2017艺术生高考数学复习学案(一)
艺术生高考数学复习学案
![艺术生高考数学复习学案](https://img.taocdn.com/s3/m/d126aaac172ded630a1cb62d.png)
数系的扩张与复数的四则运算⑴【考点及要求】了解数系的扩充过程;理解复数的基本概念、代数表示法及复数相等的充要条件。
理解复数代数形式的四则运算法则,能进行复数代数形式的四则运算。
【基础知识】1.数的扩展:数系扩展的脉络是: → → ,用集合符号表示为 ⊆⊆ ,实际上前者是后者的真子集.2.复数的概念及分类:⑴概念:形如(,)a bi a b R +∈的数叫做 ,其中a b 与分别为它的 和 .⑵分类:①若(,)a bi a b R +∈为实数,则 ,②若(,)a bi a b R +∈为虚数,则 ,③若(,)a bi a b R +∈为纯虚数,则 ;⑶复数相等:若复数(,,,)a bi c di a b c d R +=+∈⇔ ; ⑷共轭复数:(,,,)a bi c di a b c d R ++∈⇔与共轭 ; 3.复数的加、减、乘、除去处法则:设12|||2(z z z a a ---=12|z ||为正常数,2a<|z -z |)则 ⑴加法: 12()()z z a bi c di +=+++= ; ⑵减法: 12()()z z a bi c di -=+-+= ; ⑶乘法: 12()()z z a bi c di •=+•+= ;⑷乘方: m n z z •= ;()m n z = ;12()n z z •= ;⑸除法:12z a bi z c di +==+12z a bi z c di+==+ = ;4.复平面的概念:建立直角坐标系来表示复数的平面叫做 , 叫做实轴, 叫做虚轴;实轴上的点表示 ,除原点外,虚轴上的点都表示 .5.复数的模:向量OZ uuu r的模叫做复数(,)z a bi a b R =+∈的(或 ),记作 (或 ),即||||z a bi =+= ;复数模的性质:⑴121212||||||||||z z z z z z -≤±≤+;⑵2222||||||||z z z z z z ====•;6. 常见的结论:⑴4411n n i +=4n+24n+34n+4n n+1n+2n+3的运算律:i ,i =i,i =-1,i =-i,i =1,i +i +i +i =0; ⑵2(1)i ±= ;11i i +=- ;11ii-=+ ;⑶1,2ωω-3设=则= ;2ω= ;21ωω++= ;【基本训练】1.若i b i i a -=⋅-)2(,其中,,a b R i ∈是虚数单位,则22a b +等于 .2.设复数121,2()z i z x i x R =+=+∈,若12z z 为实数,则x 等于 .3.若cos sin (z i i θθ=+是虚数单位),则使21z =-的θ值可能是 . 4.22)1(1)1(1i ii i -+++-等于______________. 5.已知复数032z i =+,复数z 满足025z i z z -•=,则复数z = _______________.6.i 是虚数单位,23482348i i i i i +++++L L = ____________. 【典型例题】例1.已知:复数z =)()65()67(22R a i a a a a ∈--++-,试求实数a 分别取什么值时,复数z 分别为:⑴实数;⑵虚数;⑶纯虚数;⑷复数z 在复平面上对应的点在x 轴上方;练习:复数z 的实部和虚部都为整数,且满足z +z10是实数,1 < z+ z10≤6,求复数z.例2.计算下列各题: ⑴ 54)31()22(i i -+ ⑵2007)12(321,32i ii -+++- ⑶ )125)(1()32)(32(i i i i ---+ ⑷iii i 2332)11(6-++-+【课堂检测】1.下列命题中:⑴两个复数一定不能比较大小;⑵z m ni =+,当且仅当0,0m n =≠时,z 为虚数;⑶如果22120z z +=,则120z z ==;⑷如果123,,z z z C ∈,则221223()()0z z z z -+-≥,其中正确的的命题的个数是 . 2.3321i i ++=_____; 2005)11(i i -+ = ______;复数4)11(i +=________;复数z =i-11的共轭复数是______;3.已知复数z =,2321i +-则2320081z z z z +++++=L L . 4.若复数)2)(1(i bi ++是纯虚数(i 是虚数单位,b 是实数),则b = ______________. 5.设)()11()11()(Z n ii i i n f nn ∈--+-+=,则集合中的元素个数为 .6.已知复数1z i =+,如果i z z baz z -=+-++1122,求实数a 、b 的值.§84 数系的扩张与复数的四则运算⑵【基础训练】1.若复数2(1)(1)z m m m i =++-是纯虚数,则实数m 的值为 . 2.复数z =111-++-ii在复平面内所对应的点在 . 3.若u =,2321i +- v =,2321i --给出下列命题⑴1uv =;⑵33v u +2=;⑶111=+vu;⑷2u v =其中正确的命题是 .4.如果1z 、2z C ∈且满足1212||||||1z z z z ==-=,则12||z z += .【典型例题】例3.设z 为虚数,zz 1+=ω是实数,且21<<-ω, ⑴求||z 的值及z 的实部的取值范围; ⑵设zzu +-=11,求证:u 为纯虚数;⑶求2u -ω的最小值.练习:设x 、y 是实数,且ii y i x 315211-=---,求x y +的值.例4. 若关于x 的方程22(3)0x t t tx i +++=有纯虚数根,求实数t 的值和该方程的根.练习:关于x 的方程2(2)10,()x i x mi m R -+++=∈有一实根为n ,设复数(2)(12)z m i ni =+-,求m 、n 的值及复数z 的值.例5.设关于x 的方程2(tan )(2)0x i x i θ-+-+=.(1)若方程有实数根,求锐角θ和方程的实根; (2)证明:对任意()2k k Z πθπ≠+∈,方程无纯虚数根.练习:已知关于t 的方程2(2)2()0,(,)t i t xy x y i x y R ++++-=∈. (1)当方程有实根时,求点(,)x y 的轨迹方程; (2)若方程有实根,求此实根的取值范围.【课堂小结】【课堂检测】 1.复数ii+1在复平面上对应的点位于第_______象限. 2.复数(m 2 – 3m – 4) + (m 2 – 5m – 6)i 表示的点在虚轴上,则实数m 的值是___________. 3.若复数z 满足|z| - z =i2110-,则z = _____________. 4.若复数z 满足方程220z +=,则3z = _______;5.若关于x 的一元二次实系数方程20x px q ++=有一根为1(i i +为虚数单位),则q = . 6.设286z i =+,求310016z z z--的值.【课堂作业】1.已知复数z 1、z 2满足|z 1| = |z 2| = 1,且z 1 + z 2 = i ,求z 1、z 2 .2.已知复数z 满足|z – (4 – 5i)| = 1,求|z + i|的最大值与最小值.3.已知复数z 、w 满足w = iz+2,(1+3i)z 为纯虚数,|w| = 52,求w.4.已知()23,()63f z z z i f z i i =+-+=-. 求()f z -.5.已知关于x 的方程x 2 – (6 +i)x + 9 + ai = 0(a ∈R )有实数根b.(1)求实数a 、b 的值;(2)若复数z 满足|z - a – bi| - 2|z| = 0,求z 为何值时,|z|有最小值,并求出|z|的值.§85 复数的几何意义⑴【考点及要求】了解复数的代数表示法及几何意义;理解复数及复数加、减运算的几何意义,并能根据几何意义解决简单问题。
艺术生高考数学复习学案
![艺术生高考数学复习学案](https://img.taocdn.com/s3/m/e5067157581b6bd97e19ea4e.png)
【基本训练】
1.下列各种对象的全体,可以构成集合的是
(1)某班身高超过 的女学生;(2)某班比较聪明的学生;(3)本书中的难题 (4)使 最小的 的值
2. 用适当的符号 填空:
;
3.用描述法表示下列集合: 由直线 上所有点的坐标组成的集合;
②若则 在区间 上是增函数
2.若函数 在区间 上是增函数或减函数,则称函数 在这一区间具有(严格的),
区间 叫做 的
3.偶函数:如果对函数 的定义域内 都有,那么称函数 是偶函数。其图象关于对称。
奇函数:如果对函数 的定义域内 都有,那么称函数 是奇函数。其图象关于对称。
【基本训练】
1.偶函数 在(0,+ )上为单调函数,( ,0)上为单调函数,奇函数 在(0,+ )上为单调函数,( ,0)上为单调函数。
3.若已知全集 ,集合 ,则
4. , , ,
, ,若 ,则
【基本训练】
1.集合 , , _________.
2.设全集 ,则 ,它的子集个数是
3.若 ={1,2,3,4}, ={1,2}, ={2,3},则
4.设 , 则: ,
【典型例题讲练】
例1已知全集 且 则
练习:设集合 , ,则
例2已知 , ,且 ,则 的取值范围是。
4.函数 和 的递增区间依次是
5.定义在(-1,1)上的函数f(x)是奇函数,并且在(-1,1)上f(x)是减函数,求满足条件f(1-)+f(1-a2)<0的a取值范围.
