数学专业英语第二版的课文翻译
课文2—AB数学专业英语翻译(第二版)吴炯圻
2-A Why study geometry?Why do we study geometry? The student beginning the study of this text may well ask, "What is geometry? What can I expect to gain from this study?2-A为什么研究几何学?为什么我们研究几何学?刚开始学习这篇文章的学生会疑问,“几何是什么?研究几何我们能学到什么呢?Many leading institutions of higher learning have recognized that positive benefits can be gained by all who study this branch of mathematics. This is evident from the fact that they require study of geometry as a prerequisite to matriculation in those schools.许多居领导地位的学术机构承认,所有学习这个数学分支的人都将得到很好的收益。
事实是,他们需要学习几何作为学校入学考试的先决条件。
Geometry had its origin long ago in the measurements by the Babylonians and Egyptians of their lands inundated by the floods of the Nile River. The greek word geometry is derived from geo, meaning "earth," and metron, meaning "measure." As early as 2000 B. C. we find the land surveyors of these people reestablishing vanishing landmarks and boundaries by utilizing the truths of geometry.很早以前,几何学源于测量被尼罗河的洪水淹没了的巴比伦人和埃及人的土地。
数学专业英语翻译2-4
Let P denote the set of all positive integers. Then P is itself an inductive set because (a) it contains 1, and (b) it contains x+1 whenever it contains x. Since the members of P belong to every inductive set, we refer to P as the smallest inductive set. 表示所有正整数的集合。 用 P表示所有正整数的集合。那么 本身是一个归纳 表示所有正整数的集合 那么P本身是一个归纳 集 , 因为其中含1, 满足(a); 只要包含x就包含 因为其中含 , 满足 ; 只要包含 就包含x+1, 就包含 满足(b)。由于P中的元素属于每一个归纳集 因此P 中的元素属于每一个归纳集, 满足 。由于 中的元素属于每一个归纳集,因此 是最小的归纳集。 是最小的归纳集。
Quotients of integers a/b (where b≠0) are called rational numbers. The set of rational numbers, denoted by Q, contains Z as a subset. The reader should realize that all the field axioms and the order axioms are satisfied by Q. For this reason, we say that the set of rational numbers is an ordered field. Real numbers that are not in Q are called irrational. 整数a与 的商被叫做有理数 有理数集用Q表示 的商被叫做有理数, 表示, 整数 与b的商被叫做有理数,有理数集用 表示,Z 的子集。 是Q的子集。读者应该认识到 满足所有的域公理和 的子集 读者应该认识到Q满足所有的域公理和 序公理。因此说有理数集是一个有序的域。 序公理 。 因此说有理数集是一个有序的域 。 不是有 理数的实数被称为无理数。 理数的实数被称为无理数。
数学专业英语翻译2-7
7-B The limit of a sequence
The main question we are concerned with here is to decide whether or not the terms f(n) tend to a finite limit as n increases infinitely. 这里我们关心的主要问题是当n无限增加时,项 f(n) 是否会趋于一个有限的极限。
如果对每一个正整数 n都有一个实数或复数an与之对 应, 则有序集a1 , a2, …, an ,… 称为一个无穷序列.
The important thing here is that each member of the set has been labeled with an integer so that we may speak of the first term a1, the second term a2, and, in general, the nth term an. 这里重要的是集合中的每一个元素都由一个整数标 记,因此我们可以说第一项 , 第二项, 一般的,第n项
This particular rule is known as a recursion formula and it defines a famous sequence whose terms are called Fibonacci numbers. The first few terms are 1,1,2,3,5,8,13,21,34. 这个特殊的规则就是常见的递推公式,它定义了一个 著名的序列,其中的项称为菲波那契数。前几项是…...
