小升初第三讲――专题训练之数论问题.(优选)
小升初专练-数论问题-带余除法通用版(含答案)
小升初专练-数论问题-带余除法【知识点归纳】如:16÷3=5…1,即16=5×3+1,此时,被除数除以除数出现了余数,我们称之为带余数的除法.一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r<b,使得a=q×b+r.当r=0时,我们称a能被b整除当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商).【常考题型】例1:所有被4除余1的两位数的和为( )A、1200B、1208C、1210D、1224E、1229分析:本题中,由整除的意义可知,除以4后余1的最小两位数是:12+1=13.除以4后余1的最大两位数是:96+1=97.由此我们想除以4后余1的两位数一共有多少个?即所有除以4后余1的数组成的数列:13+17+21+…+97的项数有多少?由题意知数列的公差是4,那么计算项数得:(97-13)÷4+1=22.然后利用公式求它们的和就行了.解:除以4后余1的最小两位数是:12+1=13,除以4后余1的最大两位数是:96+1=97,那么除以4后余1的两位数一共有:(97-13)÷4+1=22(个),所有除以4后余1的两位数的和为:13+17+21+…+97=(13+97)×22÷2=110×11=1210.答:一切除以4后余1的两位数的和是1210.故选:C.点评:本题考查余数的性质与等差数列求和.本题的解题关键是由除以4余1这一特点,想到满足条件的最小的两位数是13,最大的两位数是97,是一个公差为4的等差数列.例2:一本书如果每天读80页,那么4天读不完,5天又有余;如果每天读90页,那么3天读不完,4天又有余;如果每天读N页,恰好N(N是自然数)天读完,这本书是()页.分析:设页数为x,①由“一本书如果每天读80页,那么4天读不完,5天又有余”得320<x<400;②由“如果每天读90页,那么3天读不完,4天又有余”得270<x<360;③由①②得320<x <360.满足上述条件的只有n=18.320<18×18=324<36.解:设页数为x,①320<x<400;②270<x<360;③由①②得:320<x<360,满足上述条件的只有n=18.320<18×18=324<360.故答案为:324.点评:此题考查了带余除法的知识,以及分析问题的能力.【解题思路】对任意整数a,b且b≠0,存在唯一的数对q,r,使a=bq+r,其中0≤r<|b|.这个事实称为带余除法定理,是整除理论的基础.若c|a,c|b,则称c是a,b的公因数.若d是a,b的公因数,d≥0,且d可被a,b的任意公因数整除,则称d是a,b的最大公因数.若a,b的最大公因数等于1,则称a,b互素.累次利用带余除法可以求出a,b的最大公因数,这种方法常称为辗转相除法.又称欧几里得算法.一.选择题1.有四个自然数A、B、C、D,它们的和不超过400,并且A除以B商是5余5,A除以C商是6余6,A除以D商是7余7。
小升初思维训练专题:数论
思维训练专题数论该专题主要包括数的整除、数字的奇偶性、质数与合数、约数与倍数、余数问题、不定方程等几部分。
【例题1】从1~9 中选出5 个数字,组成1 个五位数,要求这个五位数能被选中的5 个数字的任何一个数字整除,却不能够被未选中的4 个数字的任何一个数字整除,那么,这个五位数的最小值是。
【练习1】一个自然数,它是5和7的倍数,并且被3除余1,满足这些条件的最小的自然数是_________种。
【例题2】以下由1、2构成的无穷数列有个有趣的特征,从第一项开始,把数字相同的项合成一个组,再按照顺序将每组的项数写下来,则这些数构成的无穷数列恰好是它自身。
这个数列被称为库拉库斯基数列。
按照这个特征,继续写出这个数列后8项(从第14项到第21项),如果已知这个数列的前50项的和为75,第50项为2,则可知第73项、74项、第75项、第76项分别为。
【练习2】能否从0、1、2、…、13、14这15个数中选出10个不同的数,填入圆圈中,使每两个用线相连的圆圈中的数所形成的差(大减小)各不相同?如能,给出一种填法;如不能,请说明理由。
【例题3】7 个连续的自然数,每个数都是合数,这7 个连续的自然数的和最小是。
【练习3】不全为零的两个自然数的公因数中的最大者,称作这两个数的最大公因数,如果不全为2个自然数的最大公因数为1,则称这两个数称为互素的或互质的,比如2与3互素,3与8互素;12与15不是互素的,因为它们的最大公因素是3。
不超过81的自然数中,有个数与81互素。
【例题4】像2,3,5,7 这样只能被1 和自身整除的大于1 的自然数叫做质数或素数。
将2015 分拆成100个质数之和,要求其中最大的质数尽可能小,那么这个最大质数是。
【练习4】若干个学生去买蛋糕,若每人买M块,则蛋糕店还剩下2块蛋糕;若每人买6块,则最后一名学生只能买1块蛋糕,那么蛋糕店共有蛋糕块。
【例题5】像2,3,5,7 这样的只能被1和自身整除的大于1的自然数叫做质数或者素数。
小升初专练-数论问题-不定方程的分析求解通用版(含答案)
小升初专练-数论问题-不定方程的分析求解【知识点归纳】1.不定方程的定义:不定方程,是指未知数的个数多于方程个数,且未知数受到某些限制(如要求是有理数、整数或正整数等等)的方程或方程组.2.一般是求解一次不定方程:关于ax+by=c的不定方程,(a,b)为a,b的最大公约数,如果有整数特解(x0,y0),则该方程所有整数解为:x=x0-kb÷(a,b),y=y0+ka÷(a,b),k为整数.例如:37x+107y=25的一组整数特解为(-8,3),(37,107)=1则其所有整数解:x=-8-107ky=3+37k.【经典题型】例1:某电视台在黄金时段的2分钟广告时间内,计划播长度为15秒和30秒的两种广告.15秒的广告每播一次收费0.6万元,30秒的广告每播一次收费1万元.若要求每种广告播放不少于两次,则电视台在播放时收益最大的播放方式是( )A、15秒的广告播放4次,30秒的广告播放2次B、15秒的广告播放2次,30秒的广告播放4次C、15秒的广告播放2次,30秒的广告播放3次D、15秒的广告播放3次,30秒的广告播放2次分析:本题中的等量关系:15秒×次数+30×次数=2×60,根据这个等量关系列出方程,然后再根据“要求每种广告播放不少于2次,则电视台在播放时收益最大”这个要求分析解的情况.解:设15秒的广告播x次,30秒的广告播y次.则15x+30y=120,因为每种广告播放不少于2次,所以x=2,y=3,或x=4,y=2;当x=2,y=3时,收益为:2×0.6+3×1=4.2(万元);当x=4,y=2时,收益为4×0.6+1×2=4.4(万元),所以电视台在播放时收益最大的播放方式是:15秒的广告播放4次,30秒的广告播放2次.故选:A.点评:解题关键是弄清题意,找到合适的等量关系,合理分析得出结论.一.填空题1.假期时,22名同学相约去划船,小船限乘4人,大船限乘6人,如果每条船都坐满,可以租 条小船和 条大船.2.现在有5角和1元硬币若干枚,面值总和共10元,5角和1元硬币各有 、 枚(写出所有可能).3.