方程的根与函数的零点

合集下载

函数的零点与方程的根

函数的零点与方程的根

函数与方程及函数的应用1.函数的零点与方程的根(1)函数的零点对于函数f(x),我们把使f(x)=0的实数x叫做函数f(x)的零点.(2)函数的零点与方程根的关系函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标.(3)零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,这个c 也就是方程f(x)=0的根.注意以下两点:①满足条件的零点可能不唯一;②不满足条件时,也可能有零点.(4)二分法求函数零点的近似值,二分法求方程的近似解.2.函数模型解决函数模型的实际应用题,首先考虑题目考查的函数模型,并要注意定义域.其解题步骤是(1)阅读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学结果;(4)实际问题作答:将数学问题的结果转化成实际问题作出解答.考点一函数的零点例1 (1)(2013·重庆)若a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x -a)的两个零点分别位于区间( )A.(a,b)和(b,c)内B.(-∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(-∞,a)和(c,+∞)内(2)函数f (x )=⎩⎪⎨⎪⎧ ln x -x 2+2x x >0,2x +1x ≤0,的零点个数是( )A .0B .1C .2D .3答案 (1)A (2)D解析 (1)由于a <b <c ,所以f (a )=0+(a -b )(a -c )+0>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0.因此有f (a )·f (b )<0,f (b )·f (c )<0,又因f (x )是关于x 的二次函数,函数的图象是连续不断的曲线,因此函数f (x )的两零点分别位于区间(a ,b )和(b ,c )内,故选A.(2)依题意,当x >0时,在同一个直角坐标系中分别作出y =ln x 和y =x 2-2x =(x -1)2-1的图象,可知它们有两个交点;当x ≤0时,作出y =2x +1的图象,可知它和x 轴有一个交点.综合知,函数y =f (x )有三个零点.(1)函数零点(即方程的根)的确定问题,常见的有①函数零点值大致存在区间的确定;②零点个数的确定;③两函数图象交点的横坐标或有几个交点的确定.解决这类问题的常用方法有解方程法、利用零点存在的判定或数形结合法,尤其是方程两端对应的函数类型不同的方程多以数形结合求解.(2)提醒:函数的零点不是点,是方程f (x )=0的根,即当函数的自变量取这个实数时,其函数值等于零.函数的零点也就是函数y =f (x )的图象与x 轴的交点的横坐标.(1)(2012·天津)函数f (x )=2x +x 3-2在区间(0,1)内的零点个数是 ( )A .0B .1C .2D .3 (2)已知函数f (x )=a x +x -b 的零点x 0∈(n ,n +1)(n ∈Z ),其中常数a 、b 满足2a =3,3b =2,则n =________.答案 (1)B (2)-1解析 (1)先判断函数的单调性,再确定零点.因为f ′(x )=2x ln 2+3x 2>0,所以函数f (x )=2x +x 3-2在(0,1)上递增,且f (0)=1+0-2=-1<0,f (1)=2+1-2=1>0,所以有1个零点.(2)f (x )=a x +x -b 的零点x 0就是方程a x =-x +b 的根.设y 1=a x ,y 2=-x +b ,故x 0就是两函数交点的横坐标,如图,当x =-1时,y 1=1a=log 32<y 2=1+b =1+log 32, ∴-1<x 0<0,∴n =-1.考点二 与函数有关的自定义问题例2 若对于定义在R 上的函数f (x ),其图象是连续不断的,且存在常数λ(λ∈R )使得f (x+λ)+λf (x )=0对任意实数都成立,则称f (x )是一个“λ-伴随函数”.有下列关于“λ-伴随函数”的结论:①f (x )=0是常数函数中唯一一个“λ-伴随函数”;②f (x )=x 是“λ-伴随函数”;③f (x )=x 2是“λ-伴随函数”;④“12-伴随函数”至少有一个零点.其中正确结论的个数是( ) A .1 B .2 C .3 D .4先理解新定义“λ-伴随函数”的意义,然后对给出的函数逐一用定义检验,从而判断所给命题的正确性.答案 A解析 对于①,若f (x )=c ≠0,取λ=-1,则f (x -1)-f (x )=c -c =0,即f (x )=c ≠0是一个“λ-伴随函数”,故①不正确.对于②,若f (x )=x 是一个“λ-伴随函数”,则(x +λ)+λx =0,求得λ=0且λ=-1,矛盾,故②不正确.对于③,若f (x )=x 2是一个“λ-伴随函数”,则(x +λ)2+λx 2=0,求得λ=0且λ=-1,矛盾,故③不正确.对于④,若f (x )是“12-伴随函数”, 则f (x +12)+12f (x )=0,取x =0, 则f (12)+12f (0)=0, 若f (0),f (12)任意一个为0,函数f (x )有零点;若f (0),f (12)均不为0, 则f (0),f (12)异号,由零点存在性定理, 知f (x )在(0,12)内存在零点x 0, 所以④正确.故选A. 函数的创新命题是高考命题的一个亮点,此类题型是用数学符号、文字叙述给出一个教材之外的新定义,如本题中的“λ-伴随函数”,要求在短时间内通过阅读、理解后,解决题目给出的问题.解决这类问题的关键是准确把握新定义的含义,把从定义和题目中获取的新信息进行有效的整合,并转化为熟悉的知识加以解决,即检验f (x +λ)+λf (x )=0对任意实数都成立.若平面直角坐标系内两点P ,Q 满足条件:①P ,Q 都在函数f (x )的图象上;②P ,Q 关于y 轴对称,则称点对(P ,Q )是函数f (x )的图象上的一个“镜像点对”(点对(P ,Q )与点对(Q ,P )看作同一个“镜像点对”).已知函数f (x )=⎩⎪⎨⎪⎧ cos πx x <0,log 3x x >0,则f (x )的图象上的“镜像点对”有( )A .1对B .2对C .3对D .4对 答案 C解析 依题意,设点P (x 0,y 0),Q (-x 0,y 0)(其中x 0>0),若点对(P ,Q )是函数f (x )的图象上的一个“镜像点对”,则有⎩⎪⎨⎪⎧ y 0=log 3x 0,y 0=cos π-x 0=cos πx 0,所以log 3x 0=cos πx 0,即x 0是方程log 3x =cos πx 的根.在同一个直角坐标系中画出函数y =log 3x 与y =cos πx 的图象,可知这两个图象共有3个交点,即函数f (x )的图象的“镜像点对”共有3对.故选C.考点三 函数模型及其应用例3 省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f (x )与时刻x (时)的关系为f (x )=|xx 2+1-a |+2a +23,x ∈[0,24],其中a 是与气象有关的参数,且a ∈[0,12],若用每天f (x )的最大值为当天的综合放射性污染指数,并记作M (a ).(1)令t =xx 2+1,x ∈[0,24],求t 的取值范围;(2)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?(1)分x =0和x ≠0两种情况,当x ≠0时变形使用基本不等式求解.(2)利用换元法把函数f (x )转化成g (t )=|t -a |+2a +23,再把函数g (t )写成分段函数后求M (a ).解 (1)当x =0时,t =0;当0<x ≤24时,x +1x≥2(当x =1时取等号), ∴t =x x 2+1=1x +1x∈(0,12],即t 的取值范围是[0,12]. (2)当a ∈[0,12]时,记g (t )=|t -a |+2a +23, 则g (t )=⎩⎪⎨⎪⎧ -t +3a +23,0≤t ≤a ,t +a +23,a <t ≤12.∵g (t )在[0,a ]上单调递减,在(a ,12]上单调递增, 且g (0)=3a +23,g (12)=a +76, g (0)-g (12)=2(a -14).故M (a )=⎩⎪⎨⎪⎧ g12,0≤a ≤14,g 0,14<a ≤12.即M (a )=⎩⎪⎨⎪⎧ a +76,0≤a ≤14,3a +23,14<a ≤12. 当0≤a ≤14时,M (a )=a +76<2显然成立; 由⎩⎪⎨⎪⎧ 3a +23≤2,14<a ≤12,得14<a ≤49, ∴当且仅当0≤a ≤49时,M (a )≤2. 故当0≤a ≤49时不超标,当49<a ≤12时超标. (1)解答函数应用题的关键将实际问题中的数量关系转化为函数模型,常见模型有:一次或二次函数模型;分式函数模型;指数式函数模型等.(2)对函数模型求最值的常用方法单调性法、基本不等式法及导数法.(3)本题中的函数与方程思想:①在求t 的范围时,把t 看作是x 的函数,在求M (a )时,把综合放射性污染指数看作是t 的函数.②在确定综合放射性污染指数是否超标时,用到了方程的思想.某地发生地质灾害,使当地的自来水受到了污染,某部门对水质检测后,决定在水中投放一种药剂来净化水质,已知每投放质量为m 的药剂后,经过x 天该药剂在水中释放的浓度y (毫克/升)满足y =mf (x ),其中f (x )=⎩⎪⎨⎪⎧ x 216+2,0<x ≤4,x +142x -2,x >4,当药剂在水中的浓度不低于4(毫克/升)时称为有效净化;当药剂在水中释放的浓度不低于4(毫克/升)且不高于10(毫克/升)时称为最佳净化.(1)如果投放的药剂质量为m =4,试问自来水达到有效净化一共可持续几天?(2)如果投放药剂质量为m ,为了使在7天(从投放药剂算起包括7天)之内的自来水达到最佳净化,试确定应该投放的药剂质量m 的最小值.解 (1)由题意,得当药剂质量m =4时,y =⎩⎪⎨⎪⎧ x 24+80<x ≤4,2x +28x -1x >4.当0<x ≤4时x 24+8≥4,显然符合题意. 当x >4时2x +28x -1≥4,解得4<x ≤16. 综上0<x ≤16.所以自来水达到有效净化一共可持续16天.(2)由y =m ·f (x )=⎩⎪⎨⎪⎧ mx 216+2m 0<x ≤4,m x +142x -2x >4,得 当0<x ≤4时,y =mx 216+2m 在区间(0,4]上单调递增,即2m <y ≤3m ;当x >4时,y ′=-30m 2x -22<0, ∴函数在区间(4,7]上单调递减,即7m 4≤y <3m , 综上知,7m 4≤y ≤3m , 为使4≤y ≤10恒成立,只要7m 4≥4且3m ≤10即可, 即167≤m ≤103.。

