空气动力学实验风洞流场性能验证
小型直流式风力机实验风洞的流场特性研究
厂————
=
—‘ — 中 n一 测量 点数 ;
一
第 点的速度偏差 , 即第 i 的速度与气流 点
平 均 速度 之差 , /; rs n
尺寸 长度 为 5 0 m。风 洞侧视 图如 图 1 0r a 所示 。
流体力学的研究试验提供所需的流场。风洞实验的主 要 任务 是正 确模 拟气 流 流过实 物 的流 态并 提供 精 确 的 实 验数 据 , 为进 一步改 进设 计方 案 、 善被 测物 体 的空 改 气动力学特性提供可靠的依据。风洞的气流特性好坏
析 风 洞性 能 的评 价 方法 。 实验采 用杯 式风速 计 测量 风速 , 据计 算 所得 的风速 均 匀性 以及 风速 根 稳 定性 , 定 了距风 洞 出口 5 处 为最佳 的 实验 断 面。 一 步测 量 5 处截 面 的风速 一 电机 频 率 确 m 进 m
的 关 系, 结果表 明 气体 流速 随风机 工作 频 率呈 直线 变化 。
专 题 研 讨
小型直流 式风 力机实验风洞 的流场特性研究
于 佳 , 臧建彬 , 刘叶弟
( 同济 大 学 机 械 工 程 学 院 。 海 2 1 0 上 0 8 4)
摘 要 : 同济 大 学新 建 的 小型 直流 式风 力机 实验 风 洞 , 送风段 包括进 风稳 定段 、 风机 段 、 渡 过 段 和蜂 窝 器段 。本 文 实验 段 流场 特性 的研 究是根 据 测量 风速 , 以风 速 均 匀性 、 定性 为指 标 , 稳 分
直 接关 系到 空气 动力 学研 究 的成败 【 1 】 。
低速 风 洞可分 为 直流式 和 回流式 两 种圆 直流式 风 。
洞 的气 流经 过实验 段后 直接 排 入大 气 ,实 验段 的气 流 易 受外 界 影 响 , 占地 小 、 但 投资 少 ; 回流 式 风洞 的气 流 在 洞 内形成 一条 循环 回路 ,不 受外 界 干扰 ,流 场 品质 好 , 占地大 , 价 比直流式 要 高f 但 造 3 ] 。 同济 大 学 于 2 1 年 新建 成 的一 台 小 型直 流 式 风 01 力 机实 验风 洞 。 实验 风洞 全长 27 内径 1 m, 分 该 . m, . 共 4 为 四段 。 第一 段 为进风 稳定 段 , 尺寸 长度 为 50 0mm。 第
风洞试验原理
风洞试验原理
风洞试验是一种用于模拟大气流场对物体的影响的实验方法,它在航空航天、
汽车、建筑等领域都有着广泛的应用。
通过风洞试验,可以模拟不同速度、压力、温度的气流环境,从而对物体的气动特性进行研究和分析。
本文将介绍风洞试验的原理及其在工程领域的应用。
首先,风洞试验的原理是基于流体力学和空气动力学的基本理论。
当物体在气
流中运动时,气流会对物体施加压力和阻力,同时也会产生升力和侧向力。
风洞试验就是通过模拟不同气流环境,测量物体在气流中的受力情况,从而分析物体的气动性能。
在风洞试验中,首先需要确定试验的目的和参数。
根据不同的研究对象和需求,可以确定试验的速度范围、气流密度、温度等参数。
然后,通过风洞设备产生符合要求的气流环境,将待测试物体放置在气流中进行试验。
在试验过程中,可以通过压力传感器、力传感器等设备实时监测物体受到的气动力,同时也可以通过流场可视化技术观察气流对物体的影响。
风洞试验在工程领域有着广泛的应用。
在航空航天领域,风洞试验可以用于研
究飞机、导弹等飞行器在不同速度、高度下的气动性能,为设计和改进飞行器提供重要依据。
在汽车工程领域,风洞试验可以用于研究汽车外形设计、空气动力学性能,提高汽车的燃油经济性和稳定性。
在建筑领域,风洞试验可以用于研究建筑结构在大风作用下的受力情况,为建筑设计提供可靠的风荷载数据。
总之,风洞试验是一种重要的工程实验方法,它通过模拟气流环境,研究物体
在气流中的受力情况,为工程设计和研究提供重要依据。
随着科学技术的不断发展,风洞试验在工程领域的应用将会更加广泛,为各行各业的发展提供有力支持。
风洞试验结果分析
风洞试验结果分析风洞试验是一种重要的工程实验方法,可以模拟大气中不同速度的风场环境,以评估飞行器、建筑物等在真实风场中的性能。
风洞试验结果分析是对试验数据进行系统分析和解释的过程,旨在揭示物体在不同风速下的气动特性。
在进行风洞试验时,通常会选择不同尺度的模型代替真实对象,通过模型在风场中的表现来推断真实对象的行为。
试验中,测量和记录的数据包括但不限于气动力、风速、温度、压力等参数。
这些数据需要经过整理和分析,才能提取有用的信息。
下面将从气动力分析、数据处理和结果解读三个方面进行风洞试验结果分析的探讨。
首先,气动力分析是风洞试验结果分析的重要组成部分。
在风洞试验中,测量到的气动力包括升力、阻力和力矩等因素。
升力是垂直于气流方向的力,其大小取决于模型形状和气流速度。
阻力是平行于气流方向的力,一般与模型表面积和气流速度成正比。
力矩则是绕模型某一点产生的扭转力。
通过对这些气动力进行分析,可以了解模型在不同风速下的受力情况,为设计和优化提供依据。
其次,数据处理是风洞试验结果分析的重要环节。
经过实验得到的数据通常以原始数据的形式呈现,需要进行筛选、修正和校准,以消除误差和噪音的影响,确保数据的准确性。
常见的数据处理方法包括峰值检测、平滑处理、滤波、插值和归一化等。
通过合理的数据处理,可以获得更准确和可靠的试验结果。
最后,结果解读是风洞试验结果分析的重要目标。
通过对试验数据进行整合和综合分析,可以得到物体在不同风速下的气动特性曲线、流场结构、气动性能参数等信息。
根据这些结果,可以评估模型的飞行稳定性、气动性能和结构强度等重要指标。
结果解读需要结合工程应用背景和设计要求,注重结果的实用性和可行性。
综上所述,风洞试验结果分析是对试验数据进行系统分析和解释的过程,包括气动力分析、数据处理和结果解读三个方面。
