及其应用。

滑动轴承油膜厚度计算

滑动轴承油膜厚度计算

稳健设计理论在液体动压滑动轴承中的应用滑动轴承是各种传动装置中广泛采用的支承件,特别是在高速运转机械中,为了减小摩擦,提高传动效率,要求轴承与轴颈间脱离接触并具有足够的油膜厚度,以形成液体间的摩擦状态。

在滑动轴承设计中,只有当轴承尺寸、轴承载荷、相对运动速度、润滑油的粘度、轴承间隙以及表面粗糙度之间满足一定关系时,才能实现液体摩擦。

任一参数取值不当,将出现非液体摩擦状态,导致液体摩擦的失效。

以上参数的优化设计对轴承的使用性能及寿命有十分重要的作用。

通常,在设计中,往往对轴承的各设计参数和使用条件提出更高要求。

轴承的设计参数或误差对轴承的性能的影响是非线性的,在不同的设计方案中,同样的误差程度,所产生的性能波动不尽相同。

稳健设计就是找到一种设计方案,使得液体动压轴承的性能对误差不十分敏感,同时达到较宽松的加工经济精度而降低成本的目的。

本文对某液体动压滑动轴承进行稳健设计,建立相应的数学模型,并求得优化的设计方案。

1滑动轴承的工程分析下面是径向动压滑动轴承的一组计算公式。

1.最小油膜厚度h minh min=C-e=C(1-ε)=rψ(1-ε)(1)式中C=R-r——半径间隙,R轴承孔半径;r轴颈半径;ε=e/C——偏心率;e为偏心距;ψ=C/r——相对间隙,常取ψ=(0.6-1)×10-3(v)1/4,v 为轴颈表面的线速(m/s )设计时,最小油膜厚度h min 必须满足:h min /(R z1+R z2)≥2-3[1](2)式中R z1、R z2为轴颈和轴承的表面粗糙度。

2.轴承的特性系数(索氏系数)S=μn /(p ψ2)(3)式中μ——润滑油在轴承平均工作温度下的动力粘度(Pa ·s );n ——轴颈的转速(r/s );p ——平均压强(N/m 2)用来检验轴承能否实现液体润滑。

ε值可按下面简化式求解。

A ε2+E ε+C=0(4)其中A=2.31(B/d)-2,E=-(2.052A +1),C=1+1.052A -6.4088S.上式中d ——轴径的直径(m );B ——轴承的宽度(m )通常ε选在0.5-0.95之间,超出0-1间的值,均非ε的解[1]。

圆柱凸轮侧向传动机构最小油膜厚度计算公式

圆柱凸轮侧向传动机构最小油膜厚度计算公式

圆柱凸轮侧向传动机构最小油膜厚度计算公式田侃;辜勇;董明望【摘要】圆柱凸轮侧向传动机构是一种新型的减速机构,与弧面凸轮传动机构相比承载力更大.为研究圆柱凸轮侧向传动机构啮合过程中的润滑状态,依据Hamrock-Dowson公式,推导出稳态工况下圆柱凸轮侧向传动机构线接触最小油膜厚度计算公式.该公式表明对润滑油膜厚度影响较大的因素主要有润滑油黏压系数、常压下润滑油动力黏度、转速、圆柱半径、滚子半径及从动盘节圆半径,因此可通过优化结机构构及调整机构工况来改善机构润滑状态.采用该最小油膜厚度计算公式计算某圆柱凸轮侧向传动机构在稳态工况下最小油膜厚度及膜厚比,分析该机构工作时的润滑状态,并提出其润滑状态的优化方案.【期刊名称】《润滑与密封》【年(卷),期】2018(043)008【总页数】5页(P121-125)【关键词】圆柱凸轮;滚子;最小油膜厚度;膜厚比【作者】田侃;辜勇;董明望【作者单位】武汉理工大学物流工程学院湖北武汉430063;武汉理工大学物流工程学院湖北武汉430063;武汉理工大学物流工程学院湖北武汉430063【正文语种】中文【中图分类】TH117.2减速器是可用在诸多领域的机械传动装置,包括增速装置、调速装置以及柔性传动装置在内的各类复合传动装置等,主要有齿轮减速器、涡轮蜗杆减速器、谐波减速机、行星减速机、摆线针轮减速机等。

