高分子物理学课件
高分子物理ppt
自由体积理论认为,玻璃化温度以下,高聚物体
积随温度升高而发生的膨胀是由于固有体积的膨
胀。即玻璃化温度以下,聚合物的自由体积几乎
是不变的。
41
自由体积理论示意图
d V Tg以上
V
玻璃态
橡胶态
d T
r
膨胀率
Vr
Vr =Vg +ddV Tr (T-Tg)
Vg
V0+Vf Vf V0
Vhf =Vf T-Tg d dV Trd dV Tg
弛时间谱”
9
3. 高分子运动的温度依赖性(松弛时间 与温度有关)
分子的内能增加:活化运动单元 聚合物的体积增大:增加自由空间
升高温度可使松弛过程加快,时间变短;若不升温 则只有延长时间才能观察到分子运动
升温与延长观察时间是等效的(时温等效原理)
Time-Temperature superposition)
dV
d T
g
Tg以下 膨胀率
T = Tg Vg =Vf +V0 +ddV TgTg
0
Tg Tr
T
玻璃化温度就是自由体积降至最低值时的临界温度 42
自由体积膨胀率
在Tg以上, 体积膨胀率的变化是由于自由体积在Tg以 上时也发生了膨胀。
自由体积膨胀率
dV dT
r
dV dT
g
因此在Tg以上某温度时的自由体积Vhf为:
分子运动不同 分子运动不同
性能不同 性能不同
高聚物的分子运动是联系高聚物结 构单元的多重性
多种运动单元:
分子链、链段、侧基、支链、链节、晶区的运动等
多种运动模式:
➢ 分子链的运动:熔体流动
高分子物理化学全套课件
2.3 蛋白质
• 蛋白质的结构从小到大可以分为一次结 构、二次结构、三次结构等。 • 一次结构:分子内氨基酸的排列,每一 种蛋白质分子中不同氨基酸有严格相同 的序列。分子有均一的长度,例如胰岛 素的所有分子有相同的分子量或链长。
2.3 蛋白质
• 二次结构:由于分子内或分子间的氢键 而形成的分子在近程的空间的规则结构。 其中α型结构是由于分子内NH基和CO基 间的氢键形成的螺旋结构(右旋);而β 型结构是由于分子间的氢键而产生的平 行或反平行两种片状结构。图2-11是蛋 白质α型和β型结构的示意图。
α螺旋的四种表示方法
2.4 核酸
表2-4 核酸 类型 DNA、RNA的核苷酸的三种构成物质 糖 碱基 磷酸
DNA
腺嘌呤(A)、鸟嘌 脱氧核糖 呤(G)胞嘧啶(C) 、胸腺嘧啶(T)
磷酸
RNA
核糖
腺嘌呤(A)、鸟嘌 呤(G)胞嘧啶(C) 、脲嘧啶(U)
磷酸
2.4 核酸
NH2 N N N CH N H H2N N 鸟嘌呤 G O H3C N N H 胞嘧啶C O N H 尿嘧啶U RNA特有 NH O N H NH O O N H
蛋白质
动物的皮 可制成皮 革,是鞋 和衣服的 原料
明胶,而驴皮 熬制的胶是一 种药材—阿胶
明胶的来源和用途
水溶性蛋白质混合物,皮肤、韧带、肌 腱中的胶原经酸或碱部分水解或在水中煮 沸而产生,在35~40℃水中溶胀形成凝胶, 广泛用于食品、医药、黏合剂、感光底片、 滤光片等。
明胶
蛋白泡沫迫降跑道
高分子物理课件精华版
性塑料和橡胶的极限使用温度。
温度高于Tg时,材料不能作塑料用,因为已 经软化;低于Tg时,就不能当橡胶用,因为
已成为玻璃态。
30
Note:
非晶热塑性塑料(如PS,PMMA和硬质PVC等): Tg为使用温度的上限 非晶性橡胶(如天然橡胶, 丁苯橡胶等) : Tg为使用温度的下限
31
5.2.2 晶态聚合物的力学状态
形变
eg: 增塑型的 PVC,有Tg 也有Tm,软 PVC塑料地板
Tg
Tf(Tm)
温度
轻度结晶聚合物温度-形变曲线
33
2,结晶度高于40%的聚合物
微晶彼此衔接,形成贯穿材料的连续结晶相,材
料变硬,宏观上看不出明显的玻璃化转变,温度
-形变曲线在熔点以前不出现明显转折。 结晶高聚物的晶区熔融后是不是进入粘流态,要 看试样的分子量大小:
