质点的运动学方程
第二章 质点运动学总结
下页 返回 结束 Δr
t 0
dr ds
r2
· B
y
元位移的大小
元路程
上页
第二章 质点运动学
§2.2
速度与加速度
§2.2.1 平均速度与瞬时速度 §2.2.2 平均加速度与瞬时加速度
上页
下页
返回
结束
第二章 质点运动学
§2.2.1 平均速度与瞬时速度
1.平均速度 r (t t ) r (t ) r 定义 v t t __ r 相 同 v 是矢量 , 方向与 __ r 大小为 v t 平均速率 P Q r r ( t t )
地面系
o
日心系
上页
Y
结束
X
下页
地心系
返回
第二章 质点运动学
选取不同的参考系,描写物 体运动的规律是不同的。
选择合适的参考系, 建立恰当的坐标系,
月亮 地球 以地球为参照系
以太阳为参考系
以方便确定物体的运动性质; 以定量描述物体的运动;
提出准确的物理模型, 以突出问题中最基本的运动规律。 讨论:刻舟求剑的启示?
x a( sin ) a(t sint ) y a(1 cos ) a(1 cost )
思考:圆内的一点和圆外的一点?
x a b sin y a b cos
上页
下页
返回
结束
第二章 质点运动学
§2.1.2 位移
1. 位移——位置矢量的增量 位移——是由初位置引向末位置的矢量,
r (t )
O
s v 0 s为路程 t
v 不能反映位移变化相对 于时间的不均匀性 .
013质点运动学-运动学方程
角速度:
lim t 0
t
d
dt
角加速度:
B
s
A
RO
x
lim
t 0
t
d
dt
32
角速度是矢量 ! 方向由右手螺旋法则确定 。
右手的四指循着质点的转动方向弯曲,拇指的指向即
为角速度矢量的方向。 线速度与角速度的关系:v
r
y ω
v
d加v速度d与ω角加r 速ω度的d 关r 系:
R
r
dt
dt
a
同理:| dr | dr
16
注意
1.位矢与位移的区别: 位矢为从坐标原点指向质点所在位置的有向线段,
方向
位移为从起点指向终点的有向线段。
位矢与某一时刻对应; 时间 位移与某一段时间对应。
2.位移与路程的区别:
路程:s为物体Δt内走过的轨道的长度,为标量;
位移:r
s
从起点指向终点的有向线段,而位移大
注意:平均速度(包括大小和方向)与所取的时间长
短有关,所以在计算平均速度时,必须清楚是哪一段
时间的平均速度。
19
2.速度
对于变速曲线运动的物体,速度大小与方
B
向都在随时间改变,用平均速度并不能精确地
描写质点瞬时的运动情况。
处理方法:
①.无限分割路径;
r
②.以直代曲;
A t
③以不变代变;用平均速度代替变速度;
④令 速度
t
v
0 取极限。 lim r dr
t0 t dt
速度单位:米/秒,m/s
质点在某时刻的瞬时速 度等于在该时刻位置矢 量对时间的一阶导数。
20
速度
大学物理第四章题解
第四章 经典质点动力学4-1.已知质量为2kg 的质点的运动学方程为22(61)(341)r t i t t j =-+++(国际制单位),求证质点所受合力为恒力.证 对运动学方程求时间导数()d 1264d r v t i t j t==++ 22d d 126d d v r a i j t t ===+ 2(126)=2412(N)F ma i j i j ==⨯++可见质点所受合力为恒力.4-2.已知质量为1kg 的质点,在合力128(N)F t i j =+作用下运动.已知1t =s 时,质点位于2x =m 、0y =处,并以速率3m s 沿y 轴正向运动.求质点运动学方程.解 由mr F =,知12x t =,8y =.可得d 12d x t t = ,d 8d y t =积分 01d 12d xt x t t =⎰⎰ ,31d 8d y ty t =⎰⎰ 求出 266x t =- ,85y t =-再根据 2d (66)d x t t =- ,d (85)d y t t =-再积分 221d (66)d xt x t t =-⎰⎰ ,01d (85)d y ty t t =-⎰⎰ 质点运动学方程为 3266x t t =-+ ,2451y t t =-+4-3.跳水运动员沿竖直方向入水,刚入水时速率为0v ,以入水点为O 点,y 轴竖直向下,运动员入水后浮力与重力抵消,受水的阻力与速度平方成正比,比例系数为k ,求入水后运动员速度随时间的变化规律.解 以运动员为质点,根据牛顿第二定律有 2d d yy v m kv t =- ,即2d d y y v k v t m =- 分离变量并积分 020d d y v t y v y v k t v m =-⎰⎰即可求出 011y k t v v m -= 也可以表示为 00y mv v m kv t=+4-4.跳水运动员由高处下落,设运动员入水后重力与浮力抵消,受水的阻力与速度平方成正比,比例系数0.4k m =(m 为运动员质量).求运动员速率减为入水速率的110时,其入水深度(均为国际制单位).解 以入水点为O 点,y 轴竖直向下,以运动员为质点,根据牛顿第二定律有2d 0.4d yy v m mv t =-做变量变换,得 2d d d 0.4d d d y y y y v v y v v y t y ==- 即 d 0.4d y y v v y=- 分离变量并积分 00100d 0.4d v y y v y v y v =-⎰⎰ 0010ln |0.4v y v v y =- 可知运动员速率减为入水速率的110时,其入水深度ln1004576(m)y ..==.4-5.质量为m 的小球系在一不可伸长的轻绳之一端,可在水平光滑桌面上滑动.绳的另一端穿过桌面上一小孔,握在一人手中使它以匀速率a 向下运动.设初始时绳是拉直的,小球与小孔的距离为R ,初速度在垂直于绳的方向上的分量为0v .试求小球运动和绳子的张力.解 小球m 视为质点,作为研究对象,受力分析如图.以桌面小孔为坐标原点O ,建立极坐标系如图,根据牛顿第二定律,有T N T ma F F mg F =++=在极坐标系中的投影方程为2()T m r r F θ-=- (1)(2)0m r r θθ+= (2)由题意可知 r a =- (3)由(3)式得0d d r tR r a t =-⎰⎰ 所以r R at =-,代入(2)式,得 ()20R at a θθ--= ,即 d ()2d R at a tθθ-= 初始时00R v θ=,即00v R θ=,把上式分离变量且积分 000d 2d d()2tt v R a t R at R at R at θθθ-==---⎰⎰⎰220ln 2ln ln ()R R at R v R R at θ-=-=- 所以 02d d ()v R t R at θθ==- 把上式分离变量且积分 0200d()d ()t v R R at a R at θθ-=--⎰⎰ 所以 0011()v R v t a R at R R atθ=-=-- 小球的运动学方程为r R at =-,0v t R atθ=-.