工件材料热处理检验方法和规范

合集下载

常见材料热处理方法

常见材料热处理方法

常见材料热处理方法部份材料热处理方法一、45 钢调质:1. 正常情况下加热温度在 810,840?之间:只要充分奥氏体化,加热温度越低越好。

2. 冷却中应注意的问题:热处理生产中最重要的一环就是冷却,很多热处理缺陷都产生在冷却中。

如:开裂、硬度不足、变形超差、局部有软点等等。

?出炉时不要慌忙,有时为怕不能淬硬而手忙脚乱。

只要不低于Ar3,是不会析出铁素体而影响表面硬度的。

?水温在冷却中相当重要,要严格控制水温不要超过 30?,若超过 30?,析出铁素体将是不可避免的,任你此后将工件冷透,硬度很难高于 300HB。

因此要严格控制水温不要超过 30?。

?工件入水后要不停的在水中移动,以快速破裂蒸汽膜而提高 500?以上的冷却速度,从而避免析出铁素体或珠光体,进而影响工件最终硬度。

?为避免复杂工件开裂,温度低于 300?以下可以出水空冷一会再水冷,当工件温度不超过 150?出水回火。

3. 严格按 45 钢的回火温度回火:一般取中偏下的回火温度,按 HRC=62-T×T/9000 进行计算,并结合每台炉子自身温差及淬火情况进行适当调整。

4. 其它注意事项:?对于小件,特别是 30mm 以下的工件,要注意淬裂的问题。

45 钢仍然可能开裂,在硬度要求不太高时,可以选择油淬。

?除严格按规定的温度回火外,应根据实际淬火情况调整回火参数。

?对于批量较大且要求硬度较高的小件,要特别注意在水中的搅动问题,以增加冷却能力。

否则,返工不可避免。

?选择合适的电炉,确保加热时间不可过长,长时间加热并不利于提高工件硬度。

二、合金结构钢调质:1. 合金结构钢调质:可以参照上面的要求。

应注意的是:由于加入合金元素,C 曲线不同程度右移,甚至改变了形状;提高了珠光体的稳定性,提高了钢的淬透性和淬硬性,淬裂倾向增加。

因此,对相同含碳量来说,各临界点有所升高,加热温度要略高一些,保温时间要适当延长,便于合金碳化物的分解;淬火冷却时要适当缩短水冷时间,增加空冷时间,从而避免开裂。

热处理通用技术规范及作业指导书

热处理通用技术规范及作业指导书

热处理通用技术规范编制:审核:批准:热处理通用技术规范1.目的为确保公司生产的产品符合产品标准技术要求,根据公司质量手册和程序文件的规定,特制定热处理通用工艺规范,用于指导热处理生产与过程控制。

2.适用范围本规范明确了热处理生产的主要工艺和质量控制方式、方法、要求,适用于石油机械API SPEC7K转盘及其配件产品的各种热处理。

属于本公司的其他产品和外协产品的热处理也可参照本规范的基本要求执行。

3.主要热处理工艺热处理是通过对工件的加热、保温和冷却,使金属或合金的组织结构发生变化,从而获得预期的性能的操作工艺。

热处理能最大限度的发挥材料潜力,改善和获得良好的机械性能、加工性能、物理性能和化学性能等。

热处理作为生产过程特殊工序,在石油机械产品生产制造中有重要作用。

可以分为:a.整体热处理与表面热处理整体热处理:如退火、正火、淬火、回火表面热处理:如感应加热表面淬火、火焰加热淬火以及化学热处理(如表面渗碳、碳氮共渗、氮化等)b.预先(或预备)热处理与最终热处理预先热处理一般是为了获得良好的加工性能而采取的热处理工艺,如时效、退火(包括去应力退火、球化退火等)、正火等,预先热处理有时也可以作为最终热处理。

一般用于焊接结构件、铸件等。

相对于最终热处理而言,某些重要、大截面钢件采用预先热处理(通常采用正火处理)是为使最终热处理产品有一个良好的组织保证。

3.1退火(Annealing)将钢件加热到Ac3+30~50度或Ac1+30~50度或Ac1以下的温度后,一般随炉温缓慢冷却。

主要是降低硬度,提高塑性,改善切削加工与压力加工性能;细化晶粒,改善力学性能,为下一工序做准备;消除冷、热加工所产生的内应力。

主要适用于合金结构钢、碳素工具钢、合金工具钢、高速钢的锻件、焊接件以及供应状态不合格的原材料,一般在毛坯状态进行退火。

按照要求目的的不同,退火可分为重结晶退火、等温退火、均匀化退火、球化退火、去除应力退火、再结晶退火以及稳定化退火等。

热处理标准规范

热处理标准规范

热处理标准规范热处理是一种通过加热和冷却来改变金属或合金材料的性能和组织结构的工艺过程。

在工业生产中,热处理是非常重要的一环,它可以使金属材料获得理想的力学性能和物理性能,从而满足不同工程和使用要求。

因此,热处理标准规范对于确保产品质量和安全具有重要意义。

首先,热处理标准规范应包括材料的选择和准备。

在进行热处理之前,应该对材料的成分、硬度、强度等进行全面的检测和分析,以便确定合适的热处理工艺参数。

此外,还需要对材料进行表面清洁和预处理,以确保热处理过程中不受污染和氧化的影响。

其次,热处理标准规范应明确热处理工艺的参数和要求。

包括加热温度、保温时间、冷却速度等关键参数的设定和控制要求。

这些参数的选择和控制对于最终材料的性能具有决定性影响,因此必须严格按照标准规范执行,确保热处理过程的稳定性和可控性。

另外,热处理标准规范还应包括热处理后的检验和评定要求。

热处理后的材料需要进行金相组织分析、硬度测试、拉伸试验等一系列检测,以验证热处理效果是否符合要求。

只有通过严格的检验和评定,才能确保热处理后的材料达到预期的性能指标。

除此之外,热处理标准规范还应包括热处理设备和环境的要求。

热处理设备应具备良好的加热和冷却控制能力,以及稳定的温度和时间记录系统。

同时,热处理车间的环境条件也应符合相关的安全和卫生标准,以确保操作人员和材料的安全。

总的来说,热处理标准规范对于确保热处理工艺的稳定性、可控性和可靠性具有重要意义。

只有严格遵守标准规范的要求,才能保证热处理后的材料具有良好的性能和质量,从而满足不同工程和使用要求。

因此,制定和执行热处理标准规范是非常必要和重要的。

热处理硬度检测标准

热处理硬度检测标准

热处理硬度检测标准热处理是一种常见的金属材料加工工艺,通过对金属材料进行加热和冷却的过程,可以改变其组织结构和性能,从而达到一定的硬度和强度要求。

而硬度检测则是评定材料是否符合热处理标准的重要手段之一。

本文将介绍热处理硬度检测的相关标准和方法。

1. 硬度检测的标准。

热处理后的材料硬度检测需要遵循一定的标准,以确保检测结果的准确性和可靠性。

常见的硬度检测标准包括国际上广泛应用的洛氏硬度(Rockwell Hardness)标准、巴氏硬度(Brinell Hardness)标准和维氏硬度(Vickers Hardness)标准等。