第五章 聚合物的分子运动和转变
13317163435
zxp
1
本章教学内容及学习重点
教学内容
聚合物分子运动的特点 聚合物的力学状态 玻璃化转变
结晶行为和结晶动力学
熔融热力学 链段运动的松弛过程
重点:
非晶态聚合物的主转变:玻璃-橡胶转变 半晶态聚合物的主转变:晶态-熔融态转变 分子链运动的热力学相变过程
x(0)
x0
x(0) x (t )
xt
t
t
t t
t0
x(t ) x(0)et /
τ-松弛时间
11
除去外力后t时间橡皮长度的增量
外力作用下橡皮长度的增量
τ-松弛时间
x(t ) x(0)et /
松弛时间就是Δx减少到
t
x( ) x(0) / e
《高分子物理》ppt课件
PART 03
高分子溶液性质与行为
REPORTING
高分子溶解过程及热力学
溶解过程的描述
高分子在溶剂中的溶解过程包括 溶胀、溶解两个阶段,涉及高分 子链的舒展和溶剂分子的渗透。
热力学参数
溶解过程中的热力学参数如溶解 度参数、混合焓、混合熵等,决 定了高分子与溶剂的相容性。
温度对溶解的影响
区别
高分子化学主要关注高分子的合成和化学反应,而高分子物理则更加关注高分子的结构和性质以及它们之间的关 系。此外,两者的研究方法也有所不同,高分子化学通常采用化学合成和表征的方法,而高分子物理则采用各种 物理手段和理论计算的方法。
PART 02
高分子链结构与形态
REPORTING
高分子链化学结构
可用于制造透明或半透明的制品,如透明塑料、有机玻璃等。
03
耐候性
高分子材料在户外环境下能够保持其光学性能的稳定,不易发生黄变、
老化等现象,因此适用于户外光学器件的制造。
耐热性、耐腐蚀性等其他性能
耐热性
高分子材料通常具有较好的耐热性,能够在高温环境下保持其物理和化学性质的稳定。这 使得高分子材料在高温工作环境中具有广泛的应用,如汽车发动机部件、电子电器部件等 。
特定的高分子结构、温度区间和浓度等。
液晶态性能
液晶态高分子具有优异的光学性能、力学性能(如高强度和高模量 )以及热稳定性等。
PART 05
高分子材料力学性能与增 强机制
REPORTING
拉伸、压缩、弯曲等力学性能
拉伸性能
高分子材料在拉伸过程中,经历弹性变形、屈服、应变硬化和断裂 等阶段,表现出不同的力学行为。
核磁共振法研究分子运动状态
高分子物理(共90张PPT)
收缩与翘曲
高分子制品在成型后,由 于内应力的存在,会发生 收缩和翘曲现象,需通过
工艺控制减少其影响。
高分子加工过程中的物理和化学变化
01 热变化
高分子在加工过程中吸收或放 出热量,引起温度变化,对制 品性能产生影响。
02 力学变化
高分子在加工过程中受到剪切 、拉伸等力的作用,发生力学 状态的变化。
高分子物理(共90张PPT)
CONTENTS
• 高分子物理概述 • 高分子的结构与形态 • 高分子的物理性质 • 高分子的溶液性质 • 高分子的加工与成型 • 高分子物理的应用与发展前景
01
高分子物理概述
高分子的定义与分类
定义
高分子是由大量重复单元通过共价键 连接而成的长链化合物,分子量高达 数千至数百万。
弹性
高分子链的柔顺性和链段运动能力使其具 有弹性,如橡胶的弹性回复。
黏性
高分子链间的缠结和摩擦使其具有黏性, 如聚合物的熔融和溶液行为。
塑性
高分子在一定条件下可发生塑性变形,如 热塑性塑料的加工成型。
强度
高分子材料抵抗外力破坏的能力,如纤维 的强度和韧性。
高分子的热学性质
热容
高分子材料的热容通常较大,吸热和放热 过程中温度变化较小。
物理的研究提供了有力支持。
02
高分子的结构与形态
高分子的链结构
链的近程结构
包括键接方式、支化、交联等
链的远程结构
涉及链的柔顺性、构象和链的尺寸等
链结构的表征方法
如X射线衍射、中子散射、电子显微镜等