§9指数与对数(1)
【考点及要求】理解指数幂的含义,进行幂的运算,理解对数的概念及运算性质
【基础知识】
艺术生学案
![艺术生学案](https://img.taocdn.com/s3/m/e8af3f422b160b4e777fcf05.png)
数学热点一 集合 简易逻辑与命题【命题趋向】(一)集合1.热点预测:预计2015年高考以考查集合的运算为主,题型延续选择题、填空题的形式,分值为5分左右。
2.趋势分析:以函数、方程、三角、不等式等知识为载体,以集合的语言和符号为表现形式,考查学生的数学思想、数学方法和数学能力,2015年高考复习时应予以关注。
(二)命题及其关系,充要条件1.热点预测:充分条件与必要条件是研究命题的重要途径,而命题是数学的重要构成形式,因而这部分内容是高考的必考内容。
预计2015年高考题型仍然延续选择题、填空题的形式,分值约5分。
2. 趋势分析:高考仍将以充要条件的判定、判断命题的真假为主要考点,重点考查学生的逻辑推理能力。
2015年高考复习时应予以高度关注。
(三)简单逻辑联结词、全称量词与存在量词。
1. 热点预测:全称命题、特称命题的否定、真假的判断及逻辑联结词是高考的热点,常与其他知识相结合命题,题型为选择题,分值为5分,属容易题。
2. 趋势分析:2015年高考仍将以全称命题、特称命题的否定和真假判断为主要考点,重点考查学生的逻辑推理能力。
【典题对应】例1. (2014· 山东文2) 设集合2{|20},{|14}A x xx B x x =-<=≤≤,则B A =( ) A .(0,2] B. (1,2) C. [1,2) D. (1,4)例2. (2013· 山东文2)已知集合A ,B 均为全集U ={1,2,3,4}的子集,且(A ∪B )={4},B ={1,2},则 A ∩=( ).A. {3}B. {4}C. {3,4}D. φ变式:(2013·课标全国Ⅱ,文1)已知集合M{}13<<-=x x ,{}1,0,1,2,3---=N ,则N M =( ).A. {-2,-1,0,1}B. {-3,-2,-1,0}C. {-2,-1,0}D. . {-3,-2,-1}例3.(2012·山东5)设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是( )A. p 为真B. q ⌝为假C.p q ∧为假D.p q ∨为真例5.(2012·上海16)对于常数m 、n ,“0mn >”是“方程221mx ny +=的曲线是椭圆”的( )A. 充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【直击高考】1. 已知函数xx f -=11)(的定义域为M ,)1ln()(x x g +=的定义域为N ,则M N = ( ) A.{}1->x x B.{}1<x x C.{}11<<-x x D.φ2. 已知全集U R =,集合{212}M x x =-≤-≤和{21,1,2,}N x x k k ==-=的关系的韦恩(Venn )图如图1所示,则阴影部分所示的集合的元素共有( ) A. 3个B. 2个C. 1个D. 无穷多个3. 设全集为R ,集合2{|90},{|15}A x x B x x =-<=-<≤,则()R A C B =( ).(3,0)A - .(3,1]B -- .(3,1)C -- .(3,3)D -4.集合A ={x |11+-x x <0},B ={x || x -b|<a },若“a =1”是“A∩B≠φ”的充分条件, 则b 的取值范围是( ) A. -2≤b <0 B. 0<b≤2 C. -3<b <-1D. -1≤b <2 5. 设x ∈Z ,集合A 为偶数集,若命题:,2,p x x A ∀∈∈Z 则p ⌝为( ) A.,2x Z x A ∀∈∉ B. ,2x Z x A ∀∉∈ C. ,2x Z x A ∃∈∈ D. ,2x Z x A ∃∈∉6. 已知命题:p 存在x R ∈,使得101x gx ->;命题q :对任意x R ∈,都有20x >,则A.命题“p 或q ”是假命题B.命题“p 且q ”是真命题C.命题“非q ”是假命题D.命题“p 且‘非q ’”是真命题7. 已知a R ∈且0a ≠,则“11a <”是“1a >”的 A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件。
高考数学:解三角形(复习学案)
![高考数学:解三角形(复习学案)](https://img.taocdn.com/s3/m/8c804dca6e1aff00bed5b9f3f90f76c661374cf2.png)
专题09 解三角形(一) 三角形中的求值问题1.例题【例1】设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32,且b <c ,则b =( )A . 3B .2C .2 2D .3【例2】在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若1a =,cos )cos 0A C C b A ++=,则角A =( )A .23π B .3π C .6π D .56π 【例3】在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c ,4a =,b =cos (2)cos c B a b C =-,则ABC ∆的面积为______.【例4】(2017·全国高考真题(理))△ABC 的内角、、A B C 的对边分别为a b c 、、, 已知△ABC 的面积为23sin a A.(1)求sin sin B C ;(2)若6cos cos 1,3,B C a ==求△ABC 的周长.【例5】如图,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ; (2)求BD ,AC 的长.2.巩固提升综合练习【练习1】(2019·全国高考真题)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc =( )A .6B .5C .4D .3【练习2】(2018·全国高考真题)△ABC 的内角A , B , C 的对边分别为a , b , c ,已知bsinC +csinB =4asinBsinC ,b 2+c 2−a 2=8,则△ABC 的面积为________. 【练习3】 在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B成等差数列,则AB 的长为________.【练习4】在△ABC 中,已知AB =2,AC =5,tan ∠BAC =-3,则BC 边上的高等于( ) A .1 B .2 C . 3 D .2【练习5】已知圆内接四边形ABCD 的边长AB =2,BC =6,CD =DA =4,求四边形ABCD 的面积S .【练习6】 △ABC 的内角A ,B ,C 的对边分别为a ,b ,c 已知c cos B =(3a -b )cos C . (1)求sin C 的值;(2)若c =26,b -a =2,求△ABC 的面积.(二)三角形中的最值或范围问题1.例题【例1】在△ABC中,已知c=2,若sin2A+sin2B-sin A sin B=sin2C,则a+b的取值范围为________.【例2】已知在锐角ABC∆中,角A,B,C的对边分别为a,b,c,若2cos cosb Cc B=,则111tan tan tanA B C++的最小值为()A B C D.【例3】已知△ABC的外接圆半径为R,角A,B,C所对的边分别为a,b,c,若a sin B cos C +32c sin C=2R,则△ABC面积的最大值为( )A.25B.45C.255D.125【例4】在ABC∆中,角A,B,C的对边分别为a,b,c,且cos Ccos cos cos2ab Ac A B+=,ABC∆,则ABC∆周长的最小值为______.2.巩固提升综合练习【练习1】 设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,则b 的取值范围为( )A .(0,4)B .(2,C .D .4)【练习2】 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若bc =1,b +2c cos A =0,则当角B 取得最大值时,△ABC 的周长为( ) A .2+3 B .2+2 C .3D .3+2【练习3】已知ABC ∆1,且满足431tan tan A B+=,则边AC 的最小值为_______.【练习4】在ABC ∆中,23BAC π∠=,已知BC 边上的中线3AD =,则ABC ∆面积的最大值为__________.(三)解三角形的实际应用必备知识:实际测量中的有关名称、术语南偏西60°指以正南方向为始边,转向目标方向线形成的角1.例题【例1】在海岸A处,发现北偏东45°方向,距离A处(3-1)n mile的B处有一艘走私船,在A处北偏西75°的方向,距离A 2 n mile的C处的缉私船奉命以10 3 n mile的速度追截走私船.此时,走私船正以10 n mile/h的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?【例2】如图,A,B两点在河的同侧,且A,B两点均不可到达,测出A,B的距离,测量者可以在河岸边选定两点C,D,测得CD=a,同时在C,D两点分别测得∠BCA=α,∠ACD=β,∠CDB=γ,∠BDA=δ.在△ADC和△BDC中,由正弦定理分别计算出AC和BC,再在△ABC中,应用余弦定理计算出AB.若测得CD=32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,求A,B两点间的距离.【例3】某人在点C测得塔顶A在南偏西80°,仰角为45°,此人沿南偏东40°方向前进100米到D,测得塔顶A的仰角为30°,则塔高为____________米.2.巩固提升综合练习【练习1】甲船在A处,乙船在甲船正南方向距甲船20海里的B处,乙船以每小时10海里的速度向正北方向行驶,而甲船同时以每小时8海里的速度由A处向北偏西60°方向行驶,问经过多少小时后,甲、乙两船相距最近?【练习2】如图,一艘船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这艘船航行的速度为( )A.1762海里/时B .346海里/时 C.1722海里/时D .342海里/时【练习3】某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:A 、B 、C 三地位于同一水平面上,在C 处进行该仪器的垂直弹射,观测点A 、B 两地相距100米,∠BAC =60°,在A 地听到弹射声音的时间比在B 地晚217秒.