这些标准都有相应的检测方法和设备,用于评定材料的硬度值。

2. 硬度检测的方法。

硬度检测的方法根据不同的标准和要求而有所不同。

洛氏硬度检测主要通过在材料表面施加一定载荷,然后测量材料表面的残留印痕深度来确定硬度值。

巴氏硬度检测则是通过在材料表面施加一定载荷,然后测量压痕的直径来计算硬度值。

而维氏硬度检测则是通过在材料表面施加一定载荷,然后测量压痕的对角线长度来计算硬度值。

这些方法都有各自的优缺点,需要根据具体的情况选择合适的方法进行硬度检测。

3. 硬度检测的设备。

进行硬度检测需要使用相应的硬度检测设备。

常见的硬度检测设备包括硬度计、洛氏硬度计、巴氏硬度计和维氏硬度计等。

这些设备根据不同的检测方法和标准,具有不同的测量范围和精度。

在进行硬度检测时,需要根据具体的要求选择合适的设备,并严格按照设备操作说明进行操作,以确保检测结果的准确性。

4. 硬度检测的注意事项。

在进行硬度检测时,需要注意一些细节和注意事项,以确保检测结果的准确性。

首先,需要保证待测材料表面的平整度和清洁度,以免影响硬度检测的准确性。

其次,在进行硬度检测时,需要根据具体的标准和方法选择合适的载荷和时间,以确保检测结果的可靠性。

最后,需要对硬度检测设备进行定期的校准和维护,以确保设备的正常工作和检测结果的准确性。

总之,热处理硬度检测是热处理工艺中的重要环节,对材料的性能和质量有着重要的影响。

链条原材料及热处理加工的检验和评定标准

链条原材料及热处理加工的检验和评定标准
料的表面脱碳程度的大小会直接影响到链条零件的
缺陷。根据 供需双方协议 ,也可用作评定其他钢类
低倍 组 织 的缺 陷 。
耐磨性能和整链抗拉强度等性能,通常链条原材料
检验规范 中都对表面脱碳 层规定了深度的要求 ,而 如何测定脱碳层深度则需遵照G / 2 —2 0 标准 BT2 4 0 8
标准适用于渗碳和碳氮共渗淬火硬化 层;并经最终 热处理 后 ,距表面3 于淬火硬化 层深度处硬度值 倍
小于 4 0 V的零 件 。不 能 满足 上 述 条件 的 钢 件 ,应 5H
T 5 7 —2 0 低、 中碳钢球化体评级》 、J / 0 4 0 7 BT 9 1 —2 0 中碳钢与 中碳 合金结构钢马 氏体等 21 08
链条原材料及热处理加工的
检验和评定标准
杭 州东华链 条有限公 司 ( 江 浙 3 1 0 ) 邵 慧敏 1 1 2
在 链 条制 造 中 ,为 确保 产 品的 质 量 ,必须 对 各 零 件 的原 材 料 和 热处 理 加 工 后 的状 况 等 进 行检 查 , 即 按 各种 链 条 的 产 品 图样 、工 艺 文件 、检 验规 范等 技 术 文 件 要 求 ,按 链 条 原 材 料 各 相 应 钢 种 的 国家 标 准 ( :G / 9 —19 、GBT 3 7 —19 、 如 BT69 99 / 0 7 9 9
( )J / 7 0 0 7 薄层碳氮 共渗或薄 2 B T 7 1 —2 0
层 渗 碳 钢 件 显 微 组 织 检 测 ) 准 规 定 了薄 层 碳 氮 )标
共渗或薄 层渗碳 钢件表 层和心部 显微组织 评级及
渗 层 深 度 的 测 定 方 法 ,适 用 于 碳 氮 共 渗 或 渗 碳 层 深 度 小 于 或 等 于 03 .mm的 0 F Q 1 AF 1 、 8 、 2 5 、 0

热处理标准规范

热处理标准规范

3、硬度测量方法:3.1各种硬度测量的试验条件,见下表1:为保证零件热处理后达到其图纸技术(或工艺)要求,待检件选取应有代表性,通常从热处理后的零件中选取,能反映零件的工作部位或零件的工作部位硬度的其他部位,对每一个待检件的正时试验点数一般应不少于3个点。

通常连续式加热炉(如网带炉):应在连续生产的网带淬火入回火炉前、回火后入料框前的网带上抽检3-5件/时。

且及时作检验记录。

同时,若发现硬度超差,应及时作检验记录。

同时,若发现硬度越差,应及时进行工艺参数调整,且将前1小时段的零件进行隔离处理(如返工、检)。

通常期式加炉(如井式炉、箱式炉):应在淬火后、回火后均从料框的上、中、下部位抽检6-9件/炉,且及时作检验记录。

同时,若发现硬度超差,应及时进行工艺参数调整,且将该炉次的零件进行隔离处理(如返工、逐检)。

通常感应淬火工艺及感应器与零件间隙精度调整,经首件(或批)感应淬火合格后方可生产,且及时作检验记录。

GB4342 金属显微维氏硬度试验方法 GB5030 金属小负荷维氏试验方法2、待检件选取与检验原则如下:热处理检验规范一、使用范围:二、硬度检验:通常是根据金属零件工作时所承受的载荷,计算出金属零件上的应力分布,考虑安全系数,提出对材料的强度要求,以强度要求,以强度与硬度的对应关系,确定零件热处理后应具有大硬度值。

为此,硬度时金属零件热处理最重要的质量检验指标,不少零件还时唯一的技术要求。

金属零件的内在质量主要取决于材料和热处理。

因热处理为特种工艺所赋予产品的质量特性往往又室补直观的内在质量,属于“内科”范畴,往往需要通过特殊的仪器 (如:各种硬度计、 金相显微镜、各种力学性能机)进行检测。

在GB/T19000-ISO9000系列标准中,要求对机械产品零部件在整个热处理过程中一切影响因素实施全面控制,反映原材料及热处理过程控制,质量检验及热处理作业条件(包括生产与检验设备、技术、管理、操作人员素质及管理水平)等各方面均要求控制,才能确保热处理质量。

材料表面热处理常用方法及特点

材料表面热处理常用方法及特点

表面处理的常用方法及特点摘要:表面处理方法分类简要描述及特点关键字:表面处理一、电镀定义:电镀(Electroplating)就是利用电解原理在某些金属表面上镀上一薄层其它金属或合金的过程,是利用电解作用使金属或其它材料制件的表面附着一层金属膜的工艺从而起到防止金属氧化(如锈蚀),提高耐磨性、导电性、反光性、抗腐蚀性(硫酸铜等)及增进美观等作用。