目前,减速器存在着传动效率不高,质量大、体积大,不耐冲击,或者传动比大而机械效率较低等问题。

随着各个行业的发展,其所用机械对传动机构(减速机构)的要求越来越高,对于小尺寸、大传动比、高传动效率、大扭矩的传动机构需求日益迫切。

圆柱凸轮侧向传动机构作为一种新型的减速机构,具有传动比大、尺寸小、传动效率高、传动平稳等特点。

目前关于该机构的研究主要集中在结构设计、强度校核、参数化建模、运动学仿真等方面,在机构啮合过程中的润滑状态方面研究不多。

本文作者依据Hamrock-Dowson弹流润滑理论 [1-4],推导一般情况下圆柱凸轮侧向传动机构最小油膜厚度计算公式,并应用到实际中,研究圆柱凸轮侧向传动机构运行时的润滑状态,为其润滑设计提供理论依据。

高副接触弹流润滑条件下的油膜厚度分析

高副接触弹流润滑条件下的油膜厚度分析

一高副接触弹流润滑条件下的油膜厚度分析1 弹流润滑条件下的油膜厚度公式1)线接触弹流润滑条件下的油膜厚度公式线接触弹流润滑油膜厚度公式选用Dowson-Higginson 提出的油膜厚度公式【1】,其最小油膜厚度公式为13.003.0'13.043.07.0054.0min)(65.2wE L R u h ηα= (1-1) 式中,h min 为最小油膜厚度,m ;R 是综合曲率半径,21111R R R +=,其中R 1、R 2为两接触体在接触点处的曲率半径,m ;u 是接触点卷吸速度,221u u u +=,其中u 1、u 2为两接触体在接触点处的线速度,m/s ;η0是润滑油在大气压下的粘度,Pa ·s ,;α是粘压系数,m 2/N ;E '是综合弹性模量,)11(211222121'E E E μμ-+-=,其中,μ1、μ2为两接触体的泊松比,E 1、E 2为两接触体的弹性模量,Pa ;L 是接触区域轴向长度,m ;w 是滚动体承受的载荷,N 。

从最小油膜厚度公式可以推导出中心油膜厚度公式为13.003.0'13.043.07.0054.0)(53.3w E L R u h c ηα=(1-2) 最小油膜厚度公式的无量纲形式为13.07.054.0min65.2W U G H =(1-3) 式中,min H 为无量纲最小油膜厚度,R h H /min min =;G 为无量纲材料参数,'E G α=;U 为无量纲速度参数,RE uU '0η=;W 为无量纲载荷参数,RLE wW '=。

从最小油膜厚度公式可以推导出中心油膜厚度公式的无量纲形式为13.07.054.053.3WU G H c =(1-4) 2)点接触弹流润滑条件下的油膜厚度公式点接触弹流润滑油膜厚度公式选用Hamrock-Dowson 提出的油膜厚度公式【2】,其最小油膜厚度公式为)1()(63.368.0073.0117.0'493.049.068.00min k e w E R u h ----=αη (1-5)式中,min h 为最小油膜厚度,m ;R 是综合曲率半径,21111R R R +=,其中1R 、2R 为两接触体在接触点处的曲率半径,m ;u 是接触点卷吸速度,221u u u +=,其中1u 、2u 为两接触体在接触点处的速度,m/s ;η0是润滑油在大气压下的粘度,Pa ·s ;α是粘压系数,m 2/N ;E '是综合弹性模量,)11(211222121'E E E μμ-+-=,其中,1μ、2μ为两接触体的泊松比,1E 、2E 为两接触体的弹性模量,Pa ;w 是滚动体承受的载荷,N 。

