玻璃的黏度和表面性质
卖玻璃常见知识点总结
卖玻璃常见知识点总结一、玻璃的特性1. 透明度:玻璃是一种高度透明的材料,能够让光线透过并且不使光线发生散射,因此常被用于窗户、玻璃门等。
2. 硬度:玻璃的硬度很高,通常在摩氏硬度中居于5.5-7之间,比普通金属硬度更高。
3. 耐腐蚀:玻璃不受化学药品的腐蚀,因此能够长时间保存。
4. 抗压性:玻璃在受到外部压力时具有一定的抗压性,不易破碎。
5. 抗热性:玻璃在受到高温环境时不易改变形状,也不易熔化。
二、玻璃的制造工艺1. 熔制:玻璃的主要原料是石英砂、石灰和碳酸钠等,这些原料在高温下被熔融成为液态玻璃。
2. 成型:液态玻璃通过吹制、浇铸、挤压等方式成型成为各种形状和尺寸的玻璃制品。
3. 冷却:成型后的玻璃经过冷却处理,使其变得坚硬和透明。
4. 表面处理:玻璃通常需要进行磨削、抛光等表面处理以提高其外观和性能。
三、玻璃的用途1. 建筑:玻璃被广泛用于建筑领域,如窗户、门、墙面等,增加了建筑物的透光性和美观度。
2. 家具:玻璃家具如玻璃桌面、玻璃柜门、玻璃橱窗等,具有美观、易清洁等优点。
3. 车辆:汽车上的挡风玻璃、侧窗玻璃等,提高了驾驶者的视野和安全性。
4. 电子产品:手机、平板电脑、电视等电子产品上的触摸屏、显示屏等都采用了玻璃材料。
5. 日用品:玻璃杯、碗、瓶等日用品也是玻璃的常见用途。
四、玻璃的保养1. 清洁:使用软布擦拭玻璃表面,尽量避免使用化学清洁剂,以免对玻璃表面造成损坏。
2. 防霉:玻璃制品容易吸附水汽,因此要注意保持干燥,防止发霉。
3. 防磨损:使用玻璃器皿时要注意轻放,避免碰撞造成磨损或者破碎。
五、关于玻璃的行业发展1. 玻璃制造技术的不断进步,生产出了各种新型玻璃,如夹层玻璃、防弹玻璃、自清洁玻璃等。
2. 玻璃在科技、医疗、环保等领域的应用越来越广泛,如光纤通讯、医用玻璃器皿、太阳能玻璃等。
3. 玻璃回收再利用的技术不断完善,有利于减少资源浪费和环境污染。
总结玻璃是一种常见的材料,具有许多独特的特性和广泛的用途。
第1章玻璃的粘度和表面张力
四、粘度与玻璃组成的关系 ☆ 1.氧硅比 O/Si表现了网络连接程度。 O/Si大时 Onb多,n低,较小。 O/Si 小时 Onb少,n高,较大。 其它阴离子/硅 对粘度影响显著 例如:OH–使降低。
氟化物取代氧化物降低,因为 2F– 代一个O2–
2.化学键的强度 其他条件相同时化学键越强粘度越大。 R2O-SiO2中R+使粘度降低 (1)O/Si 高时 负离子团呈孤岛状,网络需R-O连接,
粘度的测量
2、落球法 (1)测量范围:本方法能测定玻璃熔化、澄清和成形开始等
温度范围的粘度,测量范围为1~103Pa•s。 (2)此法的原理是根据斯托克斯定律,液体的粘度可按下式
计算:
2 gr 2 ( )
9
V
式中:η—粘度(Pa•s); g—重力加速度(m/s2); r—球半径(m); —球的密度(g/m3);
包括电导、电阻、粘度、化稳性等。
在[Tg,Tf]内逐渐变化
2.非迁移性质
LgB
和玻璃成分间关系简单,符合 加和法则。
包括折射率、色散、弹性模量、硬 度、热膨胀系数、介电常数等。
在[Tg,Tf]内突变。
转变区
1 T 转变区
T
3.其它性质
光吸收、颜色等。是由于电子在离子内跃迁、在不同离 子间的电荷迁移及原子或原子团的振动引起。
c b
1/T
三、粘度和熔体结构的关系 聚合度低、结构疏松,粘度低 1.组成 (1)R+断网聚合度n 熔体自由体积 (2) R2+ 高温解聚(断网) ,
低温积聚,n (3)高场强离子 积聚作用很强,n 2.温度 高温 自由体积较多较大,利于小四面体移动, 较小。 低温 积聚作用使网络连接程度变大,
(完整版)玻璃物理化学性能计算
二、玻璃的组成对粘度的作用
玻璃成分与玻璃粘度之间存在卓复杂的关系,一般可以从硅氧比、离子的极化、键强、结构对称性以及配位数等方面来说明。现分述于如:
2.1氧硅比
当氧硅比增大(例如熔体中碱含量增大),使大型四面体群分成为小型四面体群,自由体空间随之增大,导致熔体粘度下降,
一些钠钙硅酸盐在1400℃的粘度
在碱硅二元玻璃中,当O/Si比很低时,对粘度其主要作用的是硅氧四面体[SiO4]间的键力。极化力最大的Li+是减弱Si-O-Si键的作用最大,故粘度按Li2O-Na2O-K2O顺序递增。
2.4结构的对称性
在一定的条件下,结构的对称性对粘度有着重要的作用。如果结构不对称就可能在结构中存在缺陷和弱点,因此使粘度下降。
于10%—12%时增加粘度。