1.函数的零点与方程的根

1.函数的零点与方程的根
a>0 ∆ = 8a 2 + 24a + 4 > 0 1 −1 < − <1 2a f (1) ≥ 0 f ( −1) ≥ 0 a<0 ∆ = 8a 2 + 24a + 4 > 0 1 或 −1 < − <1 2a f (1) ≤ 0 f ( −1) ≤ 0
定义证明.(2)因在 为增函数, 解:(1)定义证明 因在 ( −1,+∞ ) 为增函数 定义证明 为增,又 故在 (0,+∞ ) 为增 又 f(0)= -1<0,f(1)=2.5,所 所 以在(0,1)有且只有一个正根 下用二分法 有且只有一个正根.下用二分法 以在 有且只有一个正根 列表,区间 中点,中点函数值 约为 0.28(列表 区间 中点 中点函数值 列表 区间,中点 中点函数值)
一、一元二次函数与一元二次方程 内容复习
知识归纳: 一元二次函数、不等式、 知识归纳:、一元二次函数、不等式、方程的关系 1、
∆ = 0
∆ = 0
∆ < 0
二次函数
y = ax
2
+ bx + c
( a > 0 )的 图象
一元二次方程 有两相异实根 有两相等实根
(a
ax
2
> 0) 的根
+ bx + c = 0

3.方程有一正根一负根 ⇔ ac < 0
如果两根都大于2乍办? 如果两根都大于 乍办? 乍办
2.方程有两个不相等的负实数根 ⇔
∆ = b − 4 ac > 0 b x1 + x 2 = − > 0 a c x1 x 2 = > 0 a

方程的根与函数的零点(精选7篇)

方程的根与函数的零点(精选7篇)

方程的根与函数的零点(精选7篇)方程的根与函数的零点篇1第一课时: 3.1.1教学要求:结合二次函数的图象,推断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;把握零点存在的判定条件.教学重点:体会函数的零点与方程根之间的联系,把握零点存在的判定条件.教学难点:恰当的使用信息工具,探讨函数零点个数.教学过程:一、复习预备:思索:一元二次方程 +bx+c=o(a 0)的根与二次函数y=ax +bx+c的图象之间有什么关系?.二、讲授新课:1、探讨函数零点与方程的根的关系:① 探讨:方程x -2x-3=o 的根是什么?函数y= x -2x-3的图象与x轴的交点?方程x -2x+1=0的根是什么?函数y= x -2x+1的图象与x轴的交点?方程x -2x+3=0的根是什么?函数y= x -2x+3的图象与x轴有几个交点?② 依据以上探讨,让同学自己归纳并发觉得出结论:→推广到y=f(x)呢?一元二次方程 +bx+c=o(a 0)的根就是相应二次函数y=ax +bx+c的图象与x轴交点横坐标.③ 定义零点:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.④ 争论:y=f(x)的零点、方程f(x)=0的实数根、函数y=f(x) 的图象与x 轴交点的横坐标的关系?结论:方程f(x)=0有实数根函数y=f(x) 的图象与x轴有交点函数y=f(x)有零点⑤ 练习:求下列函数的零点;→ 小结:二次函数零点状况2、教学零点存在性定理及应用:① 探究:作出的图象,让同学们求出f(2),f(1)和f(0)的值, 观看f(2)和f(0)的符号②观看下面函数的图象,在区间上______(有/无)零点; _____0(<或>). 在区间上______(有/无)零点; _____0(<或>). 在区间上______(有/无)零点; _____0(<或>).③定理:假如函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c (a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.④ 应用:求函数f(x)=lnx+2x-6的零点的个数. (试争论一些函数值→分别用代数法、几何法)⑤小结:函数零点的求法代数法:求方程的实数根;几何法:对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.⑥ 练习:求函数的零点所在区间.3、小结:零点概念;零点、与x轴交点、方程的根的关系;零点存在性定理三、巩固练习:1. p97, 1,题 2,题(老师计算机演示,同学回答)2. 求函数的零点所在区间,并画出它的大致图象.3. 求下列函数的零点:;;;.4.已知:(1)为何值时,函数的图象与轴有两个零点;(2)假如函数至少有一个零点在原点右侧,求的值.5. 作业:p102, 2题;p125 1题其次课时: 3.1.2用二分法求方程的近似解教学要求:依据详细函数图象,能够借助计算器用二分法求相应方程的近似解. 通过用二分法求方程的近似解,使同学体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.教学重点:用二分法求方程的近似解.教学重点:恰当的使用信息工具.教学过程:一、复习预备:1. 提问:什么叫零点?零点的等价性?零点存在性定理?零点概念:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.方程f(x)=0有实数根函数y=f(x) 的图象与x轴有交点函数y=f(x)有零点假如函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c (a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.2. 探究:一元二次方程求根公式?三次方程?四次方程?材料:高次多项式方程公式解的探究史料:在十六世纪,已找到了三次和四次函数的求根公式,但对于高于4次的函数,类似的努力却始终没有胜利,到了十九世纪,依据阿贝尔(abel)和伽罗瓦(galois)的讨论,人们熟悉到高于4次的代数方程不存在求根公式,亦即,不存在用四则运算及根号表示的一般的公式解.同时,即使对于3次和4次的代数方程,其公式解的表示也相当简单,一般来讲并不相宜作详细计算.因此对于高次多项式函数及其它的一些函数,有必要寻求其零点的近似解的方法,这是一个在计算数学中非常重要的课题二、讲授新课:1. 教学二分法的思想及步骤:① 出示例:有12个小球,质量匀称,只有一个是比别的球重的,你用天平称几次可以找出这个球的,要求次数越少越好. (让同学们自由发言,找出最好的方法)解:第一次,两端各放六个球,低的那一端肯定有重球其次次,两端各放三个球,低的那一端肯定有重球第三次,两端各放一个球,假如平衡,剩下的就是重球,否则,低的就是重球.其实这就是一种二分法的思想,那什么叫二分法呢?② 探究:的零点所在区间?如何找出这个零点?→ 师生用二分法探究③ 定义二分法的概念:对于在区间[a,b]上连续不断且f(a).f(b)0的函数y=f(x),通过不断的把函数的零点所在的区间一分为二,使区间的两个端点逐步靠近零点,进而得到零点近似值的方法叫二分法(bisection)④ 探究:给定精度ε,用二分法求函数的零点近似值的步骤如下:a.确定区间,验证,给定精度ε;b. 求区间的中点;c. 计算:若,则就是函数的零点;若,则令(此时零点);若,则令(此时零点);d. 推断是否达到精度ε;即若,则得到零点零点值a(或b);否则重复步骤2~4.2. 教学例题:① 出示例:借助计算器或计算机用二分法求方程2 +3x=7的近似解. (师生共练)② 练习:求函数的一个正数零点(精确到)3. 小结:二分法的概念, 二分法的步骤;注意二分法思想三、巩固练习:1. p100, 1,题 2,题; 2. 求方程的解的个数及其大致所在区间.3. 用二分法求的近似值;4. 求方程的实数解个数:;5. 作业:p102 3,4题,阅读p105框图方程的根与函数的零点篇2一、教学内容解析本节课的主要内容有函数零点的的概念、函数零点存在性判定定理。

方程的根与函数的零点教案

方程的根与函数的零点教案

方程的根和函数的零点(说课稿)、教材分析:函数是中学数学的核心概念,核心的原因之一就在于函数与其他知识具有广泛的联系性,而函数的零点就是其中一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起。

本节课是在学生学习了基本初等函数及其相关性质,具备初步的数形结合的能力基础之上,得用函数图象和性质来判断方程的根的存在性及根的个数,从而掌握函数在某个区间上存在零点的判定方法,为下节“用二分法求方程的近似解”和后续学习奠定基础。