机械设计题库10_滑动轴承

机械设计题库10_滑动轴承

C. 不变 h min 不够大,在下列改进措施中,有效的是
A。 A. 减小轴承长径 L / d
B. 增加供油量 Q
C. 减小相对间隙
二 填空题
(1) 径向滑动轴承的偏心距 e 。随着载荷增大而
增大 ;随着转速增高而 降低 。
6
(2) 滑动轴承常见的失效形式有
磨粒磨损 、 刮伤 、 胶合 、 疲劳剥落
D. 计算轴承的发热量
(27) 在 C 情况下滑动轴承润滑油的黏度不应选得较高。
A. 承受振动冲击载荷
B. 工作温度高
C. 高速
D. 重载
(28) 一滑动轴承公称直径 d 80 mm ,相对间隙
0 .001 ,已知该轴承在液体摩擦状态下工作,偏
心率
0 .48 ,则最小油膜厚度 h min
C。
A. 42 m
A 偏心率 x 与相对间隙
B 相对间隙 与宽径比 l / d
C 宽径比 l / d 与偏心率
D 润滑油粘度 、轴颈公称直径 d 与偏心率
(48) 液体动压向心滑动轴承,若向心外载荷不变,减小相对间隙 A。
,则承载能力
A ,而发热
A. 增大
B. 减小
(49) 设计液体摩擦滑动轴承时,若发现最小油膜厚度
(9) 验算滑动轴承最小油膜厚度 h min 的目的是 确定轴承是否能获得液体磨擦

(10) 采用三油楔或多油楔滑动轴承的目的在于
提高轴承的稳定性 。
(11) 影响润滑油粘度 的主要因素有 温度 和 压力 。
(12) 非液体摩擦滑动轴承的主要失效形式是
磨损与胶合
,在设计时应验算项目的公式为
p [ p ], pv [ pv ], v [ v ] 。