(4)PbO、CdO、BiO、SnO2等降低玻璃粘度。
此外,Li2O、ZnO、B2O3等都有增加低温粘度,降低高温粘度的作用。
3、玻璃粘度参考点
在玻璃生产上常用的粘度参考点如下:
(1)应变点:应力能在几小时内消除的温度,大致相当于粘度为 1013.6Pa.s,时的温度。
(2)转变点:相当一粘度为, 1012.4Pa.s时的温度,通常用T表示。
氰化物如Na2SiF6、Na3AlF6,硫酸盐如芒硝,氯化物如NaCl等都能显著地降低玻璃的表面张力,因此,这些化合物的加入,均有利于玻璃的澄清和均化。
表面张力随着温度的升高而降低,二者几乎成直线关系,实际上可认为,当温度提高100℃时表面张力减少1%,然而在表面活性组分及一些游离的氧化物存在的情况下,表面张力能随温度升高而稍微增加。
例如,硅氧键和硼氧键的键强属于同一数量级的,然而石英玻璃的粘度却比硼氧玻璃大的多,这正是由于二者结构的对称程度不同所致。又如磷氧键和硅氧键键强也属于同一数量级的,但是磷氧玻璃的粘度比石英玻璃的小的多。主要磷氧玻璃四面体中又一带双键氧、结构不对称的缘故。
玻璃的基本原理
玻璃的基本知识玻璃结构理论:晶子学说(1930年Randell)近程有序(微晶尺寸1.0‐1.5nm)晶子学说的价值在于它第一次指出玻璃中存在微不均匀物,及玻璃中存在一定的有序区域,这对于玻璃分相、晶化等本质的理解有重要价值。
一、玻璃的结构[SiO4]石英晶体结构以及石英玻璃、钠硅酸盐玻璃晶子结构示意图2玻璃结构是指玻璃中质点在空间的几何位置、有序程度以及他们之间的结合状态。
1932年W.H.Zachariasen借助V.M. Goldschmidt的离子晶界化学原则,利用晶体结构来阐述玻璃结构,即查氏把离子结晶化学原则和晶体结构知识推演到玻璃结构,描述了离子-共价键的化合物,如熔融石英、硅酸盐玻璃、硼酸盐玻璃。
氧化物形成玻璃的四个条件:¾一个氧离子不能和两个以上的阳离子结合——氧的配位数不大于2;¾阳离子周围的阳离子熟不应多过3或4——阳离子的配位数为3或4;¾网络中氧配位多面体之间只能共顶角,不能共棱、共面。
¾如果网络是三维的,则网络中每一个氧配位多面体必须至少有三个氧离子与相邻多面体相连,以形成三维空间发展的无规则网络结构。
根据上述条件,B2O3、SiO2、P2O5是很好的玻璃形成体。
不符合上述条件的氧化物则属于网络改良体,如碱金属、碱土金属氧化物。
一些氧化物可以部分参与网络结构,称为网络中间体,如BeO、Al2O3、ZrO23无规则网络学说强调了玻璃中多面体之间互相排列的连续性、均匀性和无序性,而晶子学说则强调了不连续性、有序性和微不均匀性。
因此,玻璃的结构是连续性、不连续性,均匀性、微不均匀性,无序性、有序性几对矛盾的对立统一体,条件变化,矛盾双方可能相互转化。
Figure 1. (a) Crystalline material (regular) and (b) glassy material (irregular).无规则网络学说的玻璃结构模型B2O3玻璃在不同温度下的结构模型无序性(远程)与有序性(近程)、连续性与不连续性,均匀性与不均匀性是玻璃这个统一体的两个方面,而且根据玻璃成分、热处理等条件不同,可以相互转化。
玻璃的性质
玻璃的性质一.目前我们玻璃引进的原材料如下:(共计11种)玻璃是熔融.冷却.固态的非结晶(在特种条件下也可以成为晶态)无机物。
玻璃的物理化学性质不仅决定于其化学组成,而且与玻璃结构有密切的联系。
只有认识玻璃的结构,掌握玻璃组成,结构,性能三者之间的内在联系,才有可能通过改变化学组成,热历史,或利用某些物理,化学处理,制取符合预定要求的物理化学性能的玻璃材料或制品。
二.玻璃的主要性质。
(1)粘度:粘度是玻璃的最主要物理性质之一。
在整个玻璃生产工艺过程(熔融,澄清,冷却,成形,退火)所制度的一系列温度制度往往是以此为依据的。
粘度是液态或熔体内部的分子在移动时相互之间的内摩擦力,内摩擦力越大,则分子移动越困难。
也就是粘度越大。
玻璃的粘度和温度有着密切的关系,温度升高时,粘度随之下降,但是这种变化没有一定的比例关系,通常在高温阶段,粘度的降低速度缓慢,而在低温段则急剧增加。
(2)析晶性能:玻璃是一种非晶态物质,但在一定的条件下,玻璃具有向晶态转化的倾向。
在玻璃生产中一般不希望玻璃析晶,因为析晶会造成外观上的缺陷,失去玻璃原有的性质,不能加工成型。
析晶是玻璃的缺陷。
(3)光学性能:玻璃对辐射的透射率取决于玻璃中的杂质含量。
不含氧化铁的透明玻璃大约能透过90%以上的可见辐射,仅有小部分辐射被玻璃真正吸收,大部分为玻璃两个表面的反射所损失。
