12.3算法与程序框图应用举例

合集下载

12.1 算法与程序框图

12.1  算法与程序框图

(2)框中y=-x2+mx的含义是什么?
(3)该程序框图解决的是怎样的一个问题? (4)若输入的x值为0和4时,输出的值相等,则 ①当输入的x值为3时,输出的值为多大? ②要想使输出的值最大,输入的x值应为多少? ③按照这个程序框图,当输入的x的值都大于 2时,x值大的输出的y值反而小,为什么?

该算法对应的程序框图如图所示:
探究提高 顺序结构的算法写好后,按顺序依次
画出流程图.在变量赋值时,以后赋的为准,前边 赋过值的变量,有新的数值时,原来的值无效.
知能迁移2
如图所示的框图是解决某个
问题而绘制的程序框图,仔细分析各 图框内的内容及图框之间的关系,回 答下面的问题: (1)框中x=a的含义是什么?
并画出程序框图.

算法如下:
第一步:令S=1,i=1; 第二步:若i≤99成立,则执行第三步; 否则输出S,结束算法; 第三步:S=S×i; 第四步:i=i+2,返回第二步. 程序框图:
方法一 当型循环程序框图
方法二 直到型循环程序框图
思想方法 感悟提高
方法与技巧
1.在设计一个算法的过程中要牢记它的五个特征:
第五步,输出d.
Z2
程序框图:
探究提高 给出一个问题,设计算法应注意:
(1)认真分析问题,联系解决此问题的一般数学
方法; (2)综合考虑此类问题中可能涉及的各种情况; (3)将解决问题的过程划分为若干个步骤; (4)用简练的语言将各个步骤表示出来.
知能迁移1

写出求过两点M(-2,-1)、N(2,3)的
第三步:输出函数值y.
相应的程序框图如图所示.
探究提高 利用条件结构解决算法问题时,要引入

算法与程序框图(算法流程图)

算法与程序框图(算法流程图)

程序框图的发展趋势
可视化编程
随着可视化技术的发展,程序框 图成为一种直观的编程方式。通 过图形化的方式描述程序逻辑, 降低了编程难度,提高了开发效 率。
交互式编程
交互式编程让用户在编程过程中 能够实时查看程序运行结果,及 时调整代码。这种编程方式提高 了开发效率和程序质量。
智能生成与自动优

基于机器学习和人工智能技术, 程序框图可以自动生成和优化程 序代码。这大大减少了编程工作 量,提高了开发效率。
算法的复杂度分析
随着计算机科学的发展,算法的复杂度分析越来越受到重 视。人们不断探索更高效的算法,以提高计算效率和准确 性。
机器学习与人工智能算法
随着人工智能的兴起,机器学习与人工智能算法成为研究 热点。这些算法能够从大量数据中自动提取有用的信息, 为决策提供支持。
并行计算与分布式算法
为了处理大规模数据和复杂问题,并行计算和分布式算法 成为研究重点。这些算法能够充分利用多核处理器和分布 式系统的优势,提高计算性能。
算法的表示方法
01
自然语言描述
用简洁明了的文字描述算法的步骤。
流程图
用图形符号表示算法的步骤和流程。
03
02
伪代码
用类似于编程语言的简化和结构化 形式描述算法。
程序代码
用编程语言实现算法的具体代码。
04
算法的复杂度分析
时间复杂度
评估算法执行时间随输入规 模增长的情况,表示为 O(f(n))。
空间复杂度
选择结构是根据条件判断选择不同的执行路径的程序框图 结构。它使用判断框来表示条件判断,根据条件的结果选 择不同的执行路径。选择结构可以有效地处理具有多个分 支的情况,提高程序的灵活性和适应性。

知识讲解_高考总复习:算法与程序框图

知识讲解_高考总复习:算法与程序框图

高考总复习:算法与程序框图【考纲要求】1.算法的含义、程序框图(1)了解算法的含义,了解算法的思想;(2)理解程序框图的三种基本逻辑结构:顺序、条件、循环。

2.基本算法语句理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义。

【知识网络】【考点梳理】考点一、算法1.算法的概念(1)古代定义:指的是用阿拉伯数字进行算术运算的过程。

(2)现代定义:算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。

(3)应用:算法通常可以编成计算机程序,让计算机执行并解决问题。

2.算法的特征:①指向性:能解决某一个或某一类问题;②精确性:每一步操作的内容和顺序必须是明确的;算法的每一步都应当做到准确无误,从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确.“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.③有限性:必须在有限步内结束并返回一个结果;算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制的持续进行.④构造性:一个问题可以构造多个算法,算法有优劣之分。

3.算法的表示方法:(1) 用自然语言表示算法: 优点是使用日常用语, 通俗易懂;缺点是文字冗长, 容易出现歧义;(2) 用程序框图表示算法:用图框表示各种操作,优点是直观形象, 易于理解。

要点诠释:泛泛地谈算法是没有意义的,算法一定以问题为载体。

考点二:程序框图1. 程序框图的概念:程序框图又称流程图,是最常用的一种表示法,它是描述计算机一步一步完成任务的图表,直观地描述程序执行的控制流程,最便于初学者掌握。

2.程序框图常用符号:连接点用于连接另一页或另一部分的框图注释框框中内容是对某部分流程图做的解释说明3.画程序框图的规则:(1)使用标准的框图的符号;(2)框图一般按从上到下、从左到右的方向画;(3)除判断框图外,大多数框图符号只有一个进入点和一个退出点。