精编机械设计-滑动轴承习题与参考答案资料

精编机械设计-滑动轴承习题与参考答案资料

习题与参考答案一、选择题(从给出的A、B、C、D中选一个答案)1 验算滑动轴承最小油膜厚度h min的目的是。

A. 确定轴承是否能获得液体润滑B. 控制轴承的发热量C. 计算轴承内部的摩擦阻力D. 控制轴承的压强P2 在题2图所示的下列几种情况下,可能形成流体动力润滑的有。

3 巴氏合金是用来制造。

A. 单层金属轴瓦B. 双层或多层金属轴瓦C. 含油轴承轴瓦D. 非金属轴瓦4 在滑动轴承材料中,通常只用作双金属轴瓦的表层材料。

A. 铸铁B. 巴氏合金C. 铸造锡磷青铜D. 铸造黄铜5 液体润滑动压径向轴承的偏心距e 随 而减小。

A. 轴颈转速n 的增加或载荷F 的增大 B. 轴颈转速n 的增加或载荷F 的减少 C. 轴颈转速n 的减少或载荷F 的减少 D. 轴颈转速n 的减少或载荷F 的增大6 不完全液体润滑滑动轴承,验算][pv pv ≤是为了防止轴承 。

A. 过度磨损 B. 过热产生胶合 C. 产生塑性变形 D. 发生疲劳点蚀7 设计液体动力润滑径向滑动轴承时,若发现最小油膜厚度h min 不够大,在下列改进设计的措施中,最有效的是 。

A. 减少轴承的宽径比d l /B. 增加供油量C. 减少相对间隙ψD. 增大偏心率χ 8 在 情况下,滑动轴承润滑油的粘度不应选得较高。

A. 重载 B. 高速C. 工作温度高D. 承受变载荷或振动冲击载荷 9 温度升高时,润滑油的粘度 。

A. 随之升高B. 保持不变C. 随之降低D. 可能升高也可能降低 10 动压润滑滑动轴承能建立油压的条件中,不必要的条件是 。

A. 轴颈和轴承间构成楔形间隙 B. 充分供应润滑油C. 轴颈和轴承表面之间有相对滑动D. 润滑油温度不超过50℃11 运动粘度是动力粘度与同温度下润滑油 的比值。

A. 质量B. 密度C. 比重D. 流速 12 润滑油的 ,又称绝对粘度。

A. 运动粘度B. 动力粘度C. 恩格尔粘度D. 基本粘度 13 下列各种机械设备中, 只宜采用滑动轴承。

齿轮传动最小油膜厚度分析及改善润滑的措施

齿轮传动最小油膜厚度分析及改善润滑的措施

№.6 陕西科技大学学报 Dec.2009・84・ J OU RNAL OF SHAANXI UN IV ERSIT Y OF SCIENCE &TECHNOLO GY Vol.27 文章编号:1000-5811(2009)06-0084-03齿轮传动最小油膜厚度分析及改善润滑的措施王宁侠1,蒋新萍2(1.陕西科技大学机电工程学院,陕西西安 710021;2.常州轻工职业技术学院机械工程系,江苏常州 213164)摘 要:根据弹性流体动力润滑理论,通过对齿轮传动中形成动压油膜的参数分析,得出齿面最小油膜厚度发生在小齿轮齿根与大齿轮齿顶开始啮合点的位置,认为应以此处的润滑状态作为齿面润滑状态的判断依据,同时给出了一些改善齿轮传动润滑状态的措施.关键词:弹性流体动力润滑;起始啮合点;油膜厚度中图分类号:T H132.41 文献标识码:A图1 弹性流体润滑时的油膜厚度及压力分布0 引言齿轮传动除节点外各啮合点处均有相对滑动,因此齿面的润滑是必不可少的,而齿面的润滑状态与齿面的失效形式密切相关.根据弹性流体润滑理论,点、线接触的运动副其表面的润滑油膜厚度与材料的弹性变形、流体动压和粘压关系、两接触表面的平均速度、所受载荷大小等有关,微接触区内油膜厚度及油压的变化如图1所示,其最小油膜厚度的计算公式,即道森2希金森方程如下[1]:h min =2.65α0.54(η0v )0.7R 0.43E ′-0.03W -0.13(1)图2 齿轮啮合的几何参数式中:α为润滑油的粘压系数;η0为大气压下的粘度;v 为两接触表面沿相对运动方向的平均速度;R 为接触点的综合曲率半径,R =R 1R 2/(R 1+R 2);W 为单位接触宽度上的载荷;E ′为当量弹性模量,1E ′=12(1-ν21E 1+1-ν22E 2),E 1、E 2、ν1、ν2分别为两接触体材料的弹性模量和泊松比.如图2所示的渐开线直齿圆柱齿轮传动中,两齿廓接触于任一点K ,接触点K 处两齿廓的曲率半径分别为R 1、R 2,此时可看成是半径分别为R 1、R 2的两圆柱体相接触,根据(1)式可分析该点处的最小油膜厚度.齿轮的啮合传动过程是很复杂的,轮齿在传动中不断地进入啮合、脱离、啮合,接触线在齿面上的位置不断变化,接触处的几何形状(曲率半径)和运动速度随接触位置的变化而变化.