压边力的计算

合集下载

冲压模具课程设计说明书 2

冲压模具课程设计说明书 2

一、零件的工艺性分析1.工件的冲压工艺性分析如图1所示,该工件形状简单对称,为轴对称拉深件,在圆周方向上的变形是均匀的,属普通冲压件。

模具加工也比较容易。

试制定该工件的冲压工艺规程、设计其模具、编制模具零件的加工工艺规程。

图1 圆筒拉深件图2 拉深件的三维图2.工件材料化学成分和机械性能分析(1)材料分析工件的材料为08钢,属于优质碳素结构钢,优质沸腾钢,强度、硬度低,冷变形塑性很好,可深冲压加工,焊接性好。

成分偏析倾向大,时效敏感性大,故冷加工时应采用消除应力热处理或水韧处理,防止冷加工断裂。

08钢的主要机械性能如下:σ(兆帕) 280-390抗拉强度bσ(兆帕) 180屈服强度s抗剪强度(兆帕) 220-310延伸率δ 32%(2)结构分析工件为一窄凸缘筒形件,结构简单,圆角半径为r=7,厚度为t=0.5mm,满足筒形拉深件底部圆角半径大于一倍料厚的要求,因此,零件具有良好的结构工艺性。

(3)精度分析工件上尺寸均为未注公差尺寸,普通拉深即可达到零件的精度要求。

经上述分析,产品的材料性能符合冷冲压加工要求。

在零件工艺性分析的基础上制定其工艺路线如下:零件的生产包括落料、拉深(需计算确定拉深次数)、修边(采用机械加工)等工序,为了提高生产效率,可以考虑工序的复合,经比较决定采用落料与第一次拉深复合。

二、工件的拉深工艺分析及计算1.毛坯尺寸计算(1)计算原则相似原则:拉深前坯料的形状与拉深件断面形状相似;等面积原则:拉深前坯料面积与拉深件面积相等。

(2)计算方法由以上原则可知,旋转体拉深件采用圆形毛坯,其直径按面积相等的原则计算。

计算坯料尺寸时,先将拉深件划分为若干便于计算的简单几何体,分别求出其面积后相加,得拉深件总面积A。

图3 拉深件的坯料计算如图3所示,筒形件坯料尺寸,将圆筒件分成三个部分,每个部分面积分别为:(3)确定零件修边余量由于板料的各向异性和模具间隙不均等因素的影响,拉深后零件的边缘不整齐,甚至出现耳子,需在拉伸后进行修边。

《压边力的计算》课件

《压边力的计算》课件

实例三:多道次成型的压边力计算
总结词
适用于多道次成型、涉及多个压边工位的零件
详细描述
在多道次成型过程中,压边力的计算需要考虑多个因素,如前一道次的变形、材料流动的累积效应等 。此外,还需要考虑不同工位之间的压边力平衡问题,以确保零件成型的质量和稳定性。
05
压边力计算中的问题和注意事项
压边力计算中的误差来源
边界条件的处理等。
在压边力计算中,弹性力学的基 本原理用于分析金属材料的应力 分布和变形行为,为压边力的合
理选择提供依据。
塑性力学的基本原理
塑性力学是研究金属材料在塑 性变形过程中应力、应变和温 度等物理量的变化规律的学科。
塑性力学的基本原理包括:屈 服准则、流动法则、强化准则 等。
在压边力计算中,塑性力学的 基本原理用于分析金属材料的 塑性变形行为,为压边力的合 理选择提供依据。
合理选择压边力
根据实际生产需求,合理 选择压边力的大小,以确 保生产效率和产品质量。
THANKS
感谢观看
总结词
基于弹性力学的方法考虑了材料的弹 性性质,通过计算板料在压边圈作用 下的应力分布来得到压边力。
详细描述
这种方法首先需要建立板料的弹性力 学模型,考虑板料在压边圈作用下的 应力、应变分布,然后通过求解弹性 力学方程得到压边力的大小。
基于塑性力学的压边力计算方法
总结词
基于塑性力学的方法考虑了材料的塑性性质,通过计算板料在压边圈作用下的 塑性变形来得到压边力。
压边力与金属成型的关系
压边力是指在金属成型过程中, 为了限制材料的流动和溢边,施
加在模具压边圈上的力。
压边力的大小直接影响到金属成 品的尺寸精度、表面质量和生产
效率。

箱体拉伸模--模具设计毕业设计论文

箱体拉伸模--模具设计毕业设计论文

毕业设计论文题目:箱体拉伸模的设计系别:XXX系学科专业:模具设计与制造学生:XX学号:XX指导教师(签名):XXXXXXXX 年X 月指导教师评语:指导教师(签名):年月日评阅教师评语:评阅教师(签名):年月日前言大学生活已近尾声,我认真学习了专业知识,为检阅我所学的专业知识,学校于5月初布置了这次毕业设计,而这也是一次给我们积累经验和展示自己的机会。