数学专业英语2-10翻译
Although dependence and independence are properties of sets of elements, we also apply these terms to the elements themselves. For example, the elements in an independent set are called independent elements.虽然相关和无关是元素集的属性,我们也适用于这些元素本身。
例如,在一个独立设定的元素被称为独立元素。
If s is finite set, the foregoing definition agrees with that given in Chapter 8 for the space n V . However, the present definition is not restricted to finite sets.如果S 是有限集,同意上述定义与第8章中给出的空间n V ,然而,目前的定义不局限于有限集。
If a subset T of a set S is dependent, then S itself is dependent. This is logically equivalent to the statement that every subset of an independent set is independent.如果集合S 的子集T 是相关的,然后S 本身是相关的,这在逻辑上相当于每一个独立设置的子集是独立的语句。
If one element in S is a scalar multiple of another, then S is dependent. 如果S 中的一个元素是另一个集中的多个标量的,则S 是相关的。
If S ∈0,then S is dependent. 若S ∈0,则 S 是相关的。
数学专业英语第二版-课文翻译-converted
2.4 整数、有理数与实数4-A Integers and rational numbersThere exist certain subsets of R which are distinguished because they have special properties not shared by all real numbers. In this section we shall discuss such subsets, the integers and the rational numbers.有一些R 的子集很著名,因为他们具有实数所不具备的特殊性质。
在本节我们将讨论这样的子集,整数集和有理数集。
To introduce the positive integers we begin with the number 1, whose existence is guaranteed by Axiom 4. The number 1+1 is denoted by 2, the number 2+1 by 3, and so on. The numbers 1,2,3,…, obtained in this way by repeated addition of 1 are all positive, and they are called the positive integers.我们从数字 1 开始介绍正整数,公理 4 保证了 1 的存在性。
1+1 用2 表示,2+1 用3 表示,以此类推,由 1 重复累加的方式得到的数字 1,2,3,…都是正的,它们被叫做正整数。
Strictly speaking, this description of the positive integers is not entirely complete because we have not explained in detail what we mean by the expressions “and so on”, or “repeated addition of 1”.严格地说,这种关于正整数的描述是不完整的,因为我们没有详细解释“等等”或者“1的重复累加”的含义。
数学专业英语第二版的课文翻译
2-A Why study geometry Many leading institutions of higher learning have recognized that positive benefits can be gained by all who study this branch of mathematics. This is evident from the fact that they require study of geometry as a prerequisite to matriculation in those schools. 许多居于领导地位的学术机构承认,所有学习这个数学分支的人都将得到确实的受益,许多学校把几何的学习作为入学考试的先决条件,从这一点上可以证明。
Geometry had its origin long ago in the measurement by the Babylonians and Egyptians of their lands inundated by the floods of the Nile River. The greek word geometry is derived from geo, meaning “earth” and metron, meaning “measure” . As early as 2000 . we find the land surveyors of these people re-establishing vanishing landmarks and boundaries by utilizing the truths of geometry . 几何学起源于很久以前巴比伦人和埃及人测量他们被尼罗河洪水淹没的土地,希腊语几何来源于geo ,意思是”土地“,和metron 意思是”测量“。
数学专业英语课文翻译
1-A:什么是数学数学来源于人类的社会实践,包括工农业的劳动,商业、军事和科学技术研究等活动。
反过来,数学服务于实践并在所有领域扮演一个重要的角色。
没有数学的应用,现代化科学和技术的分支都不能有规律的发展。
从早期人类的需求引出了数和形状。
然后,几何学因测量陆续的发展出来,三角学来自于勘探问题。
为了处理一些更复杂的实践问题,人们建立了方程,通过求解方程的未知数,从而代数学出现了。
17世纪之前,人们局限于初等数学,例如几何、三角和代数,那些只考虑常数。
17世纪工业的迅速发展促进了经济学和科技的发展,并且我们需要处理变量。
从常数到变量的跳跃带来了两个属于高等数学的新的数学分支,解析几何和微积分学。