有127个乒乓球分装在大、小两种盒子里,大盒每盒装13个,小盒每盘装5个至少需要 个大盒子才能恰好把这些球装完4.小名准备去商店买3支装和5支装的铅笔64支,共有 种不同的买法.5.、都是自然数,如果,则 .6.两位老师带着40位同学去公园划船,大船每条坐4人,小船每条坐3人.租 条大船和 条小船正好坐满.(两种船都租).7.将一根长为374厘米的合金铝管截成若干根36厘米和24厘米两种型号的短管,加工损耗忽不计,问:剩余部分的管子最少是 厘米.8.二元一次方程有 个解,则正整数范围内的解是 .9.旅游团有29人到旅馆住宿,住3人间和2人间(每个房间不能有空床位),有 种不同的安排.10.一个质数的3倍与另一个质数的2倍之和等于200,这两个质数的和是 .11.如果一个长方形的长、宽都是整数(长与宽不相等).且周长与面积的数值相等,那么这个长方形的面积的数值等于 .12.数学测试卷有20道题.做对一道得7分;做错一道扣4分;不答得0分.张红得了100分,她有 道题没答.13.1分、2分、5分的硬币共20枚,总值0.50元,其中2分的硬币至少有 枚.14.每张方桌放有12个盘子,每张圆桌放有13个盘子,若共有盘子122个,则圆桌和方桌共有 张.15.晶晶有5元和2元两种人民币若干张.她要拿37元,有 种不同的拿法.16.若和均为质数,且,则 , .17.小强买彩色笔枝,付元,都是非0自然数),营业员说:“你如果多买8枝,我就总共收你8元,这相当于每买10枝你就可以便宜1元.”那么 枝, 元.18.月季花每盆5元,茉莉花每盆3元,如果两种花都买,买 盆月季花和 盆茉莉花共用27元...x y 133515x y +=x y +=27x y +=p q 3513135p q +=p =q =a m (a m a =m =19.某电视台在每天晚上黄金时段的3分钟内插播时长为20秒和40秒的两种广告,20秒广告每次收费7000元,40秒广告每次收费12000元,若要求每种广告播放不少于2次,且电视台选择益最大的播放式式,则在这一天黄金时段3分钟内插播广告的最大收益是 元.20.现有2元和5元的人民币,要凑成100元钱,有 种凑法.二.解答题21.16名同学去划船,可以怎样租船?先借助表格思考,再按要求填空.方案序号座位数正好坐满14条0条16234522.有19人到宾馆住宿,有三人间和两人间两种房型,本着节约的原则,每个房间不能有空床位,请你在如表中填写具体的安排.三人间间两人间间23.你玩过抱团游戏吗?游戏规则:可6人抱一堆,也可4人抱一堆.如果有38人,怎样抱团刚好一人也不剩下.请用自己的方式找出所有可能的方案,做到不重复、不遗漏.24.学校28名学生去公园划船,有两种船可供选择,小船每条可坐4人,大船每条可坐6人,如果每条船都坐满,可以怎样租船?请设计租船方案,并填入下表.租船方案大船小船方案一 条 条方案二 条 条//方案三 条 条25.解方程.①;②求方程的正整数解.26.小明要买一本49元的书,他手上有贰元和伍元的纸币各10张.请问他有几种付钱方法?(不用找钱)27.一群林场工人与学生一起在去年冬天挖好的坑中植树,平均1名林场工人1小时可植树15棵,1名学生1小时可植树11棵.但是,当树苗与肥料运来时,林场工人的五分之一和学生的五分之一必须停止植树去帮助卸运树苗和肥料.这天,共植树8小时,其中第一小时和最后一小时有树苗,肥料运来,结果共植树3382棵.那么林场工人和学生的人数分别是多少?28.晓丽有50元和20元的纸币若干张,她要拿出270元,有多少种不同的拿法?29.点燃的蜡烛每分钟燃烧的长度一定,长为的蜡烛,六点燃10分钟,还剩下,设点燃分钟,蜡烛还剩下,求:(1)与之间的表达式;(2)此蜡烛点燃20分钟后还剩下多少?(3)几分钟能燃烧完?30.某人打靶,8发打了53环,全部命中在10环、7环和5环.他命中10环、7环和5环各几发?31.38人去划船,有两种船可租.一种小船限坐4人,另一种小船可坐6人,有多少种不同的安排?(正好坐满)32.王老师在新华书店购买《童话精选》和《科学家的故事》一共用了116元钱.这两种书各买了多少本?33.取哪些整数时,关于的方程的解介于2和5之间?34.已知、是正整数,的度数等于,的度数等于,且、互为补角,求、所能取的所有值的和.35.某地收取电费的标准是:每月用电不超过50度,每度收5角;如果超过50度,超出部分按每度411154220x ⨯-=7543x y +=21cm 18cm x ycm y x k x 332x k x -=+x y 1∠35x +2∠32y -1∠2∠x y8角收费.某月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?36.有两轮车和三轮车,共有31个轮子,两轮车和三轮车各几辆?小升初专练-数论问题-不定方程的分析求解参考答案一.填空题1.解:,即可以租1条大船和4条小船;,即可以租3条大船和1条小船;答:可以租1条大船和4条小船,或可以租3条大船和1条小船.答案:4(或(或.2.解:设5角硬币有枚,1元硬币有枚,为偶数,如果,则;如果,则;如果,则;如果,则;如果,则;如果,则;如果,则;如果,则;如果,则;如果,则;如果,则;答案:、2、4、6、8、10、12、14、16、18、;、9、8、7、6、5、4、3、2、1、.3.解:设大盒有个,小盒有个,226144=⨯+⨯226341=⨯+⨯1)13)x y 0.510x y +=100.5y x=-x 0x =10y =2x =9y =4x =8y =6x =7y =8x =6y =10x =5y =12x =4y =14x =3y =16x =2y =18x =1y =20x =0y =(020)(100)x y 135127x y +=127513yx -=因为都是整数,所以必须是13的倍数,所以,是这个方程的整数解,即大盒有9个,小盒有2个。
小升初专练-数论问题-数的整除特征通用版(含答案)
小升初专练-数论问题-数的整除特征【知识点归纳】整除是整数问题中一个重要的基本概念.如果整数a除以自然数b,商是整数且余数为0,我们就说a能被b整除,或b能整除a,或b整除a,记作b丨a.此时,b是a的一个因数(约数),a是b 的倍数数的整除特征(1)能被2整除的数的特征:如果一个整数的个位数是偶数,那么它必能被2整除.(2)能被5整除的数的特征:如果一个整数的个位数字是0或5,那么它必能被5整除.(3)能被3(或9)整除的数的特征:如果一个整数的各位数字之和能被3(或9)整除,那么它必能被3(或9)整除.(4)能被4(或25)整除的数的特征:如果一个整数的末两位数能被4(或25)整除,那么它必能被4(或25)整除.(5)能被8(或125)整除的数的特征:如果一个整数的末三位数能被8(或125)整除,那么它必能被8(或125)整除.(6)能被11整除的数的特征:如果一个整数的奇数位数字之和与偶数位数字之和的差(大减小)能被11整除,那么它必能被11整除.【经典题型】例1:下列4个数都是六位数,A是大于0小于10的自然数,B是0,一定能同时被2、3、5整除的数是( )A、AAABAAB、ABABABC、ABBABBD、ABBABA 分析:这个六数个位上的数字是0,能被2和5整除,不管A是比10小的哪个自然数,A+A+A的和一定是3的倍数,所以ABABAB一定能被3整除解:B=0,ABABAB能被2和5整除,A+A+A的和一定是3的倍数,ABABAB也一定能被3整除,故选:B.