由(1)式得 222220023()()[]()()T v R mv R F m r r mr m R at R at R at θθ=-==-=--4-6.已知质点所受合力为sin cos e tF t i t j k =++,求在0t =到2t π=时间内合力对质点的冲量.(国际制单位.)解 0t =到2t π=时间内合力对质点的冲量为 200d (sin cos e )d t t I F t t i t j k t π==++⎰⎰22000(sin d )(cos d )(d )t t t i t t j e t k πππ=++⎰⎰⎰ 222000(cos |)(sin |)(|)t t i t j e k πππ=-++2(e 1)i j k π=++-(国际制单位)4-7.用棒打击质量为0.5kg 、从西沿水平方向以速率20m 飞来的球,球落到棒的西面80m 处,球上升的最大高度为20m ,打击时间为0.05s ,打击时可略去重力,取210m s g =.求:(1)棒对球的冲量;(2)棒给予球的平均冲力.解 建立坐标系Oxy ,Ox 轴沿水平方向自东向西,Oy 轴竖直向上.先讨论球被棒打击后的运动,球仅受重力,可知2012y y v t gt =- ,0y y v v gt =- 当0y v =时球达到最大高度m 20m y =.根据0010y v t =-求出0010y t .v =,代入202050y v t .t =-得到 22200020010005005y y y .v .v .v =-=因00y v >,略去020y v =-,可求出020m s y v =.进而求出2s t =.由于球沿Ox 方向作匀速率运动,到4s t =时向西运动了80m ,所以020m x v =. 在碰撞中根据动量定理 21I mv mv =- 由于120v i =-,2002020x y v v i v j i j =+=+,所以棒对球的冲量2010(N s)I i j =+⋅平均冲力 2010400200 (N)0.05I i j F i j t +===+∆4-8.从高出枰盘 4.9m h =处,将每个质量m 均为0.02kg 的橡皮泥块,以每秒100n =个的速率注入枰盘,橡皮泥块落入枰盘后均黏附在盘上.以开始注入时为0t =,求10s t =时枰的读数.解 橡皮泥块在下落过程中只受重力,橡皮泥块落入枰盘的速率98(m v .=在橡皮泥块落入秤盘的过程中,对秤盘的平均冲力为(向上为正方向)21()100002[0(9.8)]196(N)F n mv mv ..=-=⨯⨯--=由于橡皮泥块由 4.9m h =处下落,由22119.8 4.922gt t =⨯⨯= 可知下落的时间1s t =.所以10s t =时枰盘内橡皮泥块受到的总重力g (10-1)1009002981764(N)F n mg ...==⨯⨯⨯=因此秤的读数为 g 1961764196(N)F F ..+=+=4-9.对例题4-4-2(见图),判断以下说法的正误:(1)质点对O 点角动量守恒;(2)质点对O '点角动量守恒;(3)质点对z 轴角动量守恒;(4)质点对x 轴角动量守恒.解 (1)摆锤所受合力指向O 点,摆锤所受合力对O 点力矩为零,所以质点对O 点角动量守恒.(2)合力对O'点力矩不为零,质点对O'点角动量不受恒.(3)质点所受合力的作用线过Oz 轴,对Oz 轴合力矩为零,所以质点对Oz 轴角动量守恒.(4)质点对O 点角动量守恒,所以质点对Ox 轴角动量守恒.4-10.在一直角坐标系Oxyz 中,一质点位于点(3m,4m,5m)处,并受一作用力7N 8N 9N F i i i =++,求:(1)力F 对O 点的力矩;(2)力F 对x 轴的力矩.解 345r i j k =++,所以(345)(789)484(N m)O M r F i j k i j k i j k =⨯=++⨯++=-+-⋅4N m x O M M i =⋅=-⋅4-11.在直角坐标系Oxyz 中,质点质量为2kg ,其速度1242(m s )v i j tk -=+-⋅,并已知0t =时位置矢量02(m)r i =.求:(1)质点对O 点的角动量;(2)质点对y 轴的角动量;(3)质点所受合力对O 点和y 轴的力矩.解 因为d d r v t=,d d r v t =,所以00d d r t r r v t =⎰⎰,即 00002(2d )(4d )(2d )t t tr r r i t i t j t t k -=-=+-⎰⎰⎰ 所以 2(22)4r t i tj t k =++- (1) 22[(22)4](242)O L r mv t i tj t k i j tk =⨯=⨯++-⨯+-22218(48)16(kg m s )t i t t j k -=-+++⋅⋅(2) 22148(kg m s )y O L L j t t -=⋅=+⋅⋅(3) d 16(88)(N m)d O O L M t i t j t==-++⋅ d 88(N m)d y y L M t t==+⋅4-12.设质点在Oxy 平面内运动,试判断以下论述是否正确:(1)若质点动量守恒,则对z 轴角动量守恒;(2)若质点对z 轴角动量守恒,则动量守恒;(3)若质点对z 轴角动量守恒,则动量的大小保持不变;(4)若质点对z 轴角动量守恒,则质点不可能作直线运动.解 (1)正确.质点动量守恒,则质点所受合力为零,质点所受合力对Oz 轴力矩为零,所以对Oz 轴角动量守恒.(2)不对.比如,质点在Oxy 平面内、绕O 点做匀速圆周运动,对Oz 轴角动量守恒,但是动量并不守恒.(3)不对.比如例题4-5-2,质点在Oxy 平面内做椭圆运动,它所受的合力是有心力,始终指向O 点,所以对Oz 轴的角动量守恒,但是动量的大小不断变化.(4)不对.在Oxy 平面内做匀速直线运动的质点对Oz 轴角动量守恒.4-13.质量为m 的质点在Oxy 平面内运动,其运动学方程为cos x a t ω=,sin y b t ω=,a 、b 、ω均为常量.