现在,高等数学中有了许多分支,数学分析、高等代数、微分方程、函数论等。
数学家们研究概念和命题。
公理、公社、定义和定理都是命题。
符号是一种特别并且很重要的数学工具,它常用于表示概念和命题。
公式、图形和表格充满着不同的符号。
阿拉伯数字1,2,3,4,5,6,7,8,9,0和加”+”减”-”乘”*”除”/”等号”=”使我们最熟悉的数学符号。
主要通过逻辑推导和计算来获得数学结论。
在数学史的很长的时期内,逻辑推论一直占据数学方法的中心地位。
现在,自从电子计算机迅速发展和广泛应用,计算的角色越来越重要。
现在,计算不仅用来处理信息与数据,而且用来完成一些在以前只能靠逻辑推理来做的工作,例如证明大多数的几何定理。
1-B:等式等式是关于两个数或数的符号相等的一种陈述。
因此a(a-5)=a^2-5a和x-3=5是等式。
等式有两种,恒等式和条件等式。
算术和代数恒等式是等式。
这种等式的两端要么一样,要么经过执行指定的运算后变成一样。
因此12-2=2+8,(m-n)(m+n)=m^2-n^2是恒等式。
含有字母的恒等式对其中字母的任何一组数值都成立。
因此恒等式x(a+2)=ax+2x变成3(7+2)=21+6或27=27,比如当x=3和a=7。
数学专业英语课文翻译(吴炯圻)第二章2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12
数学专业英语3—A符号指示集一组的概念如此广泛利用整个现代数学的认识是所需的所有大学生。
集是通过集合中一种抽象方式的东西的数学家谈的一种手段。
集,通常用大写字母:A、B、C、进程运行·、X、Y、Z ;由小写字母指定元素:a、b 的c、进程运行·,若x、y z.我们用特殊符号x∈S 意味着x 是S 的一个元素或属于美国的x如果x 不属于S,我们写xS.≠当方便时,我们应指定集的元素显示在括号内;例如,由符号表示的积极甚至整数小于10 集{2,468} {2,4.6,进程运行·} 作为显示的所有积极甚至整数集,而三个点等的发生。
点的和等等的意思是清楚时,才使用。
上市的大括号内的一组成员方法有时称为名册符号。
涉及到另一组的第一次基本概念是平等的集。
DEFINITIONOFSETEQUALITY。
两组A 和B,据说是平等的(或相同的)如果它们包含完全相同的元素,在这种情况下,我们写A = B。
如果其中一套包含在另一个元素,我们说这些集是不平等,我们写A = B。
EXAMPLE1。
根据对这一定义,由于他们都是由构成的这四个整数2,4.6 和8 两套{2,468} 和{2,864} 一律平等。
因此,当我们用来描述一组的名册符号,元素的显示的顺序无关。
动作。
集{2,468} 和{2,2,4,4,6,8} 是平等的即使在第二组,每个元素2 和4 两次列出。
这两组包含的四个要素2,468 和无他人;因此,定义要求我们称之为这些集平等。
此示例显示了我们也不坚持名册符号中列出的对象是不同。
类似的例子是一组在密西西比州,其值等于{M、我、s、p} 一组单词中的字母,组成四个不同字母M、我、s 和体育3 —B 子集S.从给定的集S,我们可能会形成新集,称为.的子集例如,组成的那些正整数小于10 整除4 (集合{8 毫米})的一组一般是的所有甚至小于10.整数集的一个子集,我们有以下的定义。
子集的定义。
数学专业英语翻译
第一段翻译(2):what is the exact value of the number pai?a mathematician made an experiment in order to find his own estimation of the number pai.in his experiment,he used an old bicycle wheel of diameter 63.7cm.he marked the point on the tire where the wheel was touching the ground and he rolled the wheel straight ahead by turning it 20 times.next,he measured the distance traveled by the wheel,which was 39.69 meters.he divided the number 3969 by 20*63.7 and obtained 3.115384615 as an approximation of the number pai.of course,this was just his estimate of the number pai and he was aware that it was not very accurate.数π的精确值是什么?一位数学家做了实验以便找到他自己对数π的估计。
在试验中,他用了一直径63.1厘米的旧自行车轮。
他在车轮接触地面的轮胎上做了标记,而且将车轮向前转动20次。
接下来,他测量了车轮经过的距离,是39.69米。
他用3969除20*63.7得到了数π的近似值3.115384615。
当然,这只是对数π的估计值,并且他也意识到不是很准确。
第二段翻译(5):one of the first articles which we included in the "History Topics" section archive was on the history of pai.it is a very popular article and has prompted many to ask for a similar article about the number e.there is a great contrast between the historical developments of these two numbers and in many ways writing a history of e is a much harder task than writing one of pai.the number e is,compared to pai,a relative newcomer on the mathematical scene.我们包括在“历史专题”部分档案中的第一篇文章就是历史上的π,这是一篇很流行的文章,也促使许多人想了解下一些有关数e的类似文章。
数学专业英语(吴炯圻-第2版)2-6
It may be done by a formula as the 18th century mathematics presumed but it can equally well be done by a tabulation such as a statistical chart, or by some other form of description.