特点:电镀时,镀层金属或其他不溶性材料做阳极,待镀的工件做阴极,镀层金属的阳离子在待镀工件表面被还原形成镀层。

为排除其它阳离子的干扰,且使镀层均匀、牢固,需用含镀层金属阳离子的溶液做电镀液,以保持镀层金属阳离子的浓度不变。

电镀的目的是在基材上镀上金属镀层,改变基材表面性质或尺寸。

电镀能增强金属的抗腐蚀性(镀层金属多采用耐腐蚀的金属)、增加硬度、防止磨耗、提高导电性、润滑性、耐热性和表面美观。

利用电解作用在机械制品上沉积出附着良好的、但性能和基体材料不同的金属覆层的技术。

电镀层比热浸层均匀,一般都较薄,从几个微米到几十微米不等。

通过电镀,可以在机械制品上获得装饰保护性和各种功能性的表面层,还可以修复磨损和加工失误的工件。

此外,依各种电镀需求还有不同的作用。

举例如下:1、镀铜:打底用,增进电镀层附着能力,及抗蚀能力。

(铜容易氧化,氧化后,铜绿不再导电,所以镀铜产品一定要做铜保护)2、镀镍:打底用或做外观,增进抗蚀能力及耐磨能力,(其中化学镍为现代工艺中耐磨能力超过镀铬)。

(注意,现在许多电子产品,比如DIN头,N头,不再使用镍打底,主要是由于镍有磁性,会影响到电性能里面的无源互调)3、镀金:改善导电接触阻抗,增进信号传输。

(金最稳定,也最贵。

)4、镀钯镍:改善导电接触阻抗,增进信号传输,耐磨性高于金。

5、镀锡铅:增进焊接能力,快被其他替物取代(因含铅现大部分改为镀亮锡及雾锡)。

6、镀银:改善导电接触阻抗,增进信号传输。

(银性能最好,容易氧化,氧化后也导电)电镀是利用电解的原理将导电体铺上一层金属的方法。

模具工件检验规范

模具工件检验规范

XXX有限公司模具工件检验规范文件编号:WI-MJ-481 版本/版次:A/2页次:1 / 41.目的为了控制和规范模具工件的检测工作,确保模具工件的来料检测品质,特制定本规范。

2.范围本规定适用于模具工件的检测。

3.职责3.1模具负责选择合格的来料供应商、提出来料购买申请、审核供应商厂家和价格、跟进来料的进度;3.2采购工程师负责来料商务合同和支付款项等工作;3.3模具部模具检测负责模具工件来料的检验。

4.检测组基本操作流程:4.1作业流程图:4.2模芯的检测规范4.2.1 模芯材料、外发热处理工件的检测:模芯材料主要参照材料请购单,分别对其长宽高、直角度、硬度进行检测;外发热处理工件主要对每批回厂的热处理工件进行抽检硬度。

同时检测的实际尺寸、硬度填写在《模具零件来料检验报告》中。

4.2.2 铣床和CNC粗加工模芯主要检测模芯运水孔加工、虎口开粗以及螺丝孔加工。

前模模芯细水口进胶的进胶点开粗检测要特别注意,此位经常漏加工;后模芯的顶针避空位加工,以及穿线孔加工,现定义直径2.5毫米以下的顶针或镶针孔由EDB加工穿线孔,直径大于或等于2.5毫米的孔铣床加工穿线孔;4.2.2.1 磨床加工模芯的最大外形,以及模芯的直角成形,此工序加工需要三次元检测,检测员将检测数据记录在图纸上以供线割加工时分中使用;4.2.2.2 CNC、线割前需先将模芯与模具设计资料中的3D图档核对,火花机加工模芯直接送三次元检测,检测检查有无漏加工或外观缺陷。

其次是在3D图档上装入产品分析模芯的主要成型位如:插穿、碰穿、分型面等。

然后将该模芯的3D图档转入三次元做对比测量,测量完数据打印并保存PDF格式在三次元电脑上;。

常用材料及零件热处理

常用材料及零件热处理

常用材料及零件热处理
3.表面热处理方法特点和应用
表面热处理是通过改变零件表层组织,以获得硬度很高的马氏体,而保留心部韧性和朔性(即表面火),或同时表层的化学成分,以获得耐蚀、耐酸、耐碱性,及表层硬度更高的处理方法。

6.钢的淬透性
不同的钢种,接受淬火的能力不同,淬透层深度愈大,表明该钢种的淬透性愈好。

淬透性大的钢,其力学性能沿截面分布均匀;而淬透性小的钢心部力学性能低。

但全部淬透的工件,通常表面残留拉应力,对工件承受疲劳不利,工件热处理中也易变形开裂。

未淬透工件表面可残留压应力,反而有一定好处。

淬透层深度是指由淬火表面马氏体---50%马氏体+50%珠光体层的深度。

碳钢的淬透性低。

在设计大尺寸零件时,用碳钢正火比用碳钢调质更经济,而效果相似。

直径较大并具有几个台阶的台阶轴,需经调质处理时,考虑到淬透性影响,应先粗车成形,然后调质。

如果以棒料先调质,再车外圆,由于直径大,表面淬透层浅,阶梯轴尺寸较小的部分调质后的组织在粗车时可能被车去,起不到调质作用。

7.几种典型零件热处理示例
机床齿轮等零件常用材料及热处理。

材料热处理原理与工艺实验指导书

材料热处理原理与工艺实验指导书

实验一钢的晶粒度及渗碳层深度的测定一、实验目的1、掌握用弦计算法测定晶粒度的方法。

2、了解加热温度对钢的奥氏体晶粒度的影响。

3、熟悉钢的化学热处理渗碳层的显微组织特征。

4、掌握钢的渗碳层深度的测定方法。

二、概述钢中晶粒大小直接影响其力学性能,评定晶粒大小的方法称晶粒测定法,影响奥氏体晶粒度的因素很多。

加热温度和保温时间起着决定性作用。

合金元素、原始组织状态、热加工、热处理等对奥氏体晶粒度也有一定的影响。

钢晶粒度测定法很多,有比较法、面积法、截点法、弦计算法等。

渗碳的目的是为了使钢件表层获得高的硬度和耐磨性,而中心具有良好的冲击韧性,渗碳用钢均是低碳钢和低合金钢,如10、15、20、15Cr、20CrMn Ti、20MnVB、20Cr、12Cr2Ni4A等等。

三、实验原理及内容(一)、测定奥氏体晶粒度的试样及晶粒显示方法测定奥氏体晶粒度的试样,应在交货状态的钢材上截取,试样的数量及取样部位按相应的标准规定执行。

试样尺寸建议为:圆形试样直径10~20mm,矩形试样10×20mm。

奥氏体晶粒度的显示方法主要有以下几种:渗碳法、网状F法、网状P法、加热缓冷法等,其中加热缓冷法适用于过共析钢,我们实验中采用过共析钢,故晶粒显示参照加热缓冷法,具体方法为:将一组试样经不同的温度加热、保温1.5h后,缓冷至600℃出炉。