求:(1)质点对z 轴的角动量;(2)质点所受对z 轴的合力矩.解 (1)对运动学方程cos sin r a ti b tj ωω=+求时间导数,可得 d sin cos d r v a ti b t j t ωωωω==-+ 所以 (cos sin )(sin cos )O L r mv a ti b tj m a ti b t j ωωωωωω=⨯=+⨯-+22(cos sin )m ab t ab t k mab k ωωωωω=+=z O L L k abm ω=⋅=(2)因z L 为常量,由对Oz 的角动量定理,可知质点所受对Oz 轴的合力矩d 0d z z L M t==4-14.如图,刚性转动系统放在盛有液体的容器内,长为l 的细杆一端固定一质量为m 的小球,另一端垂直地固定于转轴z .小球受液体阻力与小球质量及系统转动角速度的大小成正比,即F km ω=,k 为比例常量.z 轴及细杆的质量及所受阻力均忽略不计,问:经过多长时间系统的角速度的大小变为初始值0ω的1e .解 由题意知z M lkm ω=-,2z L ml ω=,根据d d z z L M t=,得 2d d ml lkm tωω=- 分离变量并积分 d d k t lωω=-⎰⎰ ln k t C lω=-+ 由0t =时0ωω=定出积分常数,0ln C ω=,则 0e kt l ωω-=所以,当0e ωω=时l t k=.4-15.如图所示,小球m 系于不可伸长的轻绳的一端,绳经O 点穿入竖直小管.开始时小球绕管在水平面内做半径为R 的圆周运动,每分钟转120转.由绳的A 端将绳拉入小管,拉绳后小球绕管在水平面内做半径为2R 的圆周运动.求:(1)拉绳以后小球每分钟之转数;(2)拉绳过程中小球对O 点角动量是否守恒?为什么?解 (1)在拉绳过程中,因为小球所受重力与OA 轴平行、绳拉力与OA 轴相交,对OA 轴力矩均为零,所以在拉绳过程中小球对OA 轴角动量守恒02R mvmv R = 拉绳前,每秒转两转,022R v π⋅=.设拉绳后,每秒转n 转,22R n v π⋅=.把04v R π=和v n R π=代入角动量守恒方程,得 42R mn R m R R ππ=⋅ 即可求出拉绳后小球每秒转8n =转,即每分钟480转.(2)因为小球所受合力对O 点力矩不为零,所以小球对O 点角动量不守恒.4-16.试判断以下说法是否正确:(1)静摩擦力一定不做功;(2)滑动摩擦力一定做负功;(3)摩擦力总是阻碍物体运动;(4)运动质点如受摩擦力作用,则能量一定减小.答 均不正确.4-17.试证明2(3sin e )(N)x F x x i =++是保守力.质点在F 作用下由0x =运动到1m x =,试用两种方法计算力F 对质点做的功.解 由于2(3sin e )(N)x F x x i =++在位移d r 中所做元功2d (3sin )(d d d )x F r x x e i xi yj zk ⋅=++⋅++2(3sin e )d x x x x =++3d(cos e )xx x =-+可以表示为只与位置有关的标量函数3()cos e x U x x x =-+的微分,所以此力为保守力.方法一:质点沿Ox 轴由0x =运动到1x =,F 对质点所做的功为 120d (3sin e )d x W F r x x x =⋅=++⎰⎰310(cos e )|x x x =-+ 1cos1e 11=-++-1cos1e =-+ 方法二:因F 为保守力,引入势能3p (cos e )x E U C x x C =-+=--++,则p2p1()W E E =--1cos1e 11=-++-1cos1e =-+4-18.如图,一劲度系数为k 的弹簧,一端固定于A 点,另一端与质量为m 的质点相连.弹簧处于自由伸张状态时,质点位于竖直面与半径为R 的半圆柱面的交界处B .质点在力F 的作用下,由B 点从静止开始运动到光滑半圆柱面的顶点C ,到达C 点时质点速率为C v .求力F 对质点所做的功.解 在质点由B 到C 点的过程中,所受重力和弹簧弹性力为保守力,以B 点为重力势能及弹性势能零点.质点受面的支撑力不做功,设力F 做功为F A .由质点的机械能定理k p k p ()()C C B B F E E E E A +-+=可得 22111[(R)](00)222F C A mv mgR k π=++-+ 2221128C mv mgR k R π=++4-19.接题4-18,质点到达C 点后,力F 被撤除,求质点运动到AB 之间的平衡位置时的速率.解 质点平衡时mg k l =∆,mg l k ∆=,即质点的平衡位置位于B 点下方mg k处. 在质点由C 到平衡位置的过程中,由于所受重力和弹簧弹性力为保守力,受面的支撑力不做功,所以机械能守恒.以B 点为重力势能及弹性势能零点,则()2222211112822C mv mgR k R mv mg l k l π++=-∆+∆ 22222122m g m g mv k k =-+222122m g mv k=- 即可求出质点运动到AB 之间的平衡位置时的速率2222121(2)4C k R mg v v gR m kπ=+++4-20.如题4-15图之装置.设小球质量0.5g m =,初态管外绳长12m l =,绳与竖直方向夹角130θ=,速度为1v .末态绳与竖直方向夹角260θ=,速度为2v .求:(1)1v 、2v ;(2)绳对小球所做的功.解 视小球为质点,受重力W 和绳的张力T F 如图.初态小球做水平圆周运动,合力T F W F =+指向圆轨道圆心,由牛顿第二定律2211111tg sin v v m m mg R l θθ== 所以 21111sin 1298238m s cos 23v l g ..θθ==⨯⨯= 设末态2l l =,小球做水平圆周运动,有22222tg sin v m mg l θθ= ,222222sin cos v l g θθ= 可知 22111212222122sin cos 1cos sin 33v l l v l l θθθθ== (1) 在由初态到末态的过程中,小球所受合力对竖直轴AB 的力矩为零,所以小球对轴AB 的角动量守恒111222sin sin mv l mv l θθ=所以 12222111sin 3sin v l l v l l θθ== (2) (1)(2)⨯得 313213v v = 可求出 13213343m s v v .