通过分析风洞试验结果,可以揭示物体在不同风速下的气动特性,为工程应用和设计提供重要参考。
在进行风洞试验结果分析时,需要注重数据的准确性和质量,合理选择数据处理方法,并结合具体应用背景进行结果解读。
风洞实验是原理的典型应用
风洞实验是原理的典型应用1. 引言风洞实验是一种重要的实验方法,用于模拟真实环境下的气流情况,以便研究和验证相关原理。
风洞实验具有很大的应用价值,在航空航天、汽车设计、建筑结构等领域被广泛使用。
本文将介绍风洞实验的原理及其在不同领域的典型应用。
2. 风洞实验原理风洞实验基于流体力学的基本原理,通过模拟真实气流环境,通过测量和观察来获取关键参数。
主要的原理包括:2.1 空气动力学基本方程空气动力学基本方程包括质量守恒方程、动量守恒方程和能量守恒方程。
这些方程用于描述空气在流动过程中的物理特性,如速度、压力和密度等。
在风洞实验中,通过测量这些参数的变化,可以揭示风洞内的流动规律。
2.2 流体力学模拟在风洞实验中,为了模拟真实环境中的气流情况,通常采用模型来代表实际对象。
模型的形状和尺寸需要保持与实际对象相似,以便研究其气动性能。
通过控制风洞内的气流速度、温度和湿度等参数,可以实现对不同气流条件的模拟。
2.3 测量和观测技术在风洞实验中,测量和观测技术起着重要的作用。
常用的技术包括压力传感器、热线风速仪、激光测速仪等。
这些技术可以准确地测量气流的速度、压力和温度等参数,为研究者提供实验数据,以便分析和验证相关的原理。
3. 风洞实验在航空航天领域的应用风洞实验在航空航天领域具有重要的应用价值。
以下是一些典型的应用场景:•翼型气动特性研究:通过在风洞中模拟飞机机翼气流情况,研究翼型的升力、阻力等性能,以提高飞机的飞行稳定性和控制性能。
•喷气发动机性能测试:通过风洞实验,可以评估喷气发动机的燃烧效率、推力输出和热效率等指标,为发动机设计和优化提供依据。
•飞行器外形设计:风洞实验可用于测试不同外形的飞行器在空气中的气动性能,如阻力、升力和侧力等。
这些数据对于优化飞机外形设计具有重要意义。
4. 风洞实验在汽车设计领域的应用除了航空航天领域,风洞实验在汽车设计中也有广泛应用。
以下是几个典型的应用场景:•汽车外形优化:通过模拟不同汽车外形在高速风洞中的气流情况,研究各部位的气动性能,以改善汽车的阻力、空气动力学稳定性和燃油经济性。
流体力学实验风洞
根据实验要求选择合适的测量设备, 并确保其精度和可靠性。
测量设备用于采集实验数据,包括压 力、速度、温度、湿度等参数,以及 流场显示和记录设备。
控制系统
控制系统负责对风洞进行全面监 控和调节,包括气流速度、压力、
温度等参数的控制。
控制系统通常采用自动化和智能 化技术,实现远程控制和数据采
集,提高实验效率和准确性。
THANKS FOR WATCHING
感谢您的观看
控制系统的稳定性和可靠性对风 洞的性能和实验结果具有重要影
响。
03
风洞实验的准备与操作
实验前的准备
实验设备检查
确保风洞设备完好,无故障, 所有部件都已正确安装。
实验材料准备
根据实验需求,准备合适的模 型、测量仪器等。
实验环境设置调整风洞内的温度、湿度等环境参数,确保实验条件的一致 性。
安全措施
风洞的种类
根据气流类型,风洞可分为直流式风洞和回流式风洞。直流 式风洞气流单向流动,主要用于模拟自由流场;回流式风洞 气流循环使用,主要用于模拟受限流场。
根据实验段截面形状,风洞可分为圆形风洞、矩形风洞和不 规则形状风洞等。不同截面形状的风洞适用于不同的实验需 求。
风洞的应用
风洞在航空航天领域应用广泛, 用于研究飞行器气动性能、气 动布局、飞行姿态等。
风洞也可用于汽车工业,研究 汽车空气动力学性能、造型优 化、风噪控制等。
此外,建筑、环境工程等领域 也广泛应用风洞进行流体动力 学实验。
02
风洞的构成
驱动系统
驱动系统是风洞的核心部分,负责产生和控制气流,为实验提供动力。
常见的驱动方式包括电动、气动和液压驱动等,根据实验需求选择合适的驱动方式。
空气动力学实验方法的介绍
空气动力学实验方法的介绍空气动力学实验方法是用来研究气体在运动中的力学规律以及与固体表面相互作用的科学方法。
这种方法在航空航天、汽车工程、建筑设计等领域具有重要的应用价值。
下面将介绍几种空气动力学实验方法的原理和应用。
1. 风洞实验风洞实验是最常见和常用的空气动力学实验方法之一。
其原理是利用风洞设备模拟真实环境中的气流,通过对模型进行测试,以了解在真实条件下物体受到的气流冲击力、升力、阻力等参数。
风洞实验可以提供精确的气动力数值,用于飞行器的设计和改进,汽车的空气动力学性能评估等。
2. 射流实验射流实验是一种基于喷气原理的空气动力学实验方法。
它通过将高速气流喷射到模型表面,观察气流与模型表面及周围介质的相互作用,研究气体流动的特性。
射流实验广泛应用于燃烧室设计、火箭发动机喷口设计等领域,可以提供有关射流边界层、射流分离和循环等问题的重要实验数据。
3. 液晶法测量液晶法测量是一种利用液晶分子的光学特性来研究气体流动的方法。
液晶是一种特殊的有机分子材料,具有光学各向异性特性。
当液晶分子受到外界作用力时,其分子排列会发生变化,从而改变光的传播路径和颜色。
通过将液晶材料涂覆在模型表面上,可以实时观测流场中的压力分布和气流的流动状态。
液晶法测量在飞行器外形优化、风能利用等领域具有广泛的应用前景。
4. 数值模拟方法数值模拟是在计算机上运用数学模型和物理方程对流体流动进行仿真的方法。
空气动力学领域的数值模拟方法主要有有限元法、有限差分法和有限体积法等。
这些方法通过离散化方程组,模拟气体的流动情况并计算相关的气动参数。
数值模拟方法具有高效、灵活、经济的特点,广泛应用于气动力学研究和工程实践中。
综上所述,空气动力学实验方法包括风洞实验、射流实验、液晶法测量和数值模拟方法等多种形式。