因此本节内容具有承前启后的作用,地位至关重要。

1. 知识与技能:理解方程的根和函数的零点的关系,函数零点的定义,学会判断零点存在的条件。

2. 过程与方法:通过学习,培养学生自主探究和独立思考的能力。

培养学生函数和方程结合思想的能力。

3. 思想方法:培养学生数形结合的意识与思想。

『重点。

难点。

关键点』:1. 重点:理解方程的根和函数零点之间的联系,判断函数零点的存在及其个数的方法。

2. 难点:理解探究发现函数零点的存在性。

理解函数的零点就是方程的根及利用函数的图像和性质判别零点的个数。

3. 关键点:帮助学生寻找方程和函数图象之间的联系。

『教学方法和手段』:教学方法:探究式教学(“启发—探究—讨论”的教学模式)教学手段:教学软件PPT 和几何画板辅助教学。

『教学进程构思及说明』:置前作业:1、求下列方程的根并画出对应的函数的图像。

2(1)230x x --= 2(2)210x x -+= 2(3)230x x -+=通过观察,你能得到上面三个一元二次方程的根与其相应的二次函数的图象有什么关系吗?(表格见资料)课前完成,观察上面三个一元二次方程的根与其相应的二次函数的图象有什么关系吗?激发学生探究问题的兴趣。

(反馈课前作业,抽学生回答。

)分析:1. 方程0322=--x x 的 根为3,121=-=x x ,函数322--=x x y 与x 轴的交点坐标为(-1,0),(3,0),观察猜想方程0322=--x x 的两实根对应与函数与x 轴的交点坐标的横坐标。