==2(1)(2)得 313293l l = 13211()080m 93l l .== 由机械能定理,以O 点为势能零点,绳对小球所做的功为k p W E E =∆+∆2221121()(cos30cos60)2m v v mg l l =-+-000805J .=4-21.质量为0.2kg 的小球B 以弹性绳在光滑水平面上与固定点A 相连.弹性绳劲度系数为8N m ,其自由伸张长度为0.6m .小球初位置和速度0v 如图所示.当小球速率变为v 时,它与A 点距离最大且等于0.8m .求初态与末态之速率0v 和v .解 小球在水平面上仅受弹性绳弹性力,弹性力作用线过A ,所以小球在运动过程中对过A 的竖直轴角动量守恒;注意到小球与A 点距离最大时其速度与弹性绳垂直;则004sin3008.mv .mv =小球在水平面内仅受弹性绳弹性力,弹性力为保守力,因此小球在运动过程中机械能守恒,以弹性绳自由伸张时为弹性势能零点;则2220111(0806)222mv mv k ..=+- 所以 04v v = ,22016v v .-=联立求解上述二式即可求出0131m s v .=,033m s v .=.4-22.如图,在升降机内有一和升降机固定的光滑斜面,斜面相对水平方向的倾角为θ.当升降机以匀加速度a 沿竖直方向上升时,质量为m 的物体沿斜面下滑,试以升降机为参考系,求:(1)物体相对升降机的加速度;(2)物体对斜面的压力;(3)物体对地面的加速度.解 以升降机为非惯性参考系,建立与斜面固连的坐标系Oxy 如图.视物体为质点,受重力mg 、支承力N F 和惯性力I F ma =-,物体在非惯性系中的动力学方程为()sin m g a mx θ+=()N cos 0F m g a θ-+=所以,物体相对升降机的加速度()sin a x i g a i θ'==+物体对斜面的压力()NN cos F F m g a j θ'=-=-+ 物体对地面的加速度sin cos ()sin sin cos a a a a i a j g a i g i a j θθθθθ'=+=-+++=+地4-23.如图,一理想定滑轮固定于升降机上,一不可伸长之轻绳跨过滑轮后,两端各悬挂一物体,物体质量为1m 和2m ,12m m ≠.升降机以加速度a 沿竖直方向下降时,试以升降机为参考系,求:两个物体相对地面的加速度及绳内张力.解 以升降机为非惯性参考系,建立与升降机固连的坐标系Ox 如图.视二物体为质点,物体受重力、绳张力和惯性力I11F m a =-、I22F m a =-,在非惯性系中的动力学方程为1T1111m g F m a m x --=2T2222m g F m a m x --=绳不可伸长 12x x =-根据牛顿第三定律 T1T2T F F F ==所以 12211212()()m m g m m a x x m m -+-=-=+ 绳内张力 12T 122()m m F g a m m =-+ 两个物体相对地面的加速度为1221122111212()()()2m m g m m a m m g m a a a x i ai i i m m m m -+--+=+=+=++ 1221211121212()()()2m m g m m a m m g m a a a x i ai i i m m m m -+--+=+=-=++ 4-24.如图所示有一绕竖直z 轴以角速度k ωω=作匀角速度定轴转动的光滑水平大转台.在距z 轴R 的A 处立一竖直杆,杆端有一长度为l 的不可伸长的轻绳,绳末端挂一质量为m 的小球.当绳与竖直杆夹角θ保持不变时,以转台为参考系,求θ与ω的关系.解 以转台为非惯性参考系,视小球为质点,小球受重力mg ,绳的拉力T F ,惯性离心力It F ,2It (sin )F m R l ωθ=+.小球在非惯性系中受三个力平衡,水平方向的平衡方程为2(sin )tan m R l mg ωθθ+=所以 12tan ()sin g R l θωθ=+ 4-25.接题4-24,有人试图从O 点以初速0v 沿台面抛出一小球,而使小球沿转台上的直线OA 运动,此人的目的能否达到?试在转台参考系中加以说明.解 以转台为非惯性参考系,小球相对于转台具有速度,所以小球除受重力、支持力和惯性离心力以外,还受科里奥利力作用.由于科里奥利力与小球运动方向垂直,所以小球不可能沿转台上的直线OA 运动.(第四章题解结束)。
大学物理第一章质点运动学
∫ d x = ∫ (2t −t )dt
2 0 0
t
质点的运动方程
13 x = t − t (m) ) 3
2
(3) 质点在前三秒内经历的路程
s = ∫ vdt = ∫ 2t − t 2 dt
0 0
3
3
令 v =2t-t 2 =0 ,得 t =2
8 s = ∫ (2t − t )dt + ∫ (t − 2t)dt = m 0 2 3
初始条件为x 初始条件为 0=0, v0=0 质点在第一秒末的速度;(2)运动方程;(3)质点在前三秒内 运动方程; 质点在前三秒内 运动方程 求 (1) 质点在第一秒末的速度 运动的路程。 运动的路程。 解 (1) 求质点在任意时刻的速度 dv dv a= = 2 − 2t 由 dt dv = (2 − 2t) dt 分离变量 两边积分
y
P点在 系和 '系的空间坐标 、 点在K系和 系的空间坐标、 点在 系和K 时间坐标的对应关系为: 时间坐标的对应关系为:
y'
r v
P
}
r r
o z
r r′
o' x x'
r R
z'
伽利略坐标变换式
2. 速度变换 r r vK、vK′ 分别表示质点在两个坐标系中的速度 r r r d r ′ d(r − vt) r r r vK′ = = = vK − v dr′ r dt t r 即 vK′ = vK − v r r r vK = vK′ + v 伽利略速度变换
dv = g − Bv dt 分离变量并两边积分
t dv ∫0 g - Bv = ∫0 dt v
g v = (1− e−Bt ) B
第1章 质点运动学例题
υ机风 v
v
y (北) v
450
υ机地
υ风地 v
υ标机
x(东)
16
湖南商学院计电院 赵新宇
v 已知: υ风地 = 150i km/h v v υ机风 = 750 j km/h v v v 0 0 υ标机 = 950 (− cos 45 i − sin 45 j)km/h v
求:
υ标地体的运动规律为dv/dt=–kv2t (k为常数), t=0 时, v=v0,求v与t的函数关系.