在设计期间,我查阅了大量的模具设计相关书籍,认真进行了计算和设计,终于顺利完成了这次设计任务。

在此期间,我得到了指导教师和广大同学的悉心指导和热情帮助在此我对他们表示衷心的感谢!虽然在设计是查阅了相关书籍,但是由于理论水平和实践经验有限,所以设计中难免有不当或错误之处,恳请老师同学多多批评指正!XXX20XX年XX月目录一任务书及产品图二确定工艺方案三落料拉深模一)拉深二)拉深件毛坯展开尺寸与形状1、毛坯直径2、拉深件拉深次数的计算3、工作部分尺寸和形状1)凹模圆角半径2)拉伸件冲裁力,拉深力,压边力的计算3)工作部分尺寸4、定位零件5、导向零件6、压力机的选用:J21—40四整形落料模一)工作部分尺寸计算1)凹模圆角半径2)落料部分工作尺寸五参考文献一、设计任务书及产品图确定如图所示零件的工艺方案。

该零件材料为08钢,中批量生产。

二、确定箱体拉伸模的加工工艺:箱体冲压加工工艺为:拉伸,整形切边。

工艺难点集中在拉伸工序上。

从箱体的工艺编排上看,拉伸后设置整形工序。

三、落料拉深模一)拉深拉深是以平板毛坯(或拉深半成品)通过模具制成圆筒形或其他断面形状空心件的冲压工艺方法。

拉深件毛坯展开尺寸与形状1、毛坯直径:D=1.13)33.0(72.1)43.0(42r H r r H B B +--+=1.13)1033.040(1072.1)1043.040(10041002⨯+⨯-⨯-⨯+ =1.13×154 =174㎜2、拉深件拉深次数的计算在设计模具以前,首先要确定拉伸件的拉伸次数。

课程设计带凸缘筒形件首次拉深的拉深模设计

课程设计带凸缘筒形件首次拉深的拉深模设计

课程设计带凸缘筒形件首次拉深的拉深模设计一、工艺分析1,冲压工艺方案的设定:考虑到零件的生产批量,经过分析得采用反拉深复合膜生产。

2,先剪切条料→落料→第一次拉深→……第四次拉深→修边。

二、工艺参数的计算 。

如上右图所示的拉深件。

(1) 查表4-6选取修边余量Δd 由d 凸d=7529=2.6 、 d 凸=75mm 得出Δd=2.2实际d 凸=75+2×2.2=79.4≈79 (2),初算毛坯直径。

根据公式(4-9a )得出:D =√d 12+4d 2h +2πr (d 1+d 2)+4πr 2+d 42−d 32,将d 1=20 d 2=29 d 3=38d 4=79 h=40 r=4 代入上式得出D=√202+4×29×40+2×3.14×4(20+29)+4×3.14×42+792−382 =√6472+4797≈106,其中6472为工件不包含凸缘部分的表面积,即零件实际需要拉深部分的面积。

(3),判断能否一次拉出。

由h d =4929=1.69 、d 凸d=7929=2.72 、 t D ×100=1106x100=0.94查表4-14得出h1d 1=0.17﹣0.21、而零件实际需要的为1.69、因此不能一次拉深完成。

(4),计算拉深次数及各工序的拉深直径。

,因此需要用试凑法计算利用表4-14来进行计算,但由于有两个未知数m和d td1拉深直径。

下面用逼近法来确定第一的拉深直径。

的值为由于实际拉深系数应该比极限拉伸系数稍大,才符合要求,所以上表中d td11.5、1.6、1.7的不合适。

因为当d t的值取1.4的时候,实际拉深系数与极限拉深系数接近。

故初定第一次d1拉深直径d1=56.因以后各次拉深,按表4-8选取。

故查表4-8选取以后各次的拉深系数为当m2=0.77时d2=d1×m2=56×0.77=43mm当m2=0.79时d3=d2×m3=43×0.79=34mm当m3=0.81时d4=d3×m4=34×0.81=27mm<29mm因此以上各次拉程度分配不合理,需要进行如下调整。