(4)密度:玻璃的密度主要决定于玻璃的化学组成,分子量越大的氧化物含量越高时,玻璃的密度也越大。
如石英玻璃由SiO2所组成,它的密度最小,约2.2g/立方厘米,而含大量氧化铅的玻璃密度可达6.5g/立方厘米。
我们目前生产的钠钙硅玻璃的密度为2.46g/立方厘米。
(5)热膨胀系数:大部分物体受热以后都要膨胀,玻璃也不例外。
物体受热后膨胀的大小由它们的线膨胀系数和体膨胀系数来表明的。
玻璃的膨胀系数取决于玻璃的化学组成,系数提高。
而增加SiO2,B2O3,AL2O3的含量,就能降低膨胀系数。
第2章玻璃的粘度及表面性质
第2章玻璃的黏度及表面性质2.1玻璃的黏度生产上常把玻璃的粘度随温度变化的快慢称为玻璃的料性。
粘度随温度变化快的玻璃称为短性玻璃,反之称为长性玻璃。
图中分三个温度区:A区:温度较高,表现为典型的黏性液体,其弹性性质近于消失。
黏度决定于玻璃的组成和温度B区:(转变区)黏度、弹性模量随温度的↓而↑↑。
黏度与组成、温度和时间有关。
C区:温度↓而弹性模量↑,黏滞流动变得非常小。
黏度决定于组成和温度,与时间无关黏度与玻璃组成的关系(1)氧硅比氧硅比大(如熔体中碱含量增大,游离氧增多),非桥氧多,网络结构不牢固,熔体黏度减小;反之增大。
(表4-3 )(2)键强:在其它条件相同的前提下,粘度随阳离子与氧的键强增大而增大。
黏度按Li2O-Na2O-K2O依次递减(3)离子极化:离子极化力大的阳离子对桥氧的极化力强,使得Si-O键作用减弱,网络结构易于调整与移动,使η↓。
(4)结构对称性:网络基本结构单元的结构不对称,可能在结构中存在缺陷或弱点,使结构不稳定,粘度下降。
(5)配位数:4配位形成四面体进入网络结构,使结构紧密,粘度增大。
其它配位时就从网络中分离出来,使黏度降低。
如B2O3和A2O3硼反常现象:由硼离子配位数变化引起性能曲线上出现转折的现象,称为“硼反常现象”。
总结氧化物组成对玻璃粘度作用可归纳如下SiO2Al2O3 ZrO提高粘度。
K2O Na2O 降低粘度,Li2O高温时降低粘度,低温时增加粘度。
RO降低高温粘度,增加低温粘度。
PbO CdO Bi2O3 SnO等降低粘度。
2.2玻璃的表面张力熔融玻璃表面层的质点受到内部质点的作用而趋向于熔体的内部,使表面有收缩的趋势,因此玻璃液表面分子间存在着作用力,即表面张力。
总结:依组成对表面张力的不同作用,将组成氧化物分为Ⅰ类:非表面活性组份:一般是增加玻璃表面张力,符合加合性法则Ⅱ类:中间活性组份:加入量大时,可降低表面张力,不符合加合性法则Ⅲ类:难熔表面活性强的组份:有强的降低表面张力的能力,不符合加合性法则表面张力与温度、气氛和湿度的关系1、σ与T的关系温度升高,质点热运动能增大,体积膨胀。
玻璃的黏度及表面性质
第4章 玻璃的粘度及表面性质4.1玻璃的粘度在重力、机械力和热应力等的作用下,玻璃液(或玻璃熔体)中的结构组元(离子或离子组团)相互间发生流动。
如果这种流动是通过结构组元依次占据结构空位的方式来进行,则称为粘滞流动。
当作用力超过“内摩擦”阻力时,就能发生粘滞流动。
粘滞流动用粘度衡量。
粘度是指面积为S 的两平行液面,以一定的速度梯度dxdV移动时需克服的内摩擦阻力f 。
dxdVSf η= (4-1) 式中: η—粘度或粘滞系数S —两平行液面间的接触面积dx dV /—沿垂直于液流方向液层间速度梯度粘度是玻璃的一个重要物理性质,它贯穿于玻璃生产的全过程。
在熔制过程中,石英颗粒的溶解、气泡的排除和各组分的扩散都与粘度有关。
在工业上,有时应用少量助熔剂降低熔融玻璃的粘度,以达到澄清和均化的目的。
在成形过程中,不同的成形方法与成形速度要求不同的粘度和料性。
在退火过程中,玻璃的粘度和料性对制品内应力的消除速度都有重要作用。
高粘度的玻璃具有较高的退火温度,料性短的玻璃退火温度范围一般较窄。
影响玻璃粘度的主要因素是化学组成和温度,在转变区范围内,还与时间有关。
不同的玻璃对应于某一定粘度值的温度不同。
例如粘度为1012s Pa •时,钠钙硅玻璃的相应温度为560℃左右,钾铅硅玻璃为430℃左右,而钙铝硅玻璃为720℃左右。
在玻璃生产中,许多工序(和性能)都可以用粘度作为控制和衡量的标志(见表4-1)。
使用粘度来描述玻璃生产全过程较温度更确切与严密,但由于温度测定简便、直观,而粘度和组成关系的复杂性及习惯性,因此习惯上用温度来描述和规定玻璃生产工艺过程的工艺制度。
4.1.1粘度与温度关系由于结构特性的不同,因而玻璃熔体与晶体的粘度随温度的变化有显著的差别。