解:
dv / dt = − kv t
2
t dv → ∫ − 2 = ∫ ktdt v0 0 v 2 kt 1 → v = 1/( + ) 2 v0 v
湖南商学院计电院 赵新宇
10
例题6: 一物体沿x 轴运动,其加速度为a = 4t m/s2, 当t = 0 时,物体静止于x = 10 m 处,求物体在任意 时刻的速度和坐标。
第 1 章
1、运动函数
运动学
⎧ x = x(t ) ⎪ ⎨ y = y (t ) ⎪ z = z (t ) ⎩
r 2r r dv d r a= = dt dt 2
v v r = r (t )
2、位移、速度、加速度
r r r ΔrAB = rB − rA
3、圆周运动
r r dr v= dt
dθ ω= dt dω α= dt
11
v2 2 2 2 an = = r ω = 0 . 2 ( −2 × 1 + 4 ) = 0 . 8 m / s r
v = rω = r (−2t + 4) = 0.2 × (−2 ×1 + 4) = 0.4 m / s dv = r α = 0 .2 × ( − 2 ) = − 0 . 4 m / s 2 at = v dt v
第1章 质点运动学(13年)
(湖南大学 09 年普通物理,20 分) 例 1-12 质量为 m 的子弹以初速度 v0 水平射入沙堆中, 假设沙堆足够大子弹无法穿出, 且子弹所受 阻力 f=-kv,式中 v 为子弹的速率,k>0 且为常量,忽略子弹所受重力,求:(1) 子弹射入沙土后,速 度随时间变化的函数式;(2) 子弹进入沙堆的最大深度。 [ (1) v v 0 e kt / m ;(2) x max mv 0 / k ] (深圳大学 2012 年大学物理,12 分;北京工业大学 07 年普通物理 II,15 分; 北京市联合命题 05 年大学物理,15 分) 例 1-13 一质点沿半径为 r=1m 的圆周运动, 其角位置 θ 随时间 t 的变化规律为 θ=2+t2(rad), 求 t=1.5s 时质点的总加速度大小。 [ a 2 1 4t ; a t 1.5 9.2 m/s2 ] (深圳大学 2012 年大学物理,12 分;温州大学 09 年普通物理,20 分) 例1-14 一质点沿半径为1米的圆周运动,运动方程为 2 3t 3 ,式中 以弧度计,t 以秒计,求: (1) t =2秒时,质点的切向和法向加速度;(2) 当加速度的方向和半径成45°角时,其角位移是多少? [ (1) at (2) 36 m/s2, an (2) 1296 m/s2 ;(2) 8 / 3 rad( t 6 / 27 ) ] (温州大学 2012 年普通物理 A,15 分) 例 1-15 由楼窗口以水平初速度 v0 射出一发子弹,取枪口为原点,沿 v0 方向为 x 轴,竖直向下为 y 轴,并取发射时刻 t 为 0,试求:(1) 子弹在任一时刻 t 的位置坐标及轨迹方程;(2) 子弹在 t 时刻的 速度,切向加速度和法向加速度及相应的轨道曲率半径. [ (1)
力学习题-第1章质点运动学(含答案)
第一章质点运动学单元测验题一、选择题1.一质点沿x 轴运动,加速度与位置的关系为a (x )=2x +4x 2(SI 单位).已知质点在x =0处的速度为2m/s ,则质点在x =3m 处的速度为A.42m/s; B.26m/s ; C.94m/s ; D.34m/s .答案:C 解:根据题意:224dv a x x dt ==+,两边同乘dx 有:2(24)dv dx x x dx dt ⋅=+⋅由dx v dt=,上式化为:2(24)v dv x x dx ⋅=+对上式两边积分得到:223423v x x c =++由x =0,v =2m/s ,确定c =2.则当x =3m 时,解得:v =94m/s.2.一质点沿x 轴做直线运动,其速度v 随时间t 的变化关系如图所示.则下列哪个图可表示质点加速度a 随时间t 变化关系?2-•/s m a 2-•/s m a AB C答案:B 解:依据质点在一维运动时,速度-时间曲线的斜率对应加速度可知B 为加速度曲线.3.质点的运动学方程为33(21)t t =++r i j (SI 单位).则t =1s 时质点的速度为(SI单位)A.ji 6+3; B.j i 3+3; C.j i 6+6; D.j i 3+6.答案:A解:根据题意:33(21)t t =++r i j ,微分得:236d t dt ==+r v i j ,()136=+v i j 4.质点运动学方程为:kbt j t a i t a r +sin +cos =ωω,其中a 、b 、ω均为正的常数.问质点作什么运动?A.平面圆周运动;B.平面椭圆运动;C.螺旋运动;D.三维空间的直线运动.答案:C解:把质点的运动分解到三个方向上:cos sin x a t y a t z bt ωω===,,整理可知:222x y a z bt+==,则质点是以z 5.如图所示,在桌面的一边,—小球作斜抛运动,初速度v 0=4.7m/s.已知桌面宽a =2.0m.欲使小球能从桌面的另—边切过,小球的抛射角θ为A.30°;B.38°;C.50°;D.58°.答案:D 解:根据题意,小球沿x 和y 方向的运动方程为:t v x ⋅=θcos 0,201sin 2y v t gt θ=⋅-由x =2.0m 时,y =0,解得:o 58θ=.6.如图,有一半径为R 的定滑轮,沿轮周绕着一根绳子,悬在绳子一端的物体按s =(1/2)bt 2的规律向下运动.若绳子与轮周间没有相对滑动,轮周上一点A 在任一时刻t 的总加速度大为A.2t b a ;B.222/=R t b a ;C.b a =;D.R t b b a /+=22.答案:A 解:已知221bt s =,微分可得速度大小:t b dtds v ⋅==切向加速度大小:b dt dv a ==τ;法向加速度大小:Rt b R v a n 222==总加速度大小:a ==.7.当蒸汽船以15km/h 的速度向正北方向航行时,船上的人观察到船上的烟囱里冒出的烟飘向正东方向.过一会儿,船以24km/h 的速度向正东方向航行,船上的人则观察到烟飘向正西北方向.若在这两次航行期间风速不变,则风速的大小为A.9km/h; B.17.5km/h ; C.26.9km/h ; D.41km/h.答案:B解:地面为静系,船为动系,风为研究对象,则风对地的速度为绝对速度:风v v =船对地的速度为牵连速度:船牵连v v =风对船的速度为相对速度:风对船牵连v v =由绝对速度、牵连速度和相对速度的关系可得v v v =+船风对船,其矢量几何关系如图所示由此几何关系可得:1cos v v θ=船风,o 2145sin v v ctg v θ-=风船船联立解得:o 31θ=,5.17=v km /h .8.一个自由落体在它运动的最后一秒内所通过的路程等于全程的1/3.则物体通过全程所需的时间为A.3s ;B.6-3s ;C.6+3s ;D.6s答案:C解:设自由落体的全程下落时间和下落的高度分别为t 、S t 。
理论力学10质点运动微分方程
= mgR 2,于是火箭在任意位置 x 处所受地球引力 F 的大
小为
m g R2 F = x2
(b)
(3)列运动方程求解,由于火箭作直线运动,
火箭的直线运动微分方程式为:m
分离变量积分式(c)
d2 dt
x
2
mg R2 x2
(c)
因 为