灯罩冲压成形工艺及模具设计

灯罩冲压成形工艺及模具设计
在2万多家生产厂点中,有一半以上是自产自用的。在模具企业中,产值过亿元的模具企业只有20多家,中型企业几十家,其余都是小型企业。 近年来, 模具行业结构调整和体制改革步伐加快,主要表现为:大型、精密、复杂、长寿命中高档模具及模具标准件发展速度快于一般模具产品;专业模具厂数量增加,能力提高较快;"三资"及私营企业发展迅速;国企股份制改造步伐加快等。
第五,模具材料及模具相关技术落后.模具材料性能、质量和品种往往会影响模具质量、寿命及成本,国产模具钢与国外进口钢相比,无论是质量还是品种规格,都有较大差距。塑料、板材、设备等性能差,也直接影响模具水平的提高。
1.1.2国内模具的发展趋势
巨大的市场需求将推动中国模具的工业调整发展。虽然我国的模具工业和技术在过去的十多年得到了快速发展,但与国外工业发达国家相比仍存在较大差距,尚不能完全满足国民经济高速发展的需求。未来的十年,中国模具工业和技术的主要发展方向包括以下几方面:
我国模具近年来发展很快,据不完全统计,2003年我国模具生产厂点约有2万多家,从业人员约50多万人,2004年模具行业的发展保持良好势头,模具企业总体上订单充足,任务饱满,2004年模具产值530亿元。进口模具18.13亿 美元,出口模具4.91亿美元,分别比2003年增长18%、32.4%和45.9%。进出口之比2004年为3.69:1,进出口相抵后的进净口达13.2亿美元,为净进口量较大的国家。
该工件的模具结构如图,主要由上¸下模座,落料凹模、凸凹模、冲孔凸模、冲孔凹模、镶拼凸模、镶拼凹模、上、下顶块,卸料板等零件组成。
根据主要工作部分尺寸结构参照有关资料,可选取I级精度的后侧导柱模架,
即:
上模座: ; ( )
下模座: ; ( )
导柱: ; ( )

压边力设定

压边力设定

开始第一次计算时压边力可以设置成P=3Mpa,但是调整完成后应该根据计算的压边力设置成吨位,并尽可能使压边力小于实际80%的压机最大外滑块力的(双动)或最大下气垫力(单动),这样才能保证计算结果的真实可靠!!如果计算出的压边力大于实际80%的压机最大外滑块力的(双动)或最大下气垫力(单动),则需要调整其他参数,如料片大小/拉延筋的强度/拉延模型以减小压边力,不然就算模拟结果最好,而在实际的压机上实现不了。

1.autoform中设置常压边压力,如默认值为3,它的单位是MPa吗?2. 模拟结束后,查看压边压力的时间历程,单位显示为N/mm^2,按照单位换算:1MPa = 1N/mm^2,那么3MPa就意味着3N/mm^2,然而在后处理中,显示的最大压边压力为411N/mm^2,为什么相差这么大呢?3. 板料单元实际承受的最大压力是否可以超过设置的压力?一个是压强,一个是压力。

你的分清,压力的单位是N。

压强是N/MM2文中提到的“压力”指压强,这一点很明确。

AF中对压边圈载荷的描述也是通过压强来表示的。

我研究了一下,我提出的问题可以解释为:AF通过给定的压边圈压强p(N/mm^2)和压边圈下的板料面积A(mm^2),得出总的压边力F_holder = p * A;然后根据压边圈下单元与压边圈的接触状态和单元当前厚度,将总的压边力F_holder分配到当前承载压边力的单元或节点上。

因此,当前时刻,压边圈下单元所受压边圈的压强会超过process中设置的压强值压边力该用什么公式算啊??压边力跟最大拉深力有关的,,,压边力的计算也可以从各经验公式得出,,如福开,吉田经验公式得出最小单位压边力P,然后由F=A*P得到压边力,,,A为压边圈面积。

其实成型过程中,压边力大小是应该随着成型阶段不同而不同的,即合理的压边力是应该变化的(随压边力需求而变化的),所以通过上述等公式计算得到的值,都不是最佳值。

所以,现在很多人在搞变压边力技术。

模块4汽车钣金机械制作工艺

模块4汽车钣金机械制作工艺

模块4 汽车钣金机械制作工艺
2)有压边圈的首次压延模 有压边圈的首次压延模, 弹簧压边圈在上模上,工 作时压边圈随凸模一起下 降。当压边圈与毛料接触 后,凸模继续下降,压边 圈则在弹簧的作用下压紧 毛料。
模块4 汽车钣金机械制作工艺
3) 再次压延模 毛料经过首次压延,己经 成为半成品,在以后的各 次压延中,凹模结构应有 相应的改变,以便于半成 品定位。有压边圈的再次 压延模,压边圈状在下模 上,半成品依靠压边圈的 外径定位。
落压成形的原理如图所示,毛料放在下模上,落锤的锤头带动 着固定在其上的上模高速落下,锤击毛料,使其沿下模的型腔 滑动并产生塑性变形,一直到毛料符合模具的型腔为止,从而 获得所需要的零件。
模块4 汽车钣金机械制作工艺
2、落压成形的特点
落压成形与其他成形方法相比较,有以下特点: (1)成形机动、灵活 落压成形是一种综合性的半机械化的成形方法,在成形过程可 视具体情况,机动、灵活地随时穿插平皱、垫橡皮、收边和放 边等工作。 (2) 成形速度高 落压成形是高速度的成形。落下部分重量大(0.8t~ 5t),锤击速 度高达5m/s,能获得足够的变形和冲击力,而且变形速度与变 形程度可以有人工灵活掌握,锤击可轻可重,可深可浅。 (3) 成形复杂零件 能成形其他方法难以成形的零件。如几何形状复杂、尺寸较大 的双曲度零件,均可以采用落压成形。 (4) 成形成本低 模具简单,制.2 压弯设备
闸压床的外形图
单柱液压床外形图
模块4 汽车钣金机械制作工艺
2、滚弯
毛料通过滚模,在摩擦力的作用下自动咬入前进,并产生 塑性弯曲的方法叫滚弯。滚弯的实质就是连续不断的弯曲。 原理:材料由中间一对机械传动的滚轮夹持送进,成形曲 率则由两侧弯曲轮控制。