晶体在高于熔点时,粘度变化很小,当到达凝固点时,由于熔融态转变成晶态的缘故,粘度呈直线上升。
玻璃的粘度则随温度下降而增大。
从玻璃液到固态玻璃的转变,粘度是连续变化的,其间没有数值上的突变。
玻璃的粘度,表面性质,力学和热学性质
C 玻璃的硬度主要取决于化学组成和结构,还与温度和 D 热处理历史有关。对玻璃冷加工影响非常大。 S
抗冲击强度
测量方法:落球法,压痕破坏法
5.1.4
玻璃的密度
密度主要取决于构成玻璃原子的质量, 也与原子的堆积紧密程度及配位数有关。
网络形成体
体积: [BO4]<[SiO4]<[AlO4]
影响热导率因素:
玻璃内部的导热包括:热传导,热辐射
低温时,热传导占主要地位,其大小主要取决 于玻璃的化学组成:键强越大,热传导性能越 好
高温时,热辐射占主要地位,温度越高,传导 性能越高。玻璃的颜色越深,导热性越差。
5.2.4
玻璃的热稳定性
玻璃经受剧烈的温度变化而不破坏的性能。
P K E cd
第4章
玻璃的粘度和表面性质
4.1
玻璃的粘度
定义 粘度是指面积为S的两平行液面,以一定的速 度梯度dV/dx移动时所需克服的内摩擦阻力f。 f=ηS dV
dx
粘度在玻璃生产过程中的作用
在熔制过程中,原料的溶解、气泡的排除、各组分的扩散均化
影响粘度的因素:化学组成、温度、热处理时间 在成形过程中,不同的成型方法与成形速度要求不同的粘度和料性
4.1.3
粘度与组成的关系
有利于形成大阴离子基团的组成使粘度增大(SiO2、 Al2O3、ZrO2等)
提供游离氧,破坏网络结构的,则使粘度减小;场 氧硅比较大,意味着大型的[SO4] 强较大的可能产生复杂的作用:高温降粘,低温增 群分解为小型[SO4]群,粘滞活化能降 粘 氧硅比 键强、离子的极化(R2O-SiO2) 结构的对称性(B2O3、P2O5、SiO2) 配位数(B2O3、Al2O3) 总体来说,键强大,则粘度大
第1章玻璃的粘度和表面张力
包括电导、电阻、粘度、化稳性等。
在[Tg,Tf]内逐渐变化
2.非迁移性质
LgB
和玻璃成分间关系简单,符合 加和法则。
包括折射率、色散、弹性模量、硬 度、热膨胀系数、介电常数等。
在[Tg,Tf]内突变。
转变区
1 T 转变区
T
3.其它性质
光吸收、颜色等。是由于电子在离子内跃迁、在不同离 子间的电荷迁移及原子或原子团的振动引起。
式中、和可从下式求出:
B
T T0 lg A
• A= —1.4788 Na2O +0.8350 K2O+1.6030 CaO+5.4936 MgO— 1.5183 Al2O3+1.4550
• B = —6039.7 Na2O —1439.6 K2O—3919.3 CaO+6285.3 MgO+2253.4Al2O3+5736.4
(2)富尔切尔(Fulcher)法
• 适用 :其成分以相对于SiO2为1.00mol含量来表示,即以氧化物
的mo摩l;尔C数aO/ S0i.1O22~摩0.2尔0数m表ol;示M。gSOiO0.2010.~000.m05o1l;moNl;a2O 0.15~0.20
Al2O30.0015~0.073mol • 粘度—温度关系式:
—玻璃液密度(g/m3); V—球运动速度(m/s)
特点:设备结构简单,容易制造,准确度较高;操作不方便, 粘度值测定范围较窄
粘度的测量
(3)压入法
• 本法测定玻璃粘度范围为107 1012 Pa•s。
• 此法是在平板试样上,用加有一定负荷的针状、 球状或棒状的压头压入,从压头压入的速度求粘度 的方法。粘度可由下式算出。
玻璃的组成与结构讲解
广义
指物质的一种结构 用作结构、功能和新材料的玻璃 指玻璃器皿、玻璃瓶罐等
玻璃由熔体过冷所得,因黏度逐渐增大而具有 固体机械性能的无定形物体。
狭义
玻璃态是物质的一种存在状态,是熔融、冷却、 固化的非结晶的无定形物,是过冷的液体。
1.1
玻璃的定义与通性
1.1.2 玻璃的通性(掌握)
¤各向同性:玻璃态物质的质点排列是无规则的, 是统计均匀的,其物理化学性质在 任何方向都是相同的。 ¤介稳性:玻璃由熔体急剧冷却而得到,因T↓而 黏度↑ ↑ ,质点来不及作有规则排列 形成晶体,没有放出结晶潜热。 ¤无固定熔点:玻璃态物质由固体转变为液体是 在一定的温度区域内进行的(软 化温度范围),并且没有新的晶 体生成。
1.65
2.9 3.3 2.80
Ti4+
Ga3+
9.8
7.8
Be2+
Al3+
20
10
1.5 玻璃结构中阳离子的分类
3 中间体氧化物阳离子