通过这些实验方法可以研究气体在运动中的力学规律,获得相关的气动力参数,为航空航天、汽车工程等领域的设计和改进提供有力支持和指导。
随着科学技术的不断发展,这些实验方法将继续在未来的空气动力学研究中发挥重要作用。
风洞的实验原理
风洞的实验原理风洞是用于模拟大气流动的实验设备,它对于研究空气动力学特性、风力工程、建筑物抗风性能等领域具有重要的作用。
风洞通过模拟真实空气流动环境,提供各种空气速度、密度和压力条件,来观察物体在流场中的动力学效应和气动性能。
风洞实验的原理主要包括两个方面:流场模拟和测试测量。
首先,风洞要模拟真实的流场环境,使得空气流动的特性尽可能接近实际情况。
为了达到这个目标,首先需要考虑的是风洞的设计和建造。
通常风洞由进气道、扩散段、工作段和尾迹段等部分组成。
进气道的作用是将外界空气引入风洞,保证流场中流体的运动状态尽可能接近自由气流。
扩散段的作用是将进入风洞的流体加速,以满足各个工作段的实验要求。
工作段是进行实验的主要区域,主要有闭合式风洞和开放式风洞两种。
闭合式风洞的特点是流场封闭,气流在封闭环境中进行运动,适用于对较小的物体进行气动特性测试;开放式风洞则模拟了自由气流场,适用于大型模型的气动研究。
尾迹段的作用是消散来自工作段的干扰,减小后续实验的影响。
其次,风洞实验还需要进行测试和测量,以获取物体在流场中的动力学参数。
实验中常用的测试和测量手段包括风力测力、压力测量、风速测量和流场可视化等。
风力测力是通过在物体上安装力传感器,通过测量传感器受到的力来推导出物体所受到的气动力。
压力测量则是通过在物体表面或特定位置上安装压力传感器,获取物体表面的压力分布情况。
风速测量一般采用风速仪或热线风速仪等设备,用于测量流场中的风速。
流场可视化是将流场中的气流可视化,常用的方法包括烟雾法、激光光纤等,通过观察气流的形态和运动轨迹,了解流场中的流动情况。
在风洞实验中,为了保持实验的准确性和可重复性,还需要进行数据校正和误差分析。
数据校正主要是校正仪器的灵敏度和零点误差,并与标准数据进行对比和校验,确保实验数据的准确性。
误差分析是对于实验过程中产生的误差进行分析和控制,以确保实验结果的可靠性。
总之,风洞的实验原理包括流场模拟和测试测量两个方面。
空气动力学风洞实验技术改进与模拟效果验证
空气动力学风洞实验技术改进与模拟效果验证1. 引言空气动力学风洞实验技术是航空航天工程研究中不可或缺的重要手段。
通过模拟真实飞行条件下的空气动力学特性,可以获取航天器在各种飞行状态下的气动力等关键参数,为飞行器设计和性能优化提供科学依据。
然而,传统的空气动力学风洞实验存在一些局限性和挑战性,因此,对其进行技术改进和模拟效果的验证具有重要意义。
2. 传统空气动力学风洞实验技术的局限性2.1 流场干扰传统风洞实验中,由于模型置于风洞中,风洞模型周围的流场会受到风洞边界的约束和模型自身的干扰,导致实验结果不够准确。
特别是在高速飞行的情况下,流动的非定常性会对实验结果产生较大影响。
2.2 缩尺效应传统风洞实验要将真实的飞行器模型缩小到适合实验的尺寸,从而引入了缩尺效应。
这种缩尺会导致模型和真实情况之间存在差异,限制了实验结果的准确性。
2.3 成本和时间传统风洞实验需要建造和维护昂贵的设施,并且实验周期较长。
这种高成本和长周期使得研究者在进行风洞实验时的资源投入产出比不理想。
3. 空气动力学风洞实验技术改进为了克服传统风洞实验的局限性,许多改进措施被提出和研发,以提高实验的准确性和可靠性。
3.1 高精度测量技术应用先进的测量技术,如全场测量技术和红外测温技术,可以实时获取模型周围的气动力和温度分布信息。
这些信息可以提供给研究者更准确的实验数据,帮助分析和评估飞行器的性能和改进潜力。
3.2 数值模拟辅助将计算流体力学(CFD)等数值模拟方法与实验相结合,可以通过模拟飞行器在不同环境和工况下的空气动力学特性,辅助实验设计和实验结果的验证。
数值模拟还可以帮助解释实验中产生的异常结果,指导实验优化和改进。
3.3 非定常风洞技术非定常风洞技术能够模拟真实飞行中的流动非定常性。
通过改变风洞入口的风速和风向来模拟飞行器在各种飞行状态下的流场特性,进一步提高实验结果的准确性。
非定常风洞技术在航空领域的应用有很大潜力。
4. 模拟效果验证为了验证改进的空气动力学风洞实验技术的有效性,可以进行实验数据与数值模拟结果的对比分析。
内分流双涡轮发动机的风洞试验与性能验证
内分流双涡轮发动机的风洞试验与性能验证当今世界航空工业的发展正处于一个高度竞争的时期,航空发动机的性能对于提高飞行速度、降低燃油消耗以及减少气体排放至关重要。
内分流双涡轮发动机,作为一种新型的航空发动机设计方案,引起了广泛的关注。
本文将对内分流双涡轮发动机的风洞试验与性能验证进行介绍和分析。
内分流双涡轮发动机是一种在传统涡轮发动机基础上的创新设计,其核心部分是两个涡轮,分别分流了内外涵道的气流。
内涡轮主要负责驱动压气机,而外涡轮则负责驱动风扇。
通过这样的分流设计,内分流双涡轮发动机能够更高效地利用气流,提供更大的推力。
为了验证内分流双涡轮发动机的性能,并进行必要的改进,风洞试验是一个必不可少的环节。
风洞试验是一种模拟真实飞行环境的实验方法,通过在风洞内引入不同速度和压力的气流,对发动机的气动特性、排放性能、噪声水平等进行评估和测试。
通过风洞试验,可以获取大量的实验数据,为发动机设计和性能优化提供依据。
在进行风洞试验前,首先需要进行试验计划的制定。
试验计划包括确定试验的目标、内容和参数设置等。
根据内分流双涡轮发动机的设计特点,试验计划应包括风洞模型的制备,测试点的选择,风洞条件的设定等。
尤其要注意考虑到涡轮之间的相互作用和流场分布的不均匀性等因素。
风洞试验的核心是模型制备和测试过程。
模型制备是将实际发动机的各个部件缩小并制作成模型,以便在风洞内进行实验。
内分流双涡轮发动机的模型制备相对复杂,需要保证模型的准确性和仿真度。