算法与程序框图

算法与程序框图

算法与程序框图一、基础知识1.算法(1)算法通常是指按照一定规则解决某一类问题的明确和有限的步骤. (2)应用:算法通常可以编成计算机程序,让计算机执行并解决问题. 2.程序框图程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形. 3.三种基本逻辑结构 (1)顺序结构(2)条件结构(3)循环结构三种基本逻辑结构的适用情境(1)顺序结构:要解决的问题不需要分类讨论. (2)条件结构:要解决的问题需要分类讨论.(3)循环结构:要解决的问题要进行许多重复的步骤,且这些步骤之间有相同的规律.考点一 顺序结构和条件结构[例1] (2019·沈阳质检)已知一个算法的程序框图如图所示,当输出的结果为0时,输入的实数x 的值为( )A .-3B .-3或9C .3或-9D .-3或-9[解析] 当x ≤0时,y =⎝⎛⎭⎫12x -8=0,x =-3;当x >0时,y =2-log 3x =0,x =9.故x =-3或x =9,选B.[答案] B[例2] 某程序框图如图所示,现输入如下四个函数,则可以输出的函数为( )A .f (x )=cos x x ⎝⎛⎭⎫-π2<x <π2,且x ≠0 B .f (x )=2x -12x +1C .f (x )=|x |xD .f (x )=x 2ln(x 2+1)[解析] 由程序框图知该程序输出的是存在零点的奇函数,选项A 、C 中的函数虽然是奇函数,但在给定区间上不存在零点,故排除A 、C.选项D 中的函数是偶函数,故排除D.选B.[答案] B[解题技法] 顺序结构和条件结构的运算方法(1)顺序结构是最简单的算法结构,语句与语句之间、框与框之间是按从上到下的顺序进行的.解决此类问题,只需分清运算步骤,赋值量及其范围进行逐步运算即可.(2)条件结构中条件的判断关键是明确条件结构的功能,然后根据“是”的分支成立的条件进行判断.(3)对于条件结构,无论判断框中的条件是否成立,都只能执行两个分支中的一个,不能同时执行两个分支.[题组训练]1.半径为r 的圆的面积公式为S =πr 2,当r =5时,计算面积的流程图为( )解析:选D 因为输入和输出框是平行四边形,故计算面积的流程图为D. 2.运行如图所示的程序框图,可输出B =______,C =______.解析:若直线x+By+C=0与直线x+3y-2=0平行,则B=3,且C≠-2,若直线x+3y+C=0与圆x2+y2=1相切,则|C|12+(3)2=1,解得C=±2,又C≠-2,所以C=2.答案:3 2考点二循环结构考法(一)由程序框图求输出(输入)结果[例1](2018·天津高考)阅读如图所示的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为()A.1B.2C.3 D.4[解析]输入N的值为20,第一次执行条件语句,N=20,i =2,Ni =10是整数,∴T =0+1=1,i =3<5;第二次执行条件语句,N =20,i =3,N i =203不是整数,∴i =4<5;第三次执行条件语句,N =20,i =4,Ni =5是整数,∴T =1+1=2,i =5,此时i ≥5成立,∴输出T =2. [答案] B[例2] (2019·安徽知名示范高中联考)执行如图所示的程序框图,如果输出的n =2,那么输入的 a 的值可以为( )A .4B .5C .6D .7[解析] 执行程序框图,输入a ,P =0,Q =1,n =0,此时P ≤Q 成立,P =1,Q =3,n =1,此时P ≤Q 成立,P =1+a ,Q =7,n =2.因为输出的n 的值为2,所以应该退出循环,即P >Q ,所以1+a >7,结合选项,可知a 的值可以为7,故选D.[答案] D[解题技法] 循环结构的一般思维分析过程 (1)分析进入或退出循环体的条件,确定循环次数.(2)结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式.(3)辨析循环结构的功能. 考法(二) 完善程序框图[例1] (2018·武昌调研考试)执行如图所示的程序框图,如果输入的a 依次为2,2,5时,输出的s 为17,那么在判断框中可以填入( )A .k <n?B .k >n?C .k ≥n?D .k ≤n?[解析] 执行程序框图,输入的a =2,s =0×2+2=2,k =1;输入的a =2,s =2×2+2=6,k =2;输入的a =5,s =2×6+5=17,k =3,此时结束循环,又n =2,所以判断框中可以填“k >n ?”,故选B.[答案] B[例2] (2018·全国卷Ⅱ)为计算S =1-12+13-14+…+199-1100,设计了如图所示的程序框图,则在空白框中应填入( )A .i =i +1B .i =i +2C .i =i +3D .i =i +4[解析] 由题意可将S 变形为S =⎝⎛⎭⎫1+13+…+199-⎝⎛⎭⎫12+14+…+1100,则由S =N -T ,得N =1+13+…+199,T =12+14+…+1100.据此,结合N =N +1i ,T =T +1i +1易知在空白框中应填入i =i +2.故选B.[答案] B[解题技法] 程序框图完善问题的求解方法(1)先假设参数的判断条件满足或不满足;(2)运行循环结构,一直到运行结果与题目要求的输出结果相同为止; (3)根据此时各个变量的值,补全程序框图.[题组训练]1.(2018·凉山质检)执行如图所示的程序框图,设输出的数据构成的集合为A ,从集合A 中任取一个元素a ,则函数y =x a ,x ∈[0,+∞)是增函数的概率为( )A.47B.45C.35D.34解析:选C 执行程序框图,x =-3,y =3;x =-2,y =0;x =-1,y =-1;x =0,y =0;x =1,y =3;x =2,y =8;x =3,y =15;x =4,退出循环.则集合A 中的元素有-1,0,3,8,15,共5个,若函数y =x a ,x ∈[0,+∞)为增函数,则a >0,所以所求的概率为35.2.(2019·珠海三校联考)执行如图所示的程序框图,若输出的n 的值为4,则p 的取值范围是( )A.⎝⎛⎦⎤34,78B.⎝⎛⎭⎫516,+∞C.⎣⎡⎭⎫516,78D.⎝⎛⎦⎤516,78解析:选A S =0,n =1;S =12,n =2;S =12+122=34,n =3;满足条件,所以p >34,继续执行循环体;S =34+123=78,n =4;不满足条件,所以p ≤78.输出的n 的值为4,所以34<p ≤78,故选A.3.(2019·贵阳适应性考试)某程序框图如图所示,若该程序运行后输出的值是137,则整数a 的值为( )A .6B .7C .8D .9解析:选A 先不管a 的取值,直接运行程序.首先给变量S ,k 赋值,S =1,k =1,执行S =S +1k (k +1),得S =1+11×2,k =2;执行S =1+11×2+12×3,k =3;……继续执行,得S =1+11×2+12×3+…+1k (k +1)=1+⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1k -1k +1=2-1k +1,由2-1k +1=137得k =6,所以整数a =6,故选A.考点三 基本算法语句[典例] 执行如图程序语句,输入a =2cos 2 019π3,b =2tan 2 019π4,则输出y 的值是( )A .3B .4C .6D .-1[解析] 根据条件语句可知程序运行后是计算y =⎩⎪⎨⎪⎧a (a +b ),a <b ,a 2-b ,a ≥b ,且a =2cos 2 019π3=2cos π=-2,b =2tan 2 019π4=2tan 3π4=-2.因为a ≥b ,所以y =a 2-b =(-2)2-(-2)=6, 即输出y 的值是6. [答案] C[变透练清]1. 执行如图所示的程序,输出的结果是________.i =11S =1DOS =S*ii =i -1LOOP UNTIL i<9PRINT S END解析:程序反映出的算法过程为 i =11⇒S =11×1,i =10; i =10⇒S =11×10,i =9; i =9⇒S =11×10×9,i =8;i =8<9退出循环,执行“PRINT S ”. 故S =990. 答案:9902.阅读如图所示的程序.a 的值是________. 解析:由题意可得程序的功能是计算并输出a =⎩⎪⎨⎪⎧2+a ,a >2,a ×a ,a ≤2的值, 当a >2时,由2+a =9得a =7; 当a ≤2时,由a 2=9得a =-3, 综上知,a =7或a =-3. 答案:-3或7[课时跟踪检测]1.(2019·湖北八校联考)对任意非零实数a ,b ,定义a *b 的运算原理如图所示,则(log222)*⎝⎛⎭⎫18-23=( )A .1B .2C .3D .4解析:选A 因为log222=3,⎝⎛⎭⎫18-23=4,3<4,所以输出4-13=1,故选A. 2.执行如图所示的程序框图,则输出的x ,y 分别为( )A .90,86B .94,82C .98,78D .102,74解析:选C 第一次执行循环体,y =90,s =867+15,不满足退出循环的条件,故x =90;第二次执行循环体,y =86,s =907+433,不满足退出循环的条件,故x =94;第三次执行循环体,y =82,s =947+413,不满足退出循环的条件,故x =98;第四次执行循环体,y =78,s =27,满足退出循环的条件,故x =98,y =78.3.(2018·云南民族大学附属中学二模)执行如图所示的程序框图,若输出的k 的值为6,则判断框内可填入的条件是( )A .s >12?B .s >710?C .s >35?D .s >45?解析:选B s =1,k =9,满足条件;s =910,k =8,满足条件;s =45,k =7,满足条件;s =710,k =6,不满足条件.输出的k =6,所以判断框内可填入的条件是“s >710?”.故选B.4.(2019·合肥质检)执行如图所示的程序框图,如果输出的k 的值为3,则输入的a 的值可以是( )A .20B .21C .22D .23解析:选A 根据程序框图可知,若输出的k =3,则此时程序框图中的循环结构执行了3次,执行第1次时,S =2×0+3=3,执行第2次时,S =2×3+3=9,执行第3次时,S =2×9+3=21,因此符合题意的实数a 的取值范围是9≤a <21,故选A.5.(2019·重庆质检)执行如图所示的程序框图,如果输入的x =0,y =-1,n =1,则输出x ,y 的值满足( )A .y =-2xB .y =-3xC .y =-4xD .y =-8x解析:选C 初始值x =0,y =-1,n =1,x =0,y =-1,x 2+y 2<36,n =2,x =12,y=-2,x 2+y 2<36,n =3,x =32,y =-6,x 2+y 2>36,退出循环,输出x =32,y =-6,此时x ,y 满足y =-4x ,故选C.6.(2018·南宁二中、柳州高中联考)执行如图所示的程序框图,若输出的结果s =132,则判断框中可以填( )A.i≥10? B.i≥11?C.i≤11? D.i≥12?解析:选B执行程序框图,i=12,s=1;s=12×1=12,i=11;s=12×11=132,i =10.此时输出的s=132,则判断框中可以填“i≥11?”.7.(2019·漳州八校联考)执行如图所示的程序,若输出的y的值为1,则输入的x的值为() INPUT xIF x>=1THENy=x2ELSEy=-x2+1END IFPRINT yENDA.0 B.1C.0或1 D.-1,0或1解析:选C当x≥1时,由x2=1得x=1或x=-1(舍去);当x<1时,由-x2+1=1得x=0.∴输入的x的值为0或1.)8.执行如图所示的程序框图,若输入的n=4,则输出的s=(C.20 D.35解析:选C执行程序框图,第一次循环,得s=4,i=2;第二次循环,得s =10,i =3; 第三次循环,得s =16,i =4; 第四次循环,得s =20,i =5.不满足i ≤n ,退出循环,输出的s =20.9.(2018·洛阳第一次统考)已知某算法的程序框图如图所示,则该算法的功能是( )A .求首项为1,公差为2的等差数列的前2 018项和B .求首项为1,公差为2的等差数列的前2 019项和C .求首项为1,公差为4的等差数列的前1 009项和D .求首项为1,公差为4的等差数列的前1 010项和解析:选D 由程序框图得,输出的S =(2×1-1)+(2×3-1)+(2×5-1)+…+(2×2 019-1),可看作数列{2n -1}的前2 019项中所有奇数项的和,即首项为1,公差为4的等差数列的前1 010项和.故选D.10.(2018·郑州第一次质量测试)执行如图所示的程序框图,若输出的结果是7,则判断框内m 的取值范围是( )A .(30,42]B .(30,42)C .(42,56]D .(42,56)解析:选A k =1,S =2,k =2;S =2+4=6,k =3;S =6+6=12,k =4;S =12+8=20,k =5;S =20+10=30,k =6;S =30+12=42,k =7,此时不满足S =42<m ,退出循环,所以30<m ≤42,故选A.11.(2019·石家庄调研)20世纪70年代,流行一种游戏——角谷猜想,规则如下:任意写出一个自然数n ,按照以下的规律进行变换,如果n 是奇数,则下一步变成3n +1;如果n 是偶数,则下一步变成n2.这种游戏的魅力在于无论你写出一个多么庞大的数字,最后必然会落在谷底,更准确地说是落入底部的4-2-1循环,而永远也跳不出这个圈子,下列程序框图就是根据这个游戏而设计的,如果输出的i 值为6,则输入的n 值为( )A .5或16B .16C .5或32D .4或5或32解析:选C 若n =5,执行程序框图,n =16,i =2;n =8,i =3;n =4,i =4;n =2,i =5;n =1,i =6,结束循环,输出的i =6.若n =32,执行程序框图,n =16,i =2;n =8,i =3;n =4,i =4;n =2,i =5;n =1,i =6,结束循环,输出的i =6.当n =4或16时,检验可知不正确,故输入的n =5或32,故选C.12.(2018·贵阳第一学期检测)我国明朝数学家程大位著的《算法统宗》里有一道闻名世界的题目:“一百馒头一百僧,大僧三个更无争.小僧三人分一个,大小和尚各几丁?”如图所示的程序框图反映了对此题的一个求解算法,则输出的n 的值为( )A .20B .25C .30D .35解析:选B 法一:执行程序框图,n =20,m =80,S =60+803=8623≠100;n =21,m =79,S =63+793=8913≠100;n =22,m =78,S =66+783=92≠100;n =23,m =77,S =69+773=9423≠100;n =24,m =76,S =72+763=9713≠100;n =25,m =75,S =75+753=100,退出循环.所以输出的n =25.法二:设大和尚有x 个,小和尚有y 个, 则⎩⎪⎨⎪⎧x +y =100,3x +13y =100,解得⎩⎪⎨⎪⎧x =25,y =75, 根据程序框图可知,n 的值即大和尚的人数,所以n =25.13.已知函数y =lg|x -3|,如图所示程序框图表示的是给定x 值,求其相应函数值y 的算法.请将该程序框图补充完整.其中①处应填________,②处应填________.解析:由y =lg|x -3|=⎩⎪⎨⎪⎧lg (x -3),x >3,lg (3-x ),x <3及程序框图知,①处应填x <3?,②处应填y=lg(x -3).答案:x <3? y =lg(x -3)14.执行如图所示的程序框图,若输入的N =20,则输出的S =________.解析:依题意,结合题中的程序框图知,当输入的N =20时,输出S 的值是数列{2k -1}的前19项和,即19(1+37)2=361.答案:36115.执行如图所示的程序框图,则输出的λ是________.解析:依题意,若λa +b 与b 垂直,则有(λa +b )·b =4(λ+4)-2(-3λ-2)=0,解得λ=-2;若λa +b 与b 平行,则有-2(λ+4)=4(-3λ-2),解得λ=0.结合题中的程序框图可知,输出的λ是-2.答案:-216.执行如图所示的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为________.解析:当条件x ≥0,y ≥0,x +y ≤1不成立时,输出S 的值为1,当条件x ≥0,y ≥0,x +y ≤1成立时,输出S =2x +y ,下面用线性规划的方法求此时S 的最大值.作出不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1表示的平面区域如图中阴影部分所示,由图可知当直线S =2x +y 经过点M (1,0)时S 最大,其最大值为2×1+0=2,故输出S 的最大值为2.答案:2。