高分子的聚集态结构
高分子的分子间相互作用:包括范德华力 、氢键、离子键等
高分子的聚集态类型:如溶液、凝胶、晶 体、非晶态等
《高分子物理》课件
高分子加工技术
探索高分子材料的加工技术,如挤出、注塑、吹塑等,讨论每种技术的优缺点以及在实际生产中的应用。
高分子材料应用范围
展示高分子材料在不同领域的广泛应用,包括医疗、电子、汽车等,并讨论其在可持续发展中的作用。
总结与展望
总结高分子物理的重要概念,并展望未来的发展方向,探讨高分子物理在新材料研究中的前景。
《高分子物理》PPT课件
这份PPT课件将帮助您了解《高分子物理》的重要概念和应用。通过丰富的 内容和精美的图片,让我们一起探索高分子物理的奇妙世界。
高分子物理概述
介绍高分子物理学的基本概念和理论,包括分子结构、分子力学以及高分子 的物理特性。
高分子材料的物理性质
深入了解高分子材料的物理性质,例如强度、弹性、热传导性等,解释其在 不同应用领域中的优势。
高分子物理课件第一章概论优秀课件
以数量为统计权重的数均分子量,定义为: 以重量为统计权重的重均分子量,定义为: 以z值为统计权重的z均分子量,zi定义为wiMi,
定义为:
数均分子量亦可用重量分数表示
M n
ni M i ni
wi (wi / M i )
根据定义式,易证明: 当α=-1时,
1
M
Mn
(Wi / M i )
当α= 1时,
M WiMi M w i
对于多分散试样, M z Mw M M n 对于单分散试样, M z Mw M M n
迈耶霍夫只用一个式子就代表了所有平 均相对分子质量:
wi
M
i
M
i
wi
M
i
1
i
式中:对于数均,β=0;对于重均,β=1; 对于Z均,β=2;对于黏均,β=0.8~1。这 种表达很便于记忆。
各种统计分子量的大小比较
多分散体系 MnMηMwMz
单分散体系 MnMηMwMz
(只有少数象DNA等生物高分子才是单分散的)
对于一般的合成聚合物,可以看成是若干同系物 的混合物,其分子量可看作是连续分布的。这些 相对分子质量也都可以写成积分的形式:
1
wi wi
M i
1
(Wi / M i )
ni
wi Mi
MW
ni
M
2 i
i
ni M i
i
wi=niMi
用黏度法测得稀溶液的平均分子量为黏均分子
量,定义为:
M
Wi
M
i
1/
ni
M
1a i
高分子物理共90张PPT
高分子物理共90张PPT第一部分:高分子物理基础知识1. 高分子物理概述高分子物理是研究高分子材料的构造、力学性质及其在热、电、光等方面的行为规律的一门学科。
高分子物理的主要研究对象是具有大分子结构的聚合物和高聚物。
2. 高分子材料的结构高分子材料的分子结构可以分为线性、支化和交联三种。
其中,线性结构的高分子链是单纯的直线结构,支化结构则是在链上引入支链结构,交联结构则是在高分子链上形成水晶点,使高分子链之间发生交联作用。
3. 高分子材料的物理性质高分子材料的物理性质包括力学性质、热性质、电性质、光学性质和磁性质等。
其中,力学性质是高分子材料最基本的性质之一,包括拉伸、压缩、弯曲、挤压、剪切等方面的力学性能;热性质则包括高分子材料的热干扰系数、热导率、热膨胀系数等;电性质则包括高分子材料的电导率、介电常数、介质损耗等;光学性质包括吸收、散射、透射、反射等方面的反映;磁性质则包括磁导率、磁化率等。
4. 高分子材料的分子运动高分子材料的分子运动是高分子物理学研究的一个重要方面。
高分子分子的运动可分为平动、转动、振动三种类型,其中振动运动通常与分子中的化学键振动相关联。
第二部分:高分子材料的物理加工工艺1. 高分子材料的成型加工高分子材料的成型加工包括挤出、注塑、吹塑、压缩成型、旋压成型等多种技术,其中挤出、注塑和吹塑等工艺技术是广泛应用的成型技术,具有高效、经济绿色等优点。