方程的根与函数的零点 教学教案

方程的根与函数的零点 教学教案

方程的根与函数的零点教学教案一、教学目标:1. 让学生理解方程的根与函数的零点的概念,掌握它们之间的关系。

2. 培养学生运用函数的零点定理解决问题的能力。

3. 提高学生分析问题、解决问题的能力,培养学生的逻辑思维能力。

二、教学内容:1. 方程的根与函数的零点的定义。

2. 函数的零点定理及应用。

3. 方程的根与函数的零点之间的关系。

三、教学重点与难点:1. 重点:方程的根与函数的零点的概念,函数的零点定理。

2. 难点:方程的根与函数的零点之间的关系,函数的零点定理在实际问题中的应用。

四、教学方法:1. 采用问题驱动法,引导学生主动探究方程的根与函数的零点之间的关系。

2. 利用实例分析,让学生直观地理解函数的零点定理。

3. 运用小组讨论法,培养学生的团队合作精神,提高解决问题的能力。

五、教学过程:1. 导入:引导学生回顾方程的解与函数的零点的概念,为新课的学习做好铺垫。

2. 讲解:讲解方程的根与函数的零点的定义,阐述它们之间的关系。

3. 实例分析:分析具体例子,让学生理解函数的零点定理及应用。

4. 练习:布置练习题,让学生巩固所学知识。

6. 作业布置:布置作业,让学生进一步巩固所学知识。

7. 课后反思:教师对本节课的教学进行反思,为学生下一步的学习做好准备。

六、教学评价:1. 课后作业:检查学生对课堂所学知识的掌握情况。

2. 课堂练习:观察学生在课堂练习中的表现,了解他们的学习进度。

3. 小组讨论:评估学生在团队合作中的参与程度,以及他们的问题解决能力。

4. 期中期末考试:全面评估学生在整个学期的学习成果。

七、教学资源:1. 教学PPT:提供直观的教学演示,帮助学生更好地理解概念。

2. 练习题库:为学生提供丰富的练习资源,帮助他们巩固知识。

3. 教学视频:为学生提供额外的学习资源,帮助他们从不同角度理解知识点。

4. 网络资源:利用互联网为学生提供更多相关知识的学习资料。

八、教学进度安排:1. 第1周:介绍方程的根与函数的零点的概念。

方程的根与函数的零点教案

方程的根与函数的零点教案

方程的根与函数的零点教案第一章:方程的根与函数的零点概念引入1.1 教学目标让学生理解方程的根与函数的零点的概念。

让学生掌握方程的根与函数的零点之间的关系。

培养学生运用数形结合的思想方法解决问题的能力。

1.2 教学内容引入方程的根的概念,引导学生理解方程的根是使方程左右两边相等的未知数的值。

引入函数的零点的概念,引导学生理解函数的零点是使函数值为零的未知数的值。

引导学生理解方程的根与函数的零点之间的关系。

1.3 教学活动通过实际例子,让学生初步理解方程的根与函数的零点的概念。

引导学生进行思考和讨论,深化对方程的根与函数的零点之间关系的理解。

布置练习题,巩固学生对方程的根与函数的零点的理解和运用。

第二章:一元二次方程的根与二次函数的零点2.1 教学目标让学生掌握一元二次方程的根与二次函数的零点之间的关系。

让学生学会运用一元二次方程的根的判别式解决实际问题。

培养学生运用数形结合的思想方法解决问题的能力。

2.2 教学内容引导学生理解一元二次方程的根与二次函数的零点之间的关系。

引导学生掌握一元二次方程的根的判别式及其应用。

引导学生运用一元二次方程的根的判别式解决实际问题。

2.3 教学活动通过实际例子,让学生理解一元二次方程的根与二次函数的零点之间的关系。

引导学生进行思考和讨论,深化对一元二次方程的根的判别式的理解和运用。

布置练习题,巩固学生对一元二次方程的根与二次函数的零点的理解和运用。

第三章:方程的根与函数的零点的判定定理3.1 教学目标让学生掌握方程的根与函数的零点的判定定理。

培养学生运用判定定理判断方程的根与函数的零点的情况。

3.2 教学内容引导学生掌握方程的根与函数的零点的判定定理。

引导学生运用判定定理判断方程的根与函数的零点的情况。

3.3 教学活动通过实际例子,让学生理解方程的根与函数的零点的判定定理。

引导学生进行思考和讨论,深化对判定定理的理解和运用。

布置练习题,巩固学生对判定定理的掌握。

第四章:方程的根与函数的零点的求解方法4.1 教学目标让学生掌握方程的根与函数的零点的求解方法。

方程的根与函数的零点公开课教案

方程的根与函数的零点公开课教案

方程的根与函数的零点公开课教案一、教学目标1. 让学生理解方程的根与函数的零点的概念及其关系。

2. 培养学生运用数形结合的方法分析问题、解决问题的能力。

3. 引导学生掌握求解方程根的方法,提高学生解决实际问题的能力。

二、教学内容1. 方程的根与函数的零点的概念。

2. 方程的根与函数的零点的关系。

3. 求解方程根的方法。

4. 实际问题中的应用。

三、教学重点与难点1. 教学重点:方程的根与函数的零点的概念及其关系,求解方程根的方法。

2. 教学难点:运用数形结合的方法分析问题、解决问题的能力。

四、教学方法1. 采用问题驱动的教学方法,引导学生主动探究方程的根与函数的零点的关系。

2. 利用数形结合的方法,帮助学生直观地理解问题。

3. 通过实际问题,培养学生的应用能力。

五、教学过程1. 导入:讲解方程的根与函数的零点的概念,引导学生理解两者之间的关系。

2. 新课:讲解方程的根与函数的零点的关系,引导学生掌握求解方程根的方法。

3. 案例分析:分析实际问题,让学生运用方程的根与函数的零点的关系解决问题。

4. 课堂练习:布置练习题,让学生巩固所学知识。

5. 总结:对本节课的内容进行总结,强调方程的根与函数的零点的重要性。

6. 作业布置:布置课后作业,巩固所学知识。

六、教学活动1. 课堂讨论:让学生举例说明方程的根与函数的零点在实际问题中的应用,分享解题心得。

2. 小组合作:分组让学生探讨如何利用方程的根与函数的零点的关系解决实际问题,并进行汇报。

七、教学评价1. 课堂提问:检查学生对方程的根与函数的零点的理解程度。

2. 课后作业:评估学生运用所学知识解决问题的能力。

3. 小组汇报:评价学生在团队合作中的表现及对问题的分析、解决能力。

八、教学反馈1. 课后收集学生作业,分析存在的问题,为下一步教学提供参考。

2. 听取学生对教学内容的反馈,了解学生的学习需求,调整教学方法。

九、教学拓展1. 深入研究方程的根与函数的零点的相关理论,如代数基本定理等。

教案设计-方程的根与函数的零点

教案设计-方程的根与函数的零点

教案设计方程的根与函数的零点一、教学目标知识与技能:1. 理解方程的根与函数的零点的概念及其联系。

2. 学会使用数形结合的方法分析方程的根与函数的零点。

3. 掌握求解一元二次方程的方法,并能应用于实际问题中。

过程与方法:1. 通过观察、实验、探究等活动,培养学生的观察能力、思考能力和解决问题的能力。

2. 学会使用函数图像来分析方程的根的情况。

情感态度价值观:1. 培养学生的耐心和细心,对数学问题的探究兴趣。

2. 培养学生运用数学知识解决实际问题的能力。

二、教学内容1. 方程的根与函数的零点的概念。

2. 方程的根与函数的零点的联系。

3. 一元二次方程的解法。

4. 利用函数图像分析方程的根的情况。

5. 实际问题中的应用。

三、教学重点与难点重点:1. 方程的根与函数的零点的概念及其联系。

2. 一元二次方程的解法。

难点:1. 对方程的根的情况的分析。

2. 利用函数图像分析方程的根的情况。

四、教学准备1. 教学课件或黑板。

2. 练习题。

五、教学过程1. 导入:a. 引导学生回顾方程的解的概念。

b. 引入“方程的根”的概念,引导学生理解方程的根与方程的解的关系。

2. 探究方程的根与函数的零点的联系:a. 引导学生观察一元二次方程的解与对应函数的零点的关系。

b. 通过实验或探究活动,让学生体会方程的根与函数的零点的联系。

3. 学习一元二次方程的解法:a. 引导学生学习一元二次方程的解法,如因式分解法、配方法、求根公式等。

b. 通过练习题,巩固学生对一元二次方程解法的掌握。

4. 利用函数图像分析方程的根的情况:a. 引导学生学会绘制函数图像。

b. 引导学生通过观察函数图像,分析方程的根的情况。

5. 实际问题中的应用:a. 引导学生运用方程的根与函数的零点的知识解决实际问题。

b. 提供一些实际问题,让学生练习运用所学知识解决问题。

b. 引导学生反思自己在学习过程中的收获和不足,提出改进措施。

7. 布置作业:a. 根据学生的学习情况,布置一些巩固所学知识的练习题。

方程的根与函数的零点教案

方程的根与函数的零点教案

方程的根与函数的零点教案方程的根与函数的零点教案「篇一」知识与技能1.结合方程根的几何意义,理解函数零点的定义;2.结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;3.结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间的方法.过程与方法1.通过化归与转化思想的引导,培养学生从已有认知结构出发,寻求解决棘手问题方法的习惯;2.通过数形结合思想的渗透,培养学生主动应用数学思想的意识;3.通过习题与探究知识的相关性设置,引导学生深入探究得出判断函数的零点个数和所在区间的方法;4.通过对函数与方程思想的不断剖析,促进学生对知识灵活应用的能力.情感、态度与价值观1.让学生体验化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值;2.培养学生锲而不舍的探索精神和严密思考的良好学习习惯;3.使学生感受学习、探索发现的乐趣与成功感.教学重点与难点教学重点:零点的概念及零点存在性的判定.教学难点:探究判断函数的零点个数和所在区间的方法.教学的方法与手段授课类型新授课教学方法启发式教学、探究式学习。

方程的根与函数的零点教案「篇二」教学目标:1、能够结合二次函数的图像判断一元二次方程根的存在性及根的个数。

2、理解函数的零点与方程的联系。

3、渗透由特殊到一般的认识规律,提升学生的抽象和概括能力。

教学重点、难点:1、重点:理解函数的零点与方程根的联系,使学生遇到一元二次方程根的问题时能顺利联想函数的思想和方法。

2、难点:函数零点存在的条件。

教学过程:1、问题引入探究一元二次方程与相应二次函数的关系。

出示表格,引导学生填写表格,并分析填出的表格,从二次方程的根和二次函数的图像与x轴的交点的坐标,探究一元二次方程与相应二次函数的关系。

一元二次方程方程的根二次函数图像与X轴的交点x2-2x-3=0x1=-1,x2=3y=x2-2x-3(-1,0),(3,0)x2-2x+1=0x1=x2=1y=x2-2x+1(1,0)x2-2x+3=0无实数根y=x2-2x+3无交点(图1-1)函数y=x2-2x-3的图像(图1-2)函数y=x2-2x+1的图像(图1-3)函数y=x2-2x+3的图像归纳:(1)如果一元二次方程没有实数根,相应的二次函数图像与x轴没有交点;(2)如果一元二次方程有实数根,相应的二次函数图像与x轴有交点。

方程的根与函数的零点

方程的根与函数的零点

方程的根与函数的零点1. 引言在数学中,方程的根和函数的零点是非常重要的概念。

它们在代数、微积分、几何等多个领域中都有着广泛的应用。

本文将详细介绍方程的根和函数的零点的概念及其在数学中的应用。

2. 方程的根2.1 什么是方程的根?方程是通过等号连接的两个算式,其中包含一个或多个未知数。

方程的根指的是能够使方程等式成立的未知数的取值。

比如,对于一元二次方程ax2+bx+c=0来说,方程的根就是使等式成立的x的值。

2.2 方程的根的分类根据方程的次数和复数域中的性质,方程的根可以分为以下分类:•一元一次方程:ax+b=0,其中a eq0。

该方程的根为$x=-\\frac{b}{a}$。

•一元二次方程:ax2+bx+c=0,其中a eq0。

该方程的根可以通过求解二次方程的判别式来得到:–当b2−4ac>0时,方程有两个不相等的实根。

–当b2−4ac=0时,方程有两个相等的实根。

–当b2−4ac<0时,方程有两个共轭复根。

•一元三次方程、一元四次方程以及更高次的方程,求解根的方法相对复杂。

2.3 方程根的性质方程根的性质是研究方程的重要内容之一。

以下是一些常见的方程根的性质:•一元一次方程的根:即线性方程ax+b=0的根,其中a和b为常数。

该方程的根为 $x=-\\frac{b}{a}$。

由此可见,一元一次方程的根只有一个,且是唯一的。

•一元二次方程的根:即二次方程ax2+bx+c=0的根,其中a、b和c为常数。

根据判别式b2−4ac的值,可以分为实数根和复数根。

当判别式大于零时,方程有两个不相等的实数根;当判别式等于零时,方程有两个相等的实数根;当判别式小于零时,方程有两个共轭复数根。

3. 函数的零点3.1 什么是函数的零点?函数是自变量和因变量之间的关系,函数的零点即函数取值为零的点。

对于实数域上的函数f(x),其零点即满足f(x)=0的x的值。

3.2 函数的零点与方程的根的联系函数的零点与方程的根有很密切的联系。

方程的根与函数的零点 课件

方程的根与函数的零点  课件

此判定方法经常考,要注意条件一定要完备,缺一不可. 反之,若函数 y=f(x)在(a,b)内有零点,则 f(a)·f(b)<0 不一定 成立. 因为 f(x)在(a,b)内的零点可能为不变号零点,也可能不止一个 零点.
(2)应用零点存在性定理应注意以下问题: ①并非函数所有的零点都能用该定理找到,当函数值在零点左 右不变号时就不能应用该定理,如函数 y=x2 在零点 x0=0 左右 的函数值都是正值,显然不能使用定理判断,只有函数值在零 点的左右两侧异号时才能用这种方法. ②利用零点存在性定理只能判别函数 y=f(x)在区间(a,b)上零 点的存在性,但不能确定零点的个数.
2.解决有关根的分布问题应注意以下几点: (1)首先画出符合题意的草图,转化为函数问题. (2)结合草图考虑四个方面:①Δ 与 0 的大小;②对称轴与所给 端点值的关系;③端点的函数值与零的关系;④开口方向. (3)写出由题意得到的不等式. (4)由得到的不等式去验证图象是否符合题意,这类问题充分体 现了函数与方程的思想,也体现了方程的根就是函数的零点.在 写不等式时要注意条件的完备性.
方程的根与函数的零点
自学导引 1.函数的零点 对于函数 y=f(x),把 使f(x)=0的实数x 叫做函数 y=f(x)的零点. 想一想:函数的零点是函数 y=f(x)与 x 轴的交点吗? 提示 函数的零点不是函数 y=f(x)与 x 轴的交点,而是 y=f(x) 与 x 轴交点的横坐标,也就是说函数的零点不是一个点,而是 一个实数.
如 f(x)=ax2+bx+c(a>0)的两个零点为
x1,x2(x1≤x2)且 k1<x1≤x2<k2.
Δ≥0, 则k1<-2ba<k2,
ffkk12> >00, ,
题型一 求函数的零点 【例 1】 判断下列函数是否存在零点,如果存在,请求出. (1)f(x)=xx+;3 (2)f(x)=x2+2x+4; (3)f(x)=2x-3; (4)f(x)=1-log3x; [思路探索] 利用解方程的方法求相应方程的根即可.