d d2 tx 2d dv td dv xd dx tvd dv x
其次,定律还指出,若质点的运动状态发生改 变,必定是受到其他物体的作用,这种机械作用就 是力。
第二定律(力与加速度关系定律)
质点的质量与加速度的乘积,等于作用于质点的 力的大小,加速度的方向与力的方向相同。
设质点M的质量为m,所受的力为F,由于力F的
作用所产生的加速度为a,如图10-1所示。则此定律
以上两例都是动力学的第一类基本问题,由此可
归纳出求解第一类问题的步骤如下:
(1) 取研究对象并视为质点; (2)分析质点在任一瞬时的受力,并画出受力图; (3) 分析质点的运动,求质点的加速度; (4) 列质点的运动微分方程并求解。
例10-3 以初速v0自地球表面竖直向上发射一质量 为 m 的火箭,如图10-6所示。若不计空气阻力,火箭所
解:取质量块为研究对象,并视其为质点。质
量块沿x方向作直线运动,弹性杆对质量块的作用相 当于一弹簧,图10-8(b)是该系统的计算模型。
设弹簧刚度系数
为 k ,任意位置时弹
a
在静力学中,我们研究了力系的简化和平衡问题, 但没有研究物体在不平衡力系作用下将如何运动。在 运动学中,我们仅从几何学的角度描述了物体的运动 规律及其特征,并未涉及物体的质量(Mass)及其所受 的力。因此,静力学和运动学都是从不同的侧面研究 了物体的机械运动。
理论力学11质点动力学基本方程
m
研究小球
受力分析
运动分析
FT
建立直角坐标系, 根据质点运动微分方程
Fix max: FT sin ma0
y
mg
Fiy may: mg FT cos 0
x
a0 a0
FT sin ma0 mg FT cos 0
解得绳的倾角以及绳中的张力分别为
arctan a0
g FT m a02 g2
y
v
积分两次,得到
m
v0
x C1t C3
y
1 2
gt2
C2 t
C4
O
mg
x
根据运动初始条件,求出积分常数,得物体的运动方程
x v0 cos t
y
v0
sin
t
1 2
gt 2
从运动方程中消去时间参数 t ,即得物体的轨迹方程
y
tan x
2v02
g
cos2
x2
可见,其轨迹为抛物线
[例4] 摆动输送机由曲柄带动货架 AB 输送质量为 m 的木箱。已知曲
动力学
动力学: 研究力与运动之间的关系 动力学第Ⅰ类问题: 已知运动求力 动力学第Ⅱ类问题: 已知力求运动
第十一章 质点动力学基本方程
一、质点动力学基本方程
F ma 式中,m 为质点质量、 a 为质点加速度
F 为作用于质点上的合力,即 F Fi
一、质点动力学基本方程
F ma
说明: 1)在国际单位制中,m 的单位为 kg、a 的单位为 m/s2、 F 的单位为 N
0.35
O1
0 aA
A
O2
m
B
所以,木箱与货架间静摩擦因数的最小值
质点运动学
vx=dx/dt|t=2=-2t|t=2=-4m/s
vy=dy/dt|t=2=-4t^3+4t|t=2=-24m/s
v=
v +v (
2 x
y2)1/2=4*371/2
例4
一电子在电场中运动,其运动方程:x=3t, y=12-3t2 。(1)计算并图示电子运动的轨迹。 (2)什么时刻电子的位矢与其速度矢量恰好垂直。
解:S=Rwt v=ds/dt=Rw 法向加速度 an=v2/R=Rw2(反映速度方向的变化) 切向加速度 ac=dv/dt=0(反映速度大小的变化)
例6
一电子在电场中运动,x=3t,y=12-3t2,计算1s时电 子的切向加速度,法向加速度及轨道上该点的曲 率半径。
解:r=3ti+(12-3t2)j
解: r=xi+yj =Rcoswti+Rsinwtj v=dr/dt=d(Rcoswti+Rsinwtj)/dt =-wRsinwti+wRcoswtj a=dv/dt=d(-wRsinwti+wRcoswtj)/dt =-w^2Rcoswti-w^2Rsinwtj =-w^2r
例3
一质点运动轨迹为抛物线 x=-t2,y=-t4+2t2。 求x=-4m时(t>0)粒子的速度速率、加速度。 解:由x=-t2 y=-t4+2t2 联立知y=-x2-2x
解:(2)当r·v=0时,电子的位矢与其速度矢量 恰好垂直
∴r=3ti+(12-3t2)j ∴9t-72t+18t3=0 即 t=0s
t=7½ /2½
v=dr/dt=3i-6tj
(1)联立 x=3t y=12-3t2
得 y=12-x2/3
质点运动学方程
质点运动学方程质点运动学方程是物理学中一种基本的微分方程,它用来描述任意物体在一个恒定的外界力作用下的运动。
质点运动学方程的形式如下:\begin{equation} m \frac{d^2x}{dt^2} = F(x,t) \end{equation}其中,$m$代表质量,$x$代表位置,$F(x,t)$代表外力。
可以看出,该方程表明了质量、位置和外力之间的关系,即质点在外力作用下的运动是由质量和位置决定的。
从物理角度来看,质点运动学方程是一种受外力作用的动态系统,它可以描述物体的运动状态,而不需要考虑物体的形状、体积或其他特征。
因此,质点运动学方程在物理学中具有重要的地位,它可以描述任意物体在恒定的外力作用下的运动状态,而实际的物理对象的运动可以由调整外力的大小和方向来实现。
质点运动学方程也是传统力学中最常用的方程之一,它描述了两种力之间的相互作用,这两种力是:外力和惯性力(又称惯性力或内力)。
其中,外力又可以分为三类:引力、斥力和流体力,各自都是物体的外力,而惯性力则是物体自身的力,是物体的惯性(或惯量)所激发出来的力。
质点运动学方程表明,当外力改变时,物体的运动状态也会随之改变,这是因为外力会改变物体的加速度,而加速度又会改变物体的速度,从而改变物体的运动状态。
同时,质点运动学方程也可以用来描述惯性力和外力之间的关系,即惯性力可以抵消外力,当惯性力大于外力时,物体会保持原来的运动状态;当外力大于惯性力时,物体的运动状态会发生变化。
质点运动学方程不仅可以用来描述物体在外力作用下的运动,而且还可以用来描述物体在惯性力作用下的运动。
例如,可以使用质点运动学方程来描述弹簧的运动,弹簧的运动受到弹簧的弹性力和惯性力的作用,这两种力的大小受到弹簧的长度和弹性系数等因素的影响。
总之,质点运动学方程是物理学中一种基本的微分方程,它可以用来描述物体在外力和惯性力作用下的运动状态。
它不仅可以用来描述宏观上物体的运动状态,而且也可以用来描述微观上物体的运动状态,这样就可以更好地理解物理系统的运动规律。
力学 第二章 质点运动学
v
arccos vz 5618'
v
二、平均加速度与瞬时加速度
1、平均加速度:速度矢量对时间的平均变化率。
a v v(t t) v(t)
t
t
v(t )
v
速度矢端曲线
v( t t )
§2.3 质点的直线运动(x vx ax )
一、运动学方程
x xt
二、速度和加速度
1、速度(瞬时速度)
vx
dx dt
大小表示质点在t时刻运动的快慢;
正负分别对应于质点沿Ox正向和负向运动。
2、加速度
ax
dvx dt
d2x dt 2
ax与vx同号,则加速;ax与vx反号,则减速。
4、质点的运动学轨迹方程
质点运动时描出的轨迹称为质点的轨迹。 也就是位置矢量的矢端曲线。
质点在平面Oxy上运动,
轨迹方程: y y(x) 或者:f (x, y, z) 0
例题:r R cos tiˆ R sin tˆj, 求:轨迹方程。
y R
解: x2 y2 R2.