点评:此题主要考查能被2、3、5整除的数的特征:一个数个位上是0或5,这个数就能被5整除;个位是0、2、4、6、8的数能倍2整除;一个数各数位上的数字之和是3的倍数,这个数就能被3整除.【常考题型】例2:有一个四位数3AA1能被9整除,A是().分析:已知四位数3AA1能被9整除,那么它的数字和(3+A+A+1)一定是9的倍数然后再根据题意进一步解答即可.因为A是一个数字,只能是0、1、2、3、…、9中的某一个整数,最大值只能是9.若A=9,那么3+A+A+1=22,22<27,所以3AA1的各位数字和只能是9的1倍或2倍,即9或18.解:根据题意可得:四位数3AA1,它能被9整除,那么它的数字和(3+A+A+1)一定是9的倍数;因为A是一个数字,只能是0、1、2、3、…、9中的某一个整数,最大值只能是9;若A=9,那么3+A+A+1=3+9+9+1=22,22<27,所以,3AA1的各位数字和只能是9的1倍或2倍,即9或18;当3+A+A+1=9时,A=2.5,不合题意;当3+A+A+1=18时,A=7,符合题意;所以,A代表7,这个四位数是3771.答:A是7,故答案为:7.点评:本题主要考查能被9整除数的特征,即一个数能被9整除,那么这个数的数字和一定是9的倍数,然后在进一步解答即可.一.选择题1.下面四个数都是六位数,N是比10小的自然数,S是0,一定能被3和5整除的数是( )A.NNNSNN B.NSNSNS C.NSSNSS D.NSSNSN2.某班有一个小图书馆,共有300多本,从1开始,图书按自然数的顺序编号,即1,2,3…,小光看了这图书馆里都被2,3和8整除的书号,共16本,这个图书馆里至少有( )本图书.A.381B.382C.383D.3843.四位数同时是2、3和5的倍数,第一个里最大能填( )A.9B.8C.7D.64.用0,3,4,5四个数字组成的所有四位数都能被( )整除.A.2B.3C.55.用1~8八个数字组成两个四位数,每个数字只用1次.已知两个四位数都是9的整数倍,则两个四位数的差的最大值为( )A.5286B.4184C.7531D.70656.下列各数中是11的倍数的是( )A.75087B.117208C.632599D.4563517.从1,2,3,4,5这五个数字中选取四个组成一个四位数,使它能同时被3、5、7整除,这个四位数是( )A.1235B.1245C.2415二.填空题8.有一个号码是六位数,前四位是2857,后两位忘记了,但是这个六位数能被11和13整除,那么这个号码是 。
小升初数论专项训练数学
小升初数论专项训练数学数论是数学中的一个重要分支,它研究整数的性质和整数之间的关系。
对于小升初的学生来说,掌握数论的基础知识和解题技巧对于提高数学能力至关重要。
以下是一些数论专项训练的内容,帮助学生在小升初考试中取得好成绩。
1. 整数的奇偶性- 奇数与偶数:整数可以被分为奇数和偶数。
奇数是不能被2整除的整数,而偶数是能被2整除的整数。
- 奇偶性的性质:奇数加奇数等于偶数,偶数加偶数也等于偶数,奇数加偶数等于奇数。
2. 整数的因数与倍数- 因数:如果整数a能被b整除,那么b就是a的一个因数。
- 倍数:如果整数a是b的倍数,那么b是a的一个因数。
- 质因数分解:将一个合数分解成几个质数相乘的形式。
3. 最大公约数与最小公倍数- 最大公约数(GCD):两个或多个整数共有约数中最大的一个。
- 最小公倍数(LCM):两个或多个整数的公倍数中最小的一个。
- 求法:使用辗转相除法求最大公约数,用两个数的乘积除以它们的最大公约数得到最小公倍数。
4. 素数与合数- 素数:大于1的自然数,且除了1和它本身外,不能被其他自然数整除的数。
- 合数:大于1的自然数,除了1和它本身外,还能被其他自然数整除的数。
5. 整数的整除规则- 2的整除规则:末位为0, 2, 4, 6, 8的数能被2整除。
- 3的整除规则:各位数字之和能被3整除的数能被3整除。
- 5的整除规则:末位为0或5的数能被5整除。
- 9的整除规则:各位数字之和能被9整除的数能被9整除。
6. 同余与同余方程- 同余:如果两个整数a和b除以同一个正整数m后,得到的余数相同,那么a和b关于m同余。
- 同余方程:形如ax ≡ b (mod m)的方程。
7. 中国剩余定理- 定理内容:如果m1, m2, ..., mk是两两互质的正整数,那么对于任意的整数a1, a2, ..., ak,存在唯一的整数x,使得x ≡ ai (mod mi),对所有的i。
8. 数字的位值问题- 位值:数字在不同数位上代表的值不同,例如在十进制中,100代表1个百和0个十与个位。
小升初真题之数论篇(含答案)
小升初真题之数论篇数论篇一1 (人大附中考题)有____个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。
2 (101中学考题)如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数是__。
3(人大附中考题)甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____。
4 (人大附中考题)下列数不是八进制数的是( )A、125B、126C、127D、128预测1.在1~100这100个自然数中,所有不能被9整除的数的和是多少?预测2.有甲、乙、丙三个网站,甲网站每3天更新一次,乙网站每五5天更新一次,丙网站每7天更新一次。
2004年元旦三个网站同时更新,下一次同时更新是在____月____日?预测3、从左向右编号为1至1991号的1991名同学排成一行.从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的同学留下,其余的同学出列;留下的同学第三次从左向右1至1l报数,报到11的同学留下,其余同学出列.那么最后留下的同学中,从左边数第一个人的最初编号是______.数论篇二1 (清华附中考题)有3个吉利数888,518,666,用它们分别除以同一个自然数,所得的余数依次为a,a+7,a+10,则这个自然数是_____.2 (三帆中学考题)140,225,293被某大于1的自然数除,所得余数都相同。
2002除以这个自然数的余数是 .3 (人大附中考题)某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______.4 (101中学考题)一个八位数,它被3除余1,被4除余2,被11恰好整除,已知这个八位数的前6位是257633,那么它的后两位数字是__________。
5 (实验中学考题)(1)从1到3998这3998个自然数中,有多少个能被4整除?(2)从1到3998这3998个自然数中,有多少个各位数字之和能被4整除?预测1. 如果1=1!,1×2=2!,1×2×3=3!……1×2×3×……×99×100=100!那么1!+2!+3!+……+100!的个位数字是多少?预测2.(★★★★)公共汽车票的号码是一个六位数,若一张车票的号码的前3个数字之和等于后3个数字之和,则称这张车票是幸运的。