而在测试过程中,需要通过安装传感器、测量设备等来采集各项数据,包括温度、压力、转速、推力等,并记录下来进行后续数据分析和评估。
风洞试验结束后,需要对所获得的数据进行处理和分析。
通过对数据的处理,可以评估内分流双涡轮发动机的性能指标,如推力、燃油效率、降噪等,对实验结果进行可靠性验证。
同时,可以利用数据进行优化设计,针对发动机在试验中可能出现的问题进行改进。
内分流双涡轮发动机的风洞试验和性能验证是一个相对复杂和耗时的过程,但对于发动机的研发和性能优化来说是非常必要的。
风洞实验报告
风洞实验报告引言:风洞实验作为现代科技研究的重要手段之一,广泛应用于航空航天、汽车工程、建筑结构等领域。
本报告将围绕风洞实验的原理、应用以及相关技术展开探讨,旨在加深对风洞实验的理解和应用。
一、风洞实验的原理风洞实验是通过利用风洞设备产生流速、温度和压力等环境条件,对模型进行真实环境仿真试验的一种方法。
其基本原理是利用气体流动力学的规律,使得实验模型暴露在所需风速的气流中,从而通过测量模型上的各种力和参数来分析其气动性能。
二、风洞实验的应用领域1.航空航天领域风洞实验在航空航天领域有着广泛的应用。
通过风洞实验,可以模拟不同飞行状态下的风载荷,评估飞机、火箭等载体的稳定性和安全性,在设计和改进新型飞行器时提供可靠的数据支撑。
2.汽车工程领域风洞实验在汽车工程领域同样具有重要意义。
通过对汽车模型在高速风场中的测试,可以优化车身外形设计,降低气动阻力,提高燃油效率。
此外,风洞实验还可用于汽车内部气流研究,如车内空调流场、风挡玻璃除雾等。
3.建筑工程领域在建筑工程领域,风洞实验可以帮助研究风荷载对建筑物结构产生的影响,以提高建筑物的抗风性能。
通过模拟真实的气流环境,可以评估建筑物在不同风速下的应力、应变分布情况,为工程设计和结构优化提供依据。
三、风洞实验技术1.气流控制技术气流控制技术是风洞实验中必备的关键技术之一。
通过对风洞内流场进行合理设计和调整,可以实现不同速度、湍流强度和均匀度的气流条件,以保证实验的准确性和可重复性。
2.试验模型制作技术试验模型制作技术对于风洞实验的结果具有重要影响。
模型的准确度和还原程度直接关系到实验数据的可靠性。
现如今,各类先进材料和加工技术的应用,使得模型制作更加精准和高效。
3.数据采集和分析技术风洞实验所得数据的采集和分析是判断实验成果的关键环节。
当前,数字化技术的快速发展为数据采集和分析提供了强有力的支持。
传感器、图像处理等先进技术的应用,使得实验数据获取更为精确和全面。
风洞实验报告
风洞实验报告
实验目的:
本次实验的主要目的是探究风洞内气流与实际情况的关系,通过对比不同种类的物体在风洞中所受到的气流影响,分析气流力与物体形状、风速等参数的关系,进一步探究气动力学知识。
实验仪器:
本次实验采用的是风洞设备,主要包括:风机、热线安放器、压力传感器、激光测量仪及流场可视化实验装置。
实验流程:
1. 首先将实验物体放入风洞内,开启风机,控制风速,并调整风洞内气流状态。
2. 利用热线安放器对实验物体表面局部速度的测量。
3. 利用压力传感器对实验物体表面气压及气液动力的测量。
4. 通过激光测量仪及流场可视化实验装置对实验物体周围气流情况进行记录并进行分析。
实验结果:
本次实验中,我们选取了不同的实验物体,进行了相应的实验操作。
其中,以典型机翼作为实验目标,分别在不同风速及不同攻角下进行实验测量。
根据实验结果,我们发现在相同的风速条件下,攻角越大,物体所受到的气流力越大。
同时,不同物体的形状、尺寸也对其所受到的气流力产生一定的影响。
此外,通过流场可视化实验装置的实验结果,我们也可以清晰地看到实验物体周围气流的流动情况,这一结果进一步验证了实验数据的准确性。
结论:
通过本次实验,我们深入了解了风洞实验的意义以及其在气动力学领域中的应用。
同时,我们也对气流力、攻角和物体形状等
参数的关系进行了深入探究,展示了其重要性和实用性。
基于本次实验的实验结果,我们也可以为工程设计、气动力学等领域提供一定的理论基础支持。
汽车整车空气动力学风洞试验 气动力风洞试验方法
汽车整车空气动力学风洞试验气动力风洞试验方法第一章试验介绍1.1 试验背景汽车的设计与制造是一个复杂的过程,为了确保汽车在高速行驶时能够稳定、安全地行驶,必须对汽车的空气动力学性能进行全面的评估和测试。
其中,空气动力学风洞试验是一种常用的测试手段,通过模拟车辆在真实行驶环境中的空气流动情况,来评估汽车的空气动力学性能。
1.2 试验目的汽车整车空气动力学风洞试验的主要目的是通过对汽车在风洞中的空气动力学性能进行测试和分析,为汽车的设计和改进提供重要的参考依据。
具体包括评估汽车的气动阻力、升力、侧向力等参数,以及研究汽车在不同速度和风向下的空气动力学特性,为汽车的设计优化提供数据支持。
1.3 试验对象本次试验的对象为某汽车制造公司新研发的一款中型轿车,车型为XX型号。
该车型在设计阶段已经进行了初步的空气动力学仿真分析,但为了进一步验证仿真结果的准确性,并对车辆的空气动力学性能进行更加全面深入的评估,需要进行空气动力学风洞试验。
第二章试验方法2.1 试验设备本次试验将使用某汽车制造公司配备的先进空气动力学风洞,风洞设备包括风道、风扇、测量传感器等。
风道采用封闭式结构,能够模拟多种不同的速度和风向条件,满足不同车速和风向下的算测需求。
风扇能够产生高速气流,测量传感器用于对车辆在风洞内的空气动力学参数进行实时监测和记录。
2.2 试验方案需要确定试验的速度范围和风向条件。
一般来说,汽车在行驶过程中会受到不同速度和不同角度的气流影响,因此需要在风洞中模拟不同的速度和风向条件,以获得全面准确的空气动力学性能数据。
确定试验参数和测量点。
根据汽车的设计特点和试验的目的,确定需要测量的空气动力学参数,如阻力、升力、侧向力等,并确定在车身表面的哪些位置设置测量点,以获取相应的测量数据。