第12章 算法与程序框图

第12章 算法与程序框图
解:算法
第一步 投票 第二步 统计票数,如果有一座城市的得票数 超过总票数的一半,那么该城市就获得举办权; 否则将得票数最少的城市淘汰,并转而执行第一步
第三步 输出举办城市
算法步骤 第一步:投票 第二步 统计票数 第三步 输出举办城市
开始 投票
有一座城市的得票数 超过总票数的一半

输出该城市为举办城市
P42例5
新课引入
算法是由一系列明确和有限的步骤组成,我们可以用自然语言表示一 个算法,但往往过程复杂,缺乏简洁性,因此必须引入一种使算法表达 的更直观,更准确的方法,这就是今天我们要学习的程序框图。
程序框图基本概念:
程序框图又称流程图,是一种用规定的框、带箭头的线(也称为流程 线或指向线)及文字说明来准确、直观地表示算法的图形。
(2)确切性 算法中的每一个步骤都是确切的,能有效的执行且能得到确定的结果,不能模 棱两可,不存在歧义 (3)可行性(或有效性) 算法的每一个步骤都是可执行的操作,即每一步都可以在有限的时间内完成。 (4)有0个、1个、或多个输入,用于刻画运算对象的初始情况。 (5)有1个或多个输出,用以反映对输入数据加工后的结果,没有输出的算法 是毫无意义的。
结束
将得票数最少 的城市淘汰 否
二、算法的三种基本逻辑结构:
开始 输入n
i=2
①顺序结构 求n除以i的余数r i的值增加1,仍用i表示
③循环结构
i>n-1或r=0?



r=0?
否否
N不是质数
N是质数
②条件结构
结束
算法千差万别,但都是由这 三种基本逻辑结构构成的.
输入n
i=2
求n除以i的余数r
i的值增加1,仍用i表示

12章算法与程序框图

12章算法与程序框图

(24,18) (18,6)
(6,12) (6,6)
6就是24和18的最大公约数
循环变量初始化 循环终止条件 循环体
实例四
题意: 某城市对居民的生活用水 实行阶梯式收费,标准为: 每月每户生活用水20m3以 内(含20m3 )为第一级, 按居民生活用水的供水价 格收费;每月每户生活用 水超过20m3且低于或等于 30m3为第二级,超出部分 按供水价格的1.5倍收费; 每月每户生活用水超过 30m3,超过部分按供水价 格的2倍收费,如果该市 居民生活用水的供水价格 为1.24元m3/,另加收城市 附加费用0.06/m3,污水处 理费1.3/m3,水资源费 0.2/m3,请设计一个算法, 输入某户居民某个月的用 水量,输出这个月该户居 民所需缴纳的水费。
当赋予它新的数值,原来的值就被取代。
• 注意: • 1、赋值号左边只能出现变量名,如: x=2,a=b+c,不能出现 2=b, c+1=2 • 2、赋值语句中,只能给一个变量赋值,不能同时给两个变量赋值,如:a=b=5是错误的 。 • 3、赋值号不同于“等号”,赋值号左右可以现现同一个变量,如n=n+1,而等式n=n+1是错误的。 • 4、一个变量可多次赋值,但运算时只跟最后一次赋值相关
题目
起止框 第一步 输入两个数a,b;(输入输出框) 第二步 计算c=a+b;(处理框) 第三步 计算m=c÷2;(处理框) 第四步 输出m;(输入输出框) 起止框
算法
程序框图
实例
起止框
例2: 如图所示程序框图 的功能是( ) A. 求a-b的值 B.求b-a的值 C.求|a-b|的值 D.求 -|a-b|的值
例题
一杯白开水一杯茶水,设计一个算法,将两个怀子中的水对调 ②