小升初数学备考之——数论篇
小升初数学备考之——数论篇在小升初数学择校考试中,我们通常将其内容分为五大板块:计算问题、数论问题、几何问题、应用题以及数学原理类问题。
那么,什么是数论呢?数论最初是从研究整数开始的,所以叫做整数论。
后来整数论又进一步发展,就叫做数论了。
确切的说,数论就是一门研究整数性质的学科。
数论在数学中的地位是独特的,高斯曾经说过“数学是科学的皇后,数论是数学中的皇冠”。
翻开任何一本数学辅导书,数论的内容都占据了不少的版面。
在小升初择校考试及小学各类数学竞赛中,直接运用数论知识解题的题目分值大概占据整张试卷总分的12%左右,命题老师喜欢将数论题作为区分尖子生和普通学生的依据,这一部分学习的好坏将直接决定学生是否可以在选拔考试中拿到满意的分数。
既然数论知识这么重要,那么,在小升初择校考试中,同学们在数论问题上的得分率如何呢?从近几年武汉市某些学校小升初试卷来看,数论问题在五大板块内容中得分率较低,得分率38.5%左右。
目前小学阶段的数论知识考点主要有哪些呢?它们真的就这么难吗?小学阶段的数论知识点主要有:整除及整除特征、奇偶性、极值问题;因数倍数、质数与合数、分解质因数;带余除法、同余性质、中国剩余定理、乘方等。
下面我们就从近年来武汉市各重点学校小升初择校试题来看看这些知识的难度究竟如何吧!小升初试题选讲(一)①从0、4、2、5四个数字中选出三个组成一些能够同时被2、3、5整除的三位数,其中最小的三位数是()。
【2009年武汉市十一中试题】②期末考试六年级(1)班数学平均分是90分,总分是□95□,这个班共有()名学生。
【2008年水二中试题】③如果形如“2□1□”的四位数能被9整除,那么这样的四位数有()个。
【2010年武珞路中学试题】④一个五位数,如果去掉万位和个位上的数字,就是一个能被2、3、5同时整除的最小三位数,在满足条件的这些五位数中,能被11整除的最大的一个数是()。
【2008年武钢实验学校试题】这类题型主要考察数的整除特征。
北师大版小升初数学专项解析习题数论篇
小升初重点中学真题之数论篇数论篇一1 (人大附中考题)有____个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。
2 (101中学考题)如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数是__。
3(人大附中考题)甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____。
4 (人大附中考题)下列数不是八进制数的是( )A、125B、126C、127D、128预测1.在1~100这100个自然数中,所有不能被9整除的数的和是多少?预测2.有甲、乙、丙三个网站,甲网站每3天更新一次,乙网站每五5天更新一次,丙网站每7天更新一次。
2004年元旦三个网站同时更新,下一次同时更新是在____月____日?预测3、从左向右编号为1至1991号的1991名同学排成一行.从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的同学留下,其余的同学出列;留下的同学第三次从左向右1至1l报数,报到11的同学留下,其余同学出列.那么最后留下的同学中,从左边数第一个人的最初编号是______.数论篇二1 (清华附中考题)有3个吉利数888,518,666,用它们分别除以同一个自然数,所得的余数依次为a,a+7,a+10,则这个自然数是_____.2 (三帆中学考题)140,225,293被某大于1的自然数除,所得余数都相同。
2002除以这个自然数的余数是 .3 (人大附中考题)某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______.4 (101中学考题)一个八位数,它被3除余1,被4除余2,被11恰好整除,已知这个八位数的前6位是257633,那么它的后两位数字是__________。
5 (实验中学考题)(1)从1到3998这3998个自然数中,有多少个能被4整除?(2)从1到3998这3998个自然数中,有多少个各位数字之和能被4整除?预测1. 如果1=1!,1×2=2!,1×2×3=3!……1×2×3×……×99×100=100!那么1!+2!+3!+……+100!的个位数字是多少?预测2.(★★★★)公共汽车票的号码是一个六位数,若一张车票的号码的前3个数字之和等于后3个数字之和,则称这张车票是幸运的。
六年级数学小升初专题训练-第3节-数论拓展人教新课标含答案
第3节:数论拓展模块一:数位问题我们通常使用的是十进制计数法,其特点是“满十进一”。
.这样,数字0?9可以组成无穷无尽、千变万化的数。
数字的数值、数位的变化,决定不同的数.同一个数字,由于它在所写的数里的位置不同,所表示的数也不同.也就是说,每一个数字除了本身的值以外,还有一个“位置值。
例如“5”,写在个位上,就表示 5个一;写在十位上,就表示5个十;写在百位上,就表示5个百,等等。
根据以上原则,我们可以将数写成另一种形式,例如:926表示9个百,2个十,6个一,即926=9×100+2×10+6×1。
11.3表示1个十,1个一,3个0.1,即11.3=1×10+1×1+3×0.1。
有时,我们也用字母代替阿拉伯数字表示数,如:abc表示a个百,b个十,c个一。
其中,a可以是1?9中的数字,不能是0;b和c是0?9中的数字。
【例1】有一个小数,先把它的小数点向左移动2004位后,再向右移动2005位,结果是40.3,原来的小数是。
【例2】小李在某个三位数的最左边添上了一个数字1,得到一个新的四位数,且这个数是原数的9倍,那么原来的三位数是。
【例3】一个三位数,三个数位上的数字和为16,百位上的数字比十位上的数字小1,个位上的数字比十位上的数字大2,则十位上的数字是()A.4B.5C.61.有这样的一类三位数:个位和百位上的数字交换后仍然是这个数,这样的三位数共有()个。
A.10B.9C.902.—个两位数,它个位上的数字是m,十位上的数字是n,用含有字母的式子表示这个两位数是()A.mn B.10m n C.10n m3.一个数的小数点向右移动一位后比原来的数大25.2,原数是。
4.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为()。
A.54B.27C.72D.455.—个自然数各个数位上的数之和是16,而且各数位上的数字都不相同。
小升初数学专项解析+习题-数论篇-通用版13页
小升初重点中学真题之数论篇数论篇一1 (人大附中考题)有____个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。
2 (101中学考题)如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原的数的9倍,问这个两位数是__。
3(人大附中考题)甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____。