啮合区内各点的最小油膜厚度是变化的,那么最小油膜厚度的最小值发生在什么位置?判断齿面润滑状态时应以哪一点的最小油膜厚度为依据?以下通过分析确定最小油膜厚度发生的位置.3收稿日期:2009209226作者简介:王宁侠(1963-),女,陕西省扶风县人,教授,研究方向:机械制造与设计第6期王宁侠等:齿轮传动最小油膜厚度分析及改善润滑的措施1 齿轮传动最小油膜厚度计算分析在齿轮传动中,齿轮和润滑油确定后,当量弹性模量E ′、α和η0可作为常数加以考虑,故令常数[2]C =2.65α0.54η0.70E ′-0.13(2) 则(1)式简化为:h min =C ・v 0.7・R 0.43・W -0.13(3) 由(3)式可以看出:最小油膜厚度h min 随速度v 及综合曲率半径R 的增加而增加,随单位接触线长度上载荷W 的增大而减小.一对齿的啮合过程中,啮合点位置是变化的,啮合点的v 、R 也随之变化,由于重合度的影响,也使W 在啮合过程中随啮合位置而发生变化.因此,在啮合区内各点的油膜厚度是变化的,需分析最小油膜厚度发生的位置.1.1 综合曲率半径分析由图2可知,一对齿廓从B 2点进入啮合,从B 1点脱离啮合,P 点为节点,N 1N 2为理论啮合线,设其长度为L .若齿廓任一瞬时相切接触于K 点处,大、小齿轮齿廓在K 点的曲率半径分别为R 2、R 1,则有:R 1+R 2=L(4) 任一点接触的综合曲率半径为:R =R 1R 2R 1+R 2=R 1-R 21L (5) 将R 对R 1分别求一次导数、二次导数,分析得知,当R 1=L /2时R 取极大值,记为R max =L /4;当R 1<L /2时,R 随R 1的增大而增大;当R 1>L /2时,R 随R 1的增大而减小.设两轮齿数比Z 2/Z 1=i ,则节点P 啮合时有:R 2P =iR 1P ,R 1P =L 1+i ,R P =iL (1+i )2(6) 当i >1时,R 1P <L/2,则R P <R max ,B 2点为起始啮合点,又有R 1B 2<R 1P ,故R B 2<R P ,B 2点的综合曲率半径R B 2为最小.1.2 齿面卷吸速度设两齿轮角速度分别为ω1、ω2,则齿廓任一点接触时对润滑油的卷吸速度为[3]:v =12(v 1+v 2)=12(ω1R 1+ω2R 2)=ω12i[L +(i -1)R 1](7)齿面动压油膜的厚度随卷吸速度的增加而增大,而速度又是L 、i 、ω1、R 1的函数,将(7)式分别对各变量求导得:9v 9R 1=ω12i(i -1)9v 9i =-ω12i 2(L -R 1)9v 9L =ω12i9v 9ω1=12i[L +(i -1)R 1](8)分析(8)式,由于一般传动i >1,且有L >R 1,所以可以看出v 随R 1、L 、ω1的增大而单调增大,随i 的增大而单调减小.在齿轮传动中,一般L 、ω1,i 均为定值,故v 仅随R 1而变化,在起始啮合点B 2处R 1B 2最小,故卷吸速度v B 2最小.1.3最小油膜厚度分析根据以上分析,起始啮合点B 2处的综合曲率半径R B 2和卷吸速度v B 2皆为啮合过程中的最小值,现在考虑载荷W 的影响.在齿轮传动中,一般有1<εα<2,因此,B 2点处于双齿啮合区,考虑到动压油膜传递载荷的作用,B 2处作用的载荷W B 2将小于节点P 处的载荷W P .但是,由于载荷对油膜厚度的影响很小(指数为-0.13),因此,即使按W B 2=W P /2进行计算,所得到的最小油膜厚度h min B 2的值也仅比按W B 2=W P・58・陕西科技大学学报第27卷所得到的结果h min B 2′稍大一点(h min B 2=1.0943h min B 2′).显然,这种影响和R 、v 对最小油膜厚度的影响相比是很微小的,其综合影响的结果仍然是小齿轮齿根与大齿轮齿顶开始啮合点的油膜厚度最小.以一对m =4mm ,i =4,Z 1=25的标准直齿圆柱齿轮传动为例进行计算,节点处载荷按W 计算,B 点处载荷按W /2计算,可得到h min B 2=0.6817h min P .综上所述,可以得到以下结论:(1)一对直齿轮传动中,小齿轮齿根与大齿轮齿顶开始啮合点B 2处的最小油膜厚度最小,故应以此点的油膜厚度作为整个齿轮传动是否出现弹性流体动压润滑的判据;(2)B 2点处的最小油膜厚度取决于小齿轮上该点的曲率半径R 1B 2、理论啮合线的长度L 、传动比i 小齿轮转动角速度ω1.