(模具设计)球型凸缘件拉深模设计

(模具设计)球型凸缘件拉深模设计

模具设计课程设计————球型凸缘件拉深模设计哈哈小学出版社院系:专业:班级:姓名:指导老师:目录一、零件冲压加工工艺性分析--------------------------------------31、毛坯尺寸计算-------------------------------------------------------------------------32、判断是否可一次拉深成形-------------------------------------------------------- 33、确定是否使用压边圈--------------------------------------------------------------- 44、凹凸模圆角半径的计算------------------------------------------------------------45、确定工序内容及工序顺序---------------------------------------------------------4二、确定排样图和裁板方案------------------------------------------41、板料选择--------------------------------------------------------------------------------42、排样设计--------------------------------------------------------------------------------4三、主要工艺参数的计算1、工艺力计算----------------------------------------------------------------------------62、压力机的选择-------------------------------------------------------------------------6四、模具设计1、模具结构形状设计------------------------------------------------------------------72、模具工作尺寸与公差计算--------------------------------------------------------7五、工作零件结构尺寸和公差的确定1、落料凹模板----------------------------------------------------------------------------82、拉深凸模--------------------------------------------------------------------------------93、凹凸模-----------------------------------------------------------------------------------9六、其他零件结构尺寸1、模架的选择----------------------------------------------------------------------------92、凹凸模固定板的选择--------------------------------------------------------------103、磨柄的选择---------------------------------------------------------------------------104、卸料装置-------------------------------------------------------------------------------105、推荐装置的选择------------------------------------------------------------------1 16、销、钉的选择---------------------------------------------------------------------117、模具闭合高度的校核------------------------------------------------------------11七、参考目录------------------------------------11零件图:材料:A3钢厚度:t=1mm一、零件冲压加工工艺性分析材料:该冲裁件的材料A3钢是低碳钢,拉深工艺性较好。

5-5压边力的计算

5-5压边力的计算

按下式计算:
浅拉深时: F(0.70.8)F0 深拉深时: F(0.50.6)F0
式中 F ——拉深力、压边力以及其他变形力的 总和;
F0 ——压力机的标准压力。
本节结束
谢谢
13
2.以后各次拉深模
压边圈的形状为筒形(图48b、c)。毛坯均需的压边力较小。大多数以后各次拉深模,都应使 用限位装置。
3.在单动压力机上进行拉深
压边力靠弹性元件产生,称作弹性压边装置。 常用的弹性压边装置有橡皮垫、弹簧垫和气垫 三种(图4-49)。弹簧垫和橡皮垫的压力随行 程增大而增大,这对拉深不利。
(二)压边力计算
压边力过大,会增大拉入凹模的拉力,使危险 断面拉裂;
如果压边力不足,则不能防止凸缘起皱。
压边力为压边面积乘单位压边力,即:
FQ=AP
式中FQ—压边力(N) A—在压边圈下毛坯的投影面积 P—单位压边力(MPA),可查表5-9。
(三)压边形式
1.首次拉深模
一般采用平面压边装置(压边圈)。 宽凸缘拉深件,为了减少毛坯与压边圈的接触面积, 增大单位压边力,可采用如图47所示的压边圈;为了 保持压力均衡和防止压边圈将毛坯压得过紧,可以采 用带限位装置的压边圈(图48a)。
二、拉深力的计算
对圆筒形件,拉深力计算: F=Kπdtσb
k—修正系数
压力机的总压力根据拉深力和压边力的总 和选择:
F FFQ
当拉深行程较大,特别是采用落料拉深复合模 时,不能简单地将落料力与拉深力迭加来选择 压力机,因为压力机的标称压力是指在接近下 死点时的压力机压力。因此,应该注意压力机 的压力曲线。