方程的根与函数的零点教案

方程的根与函数的零点教案

方程的根与函数的零点授课设计311方程的根与函数的零点(一)授课目的1.知识与技术(1)理解函数零点的意义,认识函数零点与方程根的关系(2)由方程的根与函数的零点的研究,培养转变化归思想和数形结合思想2.过程与方法由一元二次方程的根与一元二次函数的图象与x 轴的交点情况解析,导入零点的看法,引入方程的根与函数零点的关系,从而培养学生的转变化归思想和研究问题的能力3.感情、态度与价值观在体验零点看法形成过程中,领悟事物间相互转变的辨证思想,享受数学问题研究的乐趣(二)授课重点与难点重点:理解函数零点的看法,掌握函数零点与方程根的求法难点:数形结合思想,转变化归思想的培养与应用(三)授课方法在相对熟悉的问题情境中,经过学生自主研究,合作交流中完成的学习任务试一试指导与自主学习相结合(四)授课过程授课环节授课内容师生互动设计妄图复习引入观察以下三组方程与函数方程函数x2–2x–3 = 0=x2–2x–3x2–2x+1 = 0=x2–2x+1x2–2x+3 = 0=x2–2x+3利用函数图象研究方程的根与函数图象与x 轴的交点之间的关系师生合作师:方程 x2 –2x –3 = 0 的根为–1,3 函数 = x2 –2x –3 与 x 轴交于点(–1,0) (3,0)生: x2 –2x + 1 = 0 有相等根为 1函数 = x2 –2x + 1 与 x 轴有唯一交点(1,0)x2 –2x + 3 = 0 没有实根函数 = x2 –2x + 3 与 x 轴无交点以旧引新,导入题看法形成 1 零点的看法关于函数 =f (x), 称使 =f (x)= 0 的实数 x 为函数=f (x) 的零点2函数的零点与方程根的关系方程 f (x) = 0 有实数根函数=f (x) 的图象与 x 轴有交点函数 = f (x) 的零点3二次函数零点的判断关于二次函数= ax2 + bx + 与二次方程 ax2 + bx + ,其鉴识式△= b2 –4a鉴识式方程 ax2 + bx + = 0 的根函数= ax2 + bx + 的零点△>0 两不相等实根两个零点△=0 两相等实根一个零点△<0 没有实根 0 个零点师:我们平时地称函数与 x 轴交点的横坐标为函数的零点 ,请同学归纳零点的定义师:观察函数① = lgx②= lg2(x + 1) ③ = 2x④= 2x –2 的零点生:①= lgx 的零点是 x = 1②= lg2(x + 1)的零点是 x=0③ = 2x 没有零点④= 2x –2 的零点是 x = 1归纳总结感知看法解析特色形成看法看法深入引导学生回答以下问题①怎样求函数的零点?②零点与图象的关系怎样?师生合作,学生口答,老师谈论,阐述生①零点即函数为零对应的自变量的值,零点即对应方程的根②零点即函数图象与x 轴交点的横坐标③求零点可转变成求方程的根以问题谈论代替老师的讲援应用举例练习 1 求函数 = –x2 –2x + 3 的零点,并指出> 0, = 0 的 x 的取值范围练习 2 求函数 =x3 –2x2 –x + 2 的零点,并画出它的图象练习 3 利用函数图象判断以下方程有没有根,有几个根:(1)–x2+3x+=0;(2)2x (x–2) = –3;(3)x2 = 4x –4;(4)x2+2x=3x2+学生自主试一试练习完成练习 1、2、3生:练习 1 解析:零点–3,1x∈(–3,1)时> 0时< 0练习 2 解析:因为 x3–2x2–x+2 = x2 (x –2) –(x –2) = (x–2) (x2–1) = (x–2) (x –1) (x + 1),所以已知函数的零点为–1,1,23 个零点把 x 轴分成4 个区间:,[–1,1],[1,2],在这 4 个区间内,取 x 的一些值(包括零点),列出这个函数的对应值表:x–1–1– 0001122–438018821130– 0630263在直角坐标系内描点连线,这个函数的图象以下列图练习 3 解析:(1)令 f (x) = –x2 + 3x + ,作出函数 f (x) 的图象,它与 x 轴有两个交点,所以方程–x2 + 3x + = 0 有两个不相等的实数根(2)2x (x –2) = –3 可化为 2x2–4x+3=0令 f (x) = 2x2 –4x+3 作出函数 f (x) 的图象,它与 x 轴没有交点,所以方程 2x (x –2) = –3 无实数根(3)x2 = 4x –4 可化为 x2 –4x + 4 = 0,令 f (x) = x2 –4x + 4,作出函数f (x) 的图象,它与 x 轴只有一个交点(相切),所以方程 x2 = 4x –4有两个相等的实数根(4)x2+2x=3x2+可化为 2x2 + 2x –= 0,令 f (x) = 2x2 + 2x –,作出函数f (x)的图象,它与x 轴有两个交点,所以方程x2+2x=3x2+有两个不相等的实数根师:谈论板述练习的解答过程让学生着手练习或借助多媒体演示,加深对看法的说明,培养思想能力归纳总结(1)知识方面零点的看法、求法、判断(2)数学思想方面函数与方程的相互转变,即转变思想借助图象探望规律,即数形结合思想学生归纳,老师补充、谈论、完满回顾、反思、归纳知识,提升自我整合知识的能力后作业 31 第一时习案学生独立完成固化知识,提升能力备选例题例:已知 a∈R 谈论关于 x 的方程 |x2 –6x + 8| = a 的实数解的个数【解析】令 f (x) = |x2 –6x + 8|,g (x) = a,在同一坐标系中画出 f (x) 与 g (x)的图象,以下列图,f (x) = | (x –3)2 –1|,下面对 a 进行分类谈论,由图象得,当 a<0 时,原方程无实数解;当 a = 0 时,原方程实数解的个数为 3;当 0<a<1 时,原方程实数解的个数为 4;当 a>1 或 a = 0 时,原方程实数解的个数为 2。

方程的根与函数的零点

方程的根与函数的零点

即12a 2 0
a 1
小结
函数的零点定义:
对于函数y=f(x), 使f(x)=0的实数x 叫做函数 y=f(x)的零点。
等价关系
方程f(x)=0有实数根
函数y=f(x)的图象与x轴有交点 函数y=f(x)有零点
零点的求法
代数法
图像法
函数零点存在性原理
如果函数 y f (x)在区间a,b上的图象是连续不断的一条曲线,
y
0a
bx
思考:若函数y=f(x) 在区间(a, b)内有零 点,一定能得出f(a)·f(b)<0的结论吗?
y
bbb bb
b
0 a b b bb bb x
例 2:若方程2ax2 x 1 0在0,1内
恰有一解,则a的取值范围( )
A.a 1 B.a 1 C.1 a 1 D.0 a 1
典错:令 f (x) 2ax2 x 1在0,1内恰有一解,则 f (0) f (1) 0。
y
函数 y f (x) x1 0
方程
x
2 x f (x) 0
一元二次方程与相应二次函数图像的关系
判别式△ = b2-4ac
△>0
△=0
△<0
方程ax2 +bx+c=0 (a>0)的根
两个不相等 有两个相等的 的实数根x1 、x2 实数根x1 = x2
没有实数根
函数y= ax2 +bx +c(a>0)的图象
y
x1 0
x2 x
y 0 x1 x
y
0
x
函数的图象 与 x 轴的交点
(x1,0) , (x2,0)
(x1,0)
没有交点

方程的的零点根与函数

方程的的零点根与函数
+ 1$ 表示一个二次函数。
表格法是用表格的形式来表示 函数,通过输入值和对应的输 出值来展示函数的对应关系。
图象法是用图象来表示函数, 通过绘制函数的图像来直观地
展示函数的对应关系。
函数的性质
函数的性质包括奇偶性、单调性、周期性和对称性等。
奇偶性是指函数图像关于原点对称还是关于y轴对称;单调性是指函数在某个区 间内是递增还是递减;周期性是指函数图像是否具有周期性;对称性是指函数图 像是否具有对称性。
03
函数与零点、根的关系
函数零点的求法
定义法
根据函数零点的定义,如果 $f(x)=0$的解为$x=a$,则称$a$
为函数$f(x)$的零点。
图像法
通过观察函数的图像,找到与$x$ 轴交点的横坐标即为函数的零点。
迭代法
通过不断迭代函数,找到满足 $f(x)=0$的解。
函数根的求法
01
02
03
代数法
解决实际问题
在解决一些实际问题时, 可以通过寻找函数的零点 或根来找到问题的解。
数学建模
在数学建模中,函数的零 点或根可以作为模型中的 参数或变量,用于描述和 解决实际问题。
04
方程的零点、根与函数的实例 分析
一元二次方程的零点与根
01
一元二次方程的零点
一元二次方程 $ax^2 + bx + c = 0$ 的零点是 $x_1, x_2$,其中 $x_1,
未来研究方向
深入理论研究
01
随着数学和其他学科的发展,需要进一步深入研究和探索零点、
根与函数的理论基础和应用范围。
跨学科研究
02
加强与其他学科的交叉研究,探索这些概念在不同领域的应用