2. 高分子材料的复合加工高分子材料的复合加工是目前最为关注的技术之一,它将高分子材料与其他材料进行有效的综合利用,并在性能上得到了显著的提高。
高分子复合材料广泛应用于航空航天、汽车、电子、建筑等领域。
3. 高分子材料的改性加工高分子材料的改性加工是指通过添加改性剂来改变高分子材料的属性,以得到更好的性能。
常见的改性剂包括增强剂、塑化剂、光稳定剂、抗氧化剂等。
4. 高分子材料的表面处理高分子材料的表面处理是一种重要的加工技术,它可以提高高分子材料的表面性能和增强其附着力,同时也可以达到美化、防腐蚀等目的。
高分子物理化学全套PPT课件课件
探索新型高分子材料的合成方法
发展新型的高分子合成方法,实现高效、环保、低成本的合成,提高 高分子材料的性能和功能。
拓展高分子材料的应用领域
将高分子材料应用于新能源、生物医学、环保等领域,开发具有创新 性和实用性的高分子材料。
高分子物理化学的发展历程
• 总结词:高分子物理化学的发展历程包括起步阶段、成长阶段和繁荣阶段,其 发展推动了人类社会的进步。
• 详细描述:高分子物理化学的发展历程可以追溯到20世纪初,当时科学家开 始对高分子物质进行研究,并发现了高分子化合物的长链结构和多分散性等特 点。随着研究的深入,人们逐渐认识到高分子物质的结构和性质在不同尺度上 存在差异,并开始从微观到宏观的不同尺度上进行研究。在成长阶段,高分子 物理化学的研究领域不断扩大,涉及的学科也越来越多,如物理学、化学、生 物学等。同时,人们开始将高分子物理化学应用于实际生产和生活中,推动了 相关产业的发展。进入21世纪后,随着科学技术的发展和人类对物质世界的 认识不断深入,高分子物理化学的研究进入繁荣阶段。人们开始深入研究高分 子物质的结构和性质,探索其在不同环境下的变化规律和机制,为解决实际问 题提供更加精准的理论支持。同时,随着计算机技术和数值模拟方法的不断发 展,人们可以更加方便地模拟和预测高分子物质的行为和性能,进一步推动相 关领域的发展。总之,高分子物理化学的发展历程是一个不断创新和发展的过 程,其发展推动了人类社会的进步。
高分子物理化学全套 ppt课件
目录
• 高分子物理化学概述 • 高分子结构与性质 • 高分子合成与制备 • 高分子反应与改性 • 高分子材料性能与应用 • 高分子物理化学前沿研究
高分子物理pptPPT课件演示文稿
态聚合物,玻璃化转变是指其中非晶部分的这 种转变。 发生玻璃化转变的温度叫做玻璃化温度Tg
27
第二十七页,共390页。
Tg的工艺意义
是非晶热塑性塑料(如PS, PMMA)使用温度的上限 是非晶性橡胶(如天然橡胶, 丁苯橡胶)使用温度的下限
41
第四十一页,共390页。
自由体积理论(Fox 、 Flory)
固体和液体总的体积(VT)由两部分组成: 占有
7. 高分子热运动是一个松弛过程,松弛时间的大小取决于(
)。
A、材料固有性质 B、温度 C、外力大小 D、以上三 者都有关系。
40
第四十页,共390页。
5.3 高聚物的玻璃化转变
5.3.2 玻璃化转变理论 The theories of glass transition
等自由体积理论 (半定量) 热力学理论 (定性) 动力学理论 (定性)
T
T
(时温等效原理)
112
对于链段运动,松弛时间与温度的关系遵循WLF方程
第十二页,共390页。
5.2 聚合物的力学状态和热转变
➢ 1. 线形非晶态聚合物的力学状态 ➢ 2. 晶态聚合物的力学状态 ➢ 3. 交联聚合物的力学状态
113 第十三页,共390页。
5.2.1 线形非晶态聚合物的力学状态
流动,但此时已超过Td , 所以已经分解。PTFE就是如此, 所以不能注射成型,只能用烧结法。 PVA和PAN也是如此,所以不能熔融法纺丝所以不能 熔融法纺丝,只能溶液纺丝。
224
第二十四页,共390页。