进行试验数据的采集和分析。
在风洞试验进行过程中,需要通过测量传感器对车辆在风洞内的空气动力学参数进行实时监测和记录,然后对采集到的数据进行分析和评估,得出对汽车空气动力学性能的客观准确的评估结果。
风洞实验报告
风洞实验报告风洞实验报告一、引言风洞实验是一种重要的工程实验方法,可以模拟大气中的空气流动情况,用于测试和研究各种物体在气流中的性能和特性。
本文将介绍一次针对某飞行器模型的风洞实验,包括实验目的、实验过程、实验结果和结论。
二、实验目的本次实验的目的是通过风洞实验,对某飞行器模型在不同风速下的气动特性进行测试和分析,为飞行器的设计和改进提供参考依据。
具体目标如下:1. 测试飞行器在不同风速下的升力和阻力变化情况,了解其气动性能;2. 研究飞行器在不同风速下的稳定性和操纵性,评估其适航性;3. 分析飞行器在不同风速下的气动力分布,寻找潜在的改进方向。
三、实验过程1. 实验设备准备:在实验室中搭建风洞装置,包括风洞本体、风速控制系统、数据采集系统等。
确保设备正常运行和准确测量。
2. 实验样本制备:根据飞行器模型的设计要求,制作样本并进行必要的校正和调整,确保样本符合实验要求。
3. 实验参数设置:根据实验目的,确定实验参数,包括风速范围、采样频率、测量点位置等。
4. 实验数据采集:将样本放置在风洞中,通过数据采集系统记录风速、升力、阻力、气动力矩等数据,并实时监测飞行器的姿态。
5. 数据处理与分析:对采集到的数据进行处理和分析,得出实验结果,并与理论计算结果进行对比。
四、实验结果1. 升力和阻力变化曲线:通过实验数据的分析,得到了飞行器在不同风速下的升力和阻力变化曲线。
结果显示,在低速风洞实验中,飞行器的升力随着风速的增加而线性增加,而阻力则呈指数增加。
在高速风洞实验中,升力和阻力的增长趋势逐渐趋于平缓。
2. 稳定性和操纵性评估:通过实时监测飞行器的姿态,得到了飞行器在不同风速下的稳定性和操纵性评估结果。
结果显示,在较低风速下,飞行器的稳定性较好,操纵性较强;而在较高风速下,飞行器的稳定性和操纵性受到较大的挑战。
3. 气动力分布分析:通过实验数据的处理,得到了飞行器在不同风速下的气动力分布情况。
结果显示,在低速风洞实验中,飞行器的气动力主要集中在机翼和尾翼上,而在高速风洞实验中,气动力分布更加均匀。
实验空气动力学课程设计(风洞综述)
实验空气动力学课程设计(风洞综述)一.概念及原理风洞(wind tunnel),是能人工产生和控制气流,以模拟飞行器或物体周围气体的流动,并可量度气流对物体的作用以及观察物理现象的一种管道状实验设备,它是空气动力学实验最常用、最有效的工具。
它不仅在航空和航天工程的研究和发展中起着重要作用, 在交通运输、房屋建筑、风能利用和环境保护等部门中也得到越来越广泛的应用。
原理:用风洞作实验的依据是运动的相对性原理。
为确保实验准确模拟真实流场,还必须满足相似律的要求。
但由于风洞尺寸和动力的限制,通常只能选择一些影响最大的参数进行模拟。
此外,风洞实验段的流场品质,如气流速度分布均匀度、平均气流方向偏离风洞轴线的大小、沿风洞轴线方向的压力梯度、截面温度分布的均匀度、气流的湍流度和噪声级等必须符合一定的标准,并定期进行检查测定。
二.风洞发展简要回顾风洞设备的发展大致经历了低速风洞发展阶段、超声速风洞发展阶段、跨声速风洞发展阶段、高超声速风洞发展阶段、风洞设备更新改造和稳定发展阶段、风洞设备发展适应新需求、探索新概念风洞发展阶段。
20世纪90年代,随着经济全球化和型号发展数量的减少,一方面,风洞设备在数量上呈现出过剩状态;另一方面,又缺少能满足未来型号精细化发展要求的高性能风洞。
三.近期风洞改造和建设工业生产型风洞的更新改造最主要特点是风洞设计的多功能性、可扩展性、技术的先进性,风洞建设也呈现出创新的特点。
主要包括:吸收试验段内的大部分噪声,提高风洞试验Re或模拟能力等。
另外还有:感应热等离子体风洞(通过高频电发生器以感应偶合的方式将亚声速或超声速射流加热到极高温度(5000℃~10000℃),这种等离子风洞主要用于防热研究)四. 风洞发展的未来趋势1)“安静”气流风洞不仅气动声学风洞需要“安静”的风洞,高品质的任何类型风洞都需要“安静”的风洞。
2)亚声速高升力飞行风洞风洞Re模拟能力直接影响试验数据的准确性。
经过多年论证研究,NASA提出了高升力飞行风洞(HiLiFT)的概念。
风洞实验
确定模型对气流的相对运动和模型上的气动力随时间变化的实验,包括颤振实验、抖振实验、动稳定性实验、 操纵面嗡鸣实验、非定常压力测量等。
颤振实验颤振是飞行器在气动力、结构弹性力和惯性力相互作用下从气流中吸取能量而引起的自激振动。它 一旦发生,就很可能造成结构的破坏。进行风洞颤振试验,旨在选择对防颤振有利的结构方案(见颤振试验)。
在气流和模型作相对高速运动的条件下,测定气流沿模型绕流所引起的对模型表面气动加热的一种实验。当 飞行器飞行马赫数大于3时,必须考虑气动加热对飞行器外形、表面粗糙度和结构的影响。风洞传热实验的目的是 为飞行器防热设计提供可靠的热环境数据,实验项目包括:光滑和粗糙表面的热流实验,边界层过渡、质量注入 对热流影响的实验,台阶、缝隙、激波和边界层等分离流热流实验等。在风洞传热实验中一般略去热辐射,只考 虑对流加热,要模拟的是马赫数、雷诺数、壁温比、相对粗糙度(粗糙度与边界层位移厚度之比)、质量注入率、 自由湍流度等参数。在一般高超声速风洞、脉冲风洞、激波风洞、电弧加热器、低密度风洞和弹道靶中都能进行 传热实验,但都不能全面模拟上述参数。因此,必须对不同设备的实验数据进行综合分析。风洞传热实验的方法 有两类:一类是确定热流密度分布的热测绘技术,如在模型表面涂以相变材,通过记录等温线随时间的扩展过 程进行热测绘;又如在模型表面涂以漆和粉末磷光材料的混合物,通过记录磷光体的亮度分布转求热流密度分布 (后一方法响应快,灵敏度高)。热测绘技术可以提供丰富的气动加热资料,但精度较低。另一类是热测量技术, 利用量热计进行分散点的热测量,一般是在一维热传导的假定下通过测量温度随时间的变化率测量热流密度。在 一般高超声速风洞中常用的量热计有两种:①薄壁量热计,使用它时要求模型的壁做得很薄,以使模型在受热时, 内外表面的温度接近相等,在内表面安装温差电偶,用以测量温度随时间的变化来推算热流密度。②加登计,是R. 加登在1953年提出的,它是基于受热元件的中心和边缘之间的温度梯度和热流密度有一定的关系进行测量的。薄 壁量热计和加登计由于达到温度平衡需要较长的时间,不能用于脉冲风洞。在脉冲风洞中,可采用塞形量热计和 薄膜电阻温度计进行测量。塞形量热计是利用量热元件吸收传入其中的热量,然后测量元件的平均温度变化率再 计算表面热流密度。