第五章-2封头的冲压成型

第五章-2封头的冲压成型
2. 厚壁封头的冲压
(三)薄壁封头和厚壁封头的冲压
2. 厚壁封头的冲压 分瓣冲压
a. 坯料直径大于冲压机开挡;
b. 冲压力超过冲压机吨位;
c. 封头直径大,壁薄,整体冲压容 易起皱。
(三)薄壁封头和厚壁封头的冲压
3. 双金属板(复合板)封头的冲压
对于这类钢板冲压时应注意的事项有以下几点:
a. 加热时,两层金属的热胀系数不同; b. 高温下两种金属的变形抗力不同,所以流动特点不
B处:下模圆角处
D处:封头底部
(二)封头冲压时的应力和变形
冲压时,冲头将坯料 中心部分压入下模, 中心点 o附近的坯料 处于两向拉伸应力状 态,周向拉应力随着 距 o点距离的增加而 减小,到某一直径为 零,然后变成压力。
(二)封头冲压时的应力和变形
由于坯料的连续性,中心部位的拉伸位 移将冲头的作用力传至坯料的平法兰部分, 使其产生足以发生拉伸变形的径向力σr,平 法兰在σr的作用下向中心移动,逐渐进入冲 头和下模的间隙,成为椭圆面和直边。
内径:
外径: 厚度:
Dn′ = Dxm + (50 ~ 80)mm Dw′ = D
δ ′ = 70 ~ 120mm
作业
1. 简述封头冲压过程中坯料各点的受力情况。 2. 分析封头冲压时径向应力的作用和影响。 3. 分析封头冲压时切向应力的作用和影响。 4. 简述薄壁封头和厚壁封头的冲压工艺。
5.2.2 封头的旋压成型
(1)旋压成形的特点
使毛坯旋转的同时,用简单的工具使毛坯逐渐变 形,成为所需零件形状 。
1. 工具简单,省工时; 2. 金属的变形速度小,无减薄和增厚现象,无折皱;
3. 属于冷加工无氧化和烧损现象 ; 4. 占地少,重量轻。

同步带传动受力情况的分析(压轴力与张紧力的计算)

同步带传动受力情况的分析(压轴力与张紧力的计算)

同步带受力情况的分析 1 紧力同步带安装时必须进行适当的紧,以使带具有一定的初拉力(紧力)。

初拉力过小会使同步带在运转中因齿合不良而发生跳齿现象,在跳齿的瞬间,可能因拉力过大而使带断裂或带齿断裂;初拉力过小还会使同步带传递运动的精度降低,带的振动噪音变大。

而初拉力过大则会使带的寿命降低,传动噪音增大,轴和轴承上的载荷增大,加剧轴承的发热和使轴承寿命降低。

故控制同步带传动合宜的紧力是保证同步带传动正常工作的重要条件。

设0F 为同步带传动时带的紧力,1F 、2F 、F 分别为带传动工作时带的紧边拉力、松边拉力、和有效拉力。

为了保证同步带在带轮上齿合可靠、不跳齿,同步带运转时紧边带的弹性伸长量与松边带的弹性收缩量应保持近似相等。

因此,紧边拉力的增加量应等于松边拉力的减少量,即1F -0F =0F -2F 或 1F +2F =20F 、0F =0.5(1F +2F ) 式1-12 压轴力压轴力即为同步带作用在轴上的力,是紧边拉力与松边拉力的矢量和,如图2-1所示:图2-1同步带的压轴力、紧边拉力、松边拉力据机械标准JB/T 7512.3-1994压轴力Q 计算如下所示:Q=12()F K F F + N 式2-1 当工况系数A K ≥1.3时:Q=0.7712()F K F F + N 式2-2 式中: F K ――矢量相加修正系数,如图2-2:图2-2 矢量相加修正系数 上图中1α为小带轮包角,21118057.3d d aα-≈︒-⨯︒。

A K 为工况系数,对于医疗机械,其值如图2-3所示:图2-3 医疗机械的工况系数对于医疗机械,取A K =1.2,所以有压轴力Q=12()F K F F + N ,其中F K 值大于0.5。

另外由式1-1有紧力0F =0.5(1F +2F )。

由此可看出压轴力大于紧力,故设计时只需计算传动中所受的压轴力,Q=12()F K F F + N 。

而带的紧边力与松边力分别由下面公式所得:11250/d F P V = N 式2-32250/d F P V = N 式2-4式中: V 为带速,/m s ;d P 为设计功率,d A P K P =,KW ;A K 为工况系数,P 为需传递的名义功率(KW )。

常用纸箱ECT对应的边压和耐破强度表以及计算方法

常用纸箱ECT对应的边压和耐破强度表以及计算方法

很多人不知道ECT边压怎么来的:下面我们以51ECT B/C为例:51ECT B/C 的意思是每1平方英寸的纸板要能承受51磅的压力。

而下表要求的边压强度为牛顿/米。

所以要换算:1、把51磅变为牛顿51 / 2.2046=23.13345公斤23.13345x9.8=226.7078牛顿51磅=226.7078牛顿2、已知每英寸的力,要求每米的力,所以再要把英寸变成米:226.7078 / 25.4=8.925504 牛顿/毫米8.925504 x 1000=8925.504 牛顿/ 米这样就得出了表里的得数:51 ECT B/C89251700测试的计算方法:工厂测试设备是显示公斤数的,边压测试是用25.4mm x 100mm的纸板。