高中数学必修三-算法与程序框图

高中数学必修三-算法与程序框图

算法与程序框图知识集结知识元算法的概念知识讲解算法的概念算法是做一件事情的方法和步骤.在生活中做一件事情的方法和步骤有多种,我们设计的算法应本着简捷方便的原则.要正确地设计一个算法就需要了解算法的特征:有限性:一个算法当运行完有限个步骤后必须结束,而不能是无限地运行确定性:算法的每一步计算,都必须有确定的结果,不能模棱两可,即算法的每一步只有唯一的执行路径,对于相同的输入只能得到相同的输出结果可行性:算法中的每一步骤必须能用实现算法的工具精确表达,并能在有限步内完成有序性算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后续步骤,只有执行完前一步才能执行后一步普遍性:算法一般要适用于输入值集合中不同形式的输入值,而不是局限于某些特殊的值,即算法具有一般性,一个算法总是针对某类问题设计的,所以对于求解这类问题中的任意一个问题都应该是有效的不唯一性:解决一个或一类问题,可以有不同的方法和步骤,也就是说,解决这个或这类问题的算法不一定是唯一的例题精讲算法的概念与程序语句例1.下列叙述中,不能称为算法的是()A.植树需要运苗、挖坑、栽苗、浇水这些步骤B.按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100 C.从济南到北京旅游,先坐火车,再坐飞机抵达D.3x>x+1例2.下列各式中S的值不可以用算法求解的是()A.S=1+2+3+4B.S=1+2+3+4+…C.S=1+++…+D.S=12+22+32+…+1002例3.程序框图中,表示处理框的是()A.B.C.D.程序框图知识讲解1.程序框图的三种基本逻辑结构的应用【知识点的认识】三种基本逻辑结构:1.顺序结构:往往从上到下的顺序进行,常用于直接应用公式的题型.如图,算法执行完A 后才执行B.2.条件结构:执行具有选择性.如图,当算法执行到条件P时,若P成立,则执行A,否则执行B.无论条件P是否成立,A和B只能选择其一执行,不能同时执行或同时不执行.A和B中可以有一个为空,即不执行任何操作.3.循环结构:有“当型”和“直到型”两种循环结构.①当型:先判断再执行.如图,当算法执行到条件P时,先判断P是否成立,若不成立,执行A,再判断P,若P依然不成立,继续执行A,再判断…,如此循环直到P成立退出循环.②直到型:先执行再判断.如图,算法先执行A,然后判断条件P是否成立,若P不成立,继续执行A,直到P成立推出循环.例题精讲程序框图例1.程序框图符号“”可用于()A.赋值a=6 B.输出a=5 C.输入a=5 D.判断a=6例2.如图的框图是一古代数学家的一个算法的程序框图,它输出的结果S表示()A.a0+a1+a2+a3的值B.a3+a2x0+a1x02+a0x03的值C.a0+a1x0+a2x02+a3x03的值D.以上都不对例3.某程序框图如图所示,若运行该程序后输出S=()A.B.C.D.当堂练习单选题练习1.算法的三种基本结构是()A.逻辑结构,模块结构,条件分支结构B.顺序结构,条件结构,循环结构C.矩形结构,菱形结构,平行四边形结构D.顺序结构,重复结构,分支结构练习2.用秦九韶算法求多项式f(x)=1+2x+x2-3x3+2x4在x=-1时的值,v2的结果是()A.-4 B.-1 C.5 D.6练习3.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一”.这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一、”就是说:圆堡瑽(圆柱体)的体积为:V=×(底面的圆周长的平方×高).则由此可推得圆周率π的取值为()A.3 B.3.14 C.3.2 D.3.3练习4.程序框图符号“”可用于()A.赋值a=6 B.输出a=5 C.输入a=5 D.判断a=6填空题练习1.将“杨辉三角”中的数从左到右、从上到下排成一数列:1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,…,如图所示程序框图用来输出此数列的前若干项并求其和,若输入m=4则相应最后的输出S的值是____。

12算法与程序框图

12算法与程序框图

邗江职业技术教育中心教案一、引言:说起算法,大家有可能觉得有点陌生,但事实上,我们几乎每天都会和它打交道,例如,青菜的价格是4.8元/kg,买了1.2kg,如果我们用计算器计算该付多少钱,我们做法是:第一步按计算机的开启键;第二步按数字键输入4.8;第三步按乘号键;第四步按数字键输入1.2;第五步按等号键得出结果。

这就是解决这个问题的算法;二、新课讲授:(一)探究小李想用银行卡从自动取款机上取500元钱,由于他第一次用银行卡取钱,所以向你求助,你能写出用银行卡取钱的具体步骤,帮助他顺利取出钱吗?第一步插入银行卡;第二步输入取款密码;第三步输入取款金额;第四步从出钞口取走钱;第五步取回银行口;(二)算法1、定义:算法是指用来解决问题的一系列明确而有效的步骤,是解决问题清晰的指令。

即能够对一定规范的输入,在有限的时间内获得所要求的答案。

2、设计算法的要求:写出的算法必须能够解决某一类问题;要使算法尽量的简单,步骤尽量少;要保证算法正确,且计算能够执行。

(三)例题讲解例1:设计一个算法,求出1+2+3+4+5……+10的值。

解:算法为:第一步计算1+2,得出结果3;第二步计算3+3,得出结果6;第三步计算6+4,得出结果10;第四步计算10+5,得出结果15;……第九步 计算45+10,得出结果55。

所以:1+2+3+……+10=55例2:现有一杯开水和一杯茶,你能设计一个算法,将两个杯子中的开水和茶对调吗? 试一试。

解:设原来装开水的是A 杯,装茶的是B 杯,空杯子为C 杯 将开水和茶对调的算法为: 第一步 将A 杯中的开水倒入C 杯; 第二步 将B 杯中的茶倒入A 杯; 第三步 将C 杯中的开水倒入B 杯;完成练习(1) 设计一个算法,求出10321⨯⨯⨯⨯ 的值。

(2) 写出从12,3,-1,2,6,9,18,5,-3,17中搜索出数据5的一个算法。

(四) 变量和赋值(1)变量:在解决问题的过程中,可以取不同数值的量叫做变量。

12章算法教案

12章算法教案

课题:§12.1算法的概念【授课类型】新课【授课时间】3课时【授课班级】13机械【教学内容及其分析】本节内容主要包括算法的概念、特征及算法的设计。

体会算法的基本思想,会用“算法”的思想编制数学问题的算法【教学目标】【知识和技能】1、了解算法的含义,体会算法的基本思想。

2、通过实例分析理解算法的有穷性、可行性、确切性、有0个、1个或多个输入和有一个或多个输出等特征。

3、会用“算法”的思想编制数学问题的算法。

【过程和方法】从日常生活中感知生活中的算法,了解算法的概念;【情感态度价值观】1、培养学生的观察、推理和归纳的能力,养成细心观察、主动探究、善于总结的良好思维习惯。

2.通过师生、生生的合作学习,增强学生团队协作能力,增强主动和他人合作交流的意识。

【重点难点】【教学重点】算法的概念,变量赋值的格式及算法的设计【教学难点】算法的设计【教学方法】阅读教学内容,理解算法的含义。

学生间相互合作学习,相互出题测试对方,在测试中掌握算法的概念及其思想,提高自己的学习能力。

【教学资源准备】活动单结构教学内容教师活动学生活动设计意图和时间分配导入怎样计算:6+5×(4-2)?(先去括号,再乘除,后加减)你知道把大象装冰箱,分几步吗?答:分三步:第一步:打开冰箱门.第二步:把大象装冰箱.第三步:关上冰箱门.设计问题让学生讨论自学讨论,交流,发言5营造气氛,并引出课题新授新授新授小结新授活动一:任务1:通过实例,了解算法的概念小李想用银行卡从自动取款机上取500元钱,由于他第一次用银行卡取钱,所以向你求助,你能写下用银行卡取钱的具体步骤,帮助他顺利取出钱吗?已知青菜的价格是4.8元/kg,买了1.2kg,如果我们用计算器计算该付多少钱,我们解决这个问题的步骤是什么?在数学中,现代意义上的算法是指用来解决某一类问题的明确有效的程序或步骤,是解决问题的清晰的指令。

任务2:算法的设计例1. 写出求1+2+3+4+5的一个算法.注意:同一问题的解决算法一般是不唯一的一个好的算法的特点:高效性:运算的次数少,执行的速度快,占用的资源少。

算法与程序框图(精品)