The study of such relations led people in the 18th century to think of a function relation as nothing but a formula. 对这种关系的研究导致了18世纪的人们认为函数关系 只不过是一个公式罢了。
The word “function” was introduced into mathematics by Leibniz, who used the term primarily to refer to certain kinds of mathematical formulas. “函数”这个词是由莱布尼茨引入到数学中的,他主 要使用这个术语来指代某种数学公式。 It was later realized that Leibniz’s idea of function was much too limited in its scope, and the meaning of the word has since undergone many stages of generalization. 后来人们才认识到,莱布尼茨的函数思想适用的范围 太过局限了,这个术语的含义从那时起已经过了多次
数学专业英语第二版 课文翻译
数学专业英语第二版课文翻译部分翻译2.4 整数、有理数与实数4-A Integers and rational numbersThere exist certain subsets of R which are distinguished because they have special properties not shared by all real numbers. In this section we shall discuss such subsets, the integers and the rational numbers.有一些R的子集很著名,因为他们具有实数所不具备的特殊性质。
在本节我们将讨论这样的子集,整数集和有理数集。
To introduce the positive integers we begin with the number 1, whose existence is guaranteed by Axiom 4. The number 1+1 is denoted by 2, the number 2+1 by 3, and so on. The numbers 1,2,3,…, obtained in this way by repeated addition of 1 are all positive, and they are called the positive integers.我们从数字1开始介绍正整数,公理4保证了1的存在性。
1+1用2表示,2+1用3表示,以此类推,由1重复累加的方式得到的数字1,2,3,…都是正的,它们被叫做正整数。
Strictly speaking, this description of the positive integers is not entirely complete because we have not explained in detail what we mean by the expressions “and so on”, or “repeated addition of 1”.严格地说,这种关于正整数的描述是不完整的,因为我们没有详细解释“等等”或者“1的重复累加”的含义。
数学专业英语(吴炯圻-第2版)2-1
The rapid development of industry in 17th century promoted the progress of economics and technology and required dealing with variable quantities. The leap from constants to variable quantities brought about two new branches of mathematics----analytic geometry and calculus, which belong to the higher mathematics.
17世纪工业的快速发展推动了经济技术的进步, 从而遇到需 要处理变量的问题。从常量到变量的跳跃产生了两个新的数 学分支-----解析几何和微积分,他们都属于高等数学。
现在高等数学里面有很多分支,其中有数学分析,高等代数,ceptions and propositions, Axioms, postulates, definitions and theorems are all propositions. Notations are a special and powerful tool of mathematics and are used to express conceptions and propositions very often.
2.1 数学、方程与比例 Mathematics, Equation and Ratio
New Words & Expressions:
algebra 代数学
geometrical 几何的
algebraic 代数的
数学专业英语第二版的课文翻译
1-A What is mathematics Mathematics comes from man’s social practice, for example, industrial and agricultural production, commercial activities, military operations and scientific and technological researches. And in turn, mathematics serves the practice and plays a great role in all fields. No modern scientific and technological branches could be regularly developed without the application of mathematics. 数学来源于人类的社会实践,比如工农业生产,商业活动,军事行动和科学技术研究。
反过来,数学服务于实践,并在各个领域中起着非常重要的作用。
没有应用数学,任何一个现在的科技的分支都不能正常发展。
From the early need of man came the concepts of numbers and forms. Then, geometry developed out of problems of measuring land , and trigonometry came from problems of surveying . To deal with some more complex practical problems, man established and then solved equation with unknown numbers ,thus algebra occurred. Before 17th century, man confined himself to the elementary mathematics, i.e. , geometry, trigonometry and algebra, in which only the constants are considered. 很早的时候,人类的需要产生了数和形式的概念,接着,测量土地的需要形成了几何,出于测量的需要产生了三角几何,为了处理更复杂的实际问题,人类建立和解决了带未知参数的方程,从而产生了代数学,17世纪前,人类局限于只考虑常数的初等数学,即几何,三角几何和代数。
数学专业英语课后翻译
2.1 数学、方程与比例(1)数学来源于人类的社会实践,包括工农业的劳动,商业、军事和科学技术研究等活动。
Mathematics comes from man’s social practice, for example, industrial and agricultural production, commercial activities, military operations and scientific and technological researches.(2)如果没有运用数学,任何一个科学技术分支都不可能正常地发展。
No modern scientific and technological branches could be regularly developed without the application of mathematics.(3)符号在数学中起着非常重要的作用,它常用于表示概念和命题。
Notations are a special and powerful tool of mathematics and are used to express conceptions and propositions very often.(4)17 世纪之前,人们局限于初等数学,即几何、三角和代数,那时只考虑常数。