所以用边压的结果乘9.8就能得出牛顿。

因为压的纸板长度是100mm,所以再乘10就得出米。

所以可以很简单办法的算出牛顿 / 米的结果:用25.4mm x 100mm的纸板测出结果,再用测试出来的公斤数 X 98= 实际纸箱的N/M数字。

(爆裂强度的算法也一样)下面是一些常用的纸箱的ECT对应值MATERIAL材料ECT VALUE(N/M)边压BURSTING STRENGTH 破裂强度(KPA)32 ECT B/C56001350 44 ECT B/C77001700 48 ECT B/C84001700 51 ECT B/C89251700 61 ECT B/C106752290 44 ECT A77001600 32 ECT B56001530 32 ECT C56001530 44 ECT C77001530 32 ECT E56001352常用抢救药物的计算方法和剂量表血管活性药物是临床科室最常用的药物之一。

这些药物是否应用得当,直接影响到病人治疗效果以及病情的转归。

一般静脉点滴法难以保证用药量的准确、恒定。

用药量不够达不到治疗目的,用药剂量过大而造成严重后果,不能使治疗量化,无法准确判定病人对于心血管活性药物的反应如何,不能得到满意的治疗效果。

冲压工艺及模具设计--实验指导书

冲压工艺及模具设计--实验指导书

《冲压工艺及模具设计》实验指导书广东工业大学材料与能源学院2013年3月目录实验一BHB—80A型板料试验机的结构原理与操作 (3)实验二冲杯实验 (10)实验三扩孔实验 (13)实验四冲模拆装与测绘 (15)实验一冲模拆装与测绘一、实验目的:1.了解冲压模具的结构特点、工作原理及拆装工艺过程;2. 了解冲压模具上各主要零件的作用、相互间的装配关系以及加工要求.二、实验内容:1.实验者自行拆装一幅冲压模具,测绘该模具简图;2通过所拆装的冲压模具,归纳冲压模具组成和结构特点,分析冲压成形零件在该付模具中的定位、卸料等加工方法三、实验工具:典型冲压模具一幅、钳工台、游标卡尺、扳手、铜棒等常用工具。

四、实验要求:学生在老师的指导下分组协同完成实验任务。

五、实验步骤:1。

在教师指导下,了解冲模类型和总体结构。

2.拆卸冲模,详细了解冲模每个零件的名称、结构和作用.3。

重新装配冲模,进一步熟悉冲模的结构、工作原理及装配过程。

4.按比例绘出你所拆装的冲模的结构草图。

六、考核形式:根据实验过程操作及编写的实验报告评定成绩.七、实验报告要求:1. 简要说明冲压模具的拆装过程;2. 简述模具的工作原理及各主要零件的作用;3。

用计算机绘制模具装配图,并注明各零件的名称。

实验二BHB-80A型板料试验机的结构原理与操作一,实验目的:了解实验机的基本构造原理,掌握对它的基本操作。

二,试验设备:BHB—80A型板料试验机三,试验机的功能试验机是国产的板料试验机。

其功能齐全,能进行液压胀形,刚性模胀形,冲杯(拉深),扩孔(KWI),杯突(IE),锥杯(CCV)等实验,还可以做双向拉深应力-应变曲线,成形极限图(FLD)及液压胀形应变分布等实验。

配合其他试验手段可以对金属薄板进行从“宏观”到“微观"的多种实验研究工作。

四,主要技术参数1,最大刚性模冲压力 300KN2, 最大液压胀形压力 32Mpa3,最大压边力 500KN4,刚性模和冲压模行程 100mm5,系统最大液压 35Mpa6,最高压力 40Mpa五,执行机构(模具)结构介绍图1是执行机构的结构示意图,执行机构由模筒1、压边活塞2、中心活塞3、模底4及凹模组成。

《压边力的计算》课件

《压边力的计算》课件
《压边力的计算》课 件
目录
CONTENTS
• 压边力概述 • 压边力计算的基本原理 • 压边力的计算方法 • 压边力计算实例 • 压边力计算的注意事项与展望
01
压边力概述
压边力的定义
压边力
压边力调节
在金属成型过程中,压边力是指作用 在压边圈上的力,用于控制金属的流 动和防止金属溢出模具型腔。
压边力的调节需要根据金属的种类、 模具结构和成型条件等因素进行,以 确保金属在成型过程中能够得到良好 的流动和填充效果。
总结词
基于人工智能算法的压边力计算是一种利用人工智能技术来预测和优化压边力的方法。
详细描述
这种方法通过训练人工智能模型来学习压边力与相关参数之间的关系,并利用这些模型来进行预测和 优化。这种方法具有较高的预测精度和较好的泛化能力,但需要大量的训练数据和技术支持。
04
压边力计算实例
实例一:简单零件的压边力计算
基于有限元分析的压边力计算
总结词
基于有限元分析的压边力计算是一种通过建立有限元模型来 模拟压边力分布和大小的方法。
详细描述
这种方法通过建立材料的物理模型和边界条件,利用有限元 分析软件来求解压边力的大小和分布。这种方法精度较高, 但需要较长的计算时间和较高的技术要求。
基于人工智能算法的压边力计算
提高成型效率
适当的压边力可以加快金属的流动 速度,缩短成型周期,提高成型效 率。
压边力对成型质量的影响
01
02
03
压边力过小
可能导致金属无法完全填 充模具型腔,产生成型缺 陷,如缺料、气泡等。
压边力过大
可能导致金属过度流动, 产生溢料、毛刺等缺陷, 同时还会增加模具磨损和 降低成型效率。