5.2.3 交联聚合物的力学状态
1. 分子链间的交联限制了整链运动,无Tf 。 2. 交联密度较小时, “网链”较长,外力作用下链
高分子物理-第二章-高分子凝聚态ppt课件.ppt
Row nucleation
(4) 串晶 Shish-kebab structure
较低温度下, 边结晶边搅拌
PE
i-PS
(5) 伸直链晶
聚合物在高压 和高温下结晶 时,可以得到 厚度与其分子 链长度相当的 晶片
Extended chain crystal of PE Needle-like extended chain crystal of POM
球晶结构示意图
环带球晶
聚乙烯
偏光显微镜下球晶的生长
聚乙烯在125℃等温结晶
球晶的生长过程
控制球晶大小的方法
球晶的大小对性能有重要影响:球晶大透明性差、 力学性能差,反之,球晶小透明性和力学性能好。
(1) 控制形成速度:将熔体急速冷却,生成较小 的球晶;缓慢冷却,则生成较大的球晶。 (2)采用共聚的方法:破坏链的均一性和规整性, 生成较小球晶。 (3)外加成核剂:可获得小甚至微小的球晶。
《2》折叠链模型 (50年代 A。Keller提出)
实验现象:电子显微镜观察到几十微米范围的PE单晶 测得晶片厚度约为100A,且与分子量无关 X衍射还证明分子主链垂直晶片平面
提出模型:分子链规则地折叠形成厚100A的晶片 晶片再堆砌形成片晶
可以解释:片晶、球晶的结晶形态 不能解释:单晶表面密度比体密度低
nl = 2dhklsinq
n=1, 2, 3, …称为衍射级数
q为衍射角
多晶样品的衍射花样
样品
铝箔的X-射线和电子射线衍射花样
X-射线衍射花样
电子射线衍射花样晶体样品的 Nhomakorabea射曲线2.1.2 聚合物在晶体中的构象
等同周期(或称纤维周期):高分子晶体中, 在 c 轴方向化学结构和几何结构重复单元 的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚氯醚的玻璃化温度Tg
测定方法 介电 动态力学 慢拉伸 膨胀计法
频率(赫) 1000
Tg(℃) 32
89
25
3
15
10―2
7
3—2 玻璃化转变的自由体积理论
讨论Fox、Fl ory 提出的自由体积理论 自由体积理论的要点 《1》高聚物的体积有二部分组成 V(T)= V0(T)+ Vf(T) V0(T)为高分子占有体积 Vf(T)为自由体积,分子堆砌的间隙 可提供分子运动的空间
1—2 高分子分子运动的松弛特性
为松弛时间 其值取决于分子运动单元的大小 • 由于高聚物分子运动单元的多重性 因此,实际上高聚物的分子运动具 有许多个松弛时间———— • 松弛时间谱:
•
1—3 分子运动的温度依赖性
• 温度的作用
– 温度 分子热运动能 – 温度 体积 使更活化
分子运动空间
最终使松弛时间
几种主要橡胶的使用温度
橡胶名称
顺1,4-聚异戊二烯 顺1,4-聚丁二烯 丁苯橡胶(75/25) 聚异丁烯
Tg (℃) 使用温度范围(℃)
―70 ―105 ―60 ―70 ―50 ~ +120 ―70 ~ +140 ―50 ~ +140 ―50 ~ +150
聚2-氯丁二烯(含1,4反85%)
丁腈橡胶(70/30) 乙丙橡胶(50/50)
3—1 玻璃化转变现象及Tg的测定
3—1 玻璃化转变现象及Tg的测定
3—1 玻璃化转变现象及Tg的测定
3—1 玻璃化转变现象及Tg的测定
3—1 玻璃化转变现象及Tg的测定
《3》Tg 的测定方法
原则上利用上述物理参数的变化都可测定 最常用的方法是:热分析法 • DSC(示差扫描量热分析) 测量在程序控温下,试样发生的化学或物理过 程的热效应。常用:比热 ~ 温度关系 • DMA(动态力学分析) 测量在程序控温下,试样的动态力学损耗 • 注意!