Before 17th century, man confined himself to the elementary mathematics, i. e. , geometry, trigonometry and algebra, in which only the constants were considered.(5)方程与算数的等式不同在于它含有可以参加运算的未知量。
Equation is different from arithmetic identity in that it contains unknown quantity which can join operations.(6)方程又称为条件等式,因为其中的未知量通常只允许取某些特定的值。
数学专业英语课文翻译2(吴炯圻)
7A在日常使用的英文单词"序列"和' '系列"是同义词,和他们用来建议一系列的事情或按某种顺序排列的事件。
在数学中,这句话有特别技术的意义。
"序列"一词被受雇如在共同使用这一术语,传达的理念的一套东西排列顺序,但"系列"一词用于稍有不同的意义。
概念在本节中,将讨论序列和系列将定义第11 节。
如果为每个正整数n 有关联的真实或复数a,那时有序的集据说是定义一个无限的序列。
这里最重要的是每个成员集的已标记的整数,使我们可以发言的第一届、第二个任期,以及,一般的第n 个词。
每个学期了继任者,因此,没有任何"最后"一词。
如果我们给一些规则或第n 个词描述的公式,可以构造序列的最常见的例子。
因此,例如,公式= 1 定义的序列的第五个任期是1.有时两个或多个公式可受雇作为,例如,a=1.the 第一次在这种情况下被1 的一些术语。
另一种常见方法定义一系列是一套的说明解释了如何在一个给定的开始后进行的。
因此,我们可能= 1。
此特定的规则被称为递归公式,它定义了著名的序列,其条款被称为斐波那契数。
第一次的几个术语are1。
最重要的事情是序列的序列的这样f(n) 的每个n=1.In 事实的第n 个燕鸥是序列的序列的正整数上定义一些函数 f 的任何序列,这可能是序列的序列的最方便的方法,国家技术定义。
定义。
其域是所有积极integers1 的一组函数f 称为一个无限的序列。
函数值f(n) 调用序列的第n 个词。
通过按顺序,因此编写条款通常显示的功能(即,函数值的集合)的范围:f (2)。
为简便起见,{f(n)} 符号用于指示第n 个任期是f(n) 的序列。
由使用下标,很多时候表示,n 的依赖和我们写,或类似的而不是f (n0。
除非另外指定,否则所有的序列,在这一章中假定有真实的或复杂的条款。
7B我们担心在这里主要的问题在于决定是否条款f(n) 倾向于有限的n 无限增加。
数学专业英语中英文对照翻译2.5[1]
2.5笛卡尔几何学的基本概念(basic concepts of Cartesian geometry)课文5-A the coordinate system of Cartesian geometryAs mentioned earlier, one of the applications of the integral is the calculation of area. Ordinarily , we do not talk about area by itself ,instead, we talk about the area of something . This means that we have certain objects (polygonal regions, circular regions, parabolic segments etc.) whose areas we wish to measure. If we hope to arrive at a treatment of area that will enable us to deal with many different kinds of objects, we must first find an effective way to describe these objects.The most primitive way of doing this is by drawing figures, as was done by the ancient Greeks. A much better way was suggested by Rene Descartes, who introduced the subject of analytic geometry (also known as Cartesian geometry). Descartes’ idea was to represent geometric points by numbers. The procedure for points in a plane is this :Two perpendicular reference lines (called coordinate axes) are chosen, one horizonta l (called the “x-axis”), the other vertical (the “y-axis”). Their point of intersection denoted by O, is called the origin. On the x-axis a convenient point is chosen to the right of Oand its distance from O is called the unit distance. Vertical distances along the Y-axis are usually measured with the same unit distance ,although sometimes it is convenient to use a different scale on the y-axis. Now each point in the plane (sometimes called the xy-plane) is assigned a pair of numbers, called its coordinates. These numbers tell us how to locate the points.Figure 2-5-1 illustrates some examples.The point with coordinates (3,2) lies three units to the right of the y-axis and two units above the x-axis.The number 3 is called the x-coordinate of the point,2 its y-coordinate. Points to the left of the y-axis have a negative x-coordinate; those below the x-axis have a negtive y-coordinate. The x-coordinateof a point is sometimes called its abscissa and the y-coordinateis called its ordinate.When we write a pair of numberssuch as (a,b) to represent a point, we agree that the abscissa or x-coordinate,a is written first. For this reason, the pair(a,b) is often referred to as an ordered pair. It is clear that two ordered pairs (a,b) and (c,d) represent the same point if and only if we have a=c and b=d. Points (a,b) with both a and b positiveare said to lie in the first quadrant ,those with a<0 and b>0 are in the second quadrant ; and those with a<0 and b<0 are in the third quadrant ; and those with a>0 and b<0 are in the fourth quadrant. Figure 2-5-1 shows one point in each quadrant.The procedure for points in space is similar. We take three mutually perpendicular lines in space intersecting at a point (the origin) . These lines determine three mutually perpendicular planes ,and each point in space can be completely described by specifying , with appropriate regard for signs ,its distances from these planes. We shall discuee three-dimensional Cartesian geometry in more detail later on ; for the present we confine our attention to plane analytic geometry.课文5-A:笛卡尔几何坐标系正如前面所提到的,积分应用的一种是计算面积。