不能单独生成玻璃,其作用处于网络生成体和网 络外体之间,氧化物键强主要为离子键,单键强 度介于网络生成体和网络外体之间,配位数一般 为6,即可提供游离氧起“断网作用”,又可使 补网的作用。 说明:当配位数为6时,断网作用
1.3
单元系统玻璃
(a)
图1-6(a)相邻两硅氧四面体之间的Si-O-Si键角分布示意图
(b)石英玻璃与方石英晶体Si-O-Si键角分布曲线
1.3
单元系统玻璃
架状结构特点:稳定牢固 石英玻璃性能表现:
黏度及机械强度高、热膨胀系数小、耐热、 介电性能和化学稳定性好。
结论:
• 一般硅酸盐玻璃中SiO2含量愈大,上面 石英玻璃所表现的性能就愈好; • 石英玻璃内部空旷,在高温高压下,有 明显的透气性,可作功能材料。
玻璃的结构与性质
[SiO4]石英晶体结构以及所表达的石英玻璃、钠硅酸盐 玻璃晶子结构示意图
晶子学说的价值在于它第一次指出了玻璃中存 在微不均匀物,即玻璃中存在一定的有序区域,这对 于玻璃分相、晶化等本质的理解有重要价值。
无规则网络学说
查氏把离子结晶化学原则和晶体结构知识推演到玻璃态 物质,描述了离子—共价键的化合物,如熔融石英、硅酸盐 和硼酸盐玻璃。 核心观点:
3.无固定熔点
玻璃态物质由固体转变为液体是在一定温度区 间(转化温度范围内) 进行的,它与结晶态物质不同,没有固定熔点。
4.性质变化的连续性和可逆性
玻璃态物质从熔融状态到固体状态的性质变化过程是连续的和可逆的, 其中有一段温度区域呈塑性,称为“转变”或“反常”区域,在这区域内性 质有特殊变化。图1-1表示物质的内能和比容随温度的变化。
1.2玻璃的生成规律及其相变
1.2.1影响玻璃生成的因素
1.热力学条件
2. 动力学条件
1.热力学条件
玻璃态物质与相应结晶态物质相比具有较大的内能,因此它总是有降低内能向晶 态转变的趋势,所以通常说玻璃是不稳定的或亚稳的,在一定的条件
下(如热处理)可以转变为多晶体。玻璃一般是从熔融态冷却而 成。在足够高的熔制温度下,晶态物质原有的晶格和质点的有规则排列被破坏,发
中间体
(1)比碱金属和碱土金属化合价高而配位数小的阳离子。
(2)可以部分地参加网络结构。 如BeO,MgO,ZnO,Al2O3等,
2.各种氧化物在玻璃中的作用
(1)碱金属氧化物
★当碱金属氧化物加入到熔融石英玻璃中,促使硅氧四面体间连 接断裂,出现非桥氧,使玻璃结构疏松,导致一系列性能变坏。 ★由于碱金属离子的断网作用使它具有了高温助熔、加速玻璃 熔化的性能。
玻璃工艺学知识要点2016分析
1、玻璃结构:是指离子或原子在空间的几何配置以及它们在玻璃中形成的结构形成体。
2、3T图:以温度T为纵坐标,冷却时间t或lg t为横坐标绘制温度-时间-转变率(T-T-T)图(简称3T图)。
3、离子的集聚作用:是离子使小型四面体聚集为大型四面体的作用。
4、混合碱效应:在R+离子含量不变,引进两种R+离子的玻璃比只含一种R+离子的玻璃的性能发生改变,当两种金属离子(R+)的数量接近时,其性能最佳。
5、离子着色:是指过渡金属离子在3d或4f轨道中de电子未被充满,容易产生d-d跃迁或f-f跃迁而引起光吸收,使玻璃着色。
6、主要原料:是指在玻璃中引入SiO2、Al2O3、B2O3、Na2O、K2O、CaO、MgO等各种组成氧化物的原料。
7、助熔剂:是指能降低玻璃熔制温度或加速玻璃熔制过程的原料。
8、玻璃成分:是指玻璃中所含有元素和化合物的种类和比例,又称为化学组成。
9、玻璃的成型:是将玻璃液制成为具有固定几何形状的玻璃制品的过程。
10、玻璃的热处理:是指在玻璃转变温度与软化温度之间所进行的热过程。
11、玻璃的表面抛光:是对不平整的玻璃表面进行处理,使之成为平整而光滑;或者是将玻璃毛坯制品经过处理,使之达到所规定的形状和尺寸,而且表面很光滑的加工过程。
12、夹层玻璃:是由两片或两片以上的玻璃用透明的弹性胶片牢固粘合而成的,具有透明、高机械强度、耐光、耐热、耐湿和耐寒等特性的深加工玻璃制品。
13、重金属氧化物玻璃:是指以氧化铅(PbO)、氧化铋(Bi2O3)、氧化锑(Sb2O3)、氧化碲(TeO2)以及其它在元素周期表中的第五、六主簇周期中具有高原子量的金属氧化物为基础组分而形成的玻璃。
14、光功能玻璃:是指在外场(电、光、磁、热、声、力等)作用下,利用玻璃本身光学性质(如折射率或感应电极化)发生变化的原理,去实现对入射光信号的探测、调制以及能量或频率转换作用的光学材料的统称。
15、离子的解聚作用:是离子使大型四面体分解为小型四面体的作用。
玻璃的粘度及表面性质