第4章 拉深

第4章 拉深

构、拉深模工作零件设计、变薄拉深以及冲挤切口、辅助工
序等。
本章重点
1. 2. 3. 4. 5. 拉深变形规律及拉深件质量影响因素; 拉深工艺计算方法; 拉深工艺性分析与工艺方案制定; 拉深模典型结构与结构设计; 拉深工艺与拉深模设计的方法和步骤。
难点
1.拉深变形规律及拉深件质量影响因素;
2.拉深工艺计算 ; 3.其他形状零件的拉深变形特点 ;
4.5.4 拉深功与功率计算
对于不变薄拉深的拉深功按下式计算:
W=F平均h×10-3=CFmaxh×10-3
拉深功率P(KW)按下式计算:
P=(Wn)/(60×750×1.36)
压力机的电机功率率P电(KW)按下式计算:
P电=(KWn)/(60×750×1.36×η 1×η 2)
拉深力-行程图
4.6 拉深模工作部分结构参数确定
4.6.1 凸、凹模圆角半径的确定
1.凹模圆角半径R凹 内容包括:凸、凹模圆角半径,拉深模凸、凹模间隙和凸、 凹模工作部分尺寸。本节以圆筒件为例进行介绍 。 首次(包括只有一次)拉深凹模圆角半径可按下式计算: 或
以后各次拉深凹模圆角半径应逐渐减小,一般按下式确定: (i=2、3、…、n) 以上计算所得凹模圆角半径一般应符合rA≥2t的要求。
(1)采用查表法确定拉深次数:
由t/D×100=1.28,h/D=3.7查表4-11得拉深次数n=4 由m总=0.256,t/D×100=1.28查表4-12得拉深次数n=4
(2)采用计算法确定拉深次数:
由公式4-14得
n=1+[lg20-lg(0.51×78)]/lg0.77拉深力的计算
最大拉深力可以用下式来进行计算:
Fmax=3(σ b+σ s)(D-d-r凹)t

冲压工艺及模具-设计与实践第7章 冲压成形的其他工艺

冲压工艺及模具-设计与实践第7章 冲压成形的其他工艺
2)最小孔径 精冲最小孔径与材料厚度及其力学性能有关,从冲孔凸模上允许承受的最大
压应力考虑,应使凸模直径与料厚之比d/t≥4τ /[σ p]。其中,τ 为材料
抗剪强度,[σ p]为凸模许用压应力。 3)槽宽
图7.6壁厚不同的精冲零件由于冲槽凸模上应力分布较冲圆孔凸模更为不利
,当冲窄长槽时,凸模的抗纵向弯曲的能力变差,所能承受的压力将比同样 断面的圆孔凸模小,可按料厚t、强度极限σ p和槽长L查出最小槽宽bmin。
4)最小壁厚

退出
冲压工艺及模具——设计与实践
出版社 理工分社
壁厚是指精冲零件上相邻孔之间、槽之间、孔和槽之间、孔或槽与内外形轮 廓之间的距离,即所谓间距或边距(见图7.6)。其中,W1为两圆孔间的壁
厚,凸凹模的危险截面部分很短,允许其壁厚可小一些;W2是一直边孔与圆
孔形成的壁厚,其凸凹模薄弱部分较W1的承载能力要差一些,但与W3,W4相 比还是较有利的;W3及W4的凸凹模薄弱部分较长,冲裁最为不利,其允许值

退出
冲压工艺及模具——设计与实践
出版社 理工分社
边形状,呈纯剪切的形式被冲裁成零件,从而获得高质量的光洁、平整的剪
切面。精冲时,压紧力、冲裁间隙及凹模刃口圆角三者相辅相成,是缺一不
可的。它们的影响是互相联系的,当间隙均匀、圆角半径适当时,就可用不 大的压力获得光洁的断面。
如图7.5所示,精冲工艺过程如下:
理的间隙值不仅能提高工件质量,而且能提高模具的寿命。间隙过大,工件 断面会产生撕裂;间隙过小,会缩短模具寿命。精冲间隙主要取决于材料厚
度,同时也与工件形状、材质有关,软材料选略大的值,硬材料选略小的值
,具体数值如表7.2所示。此表提供的数据是具有最佳精冲组织的碳钢,在 剪切面表面完好率为Ⅰ级、模具寿命高的基础上制订的。具体使用时,对于

