(补充讲义)一元一次方程 应用题专项培优训练(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程应用题专项培优训练

1.已知数轴上两点A,B对应的数分别为﹣1、3,点P为数轴上一动点.

(1)若点P到点A、点B的距离相等,写出点P对应的数;

(2)若点P到点A,B的距离之和为8,那么点P对应的数;

(3)点A,B分别以6个单位长度/分、4个单位长度/分的速度向右运动,同时P点以8个单位长度/分的速度从O点向左运动.当遇到A时,点P立刻以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?

2.为了拉动内需,某省启动“家电下乡”活动.某家电公司销售给农户的Ⅰ型冰箱和Ⅱ型冰箱在启动活动前的一个月共售出960台,启动活动后的第一个月销售给农户的Ⅰ型冰箱和Ⅱ型冰箱的销量分别比启动活动前一个月增长30%和25%,这两种型号的冰箱共售出1228台.

(1)在启动活动前的一个月,销售给农户的Ⅰ型冰箱和Ⅱ型冰箱分别为多少台?

(2)若Ⅰ型冰箱每台价格是3000元,Ⅱ型冰箱每台价格是2000元,根据“家电下乡”的有关政策,政府按每台冰箱价格的10%给购买冰箱的农户补贴.问:启动活动后的第一个月销售给农户的1228台Ⅰ型冰箱和Ⅱ型冰箱,政府共补贴了多少元?

3.一件工作,甲单独完成需5小时,乙单独完成需3小时,先由甲,乙两人合做1小时,再由乙单独完成剩余任务,共需多少小时完成任务?

4.为了庆祝商都正式营业,商都推出了两种购物方案,方案一:非会员购物所有商品价格可获得九五折优惠:方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.

(1)以x(元)表示商品价格,分别用含有x的式子表示出两种购物方案中支出金额.(2)若某人计划在商都买价格为5880元的电视机一台,请分析选择哪种方案更省钱?(3)哪种情况下,两种方案下支出金额相同?

5.某商城有两种不同型号的手机,甲手机为热销新产品,乙手机为抛售旧产品.将两种手机进行打折捆绑销售(以折扣价买一部甲手机同时要买一部乙手机),若每部售价均为a 元,则卖出甲手机商城盈利为进货价的20%,卖出乙手机商城亏损为进货价的20%.(1)如果a=1200元,那么甲手机的进货价元,乙手机的进货价为元.(2)若商城以毎部售价a元捆绑销售一次(甲、乙各卖出一部),商城是盈利还是亏损?请说明理由.(提示:用含a的代数式说明)

(3)已知甲手机标价为2000元,乙手机标价为1500元,且手机售价a元等于标价的8折.若商城同时出售甲、乙手机各一部,共盈利20%.问甲手机售价要调整到标价的几折?

6.某市出租车收费标准是:起步价为8元,3千米后每千米为2元,若某人乘坐了x(x>3)千米.

(1)用含x的代数式表示他应支付的车费.

(2)行驶30千米,应付车费多少钱?

(3)若他支付了36元,你能算出他乘坐的路程吗?

7.某校购买了A、B两种教具共138件,共花了5400元,其中A种教具每件30元,B种教具每件50元,两种教具各买了多少件?

8.甲乙两车间共120人,其中甲车间人数比乙车间人数的4倍少5人.

(1)求甲、乙两车间各有多少人?

(2)若从甲、乙两车间分别抽调工人,组成丙车间研制新产品,并使甲、乙、丙三个车间的人数比为13:4:7,那么甲、乙两车间要分别抽调多少工人?

9.乐乐家距离学校2800米,一天早晨,他以80米/分的速度上学,5分钟后乐乐的妈妈发现他忘了带数学书,妈妈立即以180米/分的速度去追乐乐,并且在途中追上了他.(1)妈妈追上乐乐用了多长时间?

(2)放学后乐乐仍以80米/分的速度回家,出发10分钟时,同学英树以280米/分的速度从学校出发骑自行车回家,乐乐家和英树家是邻居(两家距离忽略不计,两人路上互不等待,两人到家后不再外出),请问英树出发多长时间,两人相距300米?

10.某同学在A、B两家超市发现他看中的随身听的单价相同,书包的单价也相同.随身听和书包单价之和是452元,且随身听的单价是书包单价的4倍少8元.

(1)求该同学看中的随身听和书包的单价各是多少元?

(2)某假期,该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购满100元返购物券30元(销售不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说出他可以选择在哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?说明理由.

11.某人骑自行车锻炼,要在规定时间内到达目的地,若每小时行15千米,可早到24分钟;

若每小时行12千米,就迟到15分钟.

(1)求:规定的时间是多少小时?(用一元一次方程求解)

(2)他距离目的地有多远?

12.列一元一次方程解应用题:某小组计划做一批“中国结”,如果每人做5个,那么可比计划多做9个;如果每人做4个,那么将比计划少15个.问:他们计划做多少个“中国结”?

13.以下是两张不同类型火车的车票(“D××××次”表示动车,“G××××次”表示高铁):

(1)根据车票中的信息填空:该列动车和高铁是向而行(填“相”或“同”).(2)已知该动车和高铁的平均速度分别为200km/h、300km/h,两列火车的长度不计.

①经过测算,如果两列火车直达终点(即中途都不停靠任何站点),高铁比动车将早到1h,

求A、B两地之间的距离.

②在①中测算的数据基础上,已知A、B两地途中依次设有5个站点P1、P2、P3、P4、P5,

且AP1=P1P2=P2P3=P3P4=P4P5=P5B,动车每个站点都停靠,高铁只停靠P2、P4两个站点,两列火车在每个停靠站点都停留5min.求该列高铁追上动车的时刻.

14.小明用3天看完一本课外读物,第一天看了a页,第二天看的比第一天多50页,第三天看的比第二天少85页.

(1)用含a的代数式表示这本书的页数.

(2)当a=50时,这本书的页数是多少?

15.笔记本的单价是x元,圆珠笔的单价是y元.小红买3本笔记本,6支圆珠笔;小明买6本笔记本,3支圆珠笔.

(1)买这些笔记本和圆珠笔小红和小明一共花费多少元钱?

(2)若每本笔记本比每支圆珠笔贵2元,求小明比小红多花费了多少元钱?

16.某单位计划元旦组织员工到某地旅游,A、B两旅行社的服务质量相同,且到地的旅游价格都是每人300元,已知A旅行社表示可给每人七五折优惠,B旅行社可免去一人费用,其余八五折优惠.当该单位旅游人数为多少时,支付A、B两旅行社的总费用相同?

17.列方程解应用题:

一辆火车要以每秒20米的速度通过第一、第二两座铁桥(火车的长度忽略不计)过第二座铁桥比过第一座铁桥多50秒,已知铁桥的长度比第一座铁桥的长度的两倍短500米,求各铁桥的长.

相关文档
最新文档