4 (人大附中考题)下列数不是八进制数的是( )A、125B、126C、127D、128预测1.在1~100这100个自然数中,所有不能被9整除的数的和是多少?预测2.有甲、乙、丙三个网站,甲网站每3天更新一次,乙网站每五5天更新一次,丙网站每7天更新一次。
2004年元旦三个网站同时更新,下一次同时更新是在____月____日?预测3、从左向右编号为1至1991号的1991名同学排成一行.从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的同学留下,其余的同学出列;留下的同学第三次从左向右1至1l报数,报到11的同学留下,其余同学出列.那么最后留下的同学中,从左边数第一个人的最初编号是______.数论篇二1 (清华附中考题)有3个吉利数888,518,666,用它们分别除以同一个自然数,所得的余数依次为a,a+7,a+10,则这个自然数是_____.2 (三帆中学考题)140,225,293被某大于1的自然数除,所得余数都相同。
2002除以这个自然数的余数是 .3 (人大附中考题)某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______.4 (101中学考题)一个八位数,它被3除余1,被4除余2,被11恰好整除,已知这个八位数的前6位是257633,那么它的后两位数字是__________。
5 (实验中学考题)(1)从1到3998这3998个自然数中,有多少个能被4整除?(2)从1到3998这3998个自然数中,有多少个各位数字之和能被4整除?预测1. 如果1=1!,1×2=2!,1×2×3=3!……1×2×3×……×99×100=100!那么1!+2!+3!+……+100!的个位数字是多少?预测2.(★★★★)公共汽车票的号码是一个六位数,若一张车票的号码的前3个数字之和等于后3个数字之和,则称这张车票是幸运的。
小升初真题之数论篇(含答案)
小升初真题之数论篇(含答案)小升初真题之数论篇数论篇一1 (人大附中考题)有____个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。
2 (101中学考题)如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数是__。
3(人大附中考题)甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____。
4 (人大附中考题)下列数不是八进制数的是( )A、125B、126C、127D、128预测1.在1~100这100个自然数中,所有不能被9整除的数的和是多少?预测2.有甲、乙、丙三个网站,甲网站每3天更新一次,乙网站每五5天更新一次,丙网站每7天更新一次。
2004年元旦三个网站同时更新,下一次同时更新是在____月____日?预测3、从左向右编号为1至1991号的1991名同学排成一行.从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的同学留下,其余的同学出列;留下的同学第三次从左向右1至1l报数,报到11的同学留下,其余同学出列.那么最后留下的同学中,从左边数第一个人的最初编号是______.数论篇二1 (清华附中考题)有3个吉利数888,518,666,用它们分别除以同一个自然数,所得的余数依次为a,a+7,a+10,则这个自然数是_____.2 (三帆中学考题)140,225,293被某大于1的自然数除,所得余数都相同。
2002除以这个自然数的余数是 .3 (人大附中考题)某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______.4 (101中学考题)一个八位数,它被3除余1,被4除余2,被11恰好整除,已知这个八位数的前6位是257633,那么它的后两位数字是__________。
小升初专练-数论问题-奇偶性问题通用版(含答案)
小升初专练-数论问题-奇偶性问题【知识点归纳】主要用到的知识点:1.奇数±奇数=偶数;偶数±偶数=偶数;奇数±偶数=奇数;偶数±奇数=奇数.2.奇数个奇数的和(或差)为奇数,偶数个奇数的和(或差)为偶数,任意多个偶数的和(或差)为偶数.3.奇数×奇数=奇数;偶数×偶数=偶数;奇数×偶数=偶数.4.若干个数相乘,其中有一个因数是偶数,则积为偶数;如果所有的因数都是奇数,则积为奇数.5.偶数的平方能被4整除,奇数的平方被4除余1.【常考题型】例1:一个偶数,各个数位上的数字之和是24,这个数最小是().分析:根据自然数的组成规律可和,一个自然数位数越少,其值就越小,由于这个偶数的各位数之和为24,24÷2=12,24÷3=8,所以这个自然数位数最少可为3位数.由于三个数位数字的平均数为8,则其则这三个数可为8,或7、8、9.而要求这个数最小可为几,一个数高位上的数越小,其值就越小,所以其百位可为7,由于是偶数,个数为8,由此可知,这个数为798.解:由于这个偶数的各位数之各为24,24÷2=12,24÷3=8,所以这个自然数位数最少可为3位数.三个数位数字的平均数为8,则其则这三个数可全为8,或7、8、9.要求这个数最小可为几,所以其百位可为7,由于是偶数,个数为8,由此可知,这个数为798.故答案为:798.点评:了解自然数的组成规律及数位知识是完成本题的关键.一.选择题1.×2的乘积一定不是( )A.奇数B.偶数C.合数2.M是一个奇数,N是一个偶数,下面( )的值一定是奇数.A.4M+3N B.3M+2N C.2M+7N D.2(M+N)3.x与y均为非零自然数,其中x既不是质数也不是合数,y是奇数,那么x与y的和一定是( )A.偶数B.质数C.奇数D.无法确定4.2004个连续自然数的和是( )A.奇数B.偶数C.可能是奇数,也可能是偶数5.3□□×24的积( )A.是奇数B.是偶数C.可能是奇数,可能是偶数6.下面的4个数中,只有一个数是连续自然数的乘积,它是( )A.285B.169C.342D.214二.填空题7.1+3+5+…+97+99的和是 数;147×289×303×210×43的积是 数。
小升初奥数专项之数论(含答案)
小升初奥数专项之数论(含答案)姓名: 日期:1、如图,有个正方体木块,每个面各写了一个自然数,并且相对的两个面上的两个数之和相等,现在只能看见三个面上写的数,如果看不见的各面上写的都是质数,那么这三个质数的和是 .解析:57对面的数应该是2,所以另外两个数为57+2-6=53,57+2-12=47,这三个数的和为2+53+47=1022、已知a 是质数,b 是偶数,且a 2+b=2008,则a+b+1= .解析:2008-偶数=偶数,所以a=2,b=2008-22=2004,a+b+1=2+2004+1=20073、若自然数p ,2p+1,4p+1都是素数,那么8P 5+55=?解析:p=3,8×35+55=19994、用285、5615、2120分别去除某一个分数,所得的商都是整数,这个分数最小是 . 解析:[528,1556,2021]= [5,15,20]{28,56,21}=6075、有一个电子闹钟每走9分钟亮一次灯,每到整点响一次,中午12时电子钟既响铃又亮灯.下一次既响铃又亮灯是几时?