算法与程序框图(精品)
fqszwqm8@
程 序 框 图 算 法 初 步 算 法 语 句 算 法 案 例
顺序结构 条件结构 循环结构
输入语句
知识结构图 框 图
(文)
输出语句
赋值语句 条件语句 循环语句 辗转相除法更相减损术 秦九韶算法 进位制
工序流程图 程序框图
1.通过对解决具体问题的过程与步骤的分析(如二元一次方 程组的求解等问题),体会算法的思想,了解算法的含义. 2.结合熟悉的算法,把握算法的基本思想,学会用自然语言 来描述算法. 3.通过模仿、操作和探索,经历设计程序流程图解决问题的 过程.在具体问题的解决过程中理解程序流程图的三种基本 逻辑结构:顺序结构、条件结构、循环结构. 4.通过实际问题的学习,了解构造算法的基本程序. 5.经历将具体问题的程序流程图转化为程序语句的过程,理 解几种基本算法语句——输入语句、输出语句、赋值语句、 条件语句、循环语句,体会算法的基本思想. 6.通过对辗转相除法与更相减损术、秦九韶算法、进位制等 典型案例的学习,能运用知识解决同类问题.
新课标把算法思想作为构建高中数学课程的 基本线索之一.算法思想是拟定数学问题解决方 案的基础,从而拓展了学生能够解决的实际问题 和数学问题.例如,我们可以利用算法来设计近 似求解方程的步骤,即可用二分法求出方程
x ax b 0, a bx c 0,lg x bx c 0
1.了解算法的含义,了解算法的思想. 2.理解程序框图的三种基本逻辑结构:顺序、 条件分支、循环. 3.理解几种基本算法语句――输入语句、输出 语句、赋值语句、条件语句、循环语句的含义. 4.能运用辗转相除法与更相减损术、秦九韶算 法、进位制等典型的算法知识解决同类问题.
1.(07广东文7、理6)图1是某县参加2007年高考的学生身高条形统计图, 从左到右的各条形图表示学生人数依次记为A1、A2、…A10(如A2表示身高 (单位:cm)在[150,155内的人数]。图2是统计图1中身高在一定范围内 学生人数的一个算法流程图。现要统计身高在160~180cm(含160cm,不含 180cm)的学生人数,那么在流程图中的判断框内应填写的条件是 (A)i<6 (B) i<7 (C) i<8 (D) i<9 A A A A 【解】身高在160~180cm(含160cm,不含180cm)的学生数为 4 5 6 7 , 算法流程图实质上是求和,选C.

132算法与程序框图

132算法与程序框图
2.条件结构主要用在一些需要依据条件进行判断的算法中,如分段函数的求值、数据的大小关系等问题.循环结构主要用在一些有规律的重复计算的算法中,如累加求和、累乘求积等问题.
例题分析:
例1:执行如图的程序框图,如果输入的n是4,则输出的p是()
A.8 B.5 C.3 D.2
巩固练习:教师用书【411】即时巩固:1,2,3
课后作业:对应课后提升:选择题




备课组长签字:年月日
富县高级中学集体备课教案
年级:高三科目:数学授课人:
课题
算法与程序框图
第132课时
教学
目标
(1)了解算法的含义,了解算法的思想.
理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.
重点
设计好正确的算法步骤
中心发言人
难点
算法有三种基本的逻辑结构
教法
讨论与讲授法相结合
学法
课前预习、课堂合作探究
个人主页
教具
教材、练习册
课型
常规课
课时安排
1课时




主要知识:
1.算法的基本思想:1.算法是解决某类问题的一系列步骤或程序.
2.算法的特点:明确性、正确性与有效性、有限性、概括性、不唯一性
算法的结构与设计
1.按照步骤依次执行的一个算法,称为具有顺序结构的算法,或者称为算法的顺序结构,其流程图为(1).
2.在一个算法中,需要对一个条件进行判断,决定
后面的步骤,像用图为.(2)(1)(2)
主要方法:
1.画程序框图应注意的问题
(1)画之前应先对问题设计出合理的算法,然后分析算法的逻辑结构,根据逻辑结构画出相应的程序框图;

[Word]算法框图知识点和练习

[Word]算法框图知识点和练习

一、知识网络知识点一:算法与程序框图一、算法1.算法的概念:算法通常是指按一定规则解决某一类问题的明确和有限的步骤。

2.算法的描述方式有:自然语言、程序框图、程序语言。

3.算法的基本特征:①明确性:算法的每一步执行什么是明确的;②顺序性:算法的“前一步”是“后一步”的前提,“后一步”是“前一步”的继续;③有限性:算法必须在有限步内完成任务,不能无限制的持续进行;④通用性:算法应能解决某一类问题。

二、程序框图(一)程序框图基本概念程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。

(二)构成程序框的图形符号及其作用程序框名称功能起止框表示一个算法的起始和结束,是任何流程图不可少的。

输入、输出框表示一个算法输入和输出的信息,可用在算法中任何需要输入、输出的位置。

处理框赋值、计算,算法中处理数据需要的算式、公式等分别写在不同的用以处理数据的处理框内。

算法初步算法与程序框图算法语句算法案例算法概念框图的逻辑结构输入语句赋值语句循环语句条件语句输出语句顺序结构循环结构条件结构判断框判断某一条件是否成立,成立时在出口处标“是”或“Y ”;不成立时标明“”或“N ”。