氧硅比大(如熔体中碱含量增大,游离氧增 多),非桥氧多,网络结构不牢固,熔体黏度减 小;反之增大。
(2)键强:在其它条件相同的前提下,粘度随阳离 子与氧的键强增大而增大。
R2O-SiO2玻璃 黏度按Li2O-Na2O-K2O依次递减 (3)离子极化:离子极化力大的阳离子对桥氧的极化
(1) 应变点:η=1013.6,即应力在几小时内消 除的温度。 (2) 转变点(Tg): η=1012.4 Pa·S的温度。
(3) 退火点: η=1012 Pa·S的温度,应力在几 分钟内消除。
(4) 变形点: η=1010~1011Pa·S的温度范围。
(5) 软化温度(Tf): η=3×106~1.5×107 Pa·S的温度范围,相当于操作温度的下限
(6) 操作范围:相当于成形时玻璃液表面的温度范 围。T上限~T下限, T上限指准备成形操作的温度 ; T下限指成形时能保持制品形状的温度;η= 103~106.6Pa·S
(7) 熔化温度:η=10Pa·S
(8) 自动机供料的黏度:102~103Pa·S
3.1.6 黏度对生产的应用
1、在熔制阶段:其对应粘度为100.7-10 Pa·S
2、成型阶段:成形开始的黏度随制品的种类而异 ,一般在101.6~103 Pa·S,终了黏度 为101.6~103 Pa·S
3、玻璃退火:对应粘度为1011-1014 Pa·S,典型的钠 钙硅玻璃对应的温度为583℃~539℃ ,即退火温度范围
3.2 玻璃的表面张力
3.2.1 表面张力的物理意义
熔融玻璃表面层的质点受到内部质点的作用 而趋向于熔体的内部,使表面有收缩的趋势,即 玻璃液表面分子间存在着作用力,即
玻璃材料的种类及特性
玻璃材料的种类及特性玻璃的主要成分是二氧化硅,玻璃质地硬且脆,是一种无色的透明材料,并可添加各种成分制成茶色玻璃、淡墨色玻璃、钴蓝色玻璃等。
玻璃按主要成分分类:玻璃按主要成分可以分为非氧化物玻璃和氧化物玻璃。
非氧化物玻璃品种和数量很少,主要有硫系玻璃和卤化物玻璃。
氧化物玻璃又分为硅酸盐玻璃、硼酸盐玻璃、磷酸盐玻璃等。
氧化物玻璃通常按玻璃中二氧化硅以及碱金属、碱土金属氧化物的不同含量,又分为:1.石英玻璃石英玻璃的二氧化硅含量大于99.5%,其热膨胀系数低、耐高温、化学稳定性好、透紫外光和红外光、熔制温度高、粘度大、成型较难。
石英玻璃多用于半导体、电光源、光导通信、激光等技术和光学仪器中。
2.高硅氧玻璃高硅氧玻璃的二氧化硅含量约96%,其性质与石英玻璃相似。
3.钠钙玻璃钠钙玻璃以二氧化硅含量为主,还含有15%的氧化钠和16%的氧化钙,其成本低廉、易成型,适宜大规模生产,其产量占实用玻璃的90%。
钠钙玻璃可用于生产玻璃瓶罐、平板玻璃、器皿、灯泡等。
4.铅硅酸盐玻璃铅硅酸盐玻璃主要成分有二氧化硅和氧化铅,具有独特的高折射率和高体积电阻,与金属有良好的浸润性,可用于制造灯泡、真空管芯柱、晶质玻璃器皿图(如图为JAZZ系列水晶餐具)、火石光学玻璃等5.铝硅酸盐玻璃铝硅酸盐玻璃以二氧化硅和氧化铝为主要成分,软化变形温度高,用于制作放电灯泡、高温玻璃温度计、化学燃烧管和玻璃纤维等。
6.硼硅酸盐玻璃又称耐热玻璃或硬质玻璃,以氧化硅和氧化钡为主要成分,具有良好的耐热性和化学稳定性,硼硅酸盐玻璃发明于1912年,其商标名为Pyrex。
它是第一种耐高温,有较好抗热冲击能力的玻璃材料(如图硼硅酸盐玻璃材料制作的玻璃珠宝)。
硼硅酸盐玻璃可以用来制作咖啡壶、炉子、实验室用的玻璃器皿、吊灯(如图耐热玻璃制作的吊灯)及其它在高温环境中工作的设备。
它抗酸和抗化学介质腐蚀的能力很强、热膨胀率很低,因此被用来制作天文望远镜的镜片和其它精密仪器。
第四章玻璃的性质
(2)表面张力的工艺意义
表面张力在玻璃的澄清、均化、成形、玻 璃液与耐火材料相互作用等过程中趁着十分重 要的作用。 澄清 大,气泡长大难,澄清难。
均化
成型
大时,力求成球,均化难。
拉边器 自抛光
热加工
烧口
火抛光
2.影响玻璃表面张力的因素 (1)玻璃组成对表面张力的影响 质点间作用力越大,表面张力越大,凡影响 质点间作用力的因素,都将影响表面张力的大小。 R2O 对于R2O-SiO2系统,随着R+半径↑,σ依次↓ N/m103 即Li> Na> K Li2O 由右图可知:
15 Logη(dPa.s)
高温 熔体基本无聚合,
低温 聚合趋于完毕,
c
10
u都为常数。