除去试样表面氧化层,制成金相试样,根据碳化物沿奥氏体晶界析出的网络测定钢的晶粒度。

(用碱性苦味酸钠酒精溶液腐蚀使网状Fe3C变成黑色)。

(二)、钢的渗层组织及检查方法1、渗碳后的显微组织根据渗碳温度,渗碳时间及渗碳介质活性的不同,钢的渗碳层厚度与含碳量的分布也不同。

一般渗碳层厚度约为0.5-1.7mm。

渗碳层的含碳量,从表层向中心,含碳量逐渐下降。

渗碳后钢的表面含碳量约在0.85~1.05% 之间。

碳钢与合金钢渗碳后的组织状态有很大差别。

碳钢经渗碳后退火状态下从表面至中心部分的显微组织,最表面第一层为过共析区(含碳量0.8-1.2%),由珠光体和网状二次渗碳体组成,而合金渗碳钢渗碳后则为珠光体和粒状碳化物组成;第二层为共析区(含碳量在0.8%左右),由层状珠光体组织构成;第三层为亚共析过渡区,直至钢中心部分出现原始组织的界限为止(含碳量由0.8%以下直到碳钢原始含碳量为止),由珠光体和先共析铁素组成;中心为亚共析区,即未渗碳前的原始组织。

热处理讲稿-第九讲热处理质量检验

热处理讲稿-第九讲热处理质量检验

3. 操作与技能 a. 操 作
左手拿零件,右手拿锉刀,把工件贴置在工作台棱 边上,用一定的压力在工件上来回锉动,锉刀要放平 稳,用力要均匀。根据锉痕深浅和手感确定硬度高低。
b. 定 值 当工件的硬度范围未知时,先用一把60HRC标准锉
刀试锉,工件若能被锉动,再换一把55HRC的标准锉 刀接着试锉;若工件未能被锉动,锉刀在工件上打滑, 这时可用一把58HRC的标准锉刀试锉。锉刀稍微锉动 划出道痕,这表明工件硬度就是58HRC。
c. 脱碳 50钢零件
加热时,传 热介质中的 氧气等氧化 性气体与的 碳元素发生 化学反应, 使表层含碳 量降低的现
象。
氧化为零件加热时介质中的氧、二氧化碳和
水蒸气等与铁反应,生成氧化物的过程
在30CrNi3A零件上 电火花线切割制备 人造裂口:经520℃ 回火后,线切割表层 形成了0.01mm厚的 氧化层,无脱C现象
2. 金相试样的截取
钢铁零件微观金相检测的取样和制备方法,根据 GB/T13298--1991《金属显微组织检验方法》规定执行。 根据实践经验,金相试样合适的规格是:长和宽尺寸为 12~15mm,高15 ~ 20mm。
取样部位要考虑钢的各向异性的特性。即材料在不
同的方向上组织结构不尽相同。与变形方向平行的面, 称为纵向;与变形方向垂直的面,称为横向。所以不同 的截面取样获得的检测结果有所不同。根据标准规定, 脱碳、渗碳、氮化和有效硬化层深度等显微长度测量项 目,以及球化退火、正火、淬火、调质和晶粒度等试验 项目应按横向取样;带状偏析组织、非金属夹杂物等项 目应按纵向取样。
3. 金相检验方法
a. 金相试样制备—包括取样、制作(磨光、抛光、 腐蚀),在仪器上观察。 b.金相仪器设备—广义的金相试验包括低倍酸蚀试 验(铝合金为碱蚀),其低倍形态和缺陷采用肉眼、 放大镜和体视镜观察和评级;金相试验通常指显微 观察,指在放大倍率≥100×的显微镜下评判,必要 时还得借助电子显微镜观察分析的结果。 C.金相检验标准—主要包括试验方法标准和特定零 件检验等标准。如非金属夹杂物评级标准、金属平 均晶粒度测定方法和钢件渗碳淬火回火金相检验等 标准。