在A 地测得该仪器弹至最高点H 时的仰角为30°,求该仪器的垂直弹射高度CH .(声音的传播速度为340米/秒)1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a ,b ,c 成等比数列,且a 2=c 2+ac -bc ,则cb sin B =( )A .32B .233C .33D .32.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,a =3,c =23,b sin A =a cos ⎪⎭⎫⎝⎛+6πB 则b =( ) A .1 B.2 C.3D.53.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =2,c =32,tan B =2tan A ,则△ABC 的面积为( ) A .2 B .3 C .32D .423.如图,在△ABC 中,∠C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足.若DE =22,则cos A 等于( ) A .223B .24C .64D .634.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若B =2A ,则2ba的取值范围是( ) A .(2,2) B .(2,6) C .(2,3)D .(6,4)5.在ΔABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,a =2,B =45°,若三角形有两解,则b 的取值范围是_______.6.已知a ,b ,c 是△ABC 中角A ,B ,C 的对边,a =4,b ∈(4,6),sin 2A =sin C ,则c 的取值范围为________.7.设△ABC 的内角A ,B ,C 的对边a ,b ,c 成等比数列,cos(A -C )-cos B =12,延长BC至点D ,若BD =2,则△ACD 面积的最大值为________.8.(2019·高考全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若b =6,a =2c ,B =π3,则△ABC 的面积为________. 9.若满足3ABC π∠=, AC =3, ,BC m ABC =恰有一解,则实数m 的取值范围是______.10.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,外接圆的半径为1,且tan A tan B =2c -bb ,则△ABC 面积的最大值为________.11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a 2+c 2-b 2=ab cos A +a 2cos B . (1)求角B ;(2)若b =27,tan C =32,求△ABC 的面积.12.已知ABC ∆中,角A B C 、、的对边分别为a b c ,,,若cos sin a b C c B =+(Ⅰ)求B ;(Ⅰ)若2b = ,求ABC ∆面积的最大值。
高三艺术生数学教学计划(优秀15篇)
![高三艺术生数学教学计划(优秀15篇)](https://img.taocdn.com/s3/m/281ff5504b7302768e9951e79b89680202d86b14.png)
高三艺术生数学教学计划(优秀15篇)高三数学教学计划本学期我担任了高三(8)、(9)班的数学教学工作,且担任了高三(8)的班主任。
在学校正确领导下,也在我们高三数学组全体教师的团结协作下,我领会了较准确的高考趋势和高考大纲,学期的工作已经基本上顺利完成,班级的整体面貌有了较大的提高,学生的学习行为,情感教育,心理素质也有了必须的提高,教师的教育水平和经验得到了更大的提高。
回顾这一学期的教学工作,我具体做法谈谈自我的一点总结和看法如下:1、加强与同行的高三教师交流同时优化自我的课堂教学。
新课改高考形势下,高考数学考什么,要怎样教,学生要怎样学?无论是教师还是学生都感到压力很大,针对这一问题王劲松校长、谢庆奎主任的领导下,制定了严密的教学计划,提出了优化课堂教学,强化与外校教师的交流,培养学生应试本事方面做了不少工作,使课堂效率提高,考试的知识点能得到很重点复习和巩固,在课堂上和平时有意识地培养学生应试本事和心理素质方面得到了很多加强。
这样,总体上,集把握住了正确的方向和教学资料,发挥我校学生的特长,因材施教。
高考的要求和高考的资料都发生了很大的变化,就要求我们必须转变观念,立足主干知识,夯实基础。
复习时要求全面周到,注重知识的联系,准确掌握考试资料,做到复习不超纲,不做无用功,使复习更有针对性,准确掌握那些资料是要求了解的,那些资料是要求理解的,那些资料是要求掌握的,那些资料是要求灵活运用和综合运用的;细心推敲要考查的数学方法;在复习基础知识的同时要注重本事的培养,要充分体现学生的主体地位,将学生的学习进取性充分调动起来,课堂上要展现教师的分析思维,还要充分展现学生的思考思维,把教学活动体现为思维活动;同时不要增加难度,教学起点总体要低,使学生考试有成就感。
对个别学生要注重提优补差,新高考将更加注重对学生本事的考查,有利于优秀的学生脱颖而出,取得更好的成绩;对于我们的学生要充分分析学习上存在的问题,解决他们学习上的困难,有取舍,有重点教学,培养他们学习数学的兴趣,激励他们勇于迎接挑战,不断挖掘潜力,最大限度提高他们的数学成绩,而不是去让他们所有的题目都会做。
艺术生高考数学复习学案.docx
![艺术生高考数学复习学案.docx](https://img.taocdn.com/s3/m/97524259b9d528ea81c779f3.png)
§ 1集合(1)【考点及要求】了解集合含义,体会"属于〃和“包含于"的关系,全集与空集的含义【基础知识】集合中元素与集合之间的关系:文字描述为_______ 和______ 符号表示为______ 和_____常见集合的符号表示:自然数集_______ 正整数集_________ 整数集__________有理数集_______ 实数集__________集合的表示方法1 ______________ 2 ______________ 3 ______________集合间的基本关系:1相等关系:A^BRB Q A<=> _____________ 2子集:力是B的子集,符号表示为 ________ 或B^A 3真子集:/是〃的真子集,符号表示为______________ 或 _____不含任何元素的集合叫做____________ ,记作__________ ,并规定空集是任何集合的子集,是任何非空集合的—【基本训练】1・下列各种对象的全体,可以构成集合的是___________(1 )某班身高超过1.8m的女学生;(2)某班比较聪明的学生;(3)本书中的难题(4 )使卜2 _ 3x + 2|最小的x的值2.用适当的符号(w,g,=,u,n)填空:7T_2; {3.14} _______ Q ; N_N*; {x\x = 2k^-l y kez} _______________ {x\x = 2k-\,ke z]3・用描述法表示下列集合:由直线y = x + l上所有点的坐标组成的集合;4•若AcB二B,则力______ B ;若AuB = B则力__________ B;AcB _________ AuB5•集合/ = {x|卜一3| v5},B = {x卜va},且A Q B,则d的范围是_________________【典型例题讲练】例1 设集合A/ = |x|x = -| + |^e Z^,N = ^x\x = ^^,ke zj,则M____________________ N练习:设集合P = x = £ + = = £ + ,则尸例2 已知集合A={x\ax2^2x-^l = 0,xeR}y a为实数。
艺考攻略:艺术生文化课高考数学方法
![艺考攻略:艺术生文化课高考数学方法](https://img.taocdn.com/s3/m/622bcacf87c24028905fc3a6.png)
艺术生数学高考备考攻略一、艺术生数学学习特点数学是文科的高考科目中难度最大、分值最高的一科。
艺术类的学生,由于平时精力更多地放在艺术类专业课上,都存在较长的学习荒芜期,长则一年,短则半年,对高中数学知识点掌握的不系统不全面;同时,很多艺术生还错过了学校的一轮复习,在数学高考复习中往往感觉心有余而力不足,在这种情况下要在短短两三个月内较大幅度提高数学成绩其难度可想而知。
高中艺术生主要分为两类:一类是进入高中时就确定艺术方向,另一类则是在高二后期或高三前期转入艺术生。
这两类学生有着很大的区别,前者在中考时成绩一般,基本上是属于跟得上,对于较难知识点掌握一般,比如函数、阅读量大的题目、动态类型的题都是他们容易出现问题的地方,进入高中后,开学后第二章就学习高中阶段较难的部分:函数,一下子就让这些学生失去了学习的积极性,从而导致整个高中的数学学习积极性不高;后一种情况的学生本打算高中通过普文普理参加高考,只是到了最后发现高考的难度很大,转为艺术生,这类学生的基础知识有一定的掌握,但是不系统,学习和解题方法不准确到位,相对于前一类学生,他们对一些知识是熟悉的,比如在做选择题时,可以大体上知道是怎么回事,大体上答案是哪个,但是在做填空题时,简单的还可以,稍加综合就会出问题了。
另外,在教学过程中应根据艺考生不同的学习类型采取不同的学习策略。
二、艺术生高考数学拿分策略高考文科数学各题型的难度系数比为:6:3:1,对艺考生而言,最容易出成绩的地方是占60%的难度系数相对小的基础题,在短期拿到满意的分数,必须有所舍去,舍难取易。
高考共计三大类题型:一、选择题(每小题5分,满分60分),这一部分基本全是考察基础知识和基本运算,是学生得分比较容易的部分,只要平时把常考的题型点做精做活,拿到45分以上应该不难;二、填空题(每小题4分,满分16分),这一部分80%的题属于基础题,主要考察基础知识和基本运算。
但由于填空题对答案的准确率要求高,就需要考生平时训练扎实,提高运算能力和准确率,会做的题一定要争取做对,这部分要让学生拿到12分以上;三、解答题(共计5个题,满分74分),前3个题属于基础题,相对比较容易得分,只要平时训练扎实,做题步骤完善,得到满分很难,但拿到60-70%的分应该是没问题的,后面两个大题难度都比较难,对综合能力要求高,但因为每个题的第一问属于基础题,对艺术生来说难度不大,这两个题应该争取拿到30-50%的分。
黑龙江艺术生高考数学复习资料-1集合基础
![黑龙江艺术生高考数学复习资料-1集合基础](https://img.taocdn.com/s3/m/a88c09ee19e8b8f67c1cb915.png)
一、集合与简易逻辑:一、理解集合中的有关概念(1)集合中元素的特征: , , 。
(2)集合与元素的关系用符号 , 表示。