画程序框图的规则如下:①、使用标准的图形符号。

②框图一般按从上到下、从左到右的方向画。

③除判断框外,大多数流程图符号只有一个进入点和一个退出点。

判断框具有超过一个退出点的唯一符号。

④判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。

⑤在图形符号内描述的语言要非常简练清楚。

(三)、程序框图的三种基本逻辑结构是:顺序结构、条件结构、循环结构。

1、顺序结构:顺序结构在程序框图中的体现就是用流程线将程序框自上而 下地连接起来,按顺序执行算法步骤。

如在示意图中,A 框和B框是依次执行的,只有在执行完A 框指定的操作后,才能接着执行B 框所指定的操作。

高考数学专题—算法与程序框图

高考数学专题—算法与程序框图

高考数学专题—算法与程序框图一、基础知识要求1.算法与程序框图(1)算法:算法通常是指按照一定规则解决某一类问题的明确和有限的步骤;(2)程序框图:程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.2.三种基本逻辑结构及相应语句易错点:直到型循环是“先循环,后判断,条件满足时终止循环”;当型循环则是“先判断,后循环,条件满足时执行循环”;两者的判断框内的条件表述在解决同一问题时是不同的,它们恰好相反.二、算法与程序框图常见题型:(共4种题型:由程序框图求输出结果、由输出结果判断输入量的值、辨析程序框图的算法功能、完善程序框图)1、由程序框图求输出结果:已知程序框图,求输出的结果,可按程序框图的流程依次执行,最后得出结果.例1、【2020年高考江苏】如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是_____.【答案】3-【解析】由于20x >,所以12y x =+=-,解得3x =-. 故答案为:3-例2、【广西南宁市第三中学2020届高三适应性月考卷】运行如图所示的程序算法,则输出的结果为A .2B .12C .13D .132【答案】A【解析】当2a =时, 1k =;当132a =时,3k =; 当132132a ==时,5k =;…;当132a =时,99k =,当2a =时,101k =,跳出循环; 故选:A .例3、【河北省衡水中学2020届高三下学期第二次调研数学】执行如图所示的程序框图,输出的结果是A .5B .6C .7D .8【答案】B【解析】1i =,12n =, 第一次循环: 8n =,2i =, 第二次循环:31n =,3i =, 第三次循环:123n =,4i =, 第四次循环:119n =,5i =,第五次循环:475n =,6i =,停止循环, 输出6i =. 故选B .例4、【广东省深圳市2020届高三下学期第二次调研数学】执行如图的程序框图,如果输入的k =0.4,则输出的n =A .5B .4C .3D .2【答案】C【解析】模拟程序的运行,可得k =0.4,S =0,n =1, S 11133==⨯, 不满足条件S >0.4,执行循环体,n =2,S 11113352=+=⨯⨯(1111335-+-)25=,不满足条件S >0.4,执行循环体,n =3,S 11111335572=++=⨯⨯⨯(11111133557-+-+-)37=, 此时,满足条件S >0.4,退出循环,输出n 的值为3. 故选:C .例5、【甘肃省西北师大附中2020届高三5月模拟试卷】“辗转相除法”是欧几里得《原本》中记录的一个算法,是由欧几里得在公元前300年左右首先提出的,因而又叫欧几里得算法.如图所示是一个当型循环结构的“辗转相除法”程序框图.当输入2020m =,303n =时,则输出的m 是A .2B .6C .101D .202【答案】C【解析】输入2020m =,303n =,又1r =. ①10r =>,202r =,303m =,202n =; ②2020r =>,3032021101÷=,101r =,202m =,101n ;③1010r =>,0r =,101m =,0n =; ④0r =,则0r >否,输出101m =.故选:C.例6、【重庆市第一中学2019-2020学年高三下学期期中数学】冰雹猜想也称奇偶归一猜想:对给定的正整数进行一系列变换,则正整数会被螺旋式吸入黑洞(4,2,1),最终都会归入“4-2-1”的模式.该结论至今既没被证明,也没被证伪. 下边程序框图示意了冰雹猜想的变换规则,则输出的i=A.4B.5C.6D.7【答案】B【解析】由题意,第一次循环,12S Z∉,35116S=⨯+=,011i=+=,1S≠;第二次循环,12S Z∈,11682S=⨯=,112i=+=,1S≠;第三次循环,12S Z∈,1842S=⨯=,213i=+=,1S≠;第四次循环,12S Z∈,1422S=⨯=,314i=+=,1S≠;第五次循环,12S Z∈,1212S=⨯=,415i=+=,1S=;此时输出5i=.故选:B例7、【重庆市南开中学2019-2020学年高三下学期线上期中数学】若某程序框图如图所示,则输出的S 的值是A .31B .63C .127D .255【答案】C【解析】第一次运行,1i =,0S =,8i <成立,则2011S =⨯+=,112i =+=; 第二次运行,2i =,1S =,8i <成立,则2113S =⨯+=,213i =+=; 第三次运行,3i =,3S =,8i <成立,则2317S =⨯+=,314i =+=; 第四次运行,4i =,7=S ,8i <成立,则27115S =⨯+=,415i =+=; 第五次运行,5i =,15S =,8i <成立,则215131S =⨯+=,516i =+=; 第六次运行,6i =,31S =,8i <成立,则231163S =⨯+=,617i =+=; 第七次运行,7i =,63S =,8i <成立,则2631127S =⨯+=,718i =+=; 第八次运行,8i =,127S =,8i <不成立, 所以输出S 的值为127. 故选:C .2、由输出结果判断输入量的值例8、【2020·黑龙江哈尔滨六中期中】执行如图所示的程序框图,若输出的结果是1516,则输入的a 为( )A .3B .6C .5D .4【解析】 (1)第1次循环,n =1,S =12;第2次循环,n =2,S =12+122;第3次循环,n =3,S =12+122+123;第4次循环,n =4,S =12+122+123+124=1516.因为输出的结果为1516,所以判断框的条件为n <4,所以输入的a 为4.故选D.例9、我国古代数学著作《周髀算经》有如下问题:“今有器中米,不知其数.前人取半,中人三分取一,后人四分取一,余米一斗五升.问,米几何?”如图是解决该问题的程序框图,执行该程序框图,若输出的S =1.5(单位:升),则输入k 的值为( )A .4.5B .6C .7.5D .9【解析】选B.由程序框图知S =k -k 2-k 2×3-k 3×4=1.5,解得k =6,故选B.例10、执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A.5B.4C.3D.2【答案】D【解析】程序运行过程如下表所示:此时故选D. 例11、【2020届华大新高考联盟高三4月教学质量测评数学】执行如图所示的程序框图,设输出数据构成集合A ,从集合A 中任取一个元素m ,则事件“函数()2f x x mx =+在[)0,+∞上是增函数”的概率为A .14B .12C .34D .35【答案】C【解析】当20x y =-⇒=; 当2111x y =-+=-⇒=-; 当1100x y =-+=⇒=; 当0113x y =+=⇒=; 当1128x y =+=⇒=; 当213x =+=,退出循环. 所以{}0,1,3,8A =-,又函数()2f x x mx =+在[)0,+∞上是增函数,所以002mm -≤⇒≥. 函数()2f x x mx =+在[)0,+∞上是增函数的概率为34. 故选:C .3、辨析程序框图的算法功能:对于辨析程序框图功能问题,可将程序执行几次,即可根据结果作出判断.例12、执行右面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y 的值满足 ( ) A.y=2x B.y=3x C.y=4x D.y=5x【答案】C【解析】由题图可知,x=0,y=1,n=1,执行如下循环: x=0,y=1,n=2;x=12,y=2,n=3;x=12+1=32,y=6,退出循环,输出x=32,y=6,验证可知,C 正确.例13、执行如图所示的程序框图,输出的结果为 ( )A.(-2,2)B.(-4,0)C.(-4,-4)D.(0,-8)【答案】B【解析】x=1,y=1,k=0,进入循环:s=1-1=0,t=1+1=2,x=0,y=2,k=0+1=1<3;s=0-2=-2,t=0+2=2,x=-2,y=2,k=1+1=2<3;s=-2-2=-4,t=-2+2=0,x=-4,y=0,k=2+1=3≥3,跳出循环,输出(x,y),即(-4,0).例14、执行下面的程序框图,如果输入的N=4,那么输出的S=( )A.1+12+13+14B.1+12+13×2+14×3×2C.1+12+13+14+15D.1+12+13×2+14×3×2+15×4×3×2 【答案】B【解析】由程序框图依次计算可得,输入N=4, T=1,S=1,k=2; T=12,S=1+12,k=3; T=13×2,S=1+12+13×2,k=4; T=14×3×2,S=1+12+13×2+14×3×2,k=5; 此时k 满足k>N,故输出S=1+1+1+1.例15、如果执行下边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2,…,a N ,输出A,B,则( )A.A+B 为a 1,a 2,…,a N 的和B. A+B2为a 1,a 2,…,a N 的算术平均数C.A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数D.A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数 【答案】C【解析】随着k 的取值不同,x 可以取遍实数a 1,a 2,…,a N ,依次与A,B 比较,A 始终取较大的那个数,B 始终取较小的那个数,直到比较完为止,故最终输出的A,B 分别是这N 个数中的最大数与最小数.例16、【2020届清华大学中学生标准学术能力诊断性测试高三5月测试数学】下列程序框图的算法思想源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入16a =,10b =,则程序中需要做减法的次数为A .6B .5C .4D .3【答案】C【解析】由16a =,10b =,满足a b ,满足a b >,则16106a =-=;满足a b ,不满足a b >,则1064b =-=; 满足a b ,满足a b >,则642a =-=; 满足a b ,不满足a b >,则422b =-=; 不满足ab ,则输出2a =;则程序中需要做减法的次数为4, 故选:C .4、完善程序框图:完善程序框图问题,结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式.例17、【2020届河南省商丘周口市部分学校联考高三5月质量检测数学】宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:“松长六尺,竹长两尺,松日自半,竹日自倍,何日竹逾松长?”如图是解决此问题的一个程序框图,其中a 为松长、b 为竹长,则矩形框与菱形框处应依次填A .2a a a =+;a b <B .2aa a =+;a b < C .2a a a =+;a b ≥ D .2aa a =+;a b > 【答案】B【解析】松日自半,则表示松每日增加原来长度的一半,即矩形框应填2aa a =+;何日竹逾松长,则表示竹长超过松长,即松长小于竹长,即菱形框应填ab <. 故选:B例18、【2019·全国1·理T8文T9】下图是求12+12+12的程序框图,图中空白框中应填入( )A.A=12+A B.A=2+1A C.A=11+2AD.A=1+12A【答案】A【解析】执行第1次,A=12,k=1≤2,是,第一次应该计算A=12+12=12+A ,k=k+1=2;执行第2次,k=2≤2,是,第二次应该计算A=12+12+12=12+A,k=k+1=3;执行第3次,k=3≤2,否,输出,故循环体为A=12+A,故选A. 例19、【2018·全国2·理T7文T8】为计算S=1-12+13−14+…+199−1100,设计了右侧的程序框图,则在空白框中应填入( ) A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+4【答案】B【解析】由于N=0,T=0,i=1,N=0+11=1,T=0+11+1=12,i=3,N=1+13,T=12+14,i=5…最后输出S=N-T=1-12+13−14+…+199−1100,一次处理1i 与1i+1两项,故i=i+2. 例20、下面程序框图是为了求出满足3n-2n>1 000的最小偶数n,那么在和两个空白框中,可以分别填入( ) A.A>1 000和n=n+1 B.A>1 000和n=n+2 C.A ≤1 000和n=n+1 D.A ≤1 000和n=n+2【答案】D【解析】因为要求A 大于1 000时输出,且程序框图中在“否”时输出,所以“”中不能填入A>1 000,排除A,B.又要求n 为偶数,且n 初始值为0,所以“”中n 依次加2可保证其为偶数,故选D.例21、执行下面的程序框图,当输入的x 的值为4时,输出的y 的值为2,则空白判断框中的条件可能为( ) A.x>3B.x>4C.x ≤4D.x ≤5【答案】B【解析】因为输入的x 的值为4,输出的y 的值为2,所以程序运行y=log 24=2. 故x=4不满足判断框中的条件,所以空白判断框中应填x>4.例22、【2020年高考浙江】设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有2个元素,且S ,T 满足:①对于任意的x ,y ∈S ,若x ≠y ,则xy ∈T ;②对于任意的x ,y ∈T ,若x <y ,则y x∈S .下列命题正确的是A .若S 有4个元素,则S ∪T 有7个元素B .若S 有4个元素,则S ∪T 有6个元素C .若S 有3个元素,则S ∪T 有5个元素D .若S 有3个元素,则S ∪T 有4个元素 【答案】A【解析】首先利用排除法:若取{}1,2,4S =,则{}2,4,8T =,此时{}1,2,4,8ST =,包含4个元素,排除选项D ; 若取{}2,4,8S =,则{}8,16,32T =,此时{}2,4,8,16,32S T =,包含5个元素,排除选项C ;若取{}2,4,8,16S =,则{}8,16,32,64,128T =,此时{}2,4,8,16,32,64,128S T =,包含7个元素,排除选项B ;下面来说明选项A 的正确性:设集合{}1234,,,S p p p p =,且1234p p p p <<<,*1234,,,p p p p N ∈,则1224p p p p <,且1224,p p p p T ∈,则41p S p ∈, 同理42p S p ∈,43p S p ∈,32p S p ∈,31p S p ∈,21p S p ∈, 若11p =,则22p ≥,则332p p p <,故322p p p =即232p p =, 又444231p p p p p >>>,故442232p p p p p ==,所以342p p =, 故{}232221,,,S p p p =,此时522,p T p T ∈∈,故42p S ∈,矛盾,舍.若12p ≥,则32311p p p p p <<,故322111,p pp p p p ==即323121,p p p p ==, 又44441231p p p p p p p >>>>,故441331p p p p p ==,所以441p p =, 故{}2341111,,,S p p p p =,此时{}3456711111,,,,p p p p p T ⊆.若q T ∈, 则31q S p ∈,故131,1,2,3,4i q p i p ==,故31,1,2,3,4i q p i +==,即{}3456711111,,,,q p p p p p ∈,故{}3456711111,,,,p p p p p T =, 此时{}234456711111111,,,,,,,S T p p p p p p p p ⋃=即S T 中有7个元素.故A 正确.例23、【2020年高考全国II 卷理数】0-1周期序列在通信技术中有着重要应用.若序列12na a a 满足{0,1}(1,2,)i a i ∈=,且存在正整数m ,使得(1,2,)i m i a a i +==成立,则称其为0-1周期序列,并称满足(1,2,)i m i a a i +==的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列12na a a ,11()(1,2,,1)m i i k i C k a a k m m +===-∑是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是A .11010B .11011C .10001D .11001【答案】C【解析】由i m i a a +=知,序列i a 的周期为m ,由已知,5m =,511(),1,2,3,45i i k i C k a a k +===∑对于选项A ,511223344556111111(1)()(10000)55555i i i C a a a a a a a a a a a a +===++++=++++=≤∑52132435465711112(2)()(01010)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足; 对于选项B ,51122334455611113(1)()(10011)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足; 对于选项D ,51122334455611112(1)()(10001)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足; 故选:C。