工件材料热处理调质工艺守则及操作规程

工件材料热处理调质工艺守则及操作规程

工件材料热处理调质工艺守则及操作规程一、工件材料热处理调质工艺守则1.选择适当的温度范围:根据工件的材料和要求,选择适当的热处理温度范围。

温度过低会导致工件组织和性能得不到有效改善,温度过高则易导致工件退火过软、烧伤和变形等问题。

2.控制保温时间:保温时间是热处理工艺中非常重要的参数之一、保温时间过长会导致工件组织粗化,而过短则无法达到预期的效果。

因此,应根据工件的材料和要求,控制好保温时间。

3.确定合适的冷却速度:冷却速度对工件的组织和性能有很大的影响。

快速冷却可以增加工件的硬度,但也容易引起变形和内应力的产生。

慢速冷却可以降低变形和内应力,但容易导致工件组织过软。

在选择冷却速度时,需要根据工件的材料和要求综合考虑。

4.控制热处理中的加热速度:加热速度是影响工件组织和性能的重要因素之一、加热速度过快会导致工件错相和组织不均匀,加热速度过慢则容易引起过度烧伤和时间成本增加。

因此,在进行热处理时,应控制好加热速度。

5.注意热处理的环境:热处理过程中的环境也会对工件的组织和性能产生一定的影响。

例如,加热过程中的气氛对工件表面的清洁和氧化情况有很大影响;冷却过程中,冷却介质的选择也会对工件的性能产生影响。

因此,需要注意热处理的环境,使其符合要求。

二、工件材料热处理调质工艺操作规程1.准备工作:将工件进行清洁,并做好相应的标记,以便于后续的追踪和检查。

同时,准备好所需的热处理设备和工具。

2.加热:根据工件的材料和要求,选择适当的加热温度和加热时间,将工件放入加热设备中进行加热。

在加热过程中,需要控制好加热速度,避免过快或过慢。

3.保温:当工件达到所需的温度后,保持一定的保温时间。

保温时间的长短应根据工件的材料和要求进行调整。

4.冷却:在保温结束后,根据工件的材料和要求,选择适当的冷却介质和冷却速度,进行冷却。

在冷却过程中,需要注意冷却介质的温度和清洁程度,以及控制好冷却速度。

5.检查和测量:冷却结束后,将工件取出进行检查和测量。

热处理质量检验的内容和方法

热处理质量检验的内容和方法

热处理质量检验的内容和方法热处理是机械制造中的一个重要环节,热处理的质量好坏,直接关系着产品或零件的内在质量及性能。

在生产中影响热处理质量的因素很多,为了确保产品质量达到国家标准或行业标准规定的要求,所有的热处理零件从原材料进厂开始,每一道热处理工序后都必须进行严格的检验。

产品出现质量问题不能直接转入下道工序,这样才能确保产品质量。

另外在热处理生产中一个称职的检验员,只是按照技术要求对热处理后的工件进行质量检验和把关是不够的。

更重要的任务是当好参谋。

在热处理的生产过程中首先要看操作者是不是严格执行工艺规程,工艺参数是否正确。

在质量检验过程中如果发现质量问题要帮助操作者分析产生质量问题的原因,找出解决问题的方法。

把可能影响热处理质量的各种因素都控制起来以保证生产出质量优良、性能可靠、用户满意的合格品。

一、热处理质量检验的内容(一)预先热处理预先热处理的目的是改善原材料的组织、软化,以便于机械加工,消除应力,获得理想的热处理原始组织等。

对有些大件预先热处理也是最终热处理,预先热处理一般采用正火及退火。

1)铸钢件的扩散退火由于在高温长时间加热晶粒易粗大,在退火后还应再进行一次完全退火或正火来细化晶粒。

2)结构钢的完全退火一般用于中低碳钢铸件、焊接件、热轧及热锻件的改善组织、细化晶粒、降低硬度、消除应力等。

3)合金结构钢的等温退火主要用于42CrMo等钢的退火。

4)工具钢的球化退火球化退火的目的是改善切削加工性能及冷变形性能。

5)去应力退火去应力退火的目的是消除铸钢件、焊接件、机加工件的内应力,减少后工序的变形与开裂。

6)再结晶退火再结晶退火的目的是消除工件的冷作硬化。

7)正火正火的目的是改善组织、细化晶粒,可作为预先热处理,也可作为最终热处理。

上述退火与正火获得的组织都是珠光体。

在质量检验中,重点是做工艺参数的检查,即在退火及正火进行过程中,做流动检查工艺参数的执行情况,这是首要的,在过程结束后主要检验硬度,金相组织,脱碳深度,及退火正火目的项,带状,网状碳化物等。

热处理规章制度

热处理规章制度

热处理规章制度1. 引言热处理是一种改变金属材料组织和性能的方法,广泛用于汽车、航空航天、机械制造等行业。

为确保热处理工艺的质量和安全,制定热处理规章制度是十分必要的。

本文档旨在规范热处理过程中的操作要求,确保热处理工艺的可控性和稳定性。

2. 热处理操作基本要求2.1 热处理前准备- 确认热处理设备的工作状态良好,如加热元件、测温装置等; - 检查所需热处理工艺参数的准确性,如温度、保温时间等; - 准备好所需的热处理工具和辅助设备。

2.2 热处理操作流程 - 将待处理金属材料放置在热处理设备中,确保放置合理,避免堆积和重叠; - 启动热处理设备,按照设定的工艺参数进行加热; - 辅助设备的运行,如气体流量控制、淬火介质使用等;- 保温时间结束后,对金属材料进行冷却处理; - 前期处理完成后,进行后续的金相检测和性能测试。

2.3 热处理过程中的注意事项 - 加热速度均匀、缓慢,避免温度梯度过大导致金属的变形或裂纹; - 保温时确保温度稳定,避免温度波动导致工艺不稳定; - 冷却过程中应控制冷却速度,避免金属变形,选择合适的淬火介质。

3. 热处理工艺参数设定3.1 温度设定热处理温度是影响热处理效果的重要参数。

应根据不同材料和工艺要求,合理设定适宜的温度范围。

3.2 保温时间设定保温时间是控制工件组织和性能形成的重要参数,应结合金属材料的热处理性能和工艺要求,合理设定保温时间。

3.3 冷却速率设定冷却速率是确保金属材料获得理想组织和性能的重要参数,应根据材料性能和热处理要求,合理设定冷却速率。

4. 热处理工艺记录与报告4.1 热处理过程记录应对热处理过程中的每个环节进行详细记录,包括开始和结束时间、温度变化曲线、保温时间、冷却速率等。

4.2 热处理工艺报告每次热处理结束后,应编制热处理工艺报告。

报告应包含以下内容: - 热处理工艺参数,如温度、保温时间、冷却速率等; - 热处理前后材料的金相组织变化情况; - 材料性能测试结果,如硬度、抗拉强度等; - 热处理过程中出现的问题及解决措施。

热处理工件硬度的检测方法

热处理工件硬度的检测方法

热处理工件硬度的检测方法表面热处理分为两大类,一类是表面淬火回火热处理,另一类是化学热处理,其硬度检验方法如下:1、表面淬火回火热处理表面淬火回火热处理通常用感应加热或火焰加热的方式进行。

主要技术参数是表面硬度、局部硬度和有效硬化层深度。

硬度检测可采用维氏硬度计,也可采用洛氏或表面洛氏硬度计。

试验力(标尺)的选择与有效硬化层深度和工件表面硬度有关。

维氏硬度计、表面洛氏硬度计和洛氏硬度计试验的选择可参照表1、表2和表3。

表1 维氏试验力的选择表2 表面洛氏硬度标尺的选择表3洛氏硬度标尺的选择表1~表3分别是采用维氏硬度计、表面洛氏硬度计和洛氏硬度计时,对应于不同的热处理工件表面硬化层深度和热处理工件表面硬度值维氏硬度试验力和洛氏、表面洛氏硬度标尺的选择表。

由表1~表3可知:1.1维氏硬度计是测试热处理工件表面硬度的重要手段,它可选用0.5~100kg的试验力,测试薄至0.05mm厚的表面硬化层,它的精度是最高的,可分辨出热处理工件表面硬度的微小差别。

另外,有效硬化层浓度也要由维氏硬度计来检测,所以,对于进行表面热处理加工或大量使用表面热处理工件的单位,配备一台维氏硬度计是有必要的。

1.2表面洛氏硬度计也是十分适于测试表面淬火工件硬度的,表面洛氏硬度计有三种标尺可以选择。

可以测试有效硬化深度超过0.1mm的各种表面硬化工件。

尽管表面洛氏硬度计的精度没有维氏硬度计高,但是作为热处理工厂质量管理和合格检查的检测手段,已经能够满足要求。

况且它还具有操作简单、使用方便、价格较低,测量迅速、可直接读取硬度值等特点,利用表面洛氏硬度计可对成批的表面热处理工件进行快速无损的逐件检测。

这一点对于金属加工和机械制造工厂具有重要意义。

1.3当表面热处理硬化层较厚时,也可采用洛氏硬度计。

当热处理硬化层厚度在0.4~0.8mm时,可采用HRA标尺,当硬化层厚度超过0.8mm时,可采用HRC标尺。

1.4维氏、洛氏和表面洛氏三种硬度值可以方便地进行相互换算,转换成标准、图纸或用户需要的硬度值。

热处理标准规范

热处理标准规范

热处理检验规范金属零件的内在质量主要取决于材料和热处理。

因热处理为特种工艺所赋予产品的质量特性往往又室补直观的内在质量,属于“内科”范畴,往往需要通过特殊的仪器(如:各种硬度计、金相显微镜、各种力学性能机)进行检测。

在GB/T19000-ISO9000系列标准中,要求对机械产品零部件在整个热处理过程中一切影响因素实施全面控制,反映原材料及热处理过程控制,质量检验及热处理作业条件(包括生产与检验设备、技术、管理、操作人员素质及管理水平)等各方面均要求控制,才能确保热处理质量。