bc中温段 冷却时不断发 生聚合, u随温度变化 较大(增大),故此段为 0 0.50 0.75 1.00 1.25(1/T) 钠钙硅酸盐玻璃的Logη~1/T关化能(Δu)是温度的函数,其关系式为 Δu=b/T,Δu与键强成正比, 与绝对温度成反 比,将上式代入(4-3)得: lgη=a+b'/T2 (4-4) 式中:b'=b/K lge 注意:式(4-3)式(4-4)都是近似公式。
离子的极化 •阳离子极化力大,减弱硅氧键的作用强,使降低。
•非惰性气体型阳离子极化力 > 惰性气体型 非惰性气体型阳离子,由于电子层结构不对 称,在高温时容易在结构中形成缺陷或不对称中 心,因而导致粘度下降,对高温粘度表现特别明 显。因此PbO 在整个温度范围都有很大的粘度 降低作用。 如Pb2+、Cd2+、Sn2+、Bi3+、Zn2+、Co2+ 等均可降低粘度。
玻璃表面水珠的形成
玻璃表面水珠的形成玻璃表面水珠的形成是由于玻璃表面的性质和环境条件的影响。
在一定的湿度和温度条件下,水分会凝结在玻璃表面形成水珠。
下面将从玻璃表面性质、湿度和温度、表面张力和凝结过程等方面详细解释玻璃表面水珠的形成过程。
一、玻璃表面性质玻璃是一种非晶态物质,表面是非常光滑平整的。
这使得水分分子在玻璃表面上无法渗透,形成了一层薄薄的水膜。
这种水膜具有一定的黏性,使得水分分子在表面上相互吸引,形成水珠。
同时,玻璃表面也具有一定的亲水性,使得水分分子更容易吸附在玻璃表面上。
这些性质为水珠的形成提供了基础。
二、湿度和温度湿度和温度是影响水珠形成的重要因素。
当环境湿度较高时,空气中的水分含量较大,水分分子更容易在玻璃表面凝结形成水珠。
而温度的升高会加快水分分子的运动速度,使得水分分子更容易从气态转变为液态,从而加速水珠的形成。
三、表面张力表面张力是水珠形成的重要力量。
水分分子在玻璃表面上会相互吸引,形成一种薄薄的水膜。
而水分分子之间的相互吸引力使得水珠呈现出一定的凸起形状。
这是因为水分分子在液态状态下会互相吸引,使得水珠在表面上呈现出尽可能小的表面积。
这种表面张力使得水珠能够保持较为稳定的形状。
四、凝结过程水珠的形成是一个凝结的过程。
当环境湿度较高时,空气中的水分分子会与玻璃表面接触后冷凝成液态水。
这些水分分子在表面上形成一层水膜,然后逐渐聚集形成水珠。
随着水分分子的不断凝结,水珠的体积逐渐增大,直到达到平衡状态。
总结起来,玻璃表面水珠的形成是由于玻璃表面的性质和环境条件的影响。
玻璃表面的光滑平整和亲水性使得水分分子容易吸附在表面上,而高湿度和适宜的温度加速了水分分子的凝结过程。
同时,表面张力使得水珠能够保持较为稳定的形状。
这些因素共同作用下,玻璃表面水珠得以形成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
100
Si
η(P)
80
60
Mg Zn Ni Ca Ca Sr Ba Mn Cu Cd
0 0.50 1.00 1.50
40
20
Pb
二价阳离子对硅酸盐熔体粘度的影响
CaO:低温CaO增大黏度;高温含量低于
10%~12%减小黏度,含量高于10%~12%增大黏 度。
ZnO:低温ZnO增大黏度;高温减小黏度。 具有18个电子层结构的二价副族元家离子Zn2+、
成形:粘度随温度的变化是玻璃成形的基础;
退火:应力的消除主要通过粘滞流动,消除的速度与粘
度成反比。
影响黏度的主要因素是化学组成和温度
4.1.1 黏度与温度的关系
粘度随温度的变化规律:随温度的升高粘度下降。 玻璃的料性:对于组成不同的玻璃,随温度变化其 粘度变化速率不同。
长性玻璃 短性玻璃
η η
1
A
B
η
2
t1
t2
t3
t4
玻璃的弹性、黏度与温度的关系
黏度与温度的关系式:
Ae
u KT
1
u KT
Ae
lg
T
b u T
b lg 2 T
B log A T T0
4.1.2 黏度与熔体结构的关系
玻璃的黏度与熔体结构密切相关,而熔体结构又取 决于玻璃的化学组成和温度。 硅酸盐熔体中存在大小不同的硅氧四面体群或络合 阴离子,且在不同温度下以不同比例平衡共存。 四面体群间存在较大的空隙(自由体积),并随温 度而变化。
Li2O—Na2O—K2O 顺序递减;
10000
1000
K η(P) 100 10 1 0.1 0 10 20 30 R2O(mol%) K Na Li
Li Na 40
R2O-SiO2中碱金属离子R+对粘度的影响
二价金属氧化物
①与碱金属一样,减小黏度; ②离子电价较高,半径不大,夺取氧离子,缔合阴 离子基团,增大黏度。综合两个相反效应,R2+ 降低粘度的次序是Ba2+>Sr2+>Ca2+>Mg2+
CaF2能使熔体粘度急剧下降,其原因是F-的离子