x
二、位移
v
v
v
4、注意:
(1)平均速度的大小不等于平均速率。 (2)瞬时速度的大小等于瞬时速率。 (3)即使位置矢量的大小不变,也可以有速度。
ΔS
r(t )
r
S
r(
t
t
)
o
dr / dt
r(t )
ΔS
S
r
r( t t )
质点运动学
填空(A 类)1.已知质点位矢随时间变化的函数形式为j t i t r22+=,式中r 的单位为m ,t 的单位为s .任一时刻的速度 ;加速度 .j i t v22+=;i a 2=2.已知质点在任意时刻的加速度为i a +=2,任一时刻的速度 ;位移 .j t i t v+=2; j t i t r 2221+=3.某质点在oxy 平面内运动,其运动方程为j t d i t b r ωωcos sin +=,其中ω,,d b 均为正值常量,其运动的轨道方程为 .12222=+dy a x 4.已知质点位矢随时间变化的函数形式为j t i t r22+=,式中r 的单位为m ,t 的单位为s .任一时刻的速度 ;加速度 .j i t v 22+=;i a 2=5.已知质点位矢随时间变化的函数形式为j t i t r 22+=,式中r 的单位为m ,t 的单位为s .任一时刻切向加速度 ;法向加速度 .122+=t t a t ;122-=t a n6.已知质点位矢随时间变化的函数形式为j t i t r )23(42++=,式中r 的单位为m ,t 的单位为s .从0=t 到1=t 秒的位移 ;1=t 秒时刻的速度 .j i r Δ24+=;j i v 28)1(+=7.质点的运动方程为23010t t x +-=和22015t t y -=,式中x,y 以米计,t 以秒计。
任意时刻速度 ,加速度 .j t i t v )4015()6010(-++-=;j i a 4060-=8.一质点的运动方程为2219,2t y t x -==,式中y x ,的单位为m ,t 的单位为s .质点在任意时刻的速度为 ;加速度为 .j t i 42-;j 4-9.质点沿半径R=8m 的圆周运动,其所行路程S 与时间的函数关系为)(232SI t t S +=.前1s 内质点通过的路程为=S ;1s 时质点的速率为=v . m 5;18-⋅s m10.质点沿半径R=8m 的圆周运动,其所行路程S 与时间的函数关系为)(232SI t t S +=.切向加速度为=t a ;法向加速度为=n a ;加速度为=a .26-⋅s m ;28-⋅s m ;210-⋅s m11.一质点沿x 轴作直线运动,运动方程为2236t t x -+=,式中x 以m 计,t 以s 计。
大学物理1-2 求解运动学问题举例
1 – 2 求解运动学问题举例
第一章 力和运动
解
a ay g g j
y
ax
0
v0t
r
v0t
1 2
gt
2
按已知条件,t=0时,有 O
rv0
vox v0 cos
ax 0
voy v0 sin
ay g
1 gt 2 2
P
x
1 – 2 求解运动学问题举例
第一章 力和运动
解得:
x v0 cos t
y
v0
sin
t
1 2
gt2
轨迹方程为:
y
x
tan
2v02
y cos2
x2
y voy
v0
v y v
v x
v x
o α vox
d0
v y
vx
1 – 2 求解运动学问题举例
第一章 力和运动
求最大射程
d0
2v02 g
sin
(3)质点的轨迹方程。
解:(1)质点在任一时刻的速度为
v v0
t (6tˆj)dt 2iˆ 3t 2 ˆj (m / s)
0
a d
dt
(2)质点的运动学方程为:
r r0
t (2iˆ 3t 2 ˆj)dt 2tiˆ t 3 ˆj
0
(m)
例 1-1 已知质点在直角坐标系中作平面运动,其运动
方程为
r(t) (t 2)iˆ (1 t 2 2) ˆj 4
1 质点运动学例题
ds v = = 20 − 0.4t dt dv aτ = = −0.4 dt
2 τ 2 n
v(1) =19.6 m/s
v2 (20 − 0.4t)2 an = = R R
2 2 2
(20 − 0.4t) a = a + a = (− 0.4) + R (20 − 0.4×1) a(1) = (− 0.4) + 200
一汽车在半径R=200 m 的圆弧形公路上行驶,其运动学 的圆弧形公路上行驶, 例9 一汽车在半径 方程为s 方程为 =20t − 0.2 t 2 (SI) . 时的速度和加速度大小。 求 汽车在 t = 1 s 时的速度和加速度大小。 解 根据速度和加速度在自然坐标系中的表示形式,有 根据速度和加速度在自然坐标系中的表示形式,
t
∴
∫
v
v0
dv = ∫ ktdt
0
1 2 ∴ v = v0 + kt 2
1 2 Q v = dx dt ∴ dx = v0 + kt dt 2
1 3 得质点的运动方程为 x = x0 + v0 t + kt 6
一质点作半径为0.1 的圆周运动, 例7 一质点作半径为 m 的圆周运动,已知运动学方程为
(3) x = 2t
y = 2 −t2
轨迹方程为
y = 2 − x2 / 4
v v v v v v 例4 已知 a =16 j , t =0 时,v0 = 6i , r = 8k 0 r 求 v 和运动方程 r v v v t v v dv v 解 由已知有 = a =16 j ∫vr0dv =∫016dt j dt v v v v v v v -v0 =16t j v = 6i +16t j 代入初始条件
力学第二章质点运动学(PDF)
2.1一、质点把所研究的物体视为无形状大小但有一定质量的点。
•能否看成质点依研究问题而定。
例:地球绕太阳公转:地球→质点地球半径<<日地距离6.4×103 km 1.5×108 km地球自转:地球≠质点•复杂物体可看成质点的组合。