为此,为了提高我公司热处理产品质量,遵循热处理相关标准,按零件图纸要求严格执行,特制定本规范一、使用范围:本规范适用于零件加工部所有热处理加工零件。

二、硬度检验:通常是根据金属零件工作时所承受的载荷,计算出金属零件上的应力分布,考虑安全系数,提出对材料的强度要求,以强度要求,以强度与硬度的对应关系,确定零件热处理后应具有大硬度值。

为此,硬度时金属零件热处理最重要的质量检验指标,不少零件还时唯一的技术要求。

1、常用硬度检验方法的标准如下:GB230 金属洛氏硬度试验方法 GB231 金属布氏硬度试验方法GB1818 金属表面洛氏硬度试验方法 GB4340 金属维氏硬度试验方法GB4342 金属显微维氏硬度试验方法 GB5030 金属小负荷维氏试验方法2、待检件选取与检验原则如下:为保证零件热处理后达到其图纸技术(或工艺)要求,待检件选取应有代表性,通常从热处理后的零件中选取,能反映零件的工作部位或零件的工作部位硬度的其他部位,对每一个待检件的正时试验点数一般应不少于3个点。

通常连续式加热炉(如网带炉):应在连续生产的网带淬火入回火炉前、回火后入料框前的网带上抽检3-5件/时。

且及时作检验记录。

同时,若发现硬度超差,应及时作检验记录。

同时,若发现硬度越差,应及时进行工艺参数调整,且将前1小时段的零件进行隔离处理(如返工、检)。

通常期式加炉(如井式炉、箱式炉):应在淬火后、回火后均从料框的上、中、下部位抽检6-9件/炉,且及时作检验记录。

工件材料热处理工艺规范

工件材料热处理工艺规范

热处理工艺规范一、淬火、回火工艺规范1.淬火、回火准备工作:1)检查设备,仪表是否正常;2)正确选择夹具;3)检查零件表面是否有碰伤、裂纹、锈斑等缺陷;4)确认零件要求的淬火部位硬度、变形等的技术要求,核对零件的形状、材料的加工状态是否与图样及工艺文件相符合;5)表面不允许氧化、脱碳的零件,当在空气炉加热时,应采取防氧化脱碳剂装箱保护或采用真空炉加热;6)易开裂的部位如尖角靠边的孔,应采取预防措施,如塞石棉、耐火泥等。

2.常见材料淬火、回火工艺规范1)加热温度表1 常用材料的常规淬火、回火规范注:Cr12Mo1V1 即 D2(美国)、1.2379(德国)、SLD(日立)、SKD11(日本)、K110(奥地利);9CrWMn 即 O1(美国)、1.2510(德国)、K460(奥地利);4Cr5MoSiV1 即 H13(美国)、1.2344(德国)、8407/8402(一胜百)、W302(奥地利);7Cr7Mo3V2Si 即 LD1;HS-1是高级火焰淬火,多用模具钢;除45号钢或特别说明均采用回火两次的工艺。

2)淬火保温时间t =8~10 min+kαDk——装炉系数(1~1.5);α——保温系数(见表2);D——零件有效厚度。

表2 淬火保温系数3)回火保温时间①工件有效厚度d<=50mm,保温2小时;②工件有效厚度d>50mm,按照保温时间t=d/25(小时)计算;③每次回火后空冷至室温,再进行下次回火。

4)去应力(入炉时效)①高合金钢550~650℃,热透后,保温时间>3小时;3.淬火和回火设备1)淬火设备——真空淬火炉、中温箱式炉、高温箱式炉。

2)回火设备——真空回火炉、中温箱式炉。

3)冷却设备——水槽、油槽、风箱。

4.操作方法1)零件应均匀摆放于炉内有效加热区,在箱式炉中一般为单层排列加热,工件间适当间隙。

小件可适当堆放,但要酌情增加保温时间。

2)细长零件加热要考虑装炉方法,以减少工件变形,如垂直吊挂,侧立放平支稳等。

工件材料热处理检验方法和规范

工件材料热处理检验方法和规范

金属零件的内在质量主要取决于材料和热处理。

因热处理为特种工艺所赋予产品的质量特性往往又室补直观的内在质量,属于“内科”范畴,往往需要通过特殊的仪器(如:各种硬度计、金相显微镜、各种力学性能机)进行检测。

在G B/T19000-ISO9000 系列标准中,要求对机械产品零部件在整个热处理过程中一切影响因素实施全面控制,反映原材料及热处理过程控制,质量检验及热处理作业条件(包括生产与检验设备、技术、管理、操作人员素质及管理水平)等各方面均要求控制,才干确保热处理质量。

为此,为了提高我公司热处理产品质量,遵循热处理相关标准,按零件图纸要求严格执行,特制定本规范本规范合用于零件加工部所有热处理加工零件。

通常是根据金属零件工作时所承受的载荷,计算出金属零件上的应力分布,考虑安全系数,提出对材料的强度要求,以强度要求,以强度与硬度的对应关系,确定零件热处理后应具有大硬度值。

为此,硬度时金属零件热处理最重要的质量检验指标,不少零件还时惟一的技术要求。

1、常用硬度检验方法的标准如下:GB230 金属洛氏硬度试验方法GB231 金属布氏硬度试验方法GB1818法GB4342方法金属表面洛氏硬度试验方法金属显微维氏硬度试验方法GB4340GB5030金属维氏硬度试验方金属小负荷维氏试验2、待检件选取与检验原则如下:为保证零件热处理后达到其图纸技术(或者工艺)要求,待检件选取应有代表性,通常从热处理后的零件中选取,能反映零件的工作部位或者零件的工作部位硬度的其他部位,对每一个待检件的正时试验点数普通应不少于3 个点。