(3)常用数集的符号表示:自然数集 ;正整数集 、 ;整数集 ;有理数集 、实数集 。
(4)集合的表示法: , , 。
注意:区分集合中元素的形式:如:}12|{2++==x x y x A ;}12|{2++==x x y y B ;}12|),{(2++==x x y y x C }12|{2++==x x x x D ;},,12|),{(2Z y Z x x x y y x E ∈∈++==; }12|)',{(2++==x x y y x F ;},12|{2xy z x x y z G =++== (5)空集是指不含任何元素的集合。
(}0{、φ和}{φ的区别;0与三者间的关系) 空集是任何集合的子集,是任何非空集合的真子集。
注意:条件为B A ⊆,在讨论的时候不要遗忘了φ=A 的情况。
如:}012|{2=--=x ax x A ,如果φ=+R A ,求a 的取值。
二、集合间的关系及其运算(1)符号“∉∈,”是表示元素与集合之间关系的,立体几何中的体现 点与直线(面)的关系 ;符号“⊄⊂,”是表示集合与集合之间关系的,立体几何中的体现 面与直线(面)的关系 。
(2)_}__________{_________=B A ;____}__________{_________=B A ; _}__________{_________=A C U(3)对于任意集合B A ,,则:①A B B A ___;A B B A ___;B A B A ___;②⇔=A B A ;⇔=A B A ;⇔=U B A C U ;⇔=φB A C U ;③=B C A C U U ; )(B A C U =;(4)①若n 为偶数,则=n ;若n 为奇数,则=n ;②若n 被3除余0,则=n ;若n 被3除余1,则=n ;若n 被3除余2,则=n ;三、集合中元素的个数的计算:(1)若集合A 中有n 个元素,则集合A 的所有不同的子集个数为_________,所有真子集的个数是__________,所有非空真子集的个数是 。
艺术生高考数学复习资料.大纲人教版
![艺术生高考数学复习资料.大纲人教版](https://img.taocdn.com/s3/m/5691b029443610661ed9ad51f01dc281e53a56eb.png)
艺术生高考数学复习资料1、1、1任意角一、【学习目标】1、将00—3600的角推广到任意角;2、理解任意角、象限角、终边相同的角的概念和含义;3、理解象限角集合、终边相同角集合、轴线角集合.<1>什么是角?角是怎么定义的?结论:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 如图所示,一条射线的端点是O,它从起始位置OA按逆时针方向旋转到终止位置OB,形成一个角∠α,射线OA、OB分别是角α的始边和终边.注意:为了简单起见,在不引起混淆的前提下,∠α可以简记为α.<2>什么是正角?什么是负角?什么是零度角?结论:按逆时针方向旋转形成的角是正角.按顺时针方向旋转所形成的角叫负角.一条射线没有做任何旋转,我们称为零角.<3>什么是任意角?结论:这样,我们把角分为了正角、负角、零度角,我们就把角的概念推广到了任意角. 如图所示.图1中的角是一个正角,它等于750;图2中的正角为2100,负角为-1500,-6600.<1>什么是象限角?结论:我们常在直角坐标系内讨论角,为了讨论问题方便,我们使角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在第几象限,我们就说这个角是第几象限角.例如,图中的300角、-1200角分别是第一象限角和第三象限角.<2>将角按照上述方法放在直角坐标系中,给定一个角,就有唯一的一条终边与之对应.反之,对于直角坐标系内任意一条射线OB,以它为终边的角是否唯一?如果不唯一,那么终边相同的角有什么关系?(终边相同的角.)结论:不难发现,在图中,如果-320的终边是OB,那么3280,-3920……角的终边都是OB,并且与-32角终边相同的这些角都可以表示成-32的角与k个(k∈Z)周角的和,如3280=-320+3600(这里k=1),-3920=-320-3600(这里k=-1).设S={β|β=-32+k360,k∈Z },则3280,-3920都是S的元素,-320也是S 的元素,这里k=0.因此所有与-320角终边相同的角,连同-320在内,都是集合S的元素;反过来,集合S的任一元素显然与-320角终边相同.一般地,我们有:所有与角α终边相同的角,连同角α在内,可构成一个集合:S={β|β=α+k3600,k∈Z },即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.注意:①α为任意角;②k3600与α之间是“+”号,k3600-α可以理解为k3600+(-α).③相等的角,终边一定相同;终边相同的角不一定相等,中边相同的角有无数个,它们相差3600的整数倍;④k∈Z这一条件必不可少.练习一:教材例1、例2、例3例1.例1、在0360︒︒~X 围内,找出与95012'︒-角终边相同的角,并判定它是第几象限角.(注:0360︒︒-是指0360β︒︒≤<)例2、写出终边在y 轴上的角的集合.例3、写出终边直线在y x =上的角的集合S ,并把S 中适合不等式360α︒-≤720︒<的元素β写出来.练习二:教材第5页练习(1)、(2)(1)(口答)锐角是第几象限角?第一象限角一定是锐角吗?再分别就直角、钝角来回答这两个问题.(2)(回答)今天是星期三那么7()k k Z ∈天后的那一天是星期几?7()k k Z ∈天前的那一天是星期几?100天后的那一天是星期几?练习三:教材第5页练习(3)、(4)、(5). 【教学效果】:理解象限角、轴线角的概念. 3、知识点引申 <1>象限角集合第一象限角的集合为:{x|k3600<x<k3600+900,k ∈Z}; 第二象限角的集合为:{x|k3600+900<x<k3600+1800,k ∈Z} 第三象限角的集合为:{x|k3600+1800<x<k3600+2700,k ∈Z} 第四象限角的集合为:{x|k3600+2700<x<k3600+3600,k ∈Z} <2>轴线角的集合终边落在x 轴的非负半轴上的角的集合为{x|x=k3600,k ∈Z} 终边落在x 轴的非正半轴上的角的集合为{x|x=k3600+1800,k ∈Z} 终边落在x 轴上的角的集合为{x|x=k1800,k ∈Z}终边落在y 轴的非负半轴上的角的集合为{x|x=k3600+900,k ∈Z} 终边落在y 轴的非正半轴上的角的集合为{x|x=k3600—900,k ∈Z} 终边落在y 轴上的角的集合为{x|x=k1800+900,k ∈Z}【教学效果】:理解轴线角、象限角的集合,对以后的学习是很有用的.1、1、2弧度制一、【学习目标】1、理解弧度的概念,会熟练的进行角度与弧度的转换;2、能用弧度表示终边相同角的角;3、熟记并能熟练应用弧长公式、扇形面积公式. <1>什么叫角度制,请简要复述之.结论:角度制规定:将一个圆周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等. <2>什么叫做弧度制,请简要复述之.结论:长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad ,或1弧度,或1(单位可以省略不写).如图所示:<3>半径为r 的圆的圆心与圆点重合,角α的始边与x 轴的非负半轴重合,交圆于点A ,终边与圆交于点B.请在下列表格中 填空.结论:我们知道,角有正负零角之分,它的弧度数也应该有正负零之分,如-π,-2π等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定.<4>如果一个半径为r 的圆的圆心角α所对的弧长是l ,那么a 的弧度数是多少?结论:角α的弧度数的绝对值是:r l /=α,其中,l 是圆心角所对的弧长,r 是半径. 角的正负主要由角的旋转方向来决定 <5>熟记下列特殊角的弧度数:00,300,450,600,900,1200,1350,1500,1800,2100,2250,2400,2700,3000,3150,3300,3600 结论:角的概念推广以后,在弧度制下,角的集合与实数集R 之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.例1、按照下列要求,把'6730︒化成弧度:精确值;精确到0.001的近似值. 例2、将3.14rad 换算成角度(用度数表示,精确到0.001). 例4、利用计算器比较sin1.5和sin850的大小.注意:角度制与弧度制的换算主要抓住180rad π︒=,另外注意计算器计算非特殊角的方法.<6>利用弧度制证明下列关于扇形的公式:(1)l R α=; (2)20.5S R α=; (3)0.5S lR =.其中R 是半径,l 是弧长,(02)ααπ<<为圆心角,S 是扇形的面积. 训练题1、已知扇形的周长是6,面积是2,则扇形的中心角是多少?(2或4)2、已知扇形的周长为10cm ,面积为4cm 2,求扇形圆心角的弧度数.3、已知扇形的圆心角为72,半径等于200,求扇形的面积.4、与-15600终边相同的角的集合中,最小正角是多少?最大负角是多少?绝对值最小的角是多少?任意角的三角函数教学目的:1、 掌握任意角的正弦、余弦、正切的定义,;2、 掌握三角函数值的符号的确定方法;3、 记住三角函数的定义域、值域,诱导公式(一); 教学重点、难点重点:三角函数的定义,各三角函数值在每个象限的符号,特殊角的三角函数值难点:对三角函数的自变量的多值性的理解,三角函数的求值中符号的确定 教学过程: 一、复习引入:初中锐角的三角函数是如何定义的?在Rt △ABC 中,设A 对边为a ,B 对边为b ,C 对边为c ,锐角A 的正弦、余弦、正切依次为,,a b asinA cosA tanA c c b=== . 角推广后,这样的三角函数的定义不再适用,我们必须对三角函数重新定义。
如何有效对高三艺体生进行数学复习
![如何有效对高三艺体生进行数学复习](https://img.taocdn.com/s3/m/32e67af50242a8956bece4dd.png)
如何有效的对高三艺体生进行数学复习摘要:艺体生是高三学生中一个非常重要的群体。
他们在高三既要通过专业测试,又要复习所有高中阶段的文化课。
因专业培训和考试导致艺术考生在高三上学期基本无法在学校完成复习,下学期返校后的复习时间也被各种模拟考试切割的七零八落。
因此,这一部分特殊的考生如何在有限的时间提高复习效率,取得好的成绩便成为一个新的课题。
关键词:如何有效高三艺体生数学复习中图分类号:g63 文献标识码:a 文章编号:1673-9795(2013)04(c)-0165-01作为一名多年担任艺术班教学的数学教师,我认为占提高艺体生文化分空间最大的一科——数学对提高总成绩有着至关重要的作用!艺术生数学基础较差,学习能力较弱,为他们量身定制好的教学方法,使艺术生能接受数学,进而学好数学是关键。