二、位置矢量与运动方程1、位置矢量k z j y i x r v v v v ++=定义:从坐标原点O 指向质点位置P 的有向线段位置矢量的直角坐标分量:===++=r z r y r x z y x r γβαcos ,cos ,cos 222方向:大小:γβαP (x,y,z )r v z y xo2、运动方程k t z j t y i t x r vv v v )()()(++=矢量形式参数形式===)()()(t z z t y y t x x 3、轨道方程(轨迹)== → ===0),,(0),,()()()(z y x G z y x F t z z t y y t x x t 消去•要尽可能选择适当的参照物和坐标系,以使运动方程形式最简,从而减少计算量。
三、位移和路程O P P ’r ∆v )(t r v )(t t r ∆+v s ∆•••1、位移'()()r PP r t t r t ∆==+∆−v v v 2、路程'()()s PP s t t s t ∆==+∆−注意(1) 位移是矢量(有大小,有方向)位移不同于路程(2) 位移与参照系位置的变化无关r s ∆≠∆v 与Δr 的区别r v ∆分清O r v ∆r v∆O r∆••O PP ’r ∆v )(t r v )(t t r ∆+v s∆•••思考:什么情况下位移的大小等于路程?[例题]一质点在xOy平面内依照x= t 2 的规律沿曲线y = x3/ 320运动,求质点从第2 秒末到第4秒末的位移(式中t的单位为s;x,y的单位为cm)。
[解] ()()r r t t r t ∆=+∆−v v v 1212.6i j=+v v(cm)2121()()x x i y yj=−+−v v [()()][()()]x t t i y t t j x t i y t j =+∆++∆−+v v v v[()()][()()]x t t x t i y t t y t j=+∆−++∆−v v 66222121()()320320t t t t i j=−+−v v 662242(42)()320320i j =−+−vv 17.4 cm r ∆==v 与水平轴夹角Δarctan 46.4Δyx ϕ=o=2.2一、速度O P P ’r∆v )(t r v )(t t r ∆+vs∆•••反映质点运动的快慢和方向的物理量1、速度的概念平均速度:平均速率:v v v v v r t r t t r t t==+−∆∆∆∆()()tt s t t s t s v ∆∆∆∆)()(−+==瞬时速度:瞬时速率:O P P ’r∆v)(t r v)(t t r ∆+vs∆•••vv v v =≠vv ,瞬时速度沿轨道切线方向2、速度的直角坐标分量()()()()::cos ,cos ,cos x y z y x z r r t x t i y t j z t kdr dx dy dz v i j k v i v j v k dt dt dt dt v v v v v v v αβγ==++==++=++ = ===v v v v vv v v v v v v v 大小方向101552r i tj t k=−++v v v v [例题]某质点的运动学方程为求:t = 0和1s 时质点的速度矢量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品课件!
r 122 (12.6)2 cm 17.4 cm
与水平轴夹角
Δy =arctan 46.4 Δx
[问题] 位移与参考系的选择有关吗?
式中 t 的单位为s;x,y的单位为cm). [解 ]
r r ( t t ) r ( t )
6 6 t t 2 2 2 1 ( t 2 t 1 )i ( )j 320 320 6 6 4 2 2 2 ( 4 2 )i ( ) j 12i 12.6 j (cm) 320 320
r r (t )
r x(t )i y(t ) j z(t )k
一个矢量式等价三个标量式 x = x(t) 如
y = y(t)
z = z ( t)
1 2 x v 0 t at 等 2
3. 轨迹方程 轨迹方程——质点在运动过程中描出的曲线方程. 在运动方程中消去 t 就是轨迹方程, z f ( x, y) π π 如:x 2 cos t y 2 sin t z 0 6 6
2. 路程
路程 ——质点经过的路径的总长度. 位移与路程不同,前者是矢量,后者是标量.
如图: r 同
S1 S2 S3
[问题] 二者何时相同?
s1 rp r
O
P
s3 s2
Q
rQ
[例题1]一质点在xOy平面内依照 x = t 2 的规律沿曲线
y = x3 / 320 运动,求质点从第2 秒末到第 4 秒末的位移(
( x2 x1 )i ( y2 y1 ) j
[ x(t t )i y(t t ) j ] [ x(t )i y(t ) j ] [ x(t t ) x(t )]i [ y(t t ) y(t )] j
精品课件!
2 参考系
由于运动是相对的,为了描述一个物体的运动,就
必须参考其他的物体,这个用来作参考的“其他物体” 称为 参考系。 同一个运动,在不同的参考系中观察,所得出的结
论不同。
二、 质点的位置矢量与运动方程 1、位置矢量
在参考系上建立直角坐标系 O– xyz ,并指定参考点, z 令原点与参考点重合。 r P 位置矢量——由原点(参考点)引向 质点位置的有向线段. O r xi y j zk x i , j , k分别为 x, y, z轴方向的单位矢量 . x,y,z 是质点的位置坐标。
y
由此可以确定:
2 2 2 r r x y z 位置矢量的大小为:
位矢方向: x cos r
y cos r
z
x
O
r
P y
z cos r
cos2 cos2 cos2 1
§2.1.4 运动方程
运动方程——质点的位置矢量随时间变化的函数方程
x2 y2 4
z0Biblioteka 二、 位移——位置矢量的增量
1. 位移
位移——经过一段时间,由
初位置引向末位置的矢量. y P
r (t )
r
Q
r ( t t )
r r (t t ) r (t )
O 在直角坐标系中坐标分解式:
x
r xi yj zk