3.1.1方程的根与函数的零点

3.1.1方程的根与函数的零点

这个结论反过来,还成立吗?
本类相交型零点成立
二、零点存在性结论 观察课本P86的图
"结论"f(a)f(b)<0则存在零点 成立 "反面"存在零点则f(a)f(b)<0 成立 “结论”在两种零点中都对。 只有相交型零点中,"结论"的 正反面均成立。
"结论"f(a)f(b)<0则存在零点
不满足条件f(a)f(b)<0,是对的 "反面"存在零点则f(a)f(b)<0 满足条件有零点,但是错的
二、零点存在性结论 观察课本P86的图
相切型零点呢?
f(-2) > 0 f(0) < 0
f(2) > 0 f(a)f(b) < 0 f(4) < 0 如果函数 y=f(x) 在区间 [a,b] 上的图象是
连续不断的一条曲线,并且有 f(a)f(b)<0 ,那么,函数 y=f(x) 在区间 (a,b)内有零点,即存在c∈(a,b),使得 f(c)=0,这个c也就是方程f(x)=0的根。
A.若f(a)f(b)>0,不存在实数c∈(a,b)使得f(c)=0
B.若f(a)f(b)<0,存在且只存在一个实数c∈(a,b)使得f(c)=0 C.若f(a)f(b)>0,有可能存在实数c∈(a,b)使得f(c)=0 D.若f(a)f(b)<0,有可能不存在实数c∈(a,b)使得f(c)=0
二、零点存在性结论 注意点小结


各函数分别有几个零点? 2个;1个;0个
它们的零点形成方式有什么不同? (1)穿过x轴形成;(2)与x轴相切形成。 给它们取个名字 (1)相交型(2)相切型

方程的根与函数的零点

方程的根与函数的零点
使f(x)=0的实数x叫做函数y=f(x)的零点
2、三个等价关系
方程f(x)=0有实数根 函数y=f(x)的图 象与x轴有交点 函数y=f(x)有零点
3、函数y=f(x)的零点存在性的判定。
函数y=f(x)在区间[a,b]上图象是连续不断的一条曲线,并且有 f(a)· f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c ∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根。
[2,4]
f(2)<0 f(4)>0
函数在区间(2,4)内有零点 x=3 是 x2-2x-3=0的另一个根
函数零点的判定定理

y
.
a
0
.
b
x
如果函数y=f(x)在区间[a,b]上的图象是连续 不断的一条曲线,并且有f(a)· f(b)<0,

那么,函数y=f(x)在区间(a,b) 内有零点, 即存在c∈(a,b),使得f(c)=0, 这个c也就是方程f(x)=0的根。 注:只要满足上述两个条件,就能判断函数在指 定区间内存在零点。
变式:求函数f(x)=lnx+x-3的零点的个数。 解: f (1) 2, f (e) e 2 0
f (1) f (e) 0, 且f ( x)在[1,e]上连续 f ( x)在(1,e)上存在零点 即函数f ( x)存在零点, 又函数f ( x)在(0,)是增函数 函数f ( x)存在唯一的零点
a
b
这是零点存在的一种判定方法
函数y=f(x)在区间[a,b]上图象是连续不断的一条 曲线,并且有f(a)· f(b)<0,那么,函数y=f(x)在区间 (a,b)内有零点,即存在c∈(a,b),使得f(c)=0, 这个c也就是方程f(x)=0的根。

“方程的根与函数的零点”教学教案设计

“方程的根与函数的零点”教学教案设计

“方程的根与函数的零点”教学教案设计一、教学目标:1. 理解方程的根与函数的零点的概念及它们之间的关系。

2. 学会利用函数的零点判断方程的根的情况。

3. 掌握求解一元二次方程的方法,并能够应用到实际问题中。

二、教学内容:1. 方程的根与函数的零点的概念。

2. 函数的零点的判断方法。

3. 一元二次方程的求解方法。

三、教学重点与难点:1. 教学重点:方程的根与函数的零点的概念及它们之间的关系,一元二次方程的求解方法。

2. 教学难点:函数的零点的判断方法,一元二次方程的求解方法的运用。

四、教学方法与手段:1. 采用问题驱动的教学方法,引导学生通过观察、思考、探究来理解方程的根与函数的零点的关系。

2. 利用多媒体课件,生动形象地展示函数的零点的判断方法和一元二次方程的求解过程。

五、教学过程:1. 导入:通过展示一个实际问题,引导学生思考如何求解方程的根,从而引出方程的根与函数的零点的关系。

2. 教学内容与活动:a. 讲解方程的根与函数的零点的概念,并通过示例让学生理解它们之间的关系。

b. 讲解函数的零点的判断方法,并通过示例让学生学会如何判断函数的零点的情况。

c. 讲解一元二次方程的求解方法,并通过示例让学生掌握求解一元二次方程的步骤。

3. 巩固练习:给出一些练习题,让学生运用所学知识解决问题,巩固对方程的根与函数的零点的理解。

4. 总结与反思:通过总结本节课所学内容,让学生明确方程的根与函数的零点的关系,以及如何利用函数的零点判断方程的根的情况。

教学评价:通过课堂讲解、练习题和课后作业的完成情况,评价学生对方程的根与函数的零点的理解和掌握程度。

六、教学准备:1. 教学课件:制作包含动画、图表和例题的课件,以便直观展示概念和原理。

2. 练习题库:准备一系列针对不同知识点的练习题,用于课堂练习和课后作业。

3. 教学工具:准备白板和标记笔,以便在课堂上进行板书和解释。

七、教学过程设计:1. 导入新课:通过一个实际问题,如物理中的振动问题,引入方程的根与函数的零点的重要性。

《方程的根与函数的零点》教学设计

《方程的根与函数的零点》教学设计

《方程的根与函数的零点》教学设计一、前言本文以《普通高中课程标准实验教课书数学I必修本(A版)》第三章第一课时3.1.1方程的根与函数的零点为背景,根据本节重点:①函数零点与方程根之间的关系;②连续函数在某区间上存在零点的判定方法;难点:①发现与理解方程的根与函数零点的关系;②探究发现函数存在零点的方法。

把知识转化为一系列的问题,用问题来组织教学,让学生在解决问题的过程中,提高对函数零点概念和零点存在性定理的认识,从而养成发现问题、分析问题和解决问题的习惯,并加深对知识的理解。

高一年学生的动手动脑能力、观察能力和语言表达能力还没有很全面发展,所以在学习本节课的时候仍然会遇到很多问题。

因此,本节课教学设计将从学生熟悉的一次函数入手介绍函数的零点,环环紧扣提出问题让学生思考,将学生至于主动地位,利用其好奇与探索的心理,调动他们的思维积极性和主动性,增强他们观察问题、分析问题和解决问题的欲望,从而挖掘学生综合潜能和提高自主学习的能力。

基于以上,教学过程设计如下:(一)方程的根与函数的零点以及零点存在性的探索1、引入课题问题1:苏轼的《题西林壁》这样写到:“横看成岭侧成峰,远近高低各不同;不识庐山真面目,只缘身在此山中。