半径与O2-的相近,较容易发生取代,但F-只有一 价,将原来网络破坏后难以形成新网络,所以粘 度大大下降。
稀土元素氧化物:氧化镧、氧化铈等,以及氯化
物、硫酸盐在熔体中一般也起降低粘度的作用。
结论:氧化物对玻璃黏度的影响,不仅取决
于氧化物的性质,而且还取决于加入玻璃中
Cs2O )能降低熔体粘度。
236 202 Δu(kJ/mol) 168
134
100 66 10 20 30 40 50 60 70
Na2O(mol%)
Na2O-Si2O系统中Na2O含量对粘滞活化能△u的影响
9 8 7
Log η(η:P)
6 5 4 3 2 1 0 0 10 20 30 40 50
O/Si 比值 2∶ 1 2.5∶1 3∶ 1 4∶ 1
ቤተ መጻሕፍቲ ባይዱ
结构式 [SiO2] 2- [Si2O5] 2- [SiO3] 4- [SiO4]
[SiO4]连接形式 骨架状 层状 链状 岛状
1400℃粘度值(Pa·s) 10 28 1.6 <1
9
通常碱金属氧化物( Li2O 、Na2O 、 K2O 、 Rb2O 、
作用力大 ,倾向于形成更复杂的阴离子基团 ,
黏滞活化能变大,增大黏度;
阳离子配位数
15
14
Lg η(η:P) 13 12 11 10 0 4 8 12 16 20 24 28 32 B2O3(mol%)
16Na2O· xB2O3· (84-x)SiO2 系统玻璃中 560℃时的粘度变化
其他化合物
金属氧化物(mol%)
网络改变剂氧化物对熔融石英粘度的影响
□=Li2O-SiO2 1400℃ ;○=K2O-SiO2 1600℃;△=BaO-SiO2 1700℃
碱金属离子对黏度的影响与本身含量有关。
①当R2O含量较低时(O/Si比值较低):黏度按
Li2O—Na2O—K2O 顺序递增;
②当R2O含量较高时(O/Si比值较高):黏度按
对玻璃黏度的影响,不仅取决于氧化物的性质,而且
还取决于加入玻璃中的数量和玻璃本身的组成。
玻璃组成是通过改变熔体结构而影响粘度的。
一价碱金属氧化物
黏度大小首先取决于硅氧四面体网络的连接程度,硅氧四面
体网络的连接程度又与氧硅比的大小有关。
熔体中O/Si比值与结构及粘度的关系
熔体的分子式 SiO2 Na2O·2SiO2 Na2O·SiO2 2Na2O·SiO2
第四章
玻璃的黏度及表面性质
主要内容
4.1 玻璃的黏度
4.2 玻璃的表面张力
4.3 玻璃的表面性质
4.1 玻璃的黏度
定义:粘度是指面积为S的两平行液层,以一定速
度梯度dv/dx移动时需克服的内摩擦阻力f。
黏度是玻璃的重要性质之一
熔制:石英的溶解和各组分的扩散;
澄清均化:气泡的排除 ,条纹节瘤的溶解扩散;
四面体群间存在的空隙随温度的变化表现为粘度随 温度的变化。
温度升高,空隙增大,小型四面体群可穿插移动;
温度降低,空隙变小,四面体群移动受阻,且聚合为大
型四面体群,网络连接程度增大。
熔体中碱金属和碱土金属离子随温度变化对熔体结
构的影响。
4.1.3 黏度与玻璃组成的关系
玻璃化学组成与黏度之间存在复杂的关系。氧化物
Cd2+、Pb2+等较含8个电子层的碱土金属离子更 能降低粘度。
如18 Na2O· 12 RO· 70SiO2玻璃当η=1012Pa· s时温 度是:
RO
BeO CaO SrO BaO ZnO CdO PbO 533 511 482 513 487 422
温度/℃ 582
高价金属氧化物
SiO2、Al2O3、ZrO2:阳离子电荷多、半径小,
熔体 H2O NaCl B2O3 P2O5 PbO Na2O Li2O Al2O3 ZrO2 GeO2 温度(℃) 25 1080 900 1000 1000 1300 1300 2150 1300 1300 1150 σ 72 95 80 60 128 290 450 550 380 350 250 熔体 SiO2 FeO 钠钙硅酸盐熔体 (Na2O∶CaO∶SiO2 =16∶10∶74) 钠硼硅酸盐熔体 (Na2O∶B2O3∶SiO2 =20∶10∶70) 瓷器中玻璃相 瓷釉 温度 (℃) 1800 1300 1420 1000 σ 307 290 585 316
的数量和玻璃本身的组成。
4.1.4 黏度参考点
4.2 玻璃表面张力
4.2.1玻璃表面张力的物理与工艺意义
物理意义:玻璃与另一相接触的相分界面上(一般
指空气)在恒温、恒容下增加一个单位表面时所作
的功。N/m或J/m2
硅酸盐玻璃的表面张力(220~380)×10-3 N/m
熔体的表面张力σ (×10-3 N/m)