数学专业英语课文
2.1 数学、方程与比例Mathematics, Equation and RatioMathematics comes from man’s social practice, for example, industrial and agricultural production, commercial activities, military operations and scientific and technological researches.1-A What is mathematics数学来源于人类的社会实践,比如工农业生产,商业活动,军事行动和科学技术研究。
And in turn, mathematics serves the practice and plays a great role in all fields. No modern scientific and technological branches could be regularly developed without the application of mathematics.反过来,数学服务于实践,并在各个领域中起着非常重要的作用。
没有应用数学,任何一个现在的科技的分支都不能正常发展。
From the early need of man came the concepts of numbers and forms. Then, geometry developed out of problems of measuring land , and trigonometry came from problems of surveying. To deal with some more complex practical problems, man established and then solved equation with unknown numbers , thus algebra occurred.很早的时候,人类的需要产生了数和形的概念。
数学专业英语(吴炯圻-第2版)2-4
Although the intuitive meaning of expressions may seem clear, in careful treatment of the real-number system it is necessary to give a more precise definition of the positive integers. There are many ways to do this. One convenient method is to introduce first the notion of an inductive set.
(a) The number 1 is in the set. (b) For every x in the set, the number x+1 is also in
the set. For example, R is an inductive set. So is the set R .
Now we shall define the positive integers to be those real numbers which belong to every inductive set.
整数a与b的商被叫做有理数,有理数集用Q表示,Z 是Q的子集。读者应该认识到Q满足所有的域公理和 序公理。因此说有理数集是一个有序的域。不是有 理数的实数被称为无理数。
4-B Geometric interpretation of real numbers as points on a line
The reader is undoubtedly familiar with the geometric representation of real numbers by means of points on a straight line. A point is selected to represent 0 and another, to the right of 0, to represent 1, as illustrated in Figure 2-4-1. This choice determines the scale.
数学专业英语第二版的课文翻译
线性方程,二次方程等。
To solve an equation means to find the value of the unknown term. To do this , we must, of course,change the terms about until the unknown term stands alone on one side of the equation, thus making it equal to something on the other side. We then obtain the value of the unknown and the answer to the question. To solve the equation,therefore,means to move and change the terms about without making the equation untrue,until only the unknown quantity is left on one side ,no matter which side.解方程意味着求未知项的值,为了求未知项的值,当然必须移项,直到未知项单独在方程的一边,令其等于方程的另一边,从而求得未知项的值,解决了问题。
因此解方程意味着进行一系列的移项和同解变形,直到未知量被单独留在方程的一边,无论那一边。
Equation are of very great use. We can use equation in many mathematical problems. We may notice that almost every problem gives us one or more statements that something is equal to something, this gives us equations, with which we may work if we need it.方程作用很大,可以用方程解决很多数学问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1-A What is mathematics Mathematics comes from man’s social practice, for example, industrial and agricultural production, commercial activities, military operations and scientific and technological researches. And in turn, mathematics serves the practice and plays a great role in all fields. No modern scientific and technological branches could be regularly developed without the application of mathematics. 数学来源于人类的社会实践,比如工农业生产,商业活动,军事行动和科学技术研究。
反过来,数学服务于实践,并在各个领域中起着非常重要的作用。
没有应用数学,任何一个现在的科技的分支都不能正常发展。