结合自身教学实践,就如何做好高中艺体生的数学复习谈几点认识。
1 研究考试说明,试做高考题高三艺体生真正的学习文化课的时间是下学期不到三个月的时间。
在短短三个月时间里要像文化生那样按照复习资料全部复习一遍是不可能的。
这就需要我们合理安排时间、认真研究高考说明。
我认为首先应先通篇阅读考试说明,这样对高考内容有了大致的了解,这一过程也有稳定学生心态的作用。
其次学生可以试做一套高考题,最好是去年的。
这样学生对高考难度及自身水平有了正确的了解,方便自己制定合适的目标。
2 确定目标,稳定心态艺体生回校时间正处于而三轮复习的时候,时间紧迫,且任务繁重,学生不知如何下手,并处于紧张、恐惧、浮躁的状态。
艺体生普遍数学基础差,每个人的状况不同,因此有着显著的差异。
在短时间内提高数学成绩是不太容易的。
教师要制定出一套复习方案,应在保证学生原有水平基础上对其有所提高,确保艺术生得到正常的发挥,并在条件允许的情况下有更好的突破。
要让学生知道艺体生高考文化分数要求相对纯文化生还是要低一些,不需要像纯文化生全部都掌握,只要确定目标尽量把会的分都得到即可。
高考数学一本策略复习专题一集合、常用逻辑用语、不等式、函数与导数第一讲集合、常用逻辑用语教案文
![高考数学一本策略复习专题一集合、常用逻辑用语、不等式、函数与导数第一讲集合、常用逻辑用语教案文](https://img.taocdn.com/s3/m/0be97d48eefdc8d377ee324c.png)
第一讲集合、常用逻辑用语年份卷别考查角度及命题位置命题分析2018Ⅰ卷集合交集运算·T1本部分作为高考必考内容,多年来命题较稳定,多以选择题形式在第1、2题的位置进行考查,难度较低.命题的热点依然会集中在集合的运算上.对常用逻辑用语考查的频率不高,且命题点分散,多为几个知识点综合考查,难度中等,其中充分必要条件的判断近几年全国卷虽未考查,但为防高考“爆冷”考查,在二轮复习时不可偏颇.该考点多结合函数、向量、三角、不等式、数列等内容命题.Ⅱ卷集合交集运算·T2Ⅲ卷集合交集运算·T12017Ⅰ卷集合的交、并运算·T1Ⅱ卷集合的并集运算·T1Ⅲ卷求集合交集中元素个数·T12016Ⅰ卷集合的交集运算·T1Ⅱ卷集合的交集运算、一元二次不等式的解法·T1Ⅲ卷集合的补集运算·T1集合的概念及运算授课提示:对应学生用书第3页[悟通——方法结论]1.集合的运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A.(2)A∩A=A,A∩∅=∅,A∩B=B∩A.(3)A∩(∁U A)=∅,A∪(∁U A)=U.(4)A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.2.集合运算中的常用方法(1)若已知的集合是不等式的解集,用数轴求解.(2)若已知的集合是点集,用数形结合法求解.(3)若已知的集合是抽象集合,用Venn图求解.(1)(2018·南宁模拟)设集合M={x|x<4},集合N={x|x2-2x<0},则下列关系中正确的是( )A .M ∪N =MB .M ∪∁R N =MC .N ∪∁R M =RD .M ∩N =M解析:∵M ={x |x <4},N ={x |0<x <2},∴M ∪N ={x |x <4}=M ,故选项A 正确;M ∪∁R N =R ≠M ,故选项B 错误;N ∪∁R M ={x |0<x <2}∪{x |x ≥4}≠R ,故选项C 错误;M ∩N ={x |0<x <2}=N ,故选项D 错误.故选A.答案:A(2)(2018·宜昌模拟)已知两个集合A ={x ∈R |y =1-x 2},B ={x |x +11-x≥0},则A ∩B=( )A .{x |-1≤x ≤1}B .{x |-1≤x <1}C .{-1,1}D .∅解析:∵A ={x |-1≤x ≤1},B ={x |-1≤x <1},∴A ∩B ={x |-1≤x <1}. 答案:B 【类题通法】破解集合运算需掌握2招第1招,化简各个集合,即明确集合中元素的性质,化简集合;第2招,借形解题,即与不等式有关的无限集之间的运算常借助数轴,有限集之间的运算常用Venn 图(或直接计算),与函数的图象有关的点集之间的运算常借助坐标轴等,再根据集合的交集、并集、补集的定义进行基本运算.[练通——即学即用]1.(2018·高考全国卷Ⅱ)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( )A .9B .8C .5D .4解析:将满足x 2+y 2≤3的整数x ,y 全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A. 答案:A2.(2018·德州模拟)设全集U =R ,集合A ={x ∈Z |y =4x -x 2},B ={y |y =2x,x >1},则A ∩(∁U B )=( )A .{2}B .{1,2}C .{-1,0,1,2}D .{0,1,2}解析:由题意知,A ={x ∈Z |4x -x 2≥0}={x ∈Z |0≤x ≤4}={0,1,2,3,4},B ={y |y >2},则∁U B={y|y≤2},则A∩(∁U B)={0,1,2},故选D.答案:D3.(2018·枣庄模拟)已知集合A={|m|,0},B={-2,0,2},若A⊆B,则∁B A=( ) A.{-2,0,2} B.{-2,0}C.{-2} D.{-2,2}解析:由A⊆B得|m|=2,所以A={0,2}.故∁B A={-2}.答案:C命题及真假判断授课提示:对应学生用书第4页[悟通——方法结论]1.全称命题和特称命题的否定归纳∀x∈M,p(x) ∃x0∈M,綈p(x0).简记:改量词,否结论.2.“或”“且”联结词的否定形式“p或q”的否定形式是“非p且非q”,“p且q”的否定形式是“非p或非q”.3.命题的“否定”与“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论.[全练——快速解答]1.(2018·西安质检)已知命题p:∃x0∈R,log2(3x0+1)≤0,则( )A.p是假命题;綈p:∀x∈R,log2(3x+1)≤0B.p是假命题;綈p:∀x∈R,log2(3x+1)>0C.p是真命题;綈p:∀x∈R,log2(3x+1)≤0D.p是真命题;綈p:∀x∈R,log2(3x+1)>0解析:∵3x>0,∴3x+1>1,则log2(3x+1)>0,∴p是假命题;綈p:∀x∈R,log2(3x +1)>0.答案:B2.给出下列3个命题:p1:函数y=a x+x(a>0,且a≠1)在R上为增函数;p2:∃a0,b0∈R,a20-a0b0+b20<0;p3:cos α=cos β成立的一个充分不必要条件是α=2kπ+β(k ∈Z).则下列命题中的真命题为( ) A .p 1∨p 2 B .p 2∨(綈p 3) C .p 1∨(綈p 3)D .(綈p 2)∧p 3解析:对于p 1,令f (x )=a x+x (a >0,且a ≠1),当a =12时,f (0)=⎝ ⎛⎭⎪⎫120+0=1,f (-1)=⎝ ⎛⎭⎪⎫12-1-1=1,所以p 1为假命题;对于p 2,因为a 2-ab +b 2=⎝ ⎛⎭⎪⎫a -12b 2+34b 2≥0,所以p 2为假命题;对于p 3,因为cos α=cos β⇔α=2k π±β(k ∈Z ),所以p 3为真命题,所以(綈p 2)∧p 3为真命题,故选D.答案:D3.命题“若xy =1,则x ,y 互为倒数”的否命题为________;命题的否定为________. 答案:若xy ≠1,则x ,y 不互为倒数 若xy =1,则x ,y 不互为倒数 【类题通法】判断含有逻辑联结词命题真假的方法方法一(直接法):(1)确定这个命题的结构及组成这个命题的每个简单命题;(2)判断每个简单命题的真假;(3)根据真值表判断原命题的真假.方法二(间接法):根据原命题与逆否命题的等价性,判断原命题的逆否命题的真假性.此法适用于原命题的真假性不易判断的情况.充分、必要条件的判断授课提示:对应学生用书第4页[悟通——方法结论]充分、必要条件的判断:考查形式多与其他知识交汇命题.常见的交汇知识点有:函数性质、不等式、三角函数、向量、数列、解析几何等,有一定的综合性.(1)“a =-2”是“直线l 1:ax -y +3=0与l 2:2x -(a +1)y +4=0互相平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当a =-2时,直线l 1:2x +y -3=0,l 2:2x +y +4=0,所以直线l 1∥l 2;若l 1∥l 2,则-a (a +1)+2=0,解得a =-2或a =1.所以“a =-2”是“直线l 1:ax -y +3=0与l 2:2x -(a +1)y +4=0互相平行”的充分不必要条件.答案:A(2)(2018·南昌模拟)已知m ,n 为两个非零向量,则“m 与n 共线”是“m·n =|m·n |”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当m 与n 反向时,m·n<0,而|m·n|>0,故充分性不成立.若m·n =|m·n|,则m·n =|m|·|n|·cos〈m ,n 〉=|m |·|n |·|cos 〈m ,n 〉|,则cos 〈m ,n 〉=|cos 〈m ,n 〉|,故cos 〈m ,n 〉≥0,即0°≤〈m ,n 〉≤90°,此时m 与n 不一定共线,即必要性不成立.故“m 与n 共线”是“m·n =|m·n|”的既不充分也不必要条件,故选D.答案:D 【类题通法】1.(2018·胶州模拟)设x ,y 是两个实数,命题“x ,y 中至少有一个数大于1”成立的充分不必要条件是( )A .x +y =2B .x +y >2C .x 2+y 2>2D .xy >1解析:当⎩⎪⎨⎪⎧x ≤1y ≤1时,有x +y ≤2,但反之不成立,例如当x =3,y =-10时,满足x+y ≤2,但不满足⎩⎪⎨⎪⎧x ≤1y ≤1,所以⎩⎪⎨⎪⎧x ≤1y ≤1是x +y ≤2的充分不必要条件.所以“x +y >2”是“x ,y 中至少有一个数大于1”的充分不必要条件.答案:B2.(2018·合肥模拟)祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:根据祖暅原理,“A ,B 在等高处的截面积恒相等”是“A ,B 的体积相等”的充分不必要条件,即綈q 是綈p 的充分不必要条件,即命题“若綈q, 则綈p ”为真,逆命题为假,故逆否命题“若p ,则q ”为真,否命题“若q ,则p ”为假,即p 是q 的充分不必要条件,选A.答案:A授课提示:对应学生用书第107页一、选择题1.(2018·高考全国卷Ⅰ)已知集合A ={0,2},B ={-2,-1,0,1,2},则A ∩B =( ) A .