风洞试验检测报告
风洞试验检测报告实例风洞试验检测报告是针对风洞试验的检测结果进行记录和评估的报告。
以下是一个风洞试验检测报告的示例:标题:风洞试验检测报告1. 试验概述本报告旨在提供关于风洞试验的检测结果和评估。
本次试验旨在评估模型在特定风速下的表现,并为后续设计和优化提供依据。
2. 试验条件2.1 试验设备本次试验使用了型号为XXX的风洞设备,该设备具备稳定的空气动力学性能和先进的测控系统。
2.2 模型与设备本次试验的模型为XXX,尺寸为XXX,设备为XXX。
2.3 试验参数本次试验的参数包括风速、模型姿态、空气密度、气压等。
3. 试验过程3.1 模型安装与调试在风洞实验前,我们对模型进行了精确的安装和调试,确保模型与支架的位置和姿态正确。
3.2 数据采集与处理在试验过程中,我们使用了高速相机和传感器采集了模型周围的流场数据。
同时,我们还使用了图像处理技术对采集的数据进行处理和分析。
4. 试验结果与分析4.1 数据统计与分析根据采集的数据,我们统计了模型在不同风速下的表现,包括升力、阻力、侧向力等参数。
通过对比不同风速下的数据,我们发现模型在低风速下的表现较好,而在高风速下的性能有所下降。
这可能与模型的空气动力学设计有关,需要进行进一步的优化。
4.2 结果可视化为了更直观地展示试验结果,我们使用了专业的软件对数据进行了可视化处理。
通过生成的速度场云图和力矢量图,我们可以更清楚地了解模型周围的流场分布和受力情况。
根据这些结果,我们可以对模型的设计进行改进和优化。
5. 结论与建议根据本次风洞试验的检测结果,我们得出以下结论:(1) 在低风速下,模型表现良好,具有较高的升阻比和侧向力控制能力。
这表明模型在低风速飞行时具有较好的稳定性和操控性。
(2) 在高风速下,模型的性能有所下降。
特别是升力系数和阻力系数都显著增加,导致飞行速度难以控制。
这可能与模型的空气动力学设计有关,需要进行进一步的优化。
(3) 通过可视化处理,我们发现模型周围的流场存在一些不稳定的区域。
整车空气动力学风洞试验—汽车气动力试验标准
整车空气动力学风洞试验一汽车气动力试验标准1范围针对整车气动力风洞实验所需的流场品质、测试装备及仪器提出要求,推荐气动力测试的标准工况以及气动力测试方法和流程,给出测试数据有效性的评价方法。
本标准阐述的方法适用于实车整车,即七座(含七座)以下乘用车,也适用于对应尺寸的车辆模型(油泥模型、硬质模型等),重量和尺寸根据风洞规模和测试能力而定。
根据本标准推荐的方法所获取的结果,可作为整车空气动力学性能评估及优化设计的依据。
2规范性引用文件下列文件对于本文件的应用是必不可少的。
凡是注日期的引用文件,仅注日期的版本适用于本文件。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T 3730.2-1996道路车辆质量词汇和代码GB/T 19234-2003乘用车尺寸代码JJF1059-1999测量不确定度评定与表示T/CSAE 111-2019乘用车空气动力学性能术语3术语和定义下列术语和定义适用于本文件。
3.1汽车空气动力学风洞automotive aerodynamic wind Tunnel一种模拟汽车道路行驶过程中,受气流作用的试验装置。
通过该装置配备的各测量系统可以测量汽车气动力和气动力矩、局部流场显示、特征点或特征区域的压力等。
在整车开发过程中,用于阶段性气动性能检验、优化,并最终验证汽车空气动力学性能水平。
3.1.1汽车空气动力学风洞坐标系automotive aerodynamic wind tunnel coordinate system在汽车空气动力学风洞中,其坐标原点位于转盘中心,坐标系符合右手定则,见图1。
图1汽车空气动力学风洞坐标系3.1.2整车风洞full-scale wind tunnel一种可以进行真实车辆或1:1汽车模型试验的风洞。
3.2风洞流场品质air flow quality of wind tunnel表征风洞试验段流场稳定性和均匀性的评价指标,包括但不限于湍流度,速度分布,压力分布等参数。
流体力学实验_风洞
3. 风洞的功用
(1)空气动力学和流体力学基础性研究 各种翼型的气动力特性:压缩性和粘性附面层的 影响,翼型上附面层的控制,激波与附面层的干扰和 传热的影响,三元机翼的气动力特性,飞行器再入大 气的气动热等空气动力学的基本规律 圆柱绕流、钝体绕流等流动特性和涡旋结构 大气扩散规律 湍流(各向同性湍流、边界层、可压缩湍流)流 动结构 为理论流体力学和计算流体力学提供实验资料
我国已建成第一座大型立式风洞,总高55m,实 验段直径5m,中心最大风速可达50m/s。
13
§6.2 低速风洞
低速风洞可分为: 直流式低速风洞:构造简单,占用空间较大 回流式低速风洞:气流通过实验段后再通过管道
循环一周回到实验段中,构造复杂,所需空间较小 单回流式:最常用的型式 双回流式:比较大型的风洞 环形回流式:变密度风洞,风洞强度较高
(
R0 R1
)2
] [1
1