通常连续式加热炉(如网带炉) :应在连续生产的网带淬火入回火炉前、回火后入料框前的网带上抽检3-5 件/时。

且及时作检验记录。

同时,若发现硬度超差,应及时作检验记录。

同时,若发现硬度越差,应及时进行工艺参数调整,且将前1 小时段的零件进行隔离处理(如返工、检)。

通常期式加炉(如井式炉、箱式炉):应在淬火后、回火后均从料框的上、中、下部位抽检6-9 件/炉,且及时作检验记录。

热处理加工工艺规范

热处理加工工艺规范

热处理加工工艺规范1范围本规范规定了热处理的工艺规则,适用于本公司的热处理加工。

2 准备工作2.1根据加工路线单核对工件数量,检查材料是否符合要求,并根据图样了解热处理的种类。

2.2检查工件是否有碰撞伤痕、裂纹等缺陷。

2.3检查炉子及炉温仪表使用情况是否正常2.4严禁带电进出炉操作,工件离电热体不宜太远,以防局部过热。

一般工件离炉壁应大于 100mm ,离炉顶大于 200mm。

2.5形状复杂或细长轴等工件,在堆放时要按有关操作要求装入炉内,严禁悬空堆放。

3退火3.1对于45#、40Cr钢件分别加热到800-840℃,830-850℃,保温2-3小时,然后以小于100℃/H的速度缓慢冷却至500-600℃出炉空冷。

3.2对于T7-T9,T10-T12钢件分别加热到740-760℃,750-770℃,保温2-4小时,然后以小于200℃/H的速度缓慢冷却至500-600℃出炉空冷。

3.3对于合金钢等特殊材料,按有热处理工艺学有关技术资料要求操作。

3.4一般件可不预热低温进炉,当温度升到500-600℃时,应保温1-2小时后再继续升温。

3.5出炉时对于形状复杂或细长工件,宜用钳子或其他夹具垂直或水平放置在适当地方。

4正火4.1通常用于正火的材料为含碳量不超过0.5%的碳素钢、低合金钢的锻件、铸钢件。

4.2对于Q235、20#、Q345等材料加热到880℃-930℃,保温1-3小时后出炉空冷。

4.3 对于45#、40Cr钢分别加热至830-880℃,850-890℃,保温1-3小时出炉空冷。

4.4保温时间可根据工件的有效厚度决定,参考下表:4.5正火规范相同的零件,可在同炉处理,但截面有效厚度必须相近。

4.6不同尺寸的零件在同炉处理中,若同时出炉时,其保温时间就按最大截面所需的保温时间计算,但允许小件到达其本身尺寸所需保温时间后单独出炉。

4.7多件装炉时工件断面尺寸小于100mm 者,其间隙应大于50mm . 技术要求较高的零件严禁小件外面套大件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热处理检验方法和规范金属零件的内在质量主要取决于材料和热处理。

因热处理为特种工艺所赋予产品的质量特性往往又室补直观的内在质量,属于“内科”范畴,往往需要通过特殊的仪器(如:各种硬度计、金相显微镜、各种力学性能机)进行检测。

在GB/T19000-ISO9000系列标准中,要求对机械产品零部件在整个热处理过程中一切影响因素实施全面控制,反映原材料及热处理过程控制,质量检验及热处理作业条件(包括生产与检验设备、技术、管理、操作人员素质及管理水平)等各方面均要求控制,才能确保热处理质量。

为此,为了提高我公司热处理产品质量,遵循热处理相关标准,按零件图纸要求严格执行,特制定本规范一、使用范围:本规范适用于零件加工部所有热处理加工零件。

二、硬度检验:通常是根据金属零件工作时所承受的载荷,计算出金属零件上的应力分布,考虑安全系数,提出对材料的强度要求,以强度要求,以强度与硬度的对应关系,确定零件热处理后应具有大硬度值。

为此,硬度时金属零件热处理最重要的质量检验指标,不少零件还时唯一的技术要求。

1、常用硬度检验方法的标准如下:GB230 金属洛氏硬度试验方法GB231 金属布氏硬度试验方法GB1818 金属表面洛氏硬度试验方法GB4340 金属维氏硬度试验方法GB4342 金属显微维氏硬度试验方法GB5030 金属小负荷维氏试验方法2、待检件选取与检验原则如下:为保证零件热处理后达到其图纸技术(或工艺)要求,待检件选取应有代表性,通常从热处理后的零件中选取,能反映零件的工作部位或零件的工作部位硬度的其他部位,对每一个待检件的正时试验点数一般应不少于3个点。

通常连续式加热炉(如网带炉):应在连续生产的网带淬火入回火炉前、回火后入料框前的网带上抽检3-5件/时。

且及时作检验记录。

同时,若发现硬度超差,应及时作检验记录。

同时,若发现硬度越差,应及时进行工艺参数调整,且将前1小时段的零件进行隔离处理(如返工、检)。

通常期式加炉(如井式炉、箱式炉):应在淬火后、回火后均从料框的上、中、炉,且及时作检验记录。

/件9-6下部位抽检.同时,若发现硬度超差,应及时进行工艺参数调整,且将该炉次的零件进行隔离处理(如返工、逐检)。

通常感应淬火工艺及感应器与零件间隙精度调整,经首件(或批)感应淬火合格后方可生产,且及时作检验记录。

3、硬度测量方法:3.1各种硬度测量的试验条件,见下表1:压头要预保荷时试验类硬度范总载///m294210m钢14450H7355m钢要30布氏硬183钢2.5m:总载/11:钢球压头980钢10m/m140H2455m钢10要61钢2.5m°金刚石圆12785HB58洛氏硬9钢1.588m3100HR981°金刚石圆12267HB14770-94HR15147.°金刚石圆12294.129.42-86HR30表面洛氏硬体20-78HR45N441.3210、P分为:5、常规维氏硬度100/k、、50、030P:总载荷g0.:总载荷分为:136°金刚石四方P小负荷维氏硬14-1000HV无10、20.50.32、、、1角锥体、度P:总载荷2.5、/kg3显微维氏硬度总载荷分为::P0.:总载荷P0.、0.05、0.02、01.3.2测量硬化层深度不同的零件表面硬度时,硬度试验方法与试验力的一般选择,备注:(1)零件心部或基体硬度,一般按GB230.GB231或GB4340的试验方法测量。

(2)若确定的硬度试验方法有几种试验力可供选择时,应选用试验条件允许的最大试验力。

4、检验设备与人员:4.1所有硬度计及标准硬度试块均应在计量部门检定的有效期内使用,不允许在无检定合格证书或超过检定的有效期使用。

4.2应设立专职检验人员,且经正规培训与考核,具有正式的资格证书;生产线的操作人员检验,应经一定培训,在专职检验人员的认可或指导下进行。

5、测量数据的表示与记录:5.1硬度值的表示应按相应国家标准硬度试(检)验方法的规定,一般以硬度范围法表示,标出上、下限值,如60-65HRC;特殊情况液可以只标下限值或上限值,应用不小于或不大于表示,如不大于229HBS;若记录换算硬度值时,应在换算值后面加括号注明实测值【如:48.5HRC(75.0HRA)】;若记录硬度平均值时,应在硬度值平均值后米那加括号注明计算平均值所用的各测点硬度值【如:64.0HRC(63.5HRC、64.0HRC、64.5HRC)】5.2检验报告记录,包括零件名称、材料、检验数量、检验结果及检验人员与日期。