{0,2} B .{1,2}C .{0}D .{-2,-1,0,1,2}解析:A ∩B ={0,2}∩{-2,-1,0,1,2}={0,2}. 故选A. 答案:A2.(2017·高考山东卷)设函数y =4-x 2的定义域为A ,函数 y =ln(1-x )的定义域为B ,则A ∩B =( )A .(1,2)B .(1,2]C .(-2,1)D .[-2,1)解析:由题意可知A ={x |-2≤x ≤2},B ={x |x <1},故A ∩B ={x |-2≤x <1}. 答案:D3.设A ={x |x 2-4x +3≤0},B ={x |ln(3-2x )<0},则图中阴影部分表示的集合为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <32B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <32C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1≤x <32 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪32<x ≤3 解析:A ={x |x 2-4x +3≤0}={x |1≤x ≤3},B ={x |ln(3-2x )<0}={x |0<3-2x <1}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <32,结合Venn 图知,图中阴影部分表示的集合为A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <32. 答案:B4.(2018·高考全国卷Ⅲ)已知集合A ={x |x -1≥0},B ={0,1,2},则A ∩B =( ) A .{0} B .{1} C .{1,2}D .{0,1,2}解析:∵A ={x |x -1≥0}={x |x ≥1},∴A ∩B ={1,2}.故选C. 答案:C5.(2018·合肥模拟)已知命题q :∀x ∈R ,x 2>0,则( ) A .命题綈q :∀x ∈R ,x 2≤0为假命题 B .命题綈q :∀x ∈R ,x 2≤0为真命题 C .命题綈q :∃x 0∈R ,x 20≤0为假命题 D .命题綈q :∃x 0∈R ,x 20≤0为真命题解析:全称命题的否定是将“∀”改为“∃”,然后再否定结论.又当x =0时,x 2≤0成立,所以綈q 为真命题.答案:D6.(2018·郑州四校联考)命题“若a >b ,则a +c >b +c ”的否命题是( ) A .若a ≤b ,则a +c ≤b +c B .若a +c ≤b +c ,则a ≤b C .若a +c >b +c ,则a >b D .若a >b ,则a +c ≤b +c解析:命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a ≤b ,则a +c ≤b +c ”,故选A.答案:A7.(2018·石家庄模拟)“x >1”是“x 2+2x >0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:由x 2+2x >0,得x >0或x <-2,所以“x >1”是“x 2+2x >0”的充分不必要条件. 答案:A8.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是( )A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,所以m≥2或m≤-2.答案:D9.(2018·石家庄模拟)已知a,b∈R,下列四个条件中,使“a>b”成立的必要不充分条件是( )A.a>b-1 B.a>b+1C.|a|>|b| D.2a>2b解析:由a>b-1不一定能推出a>b,反之由a>b可以推出a>b-1,所以“a>b-1”是“a>b”的必要不充分条件.故选A.答案:A10.已知命题p:“x=0”是“x2=0”的充要条件,命题q:“x=1”是“x2=1”的充要条件,则下列命题为真命题的是( )A.p∧q B.(綈p)∨qC.p∧(綈q) D.(綈p)∧q解析:易知命题p为真命题,q为假命题,根据复合命题的真值表可知p∧(綈q)为真命题.答案:C11.(2018·济宁模拟)已知命题p:“x<0”是“x+1<0”的充分不必要条件,命题q:若随机变量X~N(1,σ2)(σ>0),且P(0<X<1)=0.4,则P(0<X<2)=0.8,则下列命题是真命题的是( )A.p∨(綈q) B.p∧qC.p∨q D.(綈p)∧(綈q)解析:因为“x<0”是“x+1<0”的必要不充分条件,所以p为假命题,因为P(0<X<1)=P(1<X<2)=0.4,所以P(0<X<2)=0.8,q为真命题,所以p∨q为真命题.答案:C12.下列命题是假命题的是( )A.命题“若x2+x-6=0,则x=2”的逆否命题为“若x≠2,则x2+x-6≠0”B.若命题p:∃x0∈R,x20+x0+1=0,则綈p:∀x∈R,x2+x+1≠0C.若p∨q为真命题,则p、q均为真命题D.“x>2”是“x2-3x+2>0”的充分不必要条件解析:由复合命题的真假性知,p、q中至少有一个为真命题,则p∨q为真,故选项C 错误.答案:C 二、填空题13.设命题p :∀a >0,a ≠1,函数f (x )=a x-x -a 有零点,则綈p :________. 解析:全称命题的否定为特称(存在性)命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x0-x -a 0没有零点.答案:∃a 0>0,a 0≠1,函数f (x )=a x0-x -a 0没有零点14.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M =⎩⎨⎧x ,y ⎪⎪⎪⎭⎬⎫y -3x -2=1,P ={(x ,y )|y ≠x+1},则∁U (M ∪P )=________.解析:集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3},所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3},则∁U (M ∪P )={(2,3)}.答案:{(2,3)}15.已知A ={x |x 2-3x +2<0},B ={x |1<x <a },若A ⊆B ,则实数a 的取值范围是________. 解析:因为A ={x |x 2-3x +2<0}={x |1<x <2}⊆B ,所以a ≥2. 答案:[2,+∞)16.若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值范围是________.解析:由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m-2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)。
高三艺术生数学知识点
![高三艺术生数学知识点](https://img.taocdn.com/s3/m/fe959e2cf4335a8102d276a20029bd64793e6255.png)
高三艺术生数学知识点在高三阶段,作为艺术生的学生们需要加强对数学知识点的掌握,以应对高考数学的考试要求。
以下是一些高三艺术生需要重点复习的数学知识点。
1. 高中数学基础知识回顾在开始复习高三数学知识点之前,艺术生需要回顾和巩固高中数学的基础知识,包括数列、函数、图形的性质、三角函数、概率等内容。
2. 复数与向量复数是艺术生需要重点关注的数学知识点之一,包括复数的定义、运算法则、共轭复数以及与实数的关系。
此外,向量也是需要掌握的重要内容,涉及向量的表示方法、运算法则、数量积和向量积等。
3. 函数与导数函数与导数是高考数学中的重点内容,艺术生需要重点关注函数的性质、图像与变化规律、三角函数的图像与性质。
同时,导数的概念、性质、常用函数的导数以及导数的应用也是需要掌握的内容。
4. 三角函数与解三角形艺术生需要熟悉三角函数的定义、性质、常用角的三角函数值以及三角函数的图像与变化规律。
此外,解三角形的方法、定理等也需要重点复习。
5. 数列与数学归纳法数列是高考数学中的常考点,艺术生需要熟悉数列的定义、性质、通项公式、数列的极限以及等差数列、等比数列等特殊数列的特点。
同时,数学归纳法作为证明数列等式的重要方法也需要掌握。
6. 概率与统计概率与统计是高考数学考试中的一大模块,艺术生需要掌握概率的基本概念、性质,包括事件的计算、概率的计算、条件概率以及排列组合等内容。
同时,统计学的基本概念、统计量的计算、直方图、折线图、频率分布表等图表的解读也需要重点复习。
7. 解析几何解析几何是高考数学中的难点之一,艺术生需要熟悉平面直角坐标系、曲线的方程与性质、直线与圆的相交情况、双曲线与抛物线等内容。
8. 数学证明数学证明是高考数学考试中的重要环节,艺术生需要掌握证明的基本方法与思路,包括直接证明、间接证明、递推证明、反证法等常用证明方法。
总之,高三艺术生在备战高考数学中,需要全面复习数学的基础知识,并重点关注复数与向量、函数与导数、三角函数与解三角形、数列与数学归纳法、概率与统计、解析几何以及数学证明等知识点。
艺术生高考数学复习学案
![艺术生高考数学复习学案](https://img.taocdn.com/s3/m/8d8bd8b3866fb84ae55c8da6.png)
§1集合(1)【考点及要求】了解集合含义,体会“属于”和“包含于”的关系,全集与空集的含义【基础知识】集合中元素与集合之间的关系:文字描述为 和 符号表示为 和常见集合的符号表示:自然数集 正整数集 整数集 有理数集 实数集集合的表示方法1 2 3 集合间的基本关系:1相等关系:_________A B B A ⊆⊆⇔且 2子集:A 是B 的子集,符号表示为______或B A ⊇ 3 真子集:A 是B 的真子集,符号表示为_____或____不含任何元素的集合叫做 ,记作 ,并规定空集是任何集合的子集,是任何非空集合的【基本训练】1.下列各种对象的全体,可以构成集合的是(1) 某班身高超过1.8m 的女学生;(2)某班比较聪明的学生;(3)本书中的难题 (4)使232x x -+最小的x 的值2. 用适当的符号(,,,,)∈∉=⊂⊃填空:___;Q π {}3.14____Q ; *___;N N {}{}21,____21,x x k k Z x x k k z =+∈=-∈3.用描述法表示下列集合: 由直线1y x =+上所有点的坐标组成的集合;4.若A B B ⋂=,则____A B ;若A B B ⋃=则_____;_____A B A B A B ⋂⋃5.集合{}{}35,A x x B x x a =-<=<,且A B ⊆,则a 的范围是【典型例题讲练】例1 设集合11,,,2442k k M x x k Z N x x k Z ⎧⎫⎧⎫==+∈==+∈⎨⎬⎨⎬⎩⎭⎩⎭,则_______M N 练习: 设集合11,,,3663k k P x x k Z Q x x k Z ⎧⎫⎧⎫==+∈==+∈⎨⎬⎨⎬⎩⎭⎩⎭,则______P Q 例2已知集合{}2210,,A x ax x x R a =++=∈为实数。