解析:[9,60]=180,需要3小时,所以下一次是下午15点6、黑板上写有一串数:1、2、3、…、2011、2012,任意擦去几个数,并写上被擦去的几个数的和被11除所得的余数,如:擦去8、9、10、11、12,因为(8+9+10+11+12)÷11=4…6,于是写上6,这样操作下去,一直到黑板上只剩下一个数,则这个数是.解析:一次性全部擦掉,(1+2+3+……+2012)÷11,余数为0,所以剩下07、被3除余2,被4除余3,被5除余4的最小的数是.解析:[3,4,5]-1=598、二进制数(101)2可用十进制表示为1×22+0×2+1=5,二进制(1011)2可用十进制表示为1×23+0×22+1×2+1=11,那么二进制数(11011)2用十进制表示为()A.25 B.27 C.29 D.31解析:16+8+2+1=27,选择B9、右图是一张靶纸,靶纸上的1、3、5、7、9表示射中该靶区的分数.甲说:我打了六枪,每枪都中靶得分,共得了27分.乙说:我打了3枪,每枪都中靶得分,共得了27分.已知甲、乙两人中有一人说的是真话,那么说假话的是.解析:甲,因为得分全是奇数,偶数枪的和为偶数,奇数枪的和为奇数10、一个整数a与1080的乘积是个完全平方数,这a的最小值是.解析:1080=23×33×5,a至少为2×3×5=3011、求最小的正整数n,值得2006+7n是完全平方数。
小升初数学专题:数论问题
二、分解质因数:指的就是把一个合数表示成质数乘积的形式的过程。
唯一分解定理:N a1p1 a2p2 a3p3 an pn (a1、a2an为N不同的质因数)
那么N的因数个数n=(1+p1)×(1+p2) × …(1+pn) 三、辗转相除法
辗转相除法主要针对两个较大数求最大公因数而言的。 就是用其中较大数除以较小数,得余数r1;接下来每一步都用上一步的除数除以余
例8. 商店有6箱货物,分别重15千克、16千克、18千克、19千克、 20千克、31千克,两个顾客买走了其中的5箱,其中一个顾客 买走的货物质量是另一个顾客的2倍,那么商店剩下的这箱货物 重多少千克?
解析
因为拿走的一定是3的倍数,把所有的数加起来,再减去 20才是3的倍数,所以,剩下的是20千克。 15+16+18+19+20+31=119千克 1+1+9=11 11不是3的倍数, 11-2=9 , 9是3的倍数。 答:剩下的是20千克。
每个算式中,每次商减一,余数就增加一个 除数,这样可以得到同余是“9”,再求4、5、 7的最小公倍数是140,再加9等于149。
例5. 要使185× 84× 135× 52× ( )乘积的末五位数都是0, ( )中应填入的自然数最小值 是多少?
解析
要使乘积末五位都是0,就要使这五个因数中有5个2 和5个5。所以要把这四个数分解质因数,看缺少几 个5和几个2,括号里就填出它们的乘积。
例10. 某校2012年的学生人数 是个完全平方数,2013年的 学生人数比上一年多101人, 这个数字也是一个完全平方 数。该校2013年的学生人数 是多少人?
解析
设2012有学生X 2 人,2013年有学生 Y 2人,
小升初数学专项解析+习题-数论篇(附答案).doc
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】小升初重点中学真题之数论篇数论篇一1 (人大附中考题)有____个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。
2 (101中学考题)如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数是__。
3(人大附中考题)甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____。
4 (人大附中考题)下列数不是八进制数的是( )A、125B、126C、127D、128预测1.在1~100这100个自然数中,所有不能被9整除的数的和是多少?预测2.有甲、乙、丙三个网站,甲网站每3天更新一次,乙网站每五5天更新一次,丙网站每7天更新一次。
2004年元旦三个网站同时更新,下一次同时更新是在____月____日?预测3、从左向右编号为1至1991号的1991名同学排成一行.从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的同学留下,其余的同学出列;留下的同学第三次从左向右1至1l报数,报到11的同学留下,其余同学出列.那么最后留下的同学中,从左边数第一个人的最初编号是______.数论篇二1 (清华附中考题)有3个吉利数888,518,666,用它们分别除以同一个自然数,所得的余数依次为a,a+7,a+10,则这个自然数是_____.2 (三帆中学考题)140,225,293被某大于1的自然数除,所得余数都相同。
2002除以这个自然数的余数是 .3 (人大附中考题)某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______.4 (101中学考题)一个八位数,它被3除余1,被4除余2,被11恰好整除,已知这个八位数的前6位是257633,那么它的后两位数字是__________。
小升初专练数论问题《等量关系和方程通用版》(含答案)
小升初专练-数论问题-等量关系和方程【知识点归纳】等量关系怎么找:1.先读懂题,大的等量关系就在条件中2.若是条件复杂的等量关系,在大的等量关系中出现不止一个未知数,要通过其他小的等量关系去解决例如A×B=N×X(其中X为终极未知数,N是已知数,那么AB都是可以先求出来的未知数)我们可以通过A+M=B×K(M,K可以是已知数或者M,K存在关系)那么可以通过M和K求出A和B进而求出X.【经典题型】例1:有8个球编号是①至⑧,其中有6个球一样重,另外两个球都轻1克.为了找出这两个轻球,用天平称了3次.结果如下:第一次:①+②比③+④重;第二次:⑤+⑥比⑦+⑧轻;第三次:①+③+⑤与②+④+⑧一样重.两个轻球分别是.( )A、①④B、③⑧C、②⑤D、④⑤分析】由①+②比③+④重可知③与④中至少有一个轻球,由⑤+⑥比⑦+⑧轻可知⑤与⑥至少有一个轻球,①+③+⑤和②+④+⑧一样重可知两个轻球的编号是④⑤解:因为①+②比③+④重,所以③与④中至少有一个轻球,因为⑤+⑥比⑦+⑧轻,所以⑤与⑥至少有一个轻球,因为①+③+⑤和②+④+⑧一样重,可知两个轻球的编号是④⑤;故选:D.点评:本题考查的是等式的性质:等式的两边加(或减)同一个数(或式子)结果仍相等;等式的两边同乘(或除以)同一个数(除数不为0)结果仍相等.例2:如图,一根1米长的竹竿,在它的左端挂1千克的物体,右端挂4千克的物体时,如果处于平衡状态,那么拴绳子的点0应位于离左端()米的地方.分析:由题意并结合杠杆的平衡原理可得:左端物体的重量×距O点的距离=右端物体的重量×距O 点的距离,由此可设拴绳子的点0应位于离左端x米的地方,则距右端就是(1-x)米,利用得到的等量关系式列方程解答即可.解:设拴绳子的点0应位于离左端x米的地方,则距右端就是(1-x)米,由题意得:1×x=4×(1-x)x=4-4x5x=4x=0.8答:拴绳子的点0应位于离左端0.8米的地方.故答案为:0.8.点评:本题考查杠杆的平衡条件的应用,找出等量关系是解答的关键.