三、金相试验金相分析时用金相显微镜观察金属内部的组成相及组织组成物的内型以及它们的相对量、大小、形态及分布等特征。

材料的性能取决于内部的组织形态,而组织又取决于化学成分及加工工艺,热处理时改变组织的主要工艺手段,因此,金相分析是材料及热处理质量检验与控制的重要方法。

1、通常金相检验方法的标准如下:GB/T11354-1989 钢铁零件渗氮层深度测测定和金相组织检验GB/T9450-1988 钢铁渗碳淬火有效硬化层深度的测定与校核GB/T9451-1988 钢件薄表面总硬化层深度或有效硬化层深度的测定GB/T5617-1985 钢的感应淬火或火焰火后有效硬化层深度的参定JB/T9204-1999 钢件感应淬火金相检验JB/T9211-1999 中碳钢与中碳合金结合钢马氏体等级JB/T7710-1995 薄层碳氮共渗或薄层渗碳显微组织检验GB/T13298-1991 金相显微组织检验方法GB/T13299-1991 钢的显微组织评定方法GB6394-86 金属平均晶粒度测定法NJ309-83 内燃机连杆螺栓金相检验标准NJ326-84 内燃机活塞销金相检验标准2、金相试样的选取与检验步骤:2.1金相试样的选取:2.1.1纵向取样:纵向取样是指沿着刚材的锻扎方向进行取样。

主要检验内容为:非金属夹杂物的变形程度、晶粒畸变程度、碳化物网、变形后的各种组织形貌、热处理的全面情况等。

2.1.2横向取样横向取样指垂直于钢材的锻扎方向进行取样。

主要检验内容为:金属材料从表层到中心的组织、显微组织状态、晶粒度级别、碳化物网、表面缺陷深度、氧化层深度、腐蚀层深度、表面化学热处理及镀层厚度等。

2.1.3缺陷或失效分析取样:截取缺陷分析的试样,应包括零件的缺陷部分在内;或在缺陷部分附近的正常部位取样进行比较。

为此,通常检验零件的最重要项目为表层显微组织观察和硬化层深度测定,应横向取样;但紧固体的螺纹部分的渗层检验需要纵向取样。

2.2金相检验步骤:选样——金相切割机(或线切割机)取样—镶嵌机加热镶嵌-磨抛机磨光/抛光-化学腐蚀(通常用4%硝酸酒精溶液)-金相观察/硬化层深度(或显微硬度)测定-出具检验报告2.3取样数量:通常连续式加热炉(如网带炉):1件/4小时通常周期式加热炉(如井式炉、箱式炉):2-3件/炉(装炉夹具不同部位)备注:(1)金相试样以磨面面积小于400MM2,高度15-20MM为宜。

(2)试样的制备过程中,部允许因受热而导致组织变化,应避免试样边缘出现圆角并防止改变斜截面试样的角度。

3、金相组织观察于判别:3.1渗碳或碳氮共渗:3.1.1适用于08F、Q235AF、20、20Cr等低碳或低合金钢的零件。

3.1.2试样应从渗碳或碳氮共渗零件上切取。

液可用于钢件的材质,热处理状态,有效厚度一致,避过经同炉渗碳或碳氮共渗处理的试样。

3.1.3薄层碳氮共渗件(层深≤0.3mm),表层碳含量应不低于0.5%,氮含量应不低于0.1%。

薄层渗碳钢件(层深≤0.3mm)表层碳含量应不低于0.5%3.1.4渗层显微组织评级在淬火状态下进行(放大倍率为400倍)。

针状马氏体级别及残余奥氏体级别评定:当渗层显微组织主要为针状马氏3.1.5.体时,依据JB/T7710-1995标准图谱共分1-5级,其中1-2级合格。

3.1.6板条马氏体级别评定:当渗层显微组织主要为板条马氏体时,依据JB/T7710-1995标准图谱共分1-5级,其中1-2级合格。

3.1.7渗层(层深≤0.3mm)碳化物级别评定:依据NJ326-84标准图谱共分1-5级,其中1-3级合格。

3.1.8心部铁素体级别评定:依据JB/T7710-1995标准图谱共分1-5级,其中一般零件1-4级合格,重要零件1-3级合格。

3.2渗氮或碳氮共渗(软氮化):3.2.1渗氮前调质组织的检验:3.2.1.1渗氮前调质组织级别(对大工件可在表面2mm深度范围内检查),依据GB/T11354-1989标准图谱(放大倍率为500倍),回火索氏体中游离体素体数量共分1-5级,其中一般零件1-3级为合格,重要零件1-2级为合格。

3.2.1.2渗氮零件的工作面部允许由脱碳层或粗大的回火索氏体组织。

3.2.2试样应从渗碳零件上垂直于渗氮表面切取,也可用与零件的材料、处理条件、加工精度相同,并经同炉渗氮处理的试样;检验部位应具有代表性,若检查渗氮层脆性的试样,表面粗糙度要求>0.25-0.63mm,但不允许把化合物磨掉。

3.2.2渗氮层脆性检验:经气体渗氮的零件,必须进行脆性的检验。

3.2.2.1依据GB/T11354-1989标准图谱(放大倍率为100倍),渗氮层脆性级别按维氏硬度压痕边角碎裂程度共分1-5级,其中一般零件1-3级为合格,重要零件1-2级为合格。

3.2.2.2检验渗氮层脆性,采用维氏硬度计,试验力规定用98.07N(10kgf),加载必须缓慢(在5-9s内完成),加载后停留5-10s,然后去载荷,同时,每制件至少测3点,其中2点以上处于相同级别时,才能定级,否则,需重新测定一次。

如由特殊情况经有关各方协商,亦可采用49.03N(5kgf)或294.21N(30kgf)3.2.2.3渗氮层脆性应在零件工作部位或随炉试件的表面检验,对于渗氮后留由磨量的零件也可在磨去加工余量后表面上测定。

3.2.3渗氮层疏松检验:经氮碳共渗(软氮化)的零件,必须进行疏松检验。

依据GB/T11354-1989标准图谱(放大倍率为500倍)取其疏松最严重的部位,渗氮层疏松级别按表面化合物内微孔的形状、数量、密集程度共分1-5级,其中一般零件1-3级为合格,重要零件1-2级为合格。

3.2.4渗氮扩散层中氮化物检验:气体渗氮的零件必须进行氮化物检验。

依据GB/T11354-1989标准图谱(放大倍率为500倍),去其组织中最差的部位,渗氮层中氮化物级别按情况共分1-5级,其中一般零件1-3级合格,重要零件1-2级为合格。

3.3感应淬火:3.3.1适用于中碳碳素钢(如45钢)和中碳合金钢(如40Cr)的机械零件。

3.3.2零件淬火后,表面不应有裂纹,灼伤等缺陷。

相关文档
最新文档