x0 (x
)2
]3
R1
3 x0
R
R0
x x0
19
实验段:安装模型进行实验的工作段,气流速度最 大最均匀的一段(截面积最小),实验段的截面形状 有圆形、方形、长方形、八角形等。
开口实验段:模型安装方便,观测容易。气流的能 量损失大,气流品质较差。实验段长度为1~1.5R0。
闭口实验段:装有透明观察窗,气流均匀区域大, 能量损失小。模型装卸不方便。实验段长度为 2~2.5R0。
实验段的气流特性是设计风洞、评价风洞性能的主 要指标之一。
20
实验段气流品质的要求: 气流稳定性
风速的相对变化来表示:
V V V 0.25% VV
12
水平式风洞和立式风洞(按实验段气流方向)
高速列车空气动力学研究
高速列车空气动力学研究概述:高速列车的空气动力学研究是以分析和优化列车在高速运行时受到的空气流动影响为目的的科学研究。
空气动力学研究的结果可以用来改善列车的运行稳定性、降低空气阻力、提高能源效率,进而推动高速铁路技术的发展。
引言:随着高铁技术的飞速发展,越来越多的国家开始投资建设高速铁路网络。
而在高速铁路系统中,列车的高速运行对空气动力学性能的要求也越来越高。
因此,对高速列车空气动力学的研究和优化变得至关重要。
空气动力学研究:1. 流场模拟:通过数值模拟和计算流体力学方法,可以准确地预测列车高速运行时的气流流动情况。
这项研究可以帮助工程师更好地理解列车的空气动力学行为,从而指导设计和改进高速列车的外形和结构,以降低气动阻力和风噪声。
2. 风洞试验:风洞试验是研究列车空气动力学的重要手段之一。
通过在风洞中模拟不同的风速和风向条件,可以对列车的气流行为进行实验观测和测量。
这项研究可以帮助工程师进一步验证数值模拟结果的准确性,提供实验数据支持,并发现列车设计中的潜在问题。
3. 气动阻力和能源效率优化:空气动力学研究还可以用于降低高速列车的气动阻力,以提高运行效率和节能。
通过改进列车外形设计、减小阻力面积和优化车头形状等手段,可以显著降低列车受到的气动阻力,减少能源消耗。
此外,通过优化列车运行速度和列车编组方式,也可以进一步提高列车的能源效率。
应用前景:高速列车空气动力学研究的应用前景广阔。
首先,通过减小空气阻力,列车的能源消耗将大大减少,从而降低运营成本和对环境的影响。
其次,优化列车的空气动力学性能可以提高列车的运行稳定性和安全性,减少列车与空气流动之间的共振现象,进而提高列车的乘坐舒适度。
最后,空气动力学研究的结果还可以为高速列车的设计和改进提供科学依据,为高速铁路技术的发展注入新的动力。
结论:高速列车空气动力学研究对优化列车的外形设计、降低气动阻力、提高能源效率具有重要意义。
通过流场模拟和风洞试验,工程师可以深入了解列车在高速运行时的气动行为,并通过优化设计和改进来提高列车的运行稳定性和乘坐舒适度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结果 在风洞风量范围内,空气动力学实验风洞上下游采样断面各检测点风速相对偏差均小于 10%。风量设定后,不同时
间上下游采样断面平均风速相对偏差小于 10%,上下游采样断面平均风速比值范围为 0.92~1.03。结论 空气动力学实验
风洞流场具有良好的均匀性、稳定性和一致性。
关键词:实验风洞系统;集中空调系统;净化消毒装置;速度场
6.4±0.46
9.4
5 400
7.2 8.0 7.9 6.8
7.5±0.57
9.3
6 300
8.5 9.4 9.4 8.1
8.9±0.66
9.0
7 200 10.0 10.8 10.5 9.1 10.1±0.74
9.9
2.2.2 速度场稳定性研究 设定某一风量稳定后,每间隔 10 min,分别测定上游采样断面上的平均风速,计算 5 次测定均 值和最大相对偏差。测定结果见表 3。
3 讨论 通过调整风量,空气动力学实验风洞可以模拟集中空调不同
运行工况及不同部位的流场情况,为集中空调空气净化消毒装置 的效果评价提供了实验平台,为《公共场所集中空调通风系统卫生 规范》的贯彻实施提供了技术手段。与在空气舱中通过测定不同时 间污染物浓度衰减得到的集中空调空气净化消毒装置的净化效果 数据相比,实验风洞能够更为正确地评价装置的净化效果。
Abstract:Objective To verify the flow field performance of the air dynamic wind tunnel. Methods The performance of the flow field was evaluated by testing the flow speed of sample-point on the sample-transect of the tunnel. Results Among the flow range of the tunnel, the relative deviations of the speeds of each sample-point on the sample-transect were less than 10%. When the flow rate was set, the relative deviations of the sample-transect average speed in different test period were less than 10%. The ratio of average wind velocity of upper reach to down reach of the tunnel was between 0.92 and 1.03. Conclusion The flow field of the air dynamic wind tunnel is even, stable and coincident.