一.选择题1.下面关于时间、速度、路程的关系式正确的是( )A.时间=速度÷路程B.时间=路程÷速度C.时间=路程×速度2.水果店上午运来4000千克水果,其中苹果占30%,如果下午又运来一批苹果,这时两次运来的苹果总重量占两次运来的水果总重量的,问下午又运来( )千克苹果.A.1200B.4000C.7200D.10000二.填空题3. ○时间=路程总价○数量= ○时间=工作总量总产量○数量= .4.如果桃树的棵数比梨树的棵数多80棵,那么 的棵数○ = 的棵数.5.小明x岁,爸爸40岁,父子俩相差28岁.用方程表示数量关系是 .6.某数减去7剩下的再乘以7,所得的结果与先减去11剩下的再乘以11的结果相同,这个数是 .7.地砖块数=地面面积÷ 面积=每行块数×每列块数8.工作总量÷ =时间 × =总价;单产量× =总产量 速度× =路程;总产量÷ =数量 速度= ÷ ;时间= ÷工效 工效= ÷ .9.体育老师到商店买6个足球和3个篮球,要付381元;买10个足球和5个篮球则要付 元.10.如图,一根1米长的竹竿,在它的左端挂1千克的物体,右端挂4千克的物体时,如果处于平衡状态,那么拴绳子的点0应位于离左端 米的地方.11.用方程表示下列数量关系.A.43等于x减去6: ;B.一瓶果汁x元,5瓶果汁10元: C.一个长方形的面积是80平方米,长是16米,宽是x米: .三.应用题12.三月植树好时节,星河小学原计划栽杨树、柳树和樟树共1500棵。
小升初数论重点考查内容————(余数问题——余数三宝)(优选.)
最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改赠人玫瑰,手留余香。
小升初数论重点考查内容【例】一个数除以4余2,除以5余3,则这个数最小是?【例】一个数除以3余2,除以4余1,则这个数最小是?(★★★)两位自然数ab与ba除以7都余1,并且a>b,求ab ba(★★★) (2005年全国小学数学奥林匹克试题)有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是________。
(★★★) (2008年第十二届香港保良局小学数学世界邀请赛个人赛)试求22008+20082除以7的余数。
(★★★)(2009年第十届中环杯五年级试题)有一个数除以3余数是2,除以5余数是3,那么这个数除以15的余数是( )(★★★★)(1998年小学数学奥林匹克预赛B卷)一个小于200的数,它除以11余8,除以13余10,那么这个数是______。
(★★★★)( 1998年小学数学奥林匹克预赛)某数除以11余8,除以13余10,除以17余12,那么这个数的最小可能值是______。
在线测试题温馨提示:请在线作答,以便及时反馈孩子的薄弱环节!1.有一个大于1的整数,除45,59,101所得的余数相同,这个数最小是_____。
A.2 B.7 C.14 D.282.六张卡片上分别标上2357、2367、4143、1419、2485、8465六个数,甲取4张,乙取1张,丙取1张,结果发现甲的和是乙的和的8倍,则丙手中卡片上的数是________。
A.2357 B.2485 C.8465 D.4143 3.试求20113除以5的余数。
32011A.1B.2C.3D.44.一个大于10的自然数被4除余2,被7除余3,求符合条件的最小自然数。
A.10B.38C.66D.285.一个自然数,它除以5余2,除以10余7,那么这个数最小是______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初专项训练---数论数论在数学中的地位是独特的,高斯曾经说过“数学是科学的皇后,数论是数学中的皇冠”。
翻开任何一本数学辅导书,数论的内容都占据了不少的版面。
在小升初择校考试及小学各类数学竞赛中,直接运用数论知识解题的题目分值大概占据整张试卷总分的12%左右,小学阶段的数论知识点主要有:1、质数与合数、因数与倍数、分解质因数2、数的整除特征及整除性质3、余数的性质、同余问题4、位值原理5、最值问题知识点一:质数与合数、因数与倍数、分解质因数1.质数与合数突破要点——质数合数分清楚,2是唯一偶质数(1)质数:一个数除了1和它本身以外,没有其他的因数,这样的数统称质数。
(2)合数:一个数除了1和它本身以外,还有其他的因数,这样的数统称合数。
例如:4、6、8、10、12、14,…都是合数。
在100以内有2、3、5、7、11、13、17、19、23、29、31、37、41、47、53、59、61、67、71、73、79、83、89、97共25个质数2约数与倍数公因数短除法到一个不能除为止,公倍数除到海枯石烂为止,因数有限个,倍数无穷多。
如果一个自然数a能被自然数b整除,那么称a为b的倍数,b为a的约数。
如果一个自然数同时是若干个自然数的约数,那么称这个自然数是这若干个自然数的公约数。
在所有公约数中最大的一个公约数,称为这若干个自然数的最大公约数。
自然数a1,a2,…,an的最大公约数通常用符号(a1,a2,…,an)表示,例如,(6,9,15)=3。
3.质因数与分解质因数(1)如果一个质数是某个数的约数,那么就是说这个质数是这个数的质因数。
(2)把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例如,把42分解质因数,即是42=2×3×7。
其中2、3、7叫做42的质因数。
又如,50=2×5×5,2、5都叫做50的质因数。
4、要注意以下几条:(1)1既不是质数,也不是合数。
(2)质数有无限多个,最小的质数是2。
(3)在质数中只有2是偶数,其余的质数全是奇数。
(4)合数有无限多个。
最小的合数是4。
(5)每个合数至少有三个约数:1、它本身、其他约数。
例如,8的约数除1和8外,还有2、4,所以8是合数。
知识点二:数的整除特征及整除性质突破要点——牢记特征是关键,常见特征背5遍,先看末尾再看和,然后分段求结果。
数的整除特征(1)2末尾是0、2、4、6、8(2)3各数位上数字的和是3的倍数(3)5末尾是0或5(4)9各数位上数字的和是9的倍数(5)11奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数(6)4和25末两位数是4(或25)的倍数(7)8和125末三位数是8(或125)的倍数(8)7、11、13末三位数与前几位数的差是7(或11或13)的倍数知识点三:余数的性质、同余问题1.带余除法一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r <b,使得a=b×q+r当r=0时,我们称a能被b整除。
当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商)。
用带余数除式又可以表示为a÷b=q……r,0≤r<ba=b×q+r2.同余定理①同余定义:若两个整数a,b被自然数m除有相同的余数,那么称a,b对于模m 同余,用式子表示为a≡b(modm)②若两个数a,b除以同一个数c得到的余数相同,则a,b的差一定能被c整除。
③两数的和除以m的余数等于这两个数分别除以m的余数和。