”从诗中你读到了什么?生:它告诉我们想要了解庐山真面目,必须要从不同角度看待问题。

第一阶段设计意图零点就是从函数的角度看其对应方程的解,从古诗引入,不仅有利于活跃课堂气氛,同时可以让学生体验到本节课的精髓,从不同的角度看问题。

2、方程的根与函数的零点问题2:请同学们说说y=x+3从函数的角度是什么?它的图像是什么?从方程的角度看它又是什么?生:一次函数,直线,二元一次方程。

问题3:令y=0,则x=-3,-3从代数的角度看它是函数y=x+3所对应的方程x+3=0的解,那么几何角度看是什么?生:函数y=x+3与x轴交点的横坐标。

-----几何法师:教师引导学生推广到一般的方程和函数,引出零点概念。

方程的根与函数的零点

方程的根与函数的零点

方程的根与函数的零点1.函数零点的概念对于函数y =f (x ),我们把使f (x )=0的实数x 叫做函数y =f (x )的零点.函数y =f (x )的零点就是方程f (x )=0的实数根,也就是函数y =f (x )的图象与x 轴的交点的横坐标.比如,由于方程f (x )=lg x =0的解是x =1,所以函数f (x )=lg x 的零点是1.注意 函数的零点不是点 我们把使f (x )=0成立的实数x 叫做函数y =f (x )的零点,因此函数的零点不是点,而是函数y =f (x )与x 轴的交点的横坐标,即零点是一个实数.当函数的自变量取这一实数时,其函数值为零.例如,函数f (x )=x +1,当f (x )=x +1=0时仅有一个实根x =-1,因此函数f (x )=x +1有一个零点-1,由此可见函数f (x )=x +1的零点是一个实数-1,而不是一个点.【例1】函数f (x )=x 2-1的零点是( ) A .(±1,0) B .(1,0) C .0 D .±1解析:解方程f (x )=x 2-1=0,得x =±1,因此函数f (x )=x 2-1的零点是±1.答案:D2【例2】若abc A .0 B .1 C .2 D .1或2解析:∵b 2=ac ,∴方程ax 2+bx +c =0的判别式Δ=b 2-4ac =b 2-4b 2=-3b 2.又∵abc ≠0,∴b ≠0.因此Δ<0.故函数f (x )=ax 2+bx +c 的零点个数为0.答案:A3.函数的零点与对应方程的关系(1)方程f (x )=0有实根⇔函数f (x )的图象与x 轴有交点⇔函数f (x )有零点.【例3-1】若函数f (x )=x 2+ax +b 的零点是2和-4,求a ,b 的值.解析:因为函数f (x )=x 2+ax +b 的零点就是方程x 2+ax +b =0的根,故方程x 2+ax +b =0的根是2和-4,可由根与系数的关系求a ,b 的值.解:由题意,得方程x 2+ax +b =0的根是2和-4,由根与系数的关系,得2(4),2(4),a b +-=-⎧⎨⨯-=⎩即(2)一元二次方程ax 2+bx +c =0(a ≠0)与二次函数f (x )=ax 2+bx +c (a ≠0)的图象联系密切,下面以a >0为例列表说明.因此,对于二次函数的零点问题,我们可以像研究一元二次方程那样,探讨方程的判别式即可.从形的角度沟通函数零点与方程的根的关系.【例3-2】函数y =f (x )的图象如图所示,则方程f (x )=0的实数根有( )A .0个B .1个C .2个D .3个解析:观察函数y =f (x )的图象,知函数的图象与x 轴有3个交点,则方程f (x )=0的实数根有3个.答案:D 点技巧 借助图象判断方程实数根的个数 由于“方程f (x )=0的实数根⇔函数y =f (x )的图象与x 轴的交点的横坐标”,因此,对于不能直接求出根的方程来说,我们要判断它在某个区间内是否有实数根,只需判断它的图象在该区间内与x 轴是否有交点即可.4.判断(或求)函数的零点(1)方程法:根据函数零点的定义可知:函数f (x )的零点,就是方程f (x )=0的根,因此,判断一个函数是否有零点,有几个零点,就是判断方程f (x )=0是否有实数根,有几个实数根.例如,判断下列函数是否存在零点,如果存在,请求出.(1)f (x )=x +3x;(2)f (x )=1-log 3x .解:(1)令x +3x =0,解得x =-3.故函数f (x )=x +3x的零点是-3; (2)令1-log 3x =0,即log 3x =1,解得x =3.故函数f (x )=1-log 3x 的零点是3.(2)图象法:对于利用方程法很难求解的函数的零点问题,可利用函数的图象求解.我们知道,函数F (x )=f (x )-g (x )的零点就是方程F (x )=0即方程f (x )=g (x )的实数根,也就是函数y =f (x )的图象与y =g (x )的图象的交点的横坐标.这样,我们就将函数F (x )的零点问题转化为函数f (x )与g (x )图象的交点问题,作出两个函数的图象,就可以判断其零点个数.【例4-1】判断下列函数是否存在零点,如果存在,请求出.(1)f (x )=x 2+7x +6;(2)f (x )=1-log 2(x +3);(3)f (x )=2x -1-3;(4)f (x )=24122x x x +--.解析:分别解方程f (x )=0得函数的零点.解:(1)解方程f (x )=x 2+7x +6=0,得x =-1或-6.故函数的零点是-1,-6. (2)解方程f (x )=1-log 2(x +3)=0,得x =-1.故函数的零点是-1.(3)解方程f (x )=2x -1-3=0,得x =log 26.故函数的零点是log 26. (4)解方程f (x )=24122x x x +--=0,得x =-6.故函数的零点为-6.辨误区 忽略验根出现错误 本题(4)中解方程后容易错写成函数的零点是-6,2,其原因是没有验根,避免出现此类错误的方法是解分式方程、对数方程等要验根,保证方程有意义.【例4-2】函数f (x )=ln x -11x -的零点的个数是( ) A .0 B .1 C .2 D .3解析:在同一坐标系中画出函数y =ln x 与11y x =-的图象如图所示,因为函数y =ln x 与11y x =-的图象有两个交点,所以函数f (x )=ln x -11x -的零点个数为2.答案:C ,5.判断零点所在的区间零点存在性定理 如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点(至少一个),即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.确定函数的零点所在的区间时,通常利用零点存在性定理,转化为判断区间两端点对应的函数值的符号是否相反.但需注意以下几点:(1) 当函数y =f (x )同时满足:①函数的图象在区间[a ,b ]上是连续曲线;②f (a )·f (b )<0.则可判定函数y =f (x )在区间(a ,b )内至少有一个零点,但是不能明确说明有几个.(2)当函数y =f (x )的图象在区间[a ,b ]上是连续的曲线,但是不满足f (a )·f (b )<0时,函数y =f (x )在区间(a ,b )内可能存在零点,也可能不存在零点.例如函数f (x )=x 2在区间[-1,1]上有f (-1)·f (1)>0,但是它在区间(-1,1)上存在零点0.(3)函数在区间[a ,b ]上的图象是连续曲线,且在区间(a ,b )上单调,若满足f (a )·f (b )<0,则函数y =f (x )在区间(a ,b )上有且只有一个零点.,【例5-1】求函数f (x )=x 2-5x +6在区间[1,4]上的零点个数. 解:【例5-2】函数f (x )=lg x -9x的零点所在的大致区间是( )(提示先做图) A .(6,7) B .(7,8) C .(8,9) D .(9,10)解析:∵f (6)=lg 6-96=lg 6-32<0,f (7)=lg 7-97<0, f (8)=lg 8-98<0,f (9)=lg 9-1<0,f (10)=lg 10-910>0,∴f (9)·f (10)<0.∴函数f (x )=lg x -9x的零点所在的大致区间为(9,10).答案:D6.一元二次方程的根的分布(1)一元二次方程的根的零分布(正负分布)所谓一元二次方程的根的零分布,是指方程的根相对于零的关系.设一元二次方程ax 2+bx +c =0(a ≠0)的两个实根为x 1,x 2且x 1≤x 2 ①x 1>0,x 2>0⇔2121240,0,0.b ac b x x a c x x a ⎧⎪∆=-≥⎪⎪+=->⎨⎪⎪⋅=>⎪⎩②x 1<0,x 2<0⇔2121240,0,0.b ac b x x a c x x a ⎧⎪∆=-≥⎪⎪+=-<⎨⎪⎪=>⎪⎩③x 1<0<x 2⇔c a <0. ④x 1=0,x 2>0⇔c =0,且b a <0;x 1<0,x 2=0⇔c =0,且ba>0. (2)一元二次方程的根的k 分布研究一元二次方程的根的k 分布,一般情况下要从以下三个方面考虑: ①一元二次方程根的判别式.②对应二次函数区间端点的函数值的正负. ③对应二次函数图象——抛物线的对称轴2bx a=-与区间端点的位置关系. 设一元二次方程ax 2+bx +c =0(a >0)的两实根为x 1,x 2,且x 1≤x 2,则一元二次方程的根的k 分布(即x 1,x 2相对于k 的位置)【例6-1】已知函数f (x )=mx 2+(m -3)x +1的零点至少有一个在原点右侧,求实数m 的取值范围.解:(1)当m =0时,f (x )=-3x +1,直线与x 轴的交点为1,03⎛⎫ ⎪⎝⎭,即函数的零点为13,在原点右侧,符合题意. (2)当m ≠0时,∵f (0)=1,∴抛物线过点(0,1).若m <0,函数f (x )图象的开口向下,如图①所示.二次函数的两个零点必然是一个在原点右侧,一个在原点左侧.若m >0,函数f (x )图象的开口向上,如图②所示,要使函数的零点在原点右侧,当且仅当2(3)40,30,20m m mm m ⎧∆=--≥⎪-⎪>⎨⎪>⎪⎩⇒21090,03,0m m m m ⎧-+≥⎪<<⎨⎪>⎩⇒19,03m m m ≤≥⎧⎨<<⎩或⇒0<m ≤1.综上所述,所求m 的取值范围是(-∞,1]. 点技巧 研究函数图象性质有技巧 对于函数图象性质的研究,一是要注意特殊点,如本题中有f (0)=1,即图象过点(0,1);二是要根据题意,画出示意图,再根据图象的特征解决问题.