From the early need of man came the concepts of numbers and forms. Then, geometry developed out of problems of measuring land , and trigonometry came from problems of surveying . To deal with some more complex practical problems, man established and then solved equation with unknown numbers ,thus algebra occurred. Before 17th century, man confined himself to the elementary mathematics, . , geometry, trigonometry and algebra, in which only the constants are considered. 很早的时候,人类的需要产生了数和形式的概念,接着,测量土地的需要形成了几何,出于测量的需要产生了三角几何,为了处理更复杂的实际问题,人类建立和解决了带未知参数的方程,从而产生了代数学,17世纪前,人类局限于只考虑常数的初等数学,即几何,三角几何和代数。
The rapid development of industry in 17th century promoted the progress of economics and technology and required dealing with variable quantities. The leap from constants to variable quantities brought about two new branches of mathematics----analytic geometry and calculus, which belong to the higher mathematics. Now there are many branches in higher mathematics, among which are mathematical analysis, higher algebra, differential equations, function theory and so on. 17世纪工业的快速发展推动了经济技术的进步,从而遇到需要处理变量的问题,从常数带变量的跳跃产生了两个新的数学分支-----解析几何和微积分,他们都属于高等数学,现在高等数学里面有很多分支,其中有数学分析,高等代数,微分方程,函数论等。
Mathematicians study conceptions and propositions, Axioms, postulates, definitions and theorems are all propositions. Notations are a special and powerfultool of mathematics and are used to express conceptions and propositions very often. Formulas ,figures and charts are full of different symbols. Some of the best known symbols of mathematics are the Arabic numerals 1,2,3,4,5,6,7,8,9,0 and the signs of addition, subtraction , multiplication, division and equality. 数学家研究的是概念和命题,公理,公设,定义和定理都是命题。
符号是数学中一个特殊而有用的工具,常用于表达概念和命题。
公式,图表都是不同的符号……..The conclusions in mathematics are obtained mainly by logical deductions and computation. For a long period of the history of mathematics, the centric place of mathematics methods was occupied by the logical deductions. Now , since electronic computers are developed promptly and used widely, the role of computation becomes more and more important. In our times, computation is not only used to deal with a lot of information and data, but also to carry out some work that merely could be done earlier by logical deductions, for example, the proof of most of geometrical theorems. 数学结论主要由逻辑推理和计算得到,在数学发展历史的很长时间内,逻辑推理一直占据着数学方法的中心地位,现在,由于电子计算机的迅速发展和广泛使用,计算机的地位越来越重要,现在计算机不仅用于处理大量的信息和数据,还可以完成一些之前只能由逻辑推理来做的工作,例如,大多数几何定理的证明。
1-B Equation An equation is a statement of the equality between two equal numbers or number symbols. Equation are of two kinds---- identities and equations of condition. An arithmetic or an algebraic identity is an equation. In such an equation either the two members are alike. Or become alike on the performance of the indicated operation. 等式是关于两个数或者数的符号相等的一种描述。
等式有两种-恒等式和条件等式。
算术或者代数恒等式是等式。
这种等式的两端要么一样,要么经过执行指定的运算后变成一样。
An identity involving letters is true for any set of numerical values of the letters in it. An equation which is true only for certain values of a letter in it, or for certain sets of related values of two or more of its letters, is an equation of condition, or simply an equation. Thus 3x-5=7 is true for x=4 only; and 2x-y=0 is true for x=6 and y=2 and for many other pairs of valuesfor x and y. 含有字母的恒等式对其中字母的任一组数值都成立。
一个等式若仅仅对其中一个字母的某些值成立,或对其中两个或着多个字母的若干组相关的值成立,则它是一个条件等式,简称方程。
因此3x-5=7仅当x=4 时成立,而2x-y=0,当x=6,y=2时成立,且对x, y的其他许多对值也成立。
A root of an equation is any number or number symbol which satisfies the equation. There are various kinds of equation. They are linear equation, quadratic equation, etc. 方程的根是满足方程的任意数或者数的符号。
方程有很多种,例如:线性方程,二次方程等。
To solve an equation means to find the value of the unknown term. To do this , we must, of course, change the terms about until the unknown term stands alone on one side of the equation, thus making it equal to something on the other side. We then obtain the value of the unknown and the answer to the question. To solve the equation, therefore, means to move and change the terms about without making the equation untrue, until only the unknown quantity is left on one side ,no matter which side. 解方程意味着求未知项的值,为了求未知项的值,当然必须移项,直到未知项单独在方程的一边,令其等于方程的另一边,从而求得未知项的值,解决了问题。