表 4 上下游速度场重复性测定结果及风速比值
上游采样断面
下游采样断面
设定风量
上下游风
x±s 最大相对偏差 x±s 最大相对偏差
(m3/h)
速比值
(m/s)
(%)
(m/s)
(%)
900 1.2±0.05
8.3
1.3±0.08
7.8
0.92
1 300 1.8±0.05
5.6
1.9±0.11
5.3
0.95
检测点风速(m/s)
x±s
最大相对偏差
(m3/h)
1
2
3
4
(m/s)
(%)
900
1.2 1.3 1.3 1.2 1.2±0.06
8.3
1 300
1.8 2.0 2.0 1.8 1.9±0.13
5.3
1 800
2.3 2.4 2.4 2.2 2.4±0.11
8.3
2 300
3.0 3.3 3.3 3.0 3.2±0.15
2 结果 2.1 流场类型
空气的运动粘滞系数在 0~40 ℃时为 17.09×10-6~19.04×10-6 m2/s,管道直径为 0.5 m,在风道设计风量范围内,采样断面平均 风速范围为 1.1~10.2 m/s,检测断面平均风速范围为 0.9~8.0 m/s。
·214·
环境与健康杂志 2010 年 3 月第 27 卷第 3 期 J Environ Health, March 2010, Vol.27, 性测定结果
设定风量 (m3/h)
上游采样断面
x±s
最大相对偏差
(m/s)
(%)
下游采样断面
x±s
最大相对偏差
(m/s)
(%)
900
1.3±0.05
7.8
1.4±0.08
7.1
1 300
1.9±0.05
2.2
2.0±0.13
5.0
1 800
2.4±0.05
4.2
2.6±0.11
Key words: Wind tunnel; Central air conditioning system; Air cleansing and sanitizing devices;Flow field
为配合《公共场所集中空调通风系统卫生规范》[1]实施,建立 集中空调空气净化消毒装置实验室检验方法,我所设计安装了 用于检测集中空调空气净化消毒装置性能的试验平台—空气动 力学实验风洞。该风洞设计风量为 800~7 200 m3/h,连续可调, 可模拟集中空调系统的不同运行工况。集中空调空气净化消毒 装置性能测试通常采用自然菌或发生特定粒径的颗粒物两种方 法,空气动力学实验风洞的流场类型及速度场性能直接影响污 染物在风洞中浓度的分布。因此,对风洞的流场类型和速度场进 行研究是非常必要的。
姨 rn=R
2n-1 2X
(1)
式中: rn—检测点距管道中心的距离,m;R—管道半径,m;n—自中心点 算起的检测点序号;X—划分的环数。
经确定,每个采样断面设置 4 个风速检测点,使用毕托管— 倾斜式微压计方法[3],测定上下游采样断面上各点的风速。各点
的风速值均采用同一仪器进行测试,具有同样的系统误差,因 此,方法的系统误差不影响结论。在实验风洞 900-7 200 m3/h 的
1.9±0.12
5.3
1 800
2.6 2.3 2.4 2.6
2.5±0.15
6.0
2 300
3.3 3.4 3.4 3.3
3.4±0.06
9.4
2 700
3.5 3.9 3.8 3.3
3.6±0.28
8.3
3 600
5.0 5.3 5.3 4.6
5.1±0.33
9.8
4 500
6.2 6.7 6.8 5.8
环境与健康杂志 2010 年 3 月第 27 卷第 3 期 J Environ Health, March 2010, Vol.27, No.3
·213·
文章编号:1001-5914(2010)03-0213-02
【集中空调生物污染与健康研究专栏】
空气动力学实验风洞流场性能验证
吕锡芳,陈逊
摘要:目的 研究空气动力学实验风洞流场性能。方法 通过测定风洞的采样断面检测点风速,对速度场进行评价。
由公式(2)计算可知,Re 远大于 4 000,故流场类型为紊流流场。 2.2 速度场性能研究 2.2.1 速度场均匀性研究 由表 1、表 2 数据可以看出,同一采 样断面上各检测点风速与断面平均风速最大相对偏差小于 10%,断面速度场均匀。
表 1 上游采样断面检测点风速测定结果及最大相对偏差
设定风量
6.2
2 700
3.5 3.8 3.9 3.6 3.7±0.16
5.4
3 600
4.7 5.2 5.3 4.7 5.0±0.30
6.0
4 500
6.0 6.3 6.6 5.9 6.2±0.32
6.4
5 400
7.6 7.8 7.9 7.3 7.7±0.29
5.2
6 300
8.8 9.1 9.5 8.5 9.0±0.39
4.7
0.98
5 400 7.6±0.18
2.6
7.4±0.16
2.7
1.03
6 300 9.0±0.15
2.2
8.9±0.13
2.2
1.01
7 200 10.3±0.08
1.0
10.0±0.21
3.0
1.03
由表 4 结果可以看出,反复设定同一风量,上下游采样断面 的平均风速最大相对偏差小于 10%,采样断面速度场具有良好 的重复性。 2.2.4 一致性验证 由表 4 上下游采样断面风速比值结果可以 看出,上下游平均风速之比均为 0.92~1.03,近似为 1,表明实验 风洞上下游采样断面速度场具有良好的一致性。
7.8
2 300
3.1±0.08
3.2
3.2±0.23
9.4
2 700
3.6±0.10
5.6
3.5±0.24
8.6
3 600
4.8±0.11
4.2
5.1±0.19
5.9
4 500
6.2±0.05
1.6
6.4±0.36
7.8
5 400
7.5±0.13
1.3
7.3±0.22
4.1
6 300
8.9±0.20
基金项目:国家“十一五”科技支撑课题(2006BAI19B04) 作者单位:中国疾病预防控制中心环境与健康相关产品安全所卫生工
程与应用技术研究室( 北京 100050) 作者简介:吕锡芳(1967-),男,助理研究员,从事空气污染控制研究。