当R 1B 2、L 、ω1愈大,i 愈小,则h min B 2愈大;当L 、ω1、i 为定值时,减小齿轮模数或做成短齿皆有利于增大R 1B 2,从而有利于增大油膜厚度.2 齿面润滑状态分析对于不能形成完全动压润滑的摩擦表面,通常用膜厚比来判断润滑状态,齿轮传动一般用节点P 处的膜厚比λP 来确定:λP ≈h min PR 2a 1+R 2a 2(9) 式中R a 1,R a 2分别为两齿轮齿面的粗糙度;h min P 为节点的最小油膜厚度.一般认为当λP <1时为边界润滑状态;当λP >3时为流体润滑状态;而当1≤λP ≤3时为混合润滑状态.3 结束语由于齿轮传动各啮合点中,以小齿轮齿根与大齿轮齿顶啮合处的最小油膜厚度为最薄,因此应以此处的润滑状态来衡量整个传动的润滑状态.而为了改善此处的润滑状态,可采取以下措施:(1)在保证弯曲强度的条件下,尽量取较小的模数;(2)采用短齿直齿轮传动;(3)提高齿面加工质量,降低粗糙度值,特别注意提高小齿轮齿根和大齿轮齿顶的光洁度;(4)采用变位齿轮正传动,以较大的小齿轮变位系数有效增大起始啮合点的曲率半径,从而达到增大最小油膜厚度,改善润滑的目的.参考文献[1]张鹏顺,陆思聪.弹性流体动力润滑及其应用[M ].北京:高等教育出版社,1995.[2]孙 桓.机械原理[M ].北京:高等教育出版社,2000.[3]王宁侠.机械设计[M ].西安:西安电子科技大学出版社,2008.LOWEST OIL FILM THICKNESS ANALYSIS OF AEAR D RIVE &IMPROVE IUBRICATION MEASUREWAN G Ning 2xia 1,J IAN G Xin 2ping 2(1.School of Mechanical and Electrical Engineering ,Shaanxi University of Science &Technology ,Xi ′an 710021,China ;2.Department of Mechanical Engineering ,Changzhou Institute of Light Industry Technology ,Changzhou 213164,China )Abstract :By elasto 2hydrodynamic lubrication t heory ,t he location of lowest oil film t hickness is obtained at parameter analysis of dynamic p ressure oil film.The place of lowest oil film t hickness is determined at t he contact point of pinion dedendum wit h gear top ,t hat t he lubri 2cant should be here to judge t he state as a basis for lubrication ,and t he measure is advanced for imp roving lubricating condition of gear drive.K ey w ords :elasto 2hydrodynamic lubrication ;original mesh point ;oil film t hickness ・68・。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最小油膜厚度hmin
-
由最小油膜厚度公式及承载量系数表可知,在其它条件不变的情况下,hmin愈小则偏心率 愈大,轴承的承载能力就愈大。然而,最小油膜厚度是不能无限缩小的,因为它受到轴颈和轴承表面粗糙度、轴的刚性及轴承与轴颈的几何形状误差等的限制。为确保轴承能处于液体摩擦状态,最小油膜厚度必须等于或大于许用油膜厚度[h],即
铰,精磨,刮(每平方厘米内有3~5个点)
钻石刀头镗
镗磨
研磨,抛光,超精加工等
表面粗糙
度代号
Rz/μm
10
6.3
3.2
1.6
0.8
0.4
0.分别为轴颈和轴承孔微观不平度十点高度(下表),对一般轴承,可分别取
Rz1和Rz2值为3.2μm和6.3μm,或1.6μm和3.2μm;对重要轴承可取为0.8μm和
1.6μm,或0.2μm和0.4μm。
S——安全系数,考虑表面几何形状误差和轴颈挠曲变形等,常取S≥2。
加工方法
精车或精镗,中等磨光,刮(每平方厘米内有1.5~3个点)
相关文档
最新文档