(1) 若A 是空集,求a 的取值范围;(2) 若A 是单元素集,求a 的取值范围;(3) 若A 中至多只有一个元素,求a 的取值范围; 练习:已知数集1,,a P b b ⎧⎫=⎨⎬⎩⎭,数集{}20,,Q a b b =+,且P Q =,求,a b 的值【【课堂小结】集合的概念及集合元素的三个特性【课堂检测】1. 设全集,U R =集合{}1M x x =>,{}21P x x =>,则______M P2. 集合{}{}2320,10,P x x x Q x mx =-+==-=若P Q ⊇,则实数m 的值是3.已知集合A 有n 个元素,则集合A 的子集个数有 个,真子集个数有 个4.已知集合A ={-1,3,2m -1},集合B ={3,2m }.若B A ⊆,则实数m = .5.已知含有三个元素的集合2{,,1}{,,0},b a a a b a =+求20042005a b +的值.§2集合(2)【典型例题讲练】例3 已知集合{}23100A x x x =--≤(1) 若{},121B A B x m x m ⊆=+≤≤-,求实数m 的取值范围。
2017届高考数学第一轮总复习配套练习题6
![2017届高考数学第一轮总复习配套练习题6](https://img.taocdn.com/s3/m/54538e75cd7931b765ce0508763231126edb77df.png)
第三节三角函数的图象与性质[基础达标]一、选择题(每小题5分,共25分)1.函数y=sin的一个单调递增区间为()A.B.C.D.1.A【解析】y=sin=-sin,故由2kπ+≤x-≤2kπ+(k∈Z),解得2kπ+≤x≤2kπ+(k∈Z).2.(2013·新课标全国卷Ⅰ)函数f(x)=(1-cos x)sin x在[-π,π]的图象大致为()2.C【解析】∵函数f(x)=(1-cos x)sin x为奇函数,∴排除选项B;当0<x<π时,1-cos x>0,sin x>0,∴(1-cos x)sin x>0,排除选项A;f sin=1,f sin,∵>1,∴f>f=1,结合C,D中的图象,易知选项C的图象符合.3.函数y=2sin(0≤x≤9)的最大值与最小值之和为()A.2-B.0C.-1D.-1-3.A【解析】因为0≤x≤9,所以-,则-≤sin≤1,所以-≤y=2sin≤2,观察知A项正确.4.(2016·广东六校联考)函数f(x)=sin(ω>0)相邻两个对称中心的距离为,以下哪个区间是函数f(x)的单调减区间()A.B.C.D.4.C【解析】由函数f(x)=sin(ω>0)相邻两个对称中心的距离为,解得T=π,因此ω==2,即f(x)=sin,令+2kπ≤2x++2kπ,解得+kπ≤x≤+kπ,k∈Z,令k=0,得≤x≤,观察知C项正确.5.(2015·安徽高考)已知函数f(x)=A sin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)<f(-2)<f(0)B.f(0)<f(2)<f(-2)C.f(-2)<f(0)<f(2)D.f(2)<f(0)<f(-2)5.A【解析】因为f(x)=A sin(ωx+φ)的最小正周期为π,且x=是通过函数最小值点的对称轴,所以x=是通过函数最大值点的对称轴,因为,所以,且0,π-2,2都在区间-内,所以f(2)<f(π-2)<f(0),即f(2)<f(-2)<f(0).二、填空题(每小题5分,共10分)6.(2015·上海交通大学附中期中考试)已知函数f(x)=a sin x+b cos x(x∈[a2-2,a])是奇函数,则a+b=.6.1【解析】由已知得a2-2+a=0,且a>a2-2,解得a=1,又f(0)=b=0,所以a+b=1.7.(2015·山西四校联考)若函数f(x)=sin(ωx+φ)ω>0且|φ|<在区间上是单调减函数,且函数值从1减小到-1,则f=.7.【解析】由题可知,解得T=π,∴=π,解得ω=2,∴f(x)=sin (2x+φ).由f=sin2×+φ=1,得φ=+2kπ,k∈Z.∵|φ|<,∴k=0,φ=,∴f(x)=sin,从而得f.[高考冲关]1.(5分)(2015·兰州一中三模)已知函数f(x)=cos2x-,若存在a∈(0,π),使得f(x+a)=f(x-a)恒成立,则a的值是()A.B.C.D.1.D【解析】依题意可得,2x+2a-=2x-2a-+2kπ(k∈Z),∴a=(k∈Z),∵a∈(0,π),∴a=.2.(5分)对于函数f(x)=x3cos,下列说法正确的是()A.f(x)是奇函数且在内递减B.f(x)是奇函数且在内递增C.f(x)是偶函数且在内递减D.f(x)是偶函数且在内递增2.C【解析】f(x)=x3cos=x3cos3x+=-x3sin 3x,由于f(-x)=-x3sin 3x=f(x),可知此函数是偶函数,又x3与sin 3x在内递增,可得f(x)=-x3sin 3x在内递减,对照四个选项知C选项正确.3.(5分)(2015·梧州三模)设函数f(x)=cos(ωx+φ)对任意的x∈R,都有f=f,若函数g(x)=3sin(ωx+φ)-2,则g的值是()A.1B.-5或3C.-2D.3.C【解析】由f=f得函数f(x)图象的一条对称轴方程为x=,即有cos=±1,所以sin=0,因此g=3sin-2=-2.4.(5分)f(x)=A sin(ωx+φ)(A>0,ω>0)在x=1处取最大值,则()A.f(x-1)一定是奇函数B.f(x-1)一定是偶函数C.f(x+1)一定是奇函数D.f(x+1)一定是偶函数4.D【解析】f(x)=A sin(ωx+φ)(A>0,ω>0)在x=1处取最大值,即有sin(ω+φ)=1,ω+φ=+2kπ,k∈Z,而f(x-1)=A sin(ωx+φ-ω),f(x+1)=A sin(ωx+φ+ω)=A sinωx++2kπ=A cos ωx,则f(x+1)一定是偶函数.5.(5分)已知函数f(x)=sin4ωx-cos4ωx(ω>0)的最小正周期是π,则ω=.5.1【解析】本题考查三角函数的周期性.f(x)=sin4ωx-cos4ωx=(sin2ωx+cos2ωx)(sin2ωx-cos2ωx)=-cos2ωx,T==π,则ω=1.6.(5分)如图为函数f(x)=tan x-的部分图象,点A为函数f(x)在y轴右侧的第一个零点,点B在函数f(x)图象上,它的纵坐标为1,直线AB的倾斜角等于. 6.【解析】本题考查三角函数图象和性质的综合运用.由tan=0得x-=kπ,即x=4k+2,故A(2,0).由tan=1得x-=kπ+,即x=4k+3,故B(3,1).设直线AB的倾斜角为θ,则tan θ==1,故θ=.沁园春·雪 <毛泽东>北国风光,千里冰封,万里雪飘。
艺术班高考数学有效复习探究
![艺术班高考数学有效复习探究](https://img.taocdn.com/s3/m/fec16501844769eae009ed25.png)
No . 0 4 . 2 0 1 3
Y u S h u Wa i X u e X i
2 0 1 3年第 4期
艺 术 班 高 考 数 学 有效 复 习探 究
廖辉煌
( 乐昌市城 关 中学, 广东
摘
韶关 5 1 2 2 0 0 )
要: 艺术 考 生在 高三复 习时 由于要备 考术科 , 用在文 化课 学 习的 时间 比较 少 。因此 , 如何 在 有 限 的 时间 内提 高 艺术 生的 复 习
效率, 是数 学教 师 面 临的一 个难题 。本文 笔者从 融洽 感 情 , 夯 实基础 , 强 化训练 v x 7 2 . 差异教 学 , 分 层复 习等 四个 方面对 艺术 班 高考数 学
的有效 复 习进 行 了 探 究。
关键 词 : 高考 复 习 ; 高 中数 学 ; 艺术特 长 生
中图分 类号 : G 6 3 3 文献 标识 码 : A 文章 编号 : 1 0 0 5— 6 3 5 1 ( 2 0 1 3 ) 一 0 4 — 0 1 0 0— 0 2
A ・ { 1 ) B ・ { ÷} C ・ { 1 , 3 ) D - { 0 , 1 , 亍}
因为前 面 已经 复 习了关 于集合 的一 系 列知 识 , 我 认 为这 道 题 目是一道 很简 单 的 题 目, 当 问题 提 出 以后 , 班 上很 少 有 同学 能 够 参卜 正确的解答此题。开始我极为震惊, 非常生气 , 但是转念一想, 艺 术 生平 时学 习文化 知识 的时 间本 身就 很少 , 他们 的基 础 差是 可 以 理解的, 其实 他们 是 因 为忽 略 了 空 集是 任 何 集合 的子 集 , 我 一 步 步的 引导学 生 , 带领学 生分 析集合 { 1 , 3 ) 的子 集有 哪 些 , 怎样 求 出相应 的 m值 。顺 着我 的 思路 学 生 终于 选 出 了正 确 的答 案 。此 弓 刻, 我 明显能 感觉 到学 生脸 上 自信 的微笑 。我 庆幸 自己 能 够从 学 兰 生 的角 度多体 谅 他们 , 给学生 营造 了一个 轻松 的学 习氛 围 。
江苏省盐城市2017届高三数学艺术生一轮复习:01《等比数列》导学案
![江苏省盐城市2017届高三数学艺术生一轮复习:01《等比数列》导学案](https://img.taocdn.com/s3/m/5dc0a23e02768e9950e7381e.png)
第2页共4页
【课堂检测】
1、设{an}是由正数组成的等比数列,Sn为其前n项和.已知a2a4=1,S3=7,则S5=________.
2、设{an}是公比为正数的等比数列,若a1=1,a5=16,则数列{an}前7项的和为________.
【回标反馈】
1、在等比数列{an}中,公比q=2,前99项的和S99=280,
3、等比中项的性质:______________________________________
4、等比数列的性质:若m+n=p+q,则________________________
5、等比数列的前n项和公式:_______________________________
【我的疑问】
备注
第1页共4页
【自主探究】
1、如果-1,a,b,c,-9成等比数列,那么b .
2、已知等比数列{an}的前三项依次为a-2,a+2,a+8,
则an=______________.
3、若数列{an}的前n项和Sn=3n-a,数列{an}为等比数列,
求实数a的值.
4、等比数列 的前n项和为 ,若 ,
求此数列的公比q.
4、已知{an}是公比不为1的等比数列,
且3a3、8a4、5a5成等差数列.