程序框图与算法的基本逻辑结构

程序框图与算法的基本逻辑结构

图形符号名称功能终端框(起止框)表示一个算法的起始和结束输入、输出框表示一个算法输入和输出的信息处理框(执行框)赋值、计算判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”流程线连接程序框连接点连接程序框图的两部分三种逻辑结构可以用如下程序框图表示:顺序结构条件结构循环结构变式训练观察下面的程序框图,指出该算法解决的问题.解:这是一个累加求和问题,共99项相加,该算法是求100991431321211⨯++⨯+⨯+⨯ 的值.例2 已知一个三角形三条边的边长分别为a ,b ,c ,利用海伦—秦九韶公式设计一个计算三角形面积的算法,并画出程序框图表示.(已知三角形三边边长分别为a,b,c ,则三角形的面积为S=))()((c p b p a p p ---),其中p=2c b a ++.这个公式被称为海伦—秦九韶公式)算法步骤如下:第一步,输入三角形三条边的边长a,b,c.第二步,计算p=2c b a ++. 第三步,计算S=))()((c p b p a p p ---.第四步,输出S.程序框图如下:点评:很明显,顺序结构是由若干个依次执行的步骤组成的,它是最简单的逻辑结构,它是任何一个算法都离不开的基本结构.顺序结构可以用程序框图表示为语句n语句n+1件是______________. 答案:i>10.构),如图1所示.执行过程如下:条件成立,则执行A框;不成立,则执行B框.图1 图2应用示例例1 任意给定3个正实数,设计一个算法,判断以这3个正实数为三边边长的三角形是否存在,并画出这个算法的程序框图.算法步骤如下:第一步,输入3个正实数a,b,c.第二步,判断a+b>c,b+c>a,c+a>b是否同时成立.若是,则存在这样的三角形;否则,不存在这样的三角形.程序框图如右图:随堂练习1、设计算法判断一元二次方程ax2+bx+c=0是否有实数根,并画出相应的程序框图. 相应的程序框图如右:2、(1)设计算法,求ax+b=0的解,并画出流程图.程序框图如下:第3课时循环结构当型循环结构直到型循环结构直到型循环结构是程序先进入循环体,然后对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环.当型循环结构是在每次执行循环体前,先对条件进行判断,当条件满足时,执行循环体,否则终止循环.应用示例例1设计一个计算1+2+……+100的值的算法,并画出程序框图.第一步,令i=1,S=0.第二步,若i≤100成立,则执行第三步;否则,输出S,结束算法.第三步,S=S+i.第四步,i=i+1,返回第二步.当型循环直到型循环变式训练例1 设计框图实现1+3+5+7+…+131的算法.第一步,赋初值i=1,sum=0.第二步,sum=sum+i,i=i+2.第三步,如果i≤131,则反复执第二步;否则,执行下一步.第四步,输出sum.第五步,结束.程序框图如右图知能训练设计一个算法,求1+2+4+…+249的值,并画出程序框图.(2)算法步骤中的“第四步”可以用条件结构来表示(如下图).在这个条件结构中,“否”分支用“a=m”表示含零点的区间为[m,b],并把这个区间仍记成[a,b];“是”分支用“b=m ”表示含零点的区间为[a,m],同样把这个区间仍记成[a,b].(3)算法步骤中的“第五步”包含一个条件结构,这个条件结构与“第三步”“第四步”构成一个循环结构,循环体由“第三步”和“第四步”组成,终止循环的条件是“|a-b|<d或f(m)=0”.在“第五步”中,还包含由循环结构与“输出m”组成的顺序结构(如下图).(4)将各步骤的程序框图连接起来,并画出“开始”与“结束”两个终端框,就得到了表示整个算法的程序框图(如下图).解:将实际问题转化为数学模型,该问题就是要求1+2+4+……+263的和.程序框图如下:点评:对于开放式探究问题,我们可以建立数学模型(上面的题目可以与等比数列的定义、性质和公式联系起来)和过程模型来分析算法,通过设计算法以及语言的描述选择一些成熟的办法进行处理.例3 乘坐火车时,可以托运货物.从甲地到乙地,规定每张火车客票托运费计算方法是:行李质量不超过50 kg 时按0.25元/kg ;超过50 kg 而不超过100 kg 时,其超过部分按0.35元/kg ;超过100 kg 时,其超过部分按0.45元/kg .编写程序,输入行李质量,计算出托运的费用.分析:本题主要考查条件语句及其应用.先解决数学问题,列出托运的费用关于行李质量的函数关系式.设行李质量为x kg ,应付运费为y 元,则运费公式为:y=⎪⎩⎪⎨⎧>-+⨯+⨯≤<-+⨯≤<,100),100(45.05035.05025.0,10050),50(35.05025.0,500,25.0x x x x x x整理得y=⎪⎩⎪⎨⎧>-≤<-≤<.100,1545.0,10050,535.0,500,25.0x x x x x x要计算托运的费用必须对行李质量分类讨论,因此要用条件语句来实现.解:算法分析:第一步,输入行李质量x.第二步,当x≤50时,计算y=0.25x,否则,执行下一步.第三步,当x≤100,计算y=0.35x-5,否则,计算y=0.45x-15.第四步,输出y.程序框图如下:课堂小节(1)进一步熟悉三种逻辑结构的应用,理解算法与程序框图的关系.(2)根据算法步骤画出程序框图.作业习题1.1B组1、2.设计感想本节是前面内容的概括和总结,在回忆前面内容的基础上,选择经典的例题,进行了详尽的剖析,这样降低了学生学习的难度.另外,本节的练习难度适中,并且多为学生感兴趣的问题,这样为学生学好本节内容作好充分准备,希望大家喜欢这一节课.。