④两数的差除以m的余数等于这两个数分别除以m的余数差。
⑤两数的积除以m的余数等于这两个数分别除以m的余数积。
知识点四:位值原理知识点五:最值问题知识点六:数论解题的常用方法枚举、归纳、反证、构造、配对、估计题目类型一:质数与合数、因数与倍数、分解质因数例题1:甲数是36,甲、乙两数最大公约数是4,最小公倍数是288,那么乙数是。
例题2:两个整数A、B的最大公约数是C,最小公倍数是D,并且已知C不等于1,也不等于A或B,C+D=187,那么A+B等于多少?练习1:五个连续自然数,每个数都是合数,这五个连续自然数的和最小是.练习2:长方体的右面和上面的面积之和为91平方厘米,它的长、宽、高都是质数,则这个长方体的体积为()立方厘米或()立方厘米。
题目类型二:数的整除特征及整除性质例题:有____个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。
练习1、在1~100这100个自然数中,所有不能被9整除的数的和是多少?练习2、在所有的三位数中,是7的倍数,但不是2、3、4、5、6的倍数的数有__个。
题目类型三:余数的性质、同余问题例题 140,225,293被某大于1的自然数除,所得余数都相同。
2002除以这个自然数的余数是 .练习1、有3个吉利数888,518,666,用它们分别除以同一个自然数,所得的余数依次为a,a+7,a+10,则这个自然数是_____.练习2、某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______.题目类型四:位置原理例题:如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数是__。
练习1:AABB表示一个完全平方数,A、B代表什么数字时,这个四位数是完全平方数。
符合条件的四位数是___________练习2:将三位数ab 3重复写下去,一共写1993个ab 3,所得的数正好能被91整除,求ab .题目类型五:最值问题例题:甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____。
练习1:将整数19分成多个整数的和,且使这些整数的乘积最大,那么乘积的最大值是______练习2:已知2009乘以整数A 所得结果的最后五位全为9,那么满足此条件的最小整数是_______.基础演练1、 有甲、乙、丙三个网站,甲网站每3天更新一次,乙网站每五5天更新一次,丙网站每7天更新一次。
2004年元旦三个网站同时更新,下一次同时更新是在____月____日?2、 在2009后面补上三个数字,组成一个七位数2009□□□,使得这个七位数能被2,3,4,5,6整除,那么当补上的三个数字的和最大时,所补的三个数字是_______。
3、一本书,如果每天读50页,那么5天读不完,6天又有余;如果每天读70页,那么3天读不完,4天又有余;如果每天读n 页,恰可用n 天读完(n 是自然数).这本书的页数是______.4、有一个四位数,其各数位上的数字各不相同,且没有“0”,变换这个数的数字排列位置时,得到的所有的数里面最大的数与这个数的差是3618,最小的数与这个数的差是4554,那么此四位数是6、能被99整除且各位数字均不相同的最大自然数是______7、有____个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。
8如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数是__。
9、甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____。
巩固提高1、a,b,c三个数都是两位数,且a>b>c,已知它们的和是偶数,它们的积是3960,则a,b,c三个数分别是2、13张卡片上分别写着1,2,3,4,…,13,任意抽取两张,计算这两张卡片上数的乘积,这样得到许多不相等的乘积,这些不同的乘积中有____个能被6整除。
3、1919…19(共20个19)除以99,余数是多少?4、某校人数是一个三位数,平均每个班级36人,若将全校人数的百位数与十位数对调,则全校人数比实际少180人,那么该校人数最多可以达到人.5、已知N 是一个各位数字互不相等的自然数且N中不含数字7,它能被它的每个数字整除,则N的最大值是_______6、用长为45厘米、宽为30厘米的一批瓷砖,铺成一个正方形,至少需要瓷砖的块数为()。
7、有一些长6厘米,宽4厘米,高8厘米的长方体木块,如果用这些木块组成一个正方体,则至少需要这种木块()块。
1、用10以内的质数组成一个最大的三位数,它既含有约数2,又是3的倍数,这个数是____。
2、已知a ,b ,c 都是正整数,a ,b ,c 的最大公约数为24,a ,b 的最小公倍数是360;a ,c 的最小公倍数是144.(1)求b 的最小值。
(2)若b ,c 的最小公倍数为240,求a ,b ,c 的值。
3、现有一个2009位的整数:669101102009101101.....10110个与组成的位,被13除的余数为a,被11除的余数为b ,那么a+b=_______4、a 、b 、c 为三个自然数,且a>b>c ,它们除以13的余数分别是2,9,11,那么(a+b+c )(a-b)(b-c)除以13的余数是_______5、对四位数abcd ,若存在质数p 和正整数k ,使k a b c d p ⨯⨯⨯=,且5p a b c d p +++=-,求这样的四位数的最小值,并说明理由.6、一个整数各个数位上的数字之和是17,而且各个数位上的数字都不相同,符合条件的最小数是( ),最大数是( )7、 将一个长和宽分别是170.3厘米和65.5厘米的长方形切割为一些正方形,至少需要切割( )刀。
___________________________________________________________________________ ___________________________________________________________________________1、有一组连续的三个正整数,从小到大依次排列,第一个数是5的倍数;第二个数是7的倍数;第三个数是9的倍数;则这组数中最小的正整数为__________。
2、、把一个自然数的所有的约数都写出来,然后在这些约数中任意找两个相加,这样就可以得到若干个不同的和,其中最小的和是4,最大的和是140。
那么,这个自然数是_ ___。
3、一名学生在计算一道除数是两位数的没有余数的除法时,错把被除数百位上的3看成了8,结果得商383,余17,这商比正确的商大21,那么这道题的被除数是,除数是。
4、有一堆苹果,三个三个地数、四个四个地数、五个五个地数都余2个,这堆苹果最少有()个.5、若相同的汉字表示相同的数字,不同的汉字表示不同的数字,则在等式:,所表示的六位数是课程顾问签字: 教学主管签字:最新文件---------------- 仅供参考--------------------已改成-----------word文本--------------------- 方便更改赠人玫瑰,手留余香。