§4 高聚物的次级松弛
聚甲基丙烯酸甲酯(PMMA)的次级松弛
PMMA的次级松弛
名称 转变温度 分子运动机制 松弛活化能 (K) (kcol/mol)
α松弛 β松弛 γ松弛 δ松弛
Tg~387 Tβ~283 Tγ~100 Tδ~5
链段运动 酯基运动 甲基运动 酯甲基运动
~80 17~30 ~3 ~1
2—2 线型晶态高聚物的力学状态
2—3 体型(交联)高聚物的力学状态
交联高聚物不溶不熔,不存在粘流态
§3
高聚物的玻璃化转变
3—1 玻璃化转变现象及Tg的测定 《1》重要性
• • • • T>Tg 时高聚物处于高弹态(橡胶) T<Tg 时高聚物处于玻璃态(塑料) Tg 是橡胶材料的最低使用温度 Tg 是塑料的最高使用温度
0.6 0.8
1.0 1.5
89.5 92
94.5 97
172 101
92 58
邻苯二甲酸二辛酯对 PVC Tg的影响
增塑剂含量(%) 0 10 20 30 40 45 Tg(℃) 78 50 29 3 —16 —30
3—3 影响玻璃化温度Tg 的因素
《2》外界条件的影响
• 温度变化速率:速率快测得的Tg高, 一般速率提高10倍, Tg约高3℃ • 外力作用:单向外力有利于链段运动Tg • 测量频率:频率 聚合物显得较硬,Tg • 环境压力: 环境压力 有利于自由体积 使Tg
液态(粘性流体)粘流态 固态(软如橡胶)高弹态 固态(硬如玻璃)玻璃态
2—1
线型非晶态高聚物的三个力学状态
线型非晶高聚物的形变~温度关系曲线 实验示意
线型非晶高聚物的形变~温度关系曲线
Tg ——玻璃化转变温度 Tf ——粘流温度
2—1
线型非晶态高聚物的三个力学状态
• 玻璃态 : * 模量大,1010~12达因/厘米2 * 形变小,~1% 或更小 * 形变可逆且瞬时完成 * 为塑料性状 分子运动机制:仅有链节侧基等小单元能 运动,分子链段和整个分子链处冻结状
• 现象:当n→nC后ΔEη不再有明显变化 • 分析:高分子链的流动 不是以整根分子链为流动单元 而是以一定长度的链段为流动单元 • 流动单元的长度:nc约为20到30个C原子
几种高聚物的流动活化能值
高聚物
聚二甲基硅氧烷 高密度聚乙烯 低密度聚乙烯 16.7 16.3~29.2 48.8
流动活化能△Eη (千焦/摩尔)
聚丙烯
聚丁二烯(顺式) 天然橡胶 聚异丁烯 聚苯乙烯 聚氯乙烯 聚酰胺 聚对苯二甲酸乙二酯 聚碳酸酯
37.5~41.7
19.6~33.3 33.3~39.7 50~62.5 94.6~104.2 147~168 63.9 79.2 108.3~125
ABS(20%橡胶)
ABS(40%橡胶) 纤维素醋酸酯
《4》自由体积的大小 WLF定义的自由体积分数 (M.L.Williams ndel J.D.Ferry)
fg
V f T g Vo
0 . 025 T
g
自由体积理论的应用
请用自由体积理论解释下述现象: • 比容V~温度T曲线发生转折 • 降温速率对V~T曲线转折温度的影响 • 分子量对Tg的影响 • 环境压力对Tg的影响 • 测试频率对测得Tg的影响
剪切速率γ↑流动粘度η↓ 大多数的高聚物属此类
《1》分子结构对 Tg 的影响
• 化学结构
有利于柔顺性的各种结构因素——Tg
Tg 与 Tm 的经验关系 对于对称结构的高聚物:
Tg k Tm k
1 2
对于不对称结构的高聚物: Tg k
Tm k
2 3
PMMA中正酯基碳原子数n对Tg的影响
n
1
2 65
3 35
4 21
―45
―41 ―60
―35 ~ +180