【例6-2】关于x 的方程ax 2-2(a +1)x +a -1=0,求a 为何值时,(1)方程有一根;(2)两根都大于1;(2)方程一根大于1,一根小于1;(3)方程一根在区间(-1,0)内,另一根在区间(1,2)内.解:(1)当a =0时,方程变为-2x -1=0,即12x =-符合题意; 当a ≠0时,方程为二次方程,因为方程有一根,所以Δ=12a +4=0,解得13a =-. 综上可知,当a =0或13a =-时,关于x 的方程ax 2-2(a +1)x +a -1=0有一根. (2)方程两根都大于1,图象大致如下图,所以必须满足:0,0,11,(1)0,a a a f >⎧⎪∆>⎪⎪+⎨>⎪⎪>⎪⎩或0,0,11,(1)0,a a a f <⎧⎪∆>⎪⎪+⎨>⎪⎪<⎪⎩ 解得a ∈∅.因此不存在实数a ,使方程两根都大于1. (3)因为方程有一根大于1,一根小于1,图象大致如下图,所以必须满足0,(1)0,a f >⎧⎨<⎩或0,(1)0,a f <⎧⎨>⎩解得a >0.(4)因为方程有一根在区间(-1,0)内,另一根在区间(1,2)内,图象大致如下图,所以必须满足(1)0,(0)0,(1)0,(2)0,f f f f ->⎧⎪<⎪⎨<⎪⎪>⎩或(1)0,(0)0,(1)0,(2)0,f f f f -<⎧⎪>⎪⎨>⎪⎪<⎩解得a ∈∅.因此不存在实数a ,使方程有一根在区间(-1,0)内,另一根在区间(1,2)内.知识应用考点一 函数零点的求法1.函数2()41f x x x =--+的零点为( )A、1-+、1- C、1-、不存在 2.函数32()32f x x x x =-+的零点个数为( )A 、0B 、1C 、2D 、33. 函数()ln 26f x x x =+-的零点一定位于区间( ).A. (1, 2)B. (2 , 3)C. (3, 4)D. (4, 5)4. 求证方程231x xx -=+在(0,1)内必有一个实数根.5.函数f (x )=log 5(x -1)的零点是( )A .0B .1C .2D .36 已知函数f (x )=x 2-1,则函数f (x -1)的零点是________.7. 若函数f (x )=ax +b 只有一个零点2,那么函数g (x )=bx 2-ax 的零点是___________8.函数f (x )=ax 2+2ax +c (a ≠0)的一个零点为1,则它的另一个零点为________.A.0个B.1个C.2个D.3个考点二 零点存在性定理1.xA.(-1,0) B .(0,1)2.函数f (x )=ln x -2x的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(3,4)D .(e,3)3. 设函数y =x 3与y =(12)x -2的图象的交点为(x 0,y 0),则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)4. 若函数f (x )=3ax -2a +1在区间[-1,1]上存在一个零点,则a 的取值范围是________.考点三 一元二次方程根的分布1.已知关于x 的方程ax 2-2(a +1)x +a -1=0,探究a 为何值时,(1)方程有一正一负两根; (2)方程的两根都大于1;(3)方程的一根大于1,一根小于1.2. 已知关于x 的二次方程x 2+2mx +2m +1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的范围. (2)若方程两根均在区间(0,1)内,求m 的范围.3. 已知关于x 的方程x 2+2mx +2m +3=0的两个不等实根都在区间(0,2)内,求实数m 的取值范围.4. 已知函数f (x )=|x 2-2x -3|-a 分别满足下列条件,求实数a 的取值范围.(1) 函数有两个零点; (2)函数有三个零点; (3)函数有四个零点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题1:方 你程能用x多2少2x种方3 法0解有决实这根个吗问?题?
预案一:解方程(求根公式或因式分解);
预案二:计算判别式 的值;
预案三:设 f(x)x22x3,画出函数图象.
教材分析
教法精选学课件法
教学过13 程
创设情景,揭示课题
问题2:下列二次函数的图象与x轴交点和相应方
程的根有何关系?
(1)y=x2-2x-3与x2-2x-3=0 (2)y=x2-2x+1与x2-2x+1=0 (3)y=x2-2x+3与x2-2x+3=0
3.1.1方程的根与函数的 零点
精选课件
17
合作交流,形成概念
概念
1、函数零点的概念:
对于y函 f(x数 )把 , f使 (x)0的实 x 叫做y函 f(x数 )的零 . 点
教材分析
教法精选学课件法
教学过18 程
初步应用,示例练习
练一练
例 1.函f数 (x)(x1)(x2)(x3)的 零(点 )
人教社 ·普通高中课程标准实验教科书 ·必修1 第三章 函数的应用 3.1函数与方程 第一课时
精选课件
1
方程的根与函数的零点
1
教材分析
2
教法学法
3
重点难点
4
教学过程
5
教学反思
精选课件
2
对教材的理解与把握
教材地位:
必修一第三章“函数与方程”是高中 数学的新增内容,是近年来高考关注的 热点.本章函数与方程是中学数学的核心 概念,并且与其它知识具有广泛的联系性, 地位重要。
教材分析
结构分析 学精情选分课件析
目标分析
8
重点与难点
重点 了解函数的零点与方程根的联系,
掌握函数零点存在性的判定依据。 问题情境—建立模型—解释—应用和拓展
难点 引导探究函数零点的概念及零点存
在性原理,确定函数零点的个数。
讨论探究—实践体验—归纳总结—升华提高
教材分析
结构分析
精选课件
学情分析
目标分析 重点难9点
精选课件
3
对教材的理解与把握
教材分析:
本节课方程的根与函数的零点是整章内 容的一个链结点,它从不同的角度,将数 与形,函数与方程有机的联系在一起。
精选课件
4
对教材的理解与把握
教材分析:
本节课是培养学生“等价转化思想”、 “数形结合思想”、 “方程与函数思想”
的优质载体. 本节课为下节“二分法求方程的近似 解”和后续的 “算法学习”提供了基础, 具有承上启下的重要作用.
(2)函y数 f(x)的图x轴 象有 与交
(3)函 数 yf(x)有 零 点
(1) y 2 x 4 (2) y 2x 8 (3) y ln( x 5)
教材分析
教法精选学课法件
教学过15 程
12
10
8
6
y=2^x-8 y=2x-4
4
2
y=ln(x-6)
-10
-5
xA = 2.00
A
B
5
xB = 3.00
C xC = 6.00 10
15
-2
-4
-6
设计意图:通过观察几个特殊函数图象,将 结论推广到一般函数,体现了由特殊到一般 的思想,同时也培养精选了课件学生的观察归纳能16力。
教材分析 结构分析 学情精选分课件析
7
教学目标
知识与技能目标 过程与方法目标 情感与价值观目标
了解函数零点的概念 了解函数零点与方程根的联系 掌握零点存在的判定方法
经历“探究—归纳—应用”的过程 感悟由具体到抽象的研究方法 提高由特殊到一般的归纳思维能力
体验自主探究,合作交流的乐趣 激发学生的学习兴趣 培养学生严谨的科学态度
方程
x2-2x-3=0 x2-2x+1=0 x2-2x+3=0
函数
y= x2-2x-3 y= x2-2x+1 y= x2-2x+3
结设论计:函数的图象意二图次函:数从图-学1--象.34y012生--与121 最x2 轴.熟3 交悉x点的的-问1横y012 坐题1 标入2 就手x 是,相对应-1教方y0123 程材541 的2进3实行x数二根。
(A)1
(B)1,2
(C)(1,0)(,2,0)(,3,0) (D)1,2,3
设计意图:通过实例区分概念,函数零点是具体 的自变量的取值,而不是一个点,突破了本节课 的第一个重点,同时也为得出下面的三个等价关
系做好铺垫。
教材分析
教法精选学课法件
教学过19 程
初步应用,示例练习
想一想 问题4:以下三个结论有相关性吗? (1)方程 f(x)0有实数根
学法:
自主探究、合作交流、观察发现、归纳总结等
教法学法
教法精分选课析件
学法分析 11
教材分析
课堂教学流程创设情景,揭示题合作交流,形成概念初步运用,示例练习
讨论探究,揭示原理
巩固深化,发展思维
归纳总结,整体认识
课后反馈,作业布置 教法精学选课法件
教学过12 程
创设情景,揭示课题
知识探究(一):函数零点的概念
次程方函处与程数的理函的实图数,数象根从 的学 关x生 系1=-的 打1“下,x2最基=3近础发。展x1区=x”2=1提问,为无学实数生根归纳方
与x轴的交点 (-1,0)、(3,0)
(1,0)
无交点
教材分析
教法精选学课件法
教学过14 程
试一试
创设情景,揭示课题
问题3:上述结论对其他函数成立吗? 看下列函数的图象:
教材分析 结构分析
精选课件
6
学情分析
学生具备的
学生欠缺的
(1)基本初等函数的图 象和性质;
(2)初步了解一元二次 方程的根和相应二次 函数图像与x 轴的关系; (3)初步具备将“数” 与“形”相结合及转 化的意识。
(1)应用函数解决问题 的意识还不强;
(2)由特殊到一般的归 纳总结能力还不够;
(3) 数形结合及转化 的思想意识需进一步 培养
精选课件
5
教材的地位和作用
承上
本课内容是在刚刚学 习完了前两章函数性质 的基础上,利用函数的 图象和性质来判断方程 的根的存在性及根的个 数,从而了解函数的零 点与方程的根的关系以 及掌握函数在某个区间 上存在零点的判定方法, 是前两章内容的延续 。
启下
本节课的主要教 学内容是函数零点 的概念和函数零点 存在的判定依据, 这又为下一节“用 二分法求方程近似 解”以及为后续的 学习提供理论基础。
教法与学法
教法选择
采用提出问题——引导探究——得出结论——实 际应用教学方法,通过学生亲身经历和教师预设 的各种问题情景,引导学生开展创造性的学习活 动,不但使学生主动掌握知识,而且要培养学生 的独立探究能力和态度。
教法学法
教法精分选课析件
10
学法选择
教法与学法
元认知理论:
学习过程既是认识过程又是情感过程,是“知、 情、意、行”的和谐统一。
相关文档
最新文档