无凸缘圆筒形件的落料——拉深复合模具设计

无凸缘圆筒形件的落料——拉深复合模具设计

无凸缘圆筒形件的落料——拉深复合模具设计绪论毕业设计是为了模具设计与制造专业学生在学完基础理论课、技术基础课和专业课的基础上,所设置的一个重要环节。

目的就是为了运用我们所学课程的理论和生产实际知识,进行一次模具设计的实际训练,从而培养和提高我们独立工作的能力。

冲压模具设计通过收集资料、工艺分析、工艺计算、确定冲模的结构设计,各个零部件的设计、绘制模具总装配图、零件图,最后完善和书写设计说明书,终于完成整个的设计过程。

目前,我国冲压技术与先进工业发达国家相比还有一定差距,主要原因是我国在冲压基础理论及成形工艺、模具标准化、模具设计、模具制造工艺及设备等方面与工业发达国家尚有相当大的差距。

导致我国模具在寿命、效率、加工精度、生产周期等方面与先进工业发达国家的模具相比差距相当大。

随着科学技术的不断进步和工业生产的迅速发展,冲压加工作为现代工业领域内重要的生产手段之一,更加体现出其特有的优越性。

在现代工业生产中,由于市场竞争日益激烈,产品性能和质量要求越来越高,更新换代的速度越来越快,冲压产品正朝着复杂化、多样化、高性能、高质量方向发展,模具也正朝着复杂化、高效率、长寿命方向发展。

一、冲压成形理论及冲压工艺加强冲压变形基础理论的研究,以提供更加准确、实用、方便的计算方法,正确地确定冲压工艺参数和模具工作部分的几何形状和尺寸,解决冲压变形中出现的各种实际问题,进一步提高冲压件的质量。

研究和推广采用新工艺,如精冲工艺、软模成形工艺、高能高速成形工艺、超塑性成形工艺以及其他高效经济的成形工艺等,进一步提高冲压技术水平。

二、模具先进制造工艺及设备模具制造技术现代化是模具工业发展的基础。

计算机技术、信息技术、自动化技术等先进技术正在不断向传统制造技术渗透、交叉、融合,形成先进制造技术。

模具先进制造技术主要体现如下方面:1.高速铣削加工普通铣削加工采用低的进给速度和大的切削参数,而高速铣削加工则采用高的进给速度和小的切削参数。

纸箱耐破、边压、环压、抗压、戳穿强度单位和计算公式

纸箱耐破、边压、环压、抗压、戳穿强度单位和计算公式

纸箱耐破、边压、环压、抗压、戳穿强度单位和计算公式1.耐破强度:BST(Bursting Strength Test)耐破强度是静态破裂强度,单位千帕(Kpa)。

耐破强度可由耐破强度测试仪测定。

瓦楞原纸和箱纸板等原料的耐破强度符合相关标准,瓦楞纸板的耐破强度可以由所用的原料推测得出,它等于各层箱纸板的耐破强度之和再乘以系数0.95,与瓦楞层无关。

例如,单瓦楞纸板和双瓦楞纸板的耐破强度分别计算如下:单瓦楞纸板(耐破强度)BST=(面纸BST+里纸BST)×0.95双瓦楞纸板(耐破强度)BST=(面纸BST+夹芯BST里纸BST)*0.95因为瓦楞纸板各层箱纸板之间有空隙,缓冲能力增加了,但是更容易被各个击破,所以上述公式中,各层箱纸板的耐破强度之和再乘以系数0.95得到的结果,才与实际情况相符。

耐破强度与瓦楞层无关,是因为:一方面,瓦楞层的耐破强度比箱纸板低得多,另一方面,由于耐破强度是静态耐破裂强度,瓦楞层的缓冲更大,从而大大降低其耐破强度,以至于可忽略不计。

推荐仪器:HK-201耐破强度测试仪2.边压强度ECT(Edge Crush Test of Corrugated Fiberboard)和环压强度RCT(Ring Crush Test)边压强度即瓦楞纸板的边缘压缩强度,单位牛/米(N/m)。

环压强度RCT主要是指箱板纸和瓦楞纸的横向压缩强度,单位牛/米(N/m)。

瓦楞纸板的边压强度与箱板纸和瓦楞纸的环压强度RCT有关,计算公式如下:单瓦楞纸板边压强度ECT=面纸RCT+里纸RCT+瓦楞纸RCT×楞率双瓦楞纸板边压强度ECT=面纸RCT+里纸RCT+夹芯纸RCT+*层瓦楞纸RCT×相应楞率+第二层瓦楞纸RCT×相应楞率%国外有一些包装科研机构通过大量研究工作,归纳出一系列的计算公式,芬兰一家包装科研机构做出了大量测试,得出的成果具有代表性,非常符合实际情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档