算法与程序框图

算法与程序框图
回溯算法
通过逐步构建解决方案,并在构建过程中进 行验证和剪枝的算法。
算法的应用场景
数学领域:诸如求解方程、优化 问题等。如牛顿迭代法、梯度下 降法等。
工程领域:包括信号处理、控制 系统等问题。如卡尔曼滤波算法 、PID控制算法等。
计算机科学领域:包括数据排序 、图形渲染、人工智能等问题。 如快速排序算法、Dijkstra最短路 径算法等。
KMP算法
通过预处理模式串,计算出一个next数组,用于在匹配失败时快速跳过一些不可能匹配的字符,从而 提高字符串匹配的效率。程序框图中可使用两个指针、一个循环结构和一个条件判断表示KMP算法过 程,同时需要额外的计算过程来预处理模式串并生成next数组。
06
算法与程序框图的未来 发展
量子计算对算法与程序框图的影响
程序框图的基本元素
01
起止框
表示程序的开始和结束。
处理框
02
03
判断/决策框
表示程序中的一个处理步骤或操 作。
表示程序中的条件判断或决策点 。
程序框图的基本元素
01
流程线:表示程序的执行流程或 控制流。
02
连接点:用于连接跨越较大空间 的流程线。
输入/输出框:表示程序的输入和 输出。
03
这些基本元素通过各种组合和连 接,可以描述出各种复杂的程序
快速排序
采用分治思想,选取一个基准元素,将列表中小于基准的元 素放到左侧,大于基准的元素放到右侧,然后递归地对左右 两侧子序列进行快速排序。程序框图中可使用递归和条件判 断表示快速排序过程。
图论算法的程序框图表示
深度优先搜索
从某个起始节点开始,沿着一条路径尽 可能深入地搜索,直到路径无法继续为 止,然后回溯到前一个节点,继续深度 优先搜索。程序框图中可使用栈和条件 判断表示深度优先搜索过程。

2019年数学必修三1123循环结构程序框图的画法 课件

2019年数学必修三1123循环结构程序框图的画法 课件

2.下面的框图是循环结构的是 ( )
A.①② B.②③ C.③④
D.②④
解析:由循环结构的特点知③④是循环结构,其中①
是顺序结构,②是条件结构.
答案:C
3.如图所示的程序框图中,是循环体的序号为( )
A.①② B.② C.②③ D.③ 答案:B
4.直到型循环结构对应的框图为 ( )
解析:由定义知直到型循环结构对应的框图为 B. 答案: B
答案: C
类型 2 循环结构的应用 [典例 2] (1)(2016·天津卷)阅读如图的程序框图,运 行相应的程序,则输出 S 的值为 _____)执行如图的程序框图,如果 输入的 t=0.01,则输出的 n=( )
A.5
B.6
C.7
D.8
解: (1) 按照程序框图中的顺序依次计算,直到满足
1.循环结构的概念及相关内容 (1)循环结构:按照一定的条件 反复执行 某些步骤的 情况. (2)循环体: 反复执行的步骤.
2.循环结构的分类及特征
名称
直到型循环
当型循环
结构
先执行循环体,后判断条 先判断条件,若
件,若条件不满足,就继 条件满足,则执 特征
续执行循环体,直到条件 行循环体,否则
满足时终止循环.
终止循环.
[思考尝试 ·夯基]
1.思考判断 (正确的打“√”,错误的打“×” ). (1)循环结构是在一些算法中从某处开始,按照一定 条件反复执行处理某一步骤,因此循环结构中一定包含 条件结构. ( ) (2)循环结构中不一定包含条件结构. ( ) (3)循环结构中反复执行的步骤叫作循环体. ( ) 答案:(1)√ (2)× (3)√
[变式训练 ] 执行如图所示的程序框图,若输出的 y

1.1.2-1.1.3 程序框图与算法的基本逻辑结构(一、二)1

1.1.2-1.1.3 程序框图与算法的基本逻辑结构(一、二)1

流程线
三、概念形成
概念1.程序框图的概念 说明:一个算法步骤到另一个算法步骤用流程线连 接。如果一个框图需要分开来画,要在断开处画上 连接点,并标注连接号码。 1
开始
D0
N
Y
输入
a, b, c
2
D b 4ac
1
x1 (b D ) / 2a
输出无实根
结束
三、概念形成
概念2.画程序框图的规则
开始
输入
通常用一些通 用图形符号构成一 张图来表示算法。 这种图称做程序框 图(简称框图)也 叫流程图。
比如:求一元二次 方程ax2+bx+c=0的 根的框图
a, b, c
D b2 4ac
D0
N
Y
x1 (b D ) / 2a
输出无实 根
结束
三、概念形成
概念1.程序框图的概念
开始
i=1
S=0
i=i+1 S=S+i i≤100?
例1 若一个三角形的三条边长分别为a,b, c,令p=(a+b+c)/2,则三角形的面积
S p( p a )( p b)( p c )
试用这个公式设计一个计算三角形面积的算 法步骤. 第一步,输入三角形三条边的边长a,b,c.
例1 若一个三角形的三条边长分别为a,b, c,令p=(a+b+c)/2,则三角形的面积
概念2.条件分支结构 任意给定3个正实 数,设计一个算法, 判断分别以这3个 数为三边边长的 三角形是否存在。 画出这个算法的 程序框图。
输入a,b,c
a+b>c,a+c>b,b+c>a 是否同时成立?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12.3 算法与程序框图应用举例
到目前为止,我们对算法与程序框图已经 有了初步的了解,在本次课中,我们将通 过几个实例,进一步体会算法的思想方法, 体会算法在自然科学和社会生活中的广泛 应用。
例1.某班一共有 50名学生,请设计 一个算法,统计某 次数学考试后,班 上成绩及格(≥60 )和不及格(<60 )的学生人数,请 画出程序框图。
输出a 结束
例4 已知n次多项式f(x)=
(ai∈ R,i=0,1,2,3,……,n ), 设计一个算法,求当x=x0 时多项式f(x)的值, 并画出程序框图。 (秦九韶算法)
开始 输入n,an,x
y=an i=n-1
i≥0

输入ai
y=yx+ai

i=i-1
输出y 结束
例5 某城市对居民用水实行阶梯式收 费,标准为:每月每户生活用水20m³ 以内(含)为第一级,按居民生活用 水的供水价格收费;每月每户生活用 水超过20m³且低于或等于30m³为第二 级,超出的部分按供水价格的1.5倍 收费;每月每户超过30m³为第二级, 超出的部分按供水价格的2倍收费.如 果该城市居民生活用水的供水价格为 1.24元/m³,另加收城市附加费0.06元 /m³,污水处理费1.3元/m³,水资源费 0.2元/m³,请设计一个算法,输入某 户居民某个月的用水量,输出这个月 的该户居民所需缴纳的水费。
开始 输入x x≤20
x≤30

y=4.04x-31
输出y 结束


y=3.42x-12.4
y=2.8x
例6 圆的周长和直径的比值称为圆 周率(π),它是一个常数,也是 一个无理数,历史上,有不少数学 家对圆周率做过研究,到了现代, 由于算法的改进和计算机科学的发 展,π值计算精度也迅速提高,例 如,利用莱布尼茨公式:
π/4=1-1/3+1/5-1/7+1/9-1/11+……
就可以近似计算π的值。
利用上面的公式设计一个算法, 计算π的近似值,试画出程序框图。
开始 n=1,S=0,a=0
b=a S=S+(-1)n-1·1/2n-1 否
n=n+1 a=4s |a-b|<10-5

输出a 结束
5/21/2020 2:14:55 PM
开始 输入a1,a2,a3,……a50
n=1,i=0,j=0
an≥60

否i=i+1 Nhomakorabean=n+1
n>50

输出i,j 结束

j=j+1
例2 猜数小游戏:主持 人随机输入1~1000之间 的整数a,让参与者猜是 哪个数。如果参与者所 猜之数与a不同,则提示 “高了”或“低了”,
让参与者继续猜,如果 参与者所猜之数与a相同, 则游戏结束并输出猜数 的次数。请设计一个进 行上述游戏的算法,并 画出程序框图。
开始 i=1 随机输入1~1000之间的整数a
输入一个整数b
b=a


b>a

输出“高了”, 请重新输入
输出“低了”,
请重新输入

i=i+1 输出i 结束
例3 任意给定 两个正数a,b, 写出求a,b的 最大公约数的
算法。(更相 减损之术)
开始 输入a,b
a=a-b
a=b 否 a>b
是 b=b-a
相关文档
最新文档