(1)求数列{an}的公比q;
(2)若a1=1且q∈Z,求数列{a2n-1}的前n项和S
备注
第4页共4页
则a3+a6+a9+…+a99=________.
2、求和: =.
备注
第3页共4页
【Hale Waihona Puke 固练习】1、等比数列 中,已知 ,则数列 的前16项和S16为;
2、已知一个等比数列的首项为1,项数是偶数,其奇数项之和为85,偶数项和为170,则这个数列的公比等于,项数等于;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1集合(1)【考点及要求】了解集合含义,体会“属于”和“包含于”的关系,全集与空集的含义【基础知识】集合中元素与集合之间的关系:文字描述为 和 符号表示为 和 常见集合的符号表示:自然数集 正整数集 整数集 有理数集 实数集集合的表示方法1 2 3集合间的基本关系:1相等关系:_________A B B A ⊆⊆⇔且 2子集:A 是B 的子集,符号表示为______或B A ⊇ 3 真子集:A 是B 的真子集,符号表示为_____或____不含任何元素的集合叫做 ,记作 ,并规定空集是任何集合的子集,是任何非空集合的 【基本训练】1.下列各种对象的全体,可以构成集合的是 (1) 某班身高超过1.8m 的女学生;(2)某班比较聪明的学生;(3)本书中的难题 (4)使232x x -+最小的x 的值 2. 用适当的符号(,,,,)∈∉=⊂⊃填空:___;Q π {}3.14____Q ; *___;N N {}{}21,____21,x x k k Z x x k k z =+∈=-∈ 3.用描述法表示下列集合: 由直线1y x =+上所有点的坐标组成的集合; 4.若A B B ⋂=,则____A B ;若A B B ⋃=则_____;_____A B A B A B ⋂⋃ 5.集合{}{}35,A x x B x x a =-<=<,且A B ⊆,则a 的范围是【典型例题讲练】例1 设集合11,,,2442k k M x x k Z N x x k Z ⎧⎫⎧⎫==+∈==+∈⎨⎬⎨⎬⎩⎭⎩⎭,则_______M N练习: 设集合11,,,3663kk P x x k Z Q x x k Z ⎧⎫⎧⎫==+∈==+∈⎨⎬⎨⎬⎩⎭⎩⎭,则______P Q例2已知集合{}2210,,A x ax x x R a =++=∈为实数。
(1) 若A 是空集,求a 的取值范围; (2) 若A 是单元素集,求a 的取值范围; (3) 若A 中至多只有一个元素,求a 的取值范围;练习:已知数集1,,aP b b⎧⎫=⎨⎬⎩⎭,数集{}20,,Q a b b =+,且P Q =,求,a b 的值【【课堂小结】集合的概念及集合元素的三个特性 【课堂检测】1. 设全集,U R =集合{}1M x x =>,{}21P x x =>,则______M P2. 集合{}{}2320,10,P x x x Q x mx =-+==-=若P Q ⊇,则实数m 的值是 3.已知集合A 有n 个元素,则集合A 的子集个数有 个,真子集个数有 个 4.已知集合A ={-1,3,2m -1},集合B ={3,2m }.若B A ⊆,则实数m = .5.已知含有三个元素的集合2{,,1}{,,0},b a a a b a=+求20042005a b +的值.§2集合(2)【典型例题讲练】例3 已知集合{}23100A x x x =--≤(1) 若{},121B A B x m x m ⊆=+≤≤-,求实数m 的取值范围。
(2) 若{},621A B B x m x m ⊆=-≤≤-,求实数m 的取值范围。
(3) 若{},621A B B x m x m ==-≤≤-,求实数m 的取值范围。
练习:已知集合{}{}12,11A x ax B x x =<<=-<<,满足A B ⊆,求实数a 的取值范围。
例4定义集合运算:{}(),,A B z z xy x y x A y B ==+∈∈,设集合{}{}0,1,2,3A B ==,则集合A B 的所有元素之和为练习:设,P Q 为两个非空实数集合,定义集合{},,P Q a b a P b Q +=+∈∈{}{}0,2,5,1,2,6P Q ==若,则P Q +中元素的个数是【课堂小结】:子集,真子集,全集,空集的概念,两集合相等的定义,元素与集合之间的隶属关系与集合与集合之间的包含关系【课堂检测】1. 定义集合运算:{}(),,A B z z xy x y x A y B ==+∈∈,设集合{}{}1,2,3,4A B ==,则集合A B 的所有元素之积为2.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是3.若{1,2}⊆A ⊆{1,2,3,4,5}则满足条件的集合A 的个数是 4.设集合2{1,2,},{1,}A a B a a ==-,若A B ⊇求实数a 的值.【课后作业】:1.若集合2{440,}A x kx x x R =++=∈中只有一个元素,则实数k 的值为 2.符合{}a ⊂≠{,,}P a b c ⊆的集合P 的个数是 3.已知2{1,},{1,}M y y x x R P x x a a R ==-∈==-∈,则集合M 与P 的关系是 4.若{2,}A x x k k Z ==∈,B={21,}x x k k Z =+∈,C={41,},x x k k Z =+∈a A ∈, ,b B ∈则a b +∈ .5.已知{15},{4}A x x x B x a x a =<->=≤<+或,若A ⊃≠B,则实数a 的取值范围是 .6.集合}{06|2=-+=x x x A , {}01|=+=ax x B , 若B ⊆A, 求a 的值。
§3集合(3)【考点及要求】了解并掌握集合之间交,并,补的含义与求法 【基础知识】1.由所有属于集合A 且属于集合B 的元素组成的集合叫做A 与B 的 记作 2.由所有属于集合A 或属于集合B 的元素组成的集合叫做A 与B 的 记作 3.若已知全集U ,集合A U ⊆,则U C A =4.________A A ⋂=,_________A ⋂∅=,__________A A ⋃=,_________A ⋃∅= _________U A C A ⋂=,_________U A C A ⋃=,若A B ⊆,则____,___A B A B ⋂=⋃= ()_______________U C A B ⋂= ()_______________U C A B ⋃= 【基本训练】1.集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ⋂=__ _______. 2.设全集{}{}1,2,3,4,5,1,4I A ==,则______I C A =,它的子集个数是3.若U ={1,2,3,4},M ={1,2},N ={2,3},则()__________U C M N ⋃= 4.设{1,2,3,4,5,6,7,8}U =,{3,4,5},{4,7,8}.A B ==则:()()U U C A C B ⋂= , ()()U U C A C B ⋃= 【典型例题讲练】例1已知全集,U R =且{}{}2|12,|680,A x x B x x x =->=-+<则()________U C A B =练习:设集合{}22,A x x x R =-≤∈,{}2|,12B y y x x ==--≤≤,则()________R C A B =例2已知}4{<-=a x x A ,}056{2>+-=x x x B ,且R B A = ,则a 的取值范围是 。
练习:已知全集R I =,集合}2{<=x x M ,}{a x x P >=并且P C M I ⊂,那么a 的取值集合是 。
【课堂小结】集合交,并,补的定义与求法【课堂检测】1.2{4,21,}A a a =--,B={5,1,9},a a --且{9}A B ⋂=,则a 的值是2.已知全集U,集合P 、Q ,下列命题:,,(),U P Q P P Q Q P C Q ⋂=⋃=⋂=∅ (),U C P Q U ⋃=其中与命题P Q ⊆等价的有 个3.满足条件{}{}1,31,3,5A ⋃=的集合A 的所有可能的情况有 种4.已知集合{}{}{}5,7,2A x x B x x a C x b x =<=-<<=<<,且A B C ⋂=,则_________,_____________a b ==§4集合(4)【典型例题讲练】例3 设集合22{430},{10}A x x x B x x ax a =-+==-+-=,且,A B A ⋃=求a 的值.练习:设集合2{430},A x x x =-+=2{10},C x x mx =-+=且,A C C ⋂=求m 的值例4 已知集合{(,)12(1),,}M x y y x x y R =-=-∈, 22{(,)40,,}N x y x y y x y R =+-=∈,那么N M 中元素为 .练习:已知集合}),({22y x y x M ==,集合}),({2y x y x N ==,那么N M = .【课堂小结】集合交,并,补的定义及性质; 点集 【课堂检测】1.设全集U={}22,3,23a a +-,A={}2,b ,C U A={}5,则a = ,b = 。
2.设{}(,)|420A x y x y =-=,{}(,)231B x y x y =+=,则________A B ⋂=3.设{}2|40A x x x =+=,{}22|2(1)10B x x a x a =+++-=且A B B =,求实数a 的值.【课后作业】1.设集合{}(,)1A x y y ax ==+,{}(,)B x y y x b ==+,且{}(2,5)A B =,则__________,_________a b ==2. 50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人.3.已知集合A =}2432{2++a a ,,,B=}24270{2-+-a a a ,,,,A ∩B={3,7}, 求B A a ⋃的值及集合4.已知集合{}01|2=-=x x A ,B=}{220x x ax b -+=,若B ≠∅,且A B A ⋃=求实数a ,b 的值。
§5函数的概念(1)【考点及要求】了解函数三要素,映射的概念,函数三种表示法,分段函数 【基础知识】函数的概念: 映射的概念: 函数三要素: 函数的表示法: 【基本训练】1. 已知函数()f x ax b =+,且(1)4f -=-,(2)5,(0)_________f f ==则2. 设2:f x x →是集合A 到B (不含2)的映射,如果{}1,2A =,则________A B ⋂=3. 函数y =的定义域是4. 函数21log (32)x y x -=-的定义域是 5. 函数234,[2,4)y x x x =-+∈的值域是 6.xy 3=的值域为______________________ ; x y 2=的值域为______________________;x y 2log =的值域为_________________;x y sin =的值域为______________________; x y cos =的值域为_________________;x y tan =的值域为______________________。