―35 ~ +175 ―40 ~ +150
聚二甲基硅氧烷
偏氟乙70 ~ +275
―50 ~ +300
3—1 玻璃化转变现象及Tg的测定
《2》玻璃化转变现象
许多物理性质在此发生转折 比容V 密度d 热膨胀系数α 比热C 粘度η 导热系数λ 动态力学损耗tgδ 折光指数n 模量E 介电常数ε 介质损耗tgδ
Tδ 50(10千赫) 38(5.59千赫)
6.7
苯基振荡或摇摆
§5 高聚物的粘性流动
5—1 高聚物粘性流动的特点
《1》流动机理——链段逐步位移 研究同系聚合物熔体 流动活化能ΔEη~主链C原子数n η 为熔体流动粘度
5—1
高聚物粘性流动的特点
《1》流动机理
5—1
高聚物粘性流动的特点
《1》流动机理
2—1
线型非晶态高聚物的三个力学状态
• 高弹态 :
* 模量小,105~7达因/厘米2 * 形变大,可达800%或更大 * 形变可逆、是一个松弛过程 * 为橡胶性状 分子运动机制: 分子链段解冻可以进行运动
2—1
线型非晶态高聚物的三个力学状态
• 粘流态:
* 模量极小可流动 * 形变很大 * 形变不可逆、是一个松弛过程 * 呈粘性流动状 分子运动机制:整个分子链解冻,可以运 动,使高分子链质量中心发生位移的运动
《1》分子结构对 Tg 的影响
• 交联——阻碍分子链段运动故 Tg • 共混——与两种均聚物的 Tg、相容性和 用量有关。相容性好显示一个Tg • 增塑剂——使聚合物Tg降低 低分子增塑剂具有很低的Tg
T g p T gp d T gd
Ф 为体积分数
交联作用对PS Tg的影响
二乙烯苯 % 0 Tg (℃) 87 交联点之间 平均链节数
108.3
87.5 293.3
5—1
高聚物粘性流动的特点
《2》高聚物流动不符合牛顿流体
牛顿流体:
σ=ηγ
σ—切应力 η—粘度 γ—剪切速率
5—1
高聚物粘性流动的特点
《2》高聚物流动不符合牛顿流体
5—1
高聚物粘性流动的特点
《2》高聚物流动不符合牛顿流体 高聚物的流动粘度η不是常数 • 假塑性流体——剪切变稀
3—4
玻璃化转变的多维性
• 玻璃化转变压力
3—4
玻璃化转变的多维性
• 玻璃化转变分子量
3—4
玻璃化转变的多维性
• 玻璃化转变频率
§4 高聚物的次级松弛
• 次级松弛——温度低于Tg的分子运动 • 次级松弛的命名—— α松弛、β松弛、γ松弛、δ松弛…… • 温度由高 低 • α松弛(次级松弛的主转变)—— 在 Tg 温度时的分子运动
〈3〉高分子链中的小运动单元 链节、键长、键角、侧基和支链 等的运动
§1
1—2
高聚物分子运动的特点
高分子分子运动的松弛特性
一个过程的完成需要一定的时间 热力学上称松弛过程 分子运动具有松弛特性
1—2 高分子分子运动的松弛特性
试验:拉伸某高聚物,拉伸长度为△X0 去除外力观察△X(T)随时间的变化。
2—2 线型晶态高聚物的力学状态 《1》结晶度<40 %
• 晶体部分较少主要组分为非晶态 • 宏观的力学状态同非晶高聚物 • 存在三种力学状态和二个转变温度
2—2 线型晶态高聚物的力学状态
《2》结晶度>40 %
晶区较多——形成连续结晶相——材料变硬 晶区熔融后的力学状态有二种情况:(???) • 分子量很大时:晶区熔融——进入高弹态 ——温度继续升高——进入粘流态 • 分子量不太大时:晶区熔融——直接进入 高弹态
《1》分子结构对 Tg 的影响
• 共聚——不同序列结构对 Tg 的影响不同
– 无规共聚 Tg 介于两均聚物 Tga 和 Tgb 之间 根据自由体积理论可得共聚物的 Gordon-Taylor 方程: