传热学 第3章-非稳态导热分析解法
传热学讲义——第三章
第三章 非稳态导热(unsteady state conduction)物体的温度随时间而变化的导热过程称非稳态导热。
0≠τ∂∂t,任何非稳态导热过程必然伴随着加热或冷却过程。
根据物体内温度随时间而变化的特征不同,非稳态导热过程可分为两类:(1)周期性导热(periodic unsteady conduction ):物体的温度按照一定的周期发生变化; 如建筑物的外墙和屋顶温度的变化。
(2)瞬态导热(transient conduction):物体的温度随时间不断升高或降低,在经历相当长时间后,物体的温度逐渐趋于周围介质的温度,最终达到热平衡。
分析非稳态导热的任务:找出温度分布和热流密度随时间和空间的变化规律。
第一节 非稳态导热的基本概念一、瞬态导热过程采暖房屋外墙墙内温度变化过程。
采暖设备开始供热前:墙内温度场是稳态、不变的。
采暖设备开始供热:室内空气温度很快升高并稳定;墙壁内温度逐渐升高;越靠近内墙升温越快;经历一段时间后墙内温度趋于稳定、新的温度分布形成。
墙外表面与墙内表面热流密度变化过程 采暖设备开始供热前:二者相等、稳定不变。
采暖设备开始供热:刚开始供热时,由于室内空气温度很快升高并稳定,内墙温度的升高相对慢些,内墙表面热流密度最大;随着内墙温度的升高,内墙表面热流密度逐渐减小;随着外墙表面的缓慢升高,外墙表面热流密度逐渐增大;最终二者相等。
上述非稳态导热过程,存在着右侧面参与换热与不参与换热的两个不同阶段。
(1)第一阶段(右侧面不参与换热)是过程开始的一段时间,特点是:物体中的一部分温度已经发生变化,而另一部分仍维持初始状态时的温度分布(未受到界面温度变化的影响),温度分布显现出部分为非稳态导热规律控制区和部分为初始温度区的混合分布,物体内各处温度随时间的变化率是不一样的,即:在此阶段物体温度分布受t分布的影响较大,此阶段称非正规状况阶段或初始阶段(initialregime)。
(2)第二阶段(右侧面参与换热)当右侧面参与换热以后,物体中的温度分布不受t影响,主要取决于边界条件及物性。
传热学第3章-非稳态导热分析解法
传热学第3章-⾮稳态导热分析解法第三章⾮稳态导热分析解法1、重点内容:①⾮稳态导热的基本概念及特点;②集总参数法的基本原理及应⽤;③⼀维及⼆维⾮稳态导热问题。
2、掌握内容:①确定瞬时温度场的⽅法;②确定在⼀时间间隔内物体所传导热量的计算⽅法。
3、了解内容:⽆限⼤物体⾮稳态导热的基本特点。
许多⼯程问题需要确定:物体内部温度场随时间的变化,或确定其内部温度达某⼀极限值所需的时间。
如:机器启动、变动⼯况时,急剧的温度变化会使部件因热应⼒⽽破坏。
因此,应确定其内部的瞬时温度场。
钢制⼯件的热处理是⼀个典型的⾮稳态导热过程,掌握⼯件中温度变化的速率是控制⼯件热处理质量的重要因素;⾦属在加热炉内加热时,要确定它在炉内停留的时间,以保证达到规定的中⼼温度。
§3—1 ⾮稳态导热的基本概念⼀、⾮稳态导热1、定义:物体的温度随时间⽽变化的导热过程称⾮稳态导热。
2、分类:根据物体内温度随时间⽽变化的特征不同分:1)物体的温度随时间的推移逐渐趋于恒定值,即:const t =↑τ2)物体的温度随时间⽽作周期性变化1)物体的温度随时间⽽趋于恒定值如图3-1所⽰,设⼀平壁,初值温度t 0,令其左侧的表⾯温度突然升⾼到1t 并保持不变,⽽右侧仍与温度为0t 的空⽓接触,试分析物体的温度场的变化过程。
⾸先,物体与⾼温表⾯靠近部分的温度很快上升,⽽其余部分仍保持原来的t 0 。
如图中曲线HBD ,随时间的推移,由于物体导热温度变化波及范围扩⼤,到某⼀时间后,右侧表⾯温度也逐渐升⾼,如图中曲线HCD 、HE 、HF 。
最后,当时间达到⼀定值后,温度分布保持恒定,如图中曲线HG (若λ=const ,则HG 是直线)。
由此可见,上述⾮稳态导热过程中,存在着右侧⾯参与换热与不参与换热的两个不同阶段。
(1)第⼀阶段(右侧⾯不参与换热)温度分布显现出部分为⾮稳态导热规律控制区和部分为初始温度区的混合分布,即:在此阶段物体温度分布受t 分布的影响较⼤,此阶段称⾮正规状况阶段。
传热学 第三章 非稳态导热
解:首先需要求出平壁 的热扩散率
a
0.185
0.65 106 m 2 / s
c 1500 0.839 1000
Fo
a 2
0.65 106 6 3600 0.25 2
0.22
非稳态导热的导热微分方程式:
c t ( t ) ( t ) ( t ) x x y y z z
求解方法: 分析解法、近似分析法、数值解法
分析解法:分离变量法、积分变换、拉普拉斯变换 近似分析法:集总参数法、积分法、瑞利-里兹法 数值解法:有限差分法、蒙特卡洛法、有限元法、 分子动力学模拟
非稳态导热正规状况阶段
x,
0
1
2 sin 1 sin 1 cos 1
cos
1
x
e 12 Fo
Bi h
平壁中心x=0时
m
2 sin 1
a Fo 2
e 12Fo f Bi, Fo
0 1 sin 1 cos 1
m
0 m 0
cos
1
x
f
Bi, x
只取决于毕渥数与几何位置,与时间无关----特点3
传热学
第3章 非稳态导热 Transient/Unsteady Conduction
概述
自然界和工程上许多导热过程为非稳态,t = f()
例如:冶金、热处理与热加工:工件被加热或冷却
锅炉、内燃机等装置起动、停机、变工况 自然环境温度 供暖或停暖过程中墙内与室内空气温度
非稳态导热:周期性和非周期性(瞬态导热)
假设:厚度为2,导热系数、热扩散率为常数,无
内热源,初始温度与两侧流体相同,为t0。两侧流体温 度突然降低为tf,并保持不变,平壁表面与流体间对流 换热表面传热系数h为常数。
第三章第三节 一维非稳态导热的分析解
θ0 θm θ0
同理,非稳态换热过程所交换的热量也可 以利用(3-24)和(3-25)绘制出。
解的应用范围
书中的诺谟图及拟合函数仅适用恒温介质的第 三类边界条件或第一类边界条件的加热及冷却过 程,并且F0>0.2
3
第三节一维非稳态导热的分析解
上式化为:
∂θ = a ∂ 2θ
∂τ
∂x 2
θ =θ0
∂θ = 0 ∂x
0 < x < δ ,τ > 0 τ =0 x=0
− λ ∂θ = hθ x = δ ∂x
第三节一维非稳态导热的分析解
用分离变量法可得其分析解为:
θ
( x,τ θ0
)
=
∞
∑
n =1
2 sin( β nδ ) cos( β n x) β nδ + sin( β nδ ) cos( β nδ
μ1
cos(
μ1
e x ) −μ12F0 δ
θ
(0,τ θ0
)
=
θ m (τ θ0
)
=
μ1
+
2 sin μ1 sin μ1 cos
μ1
e − μ12 F0
θ (x,τ ) θ m (τ )
=
cos(
μ1
x δ
)
与时间无关
第三节一维非稳态导热的分析解
考察热量的传递 Q 0 = ρ cV ( t 0 − t ∞ ) Q0 ——非稳态导热所能传递的最大热量
及可用一通式表达0aexp?21f0f1y00aexp?21f0bi此处无限大平板yxbihf0az2长圆柱体及球yxrbihrf0azr2此处的ab及函数f1y见p74表322第三节一维非稳态导热的分析解3正规热状况的实用计算方法拟合公式法对上述公式中的ab1j0可用下式拟合2b?11abiaab1?e?cbibacbi1bbij0xabxcx2dx3式中常数abcd见p75表33abcd见p75表34第三节一维非稳态导热的分析解2再根据公式323绘制其线算图xcosxx1fbim3于是平板中任一点的温度为m?0m0同理非稳态换热过程所交换的热量也可以利用324和325绘制出
传热学第三章 非稳态导热
时、物体中最大与最小的过余温度之差小于5%,对于一 般工程计算,此时已经足然特确地可以认为整个物体温度 均匀。按照这样要求,由于l=V/A对圆柱有球分别是半轻 的1/2与1/3、因而如果以l作为Bi数的特征长度,则该Bi数 对平板、国柱与球应该分别小于0.1、0.05和0. 033。
方程中指数的量纲:
hA
W m2K
m2
w1
Vc
kg m3
Jkg K
[
m3
]
J
s
第三章 非稳态导热
9
即与 1 的量纲相同,当 Vc 时,则
hA
hA
1 Vc
此时,
e1 36.8%
0
称
Vc
hA
为时间常数,用 c 表示。
第三章 非稳态导热
10
如果导热体的热容量( Vc )小、换热条件好(h大),
有一直径为 5cm 的钢球,初始温度为 450 ℃,将其突然置 于温度为 30 ℃空气中。设钢球表面与周围环境间的总换热 系数为 24w/(m2 . K),试计算钢球冷却到 300 ℃所需的 时间。已知钢球的 c=0.48kJ/(kg·K ) , ρ =7753kg/m3 , λ =33w/(m. K ).
Fo
l2
a
换热时间 边界热扰动扩散到l 2面积上所需的时间
无量纲 热阻
Fo越大,热扰动就能越深入地传播到物体 内部,因而,物体各点地温度就越接近周
围介质的温度。
无量纲 时间
第三章 非稳态导热
12
对于平板、圆柱、球的一维非稳态第三类边界条件条件下 的导热问题,当按特征长度
l= 、厚度为2 的平板,
l=R、圆柱 l=R.球 定义的Bi数满足
第三章_非稳态导热问题的分析解
ρ C pV
初始条件为 令θ =
dT = q vV − σ XS (T 4 − T w4 ) dτ
(a) (b)
T = T0 τ = 0,
qv L σ XT 03 L aτ T V 4 +θw , Fo = 2 , M o = ,N = ,其中, L = 为 4 T0 λ S σ XT 0 L
dθ + M o (θ 4 − N 4 ) = 0 dFo
薄壁物体的温度响应在非稳态导热过程中如果物体内的温度始终是均匀一致的如导热系数很高的薄壁物体或者说当一个物体与周围环境进行热交换时若认为物体内部的温度分布并不重要而只是关心物体的总体温度随着时间的变化如用热电偶测量气流的温度我们常常只关心整个热电偶结点的温度随时间的变化而对于结点内部的温度分布并不重要
∞
r
r
∞
0
0
Bi =
αL λ
L
(3—2)
其中,α 是对流换热系数; L 是物体的特性尺寸,对于平板,即是厚度,对于圆柱体和球, 即是半径; λ 是物体的导热系数。实际上,Biot 数是物体的导热热阻( 换热热阻(
λ
)与表面的对流
1
α
)的比。一般情况下,当 Bi < 0.1 时,导热物体可近似为薄壁。
−
(e)
θ = C 1e
αS τ ρ C pV
(f)
取(d)的特解为 θ = 1 ,所以方程(d)的一般解为
θ = 1 + C 1e
−
αS τ ρ C pV
(g)
根据初始条件(c) ,求得 C1 = −1 ,因此,终解即热电偶结点的温度变化规律为
3
θ = 1 − exp( −
θ
《传热学》第3章_非稳态热传导分析
《传热学》第3章_非稳态热传导分析非稳态热传导分析是传热学中一个重要的研究内容。
在真实的物理系统中,尤其是工程实际中,非稳态热传导过程往往更为常见。
非稳态热传导分析主要研究物体内部温度分布随时间的变化规律,以及热传导过程中的能量交换。
本文将重点介绍非稳态热传导分析的基本原理和方法。
非稳态热传导分析需要考虑时间因素以及物质的热传导性质。
在非稳态热传导过程中,物体内部的温度分布随时间的变化满足热传导方程。
传热方程的一般形式为:∂(ρcT)/∂t=k∇²T+Q其中ρ是物质密度,c是比热容,T是温度,k是热传导系数,∇²是拉普拉斯算子,Q是热源项,即热传导过程中的能量增减。
解决非稳态热传导分析的一般步骤如下:1.建立热传导方程。
根据实际情况,确定适当的坐标系,并根据系统的几何形状和边界条件,建立热传导方程。
2.确定边界条件。
边界条件包括物体表面的温度、热通量以及对流边界等。
根据具体情况,选择适当的边界条件。
3.选择合适的数值方法。
非稳态热传导问题通常需要借助数值方法进行求解。
有限差分法、有限元法、迭代法等都可以应用于非稳态热传导分析,具体选择哪种方法需要根据具体问题的特点进行判断。
4.数值求解。
根据使用的数值方法,将热传导方程离散化,并进行数值求解。
通常需要在计算过程中进行迭代,直到得到满足要求的结果。
5.结果分析和验证。
得到物体内部温度随时间的变化规律后,可以通过实验进行验证。
比较模拟结果与实验结果,判断模拟的准确性。
非稳态热传导分析的典型应用包括热处理过程中的温度变化分析、电子元器件的散热分析、建筑物内部温度分布分析等。
通过对非稳态热传导问题的分析,可以更好地理解和控制物体内部温度分布的变化规律,为实际工程提供指导。
然而,非稳态热传导分析也存在一些挑战和限制。
首先,非稳态热传导分析通常需要考虑物质性质的非线性以及边界条件的复杂性,这增加了问题的难度。
其次,非稳态热传导问题的求解往往需要较长的计算时间和大量的计算资源。
《传热学》第三章 非稳态导热
令:
—— 过余温度
使导热微分方程边界条件齐次化:
1.分离变量法求解导热微分方程:
对于此类偏微分方程,应采用分离变量法来进行求解: 假定:
代入导热微分方程,得出:
令:
并对两式分别求解
求解结果: 因φ 不可能是无限大或常数,所以只能有:μ <0,因而可令:
求解结果:
将两个求解结果合并,得到:
其中:
A c1c2 , B c1c3
集总热容体的温度分布:
其中:
L
V ——定型尺寸 A
cV
hA
——时间常数(表示物体温度接近流体温度的快慢)
集总热容体的温度分布亦可写成:
四、不同加热方式下的无限大平壁瞬态导热
t
qv
h, t f
h, t f
qw
qw
h, t f
h, t f
x
第三节 半无限大物体的瞬态导热
应用领域:大地 一、第一类边界条件
半无限大物体表面温度:
半无限大物体表热负荷:
——一定时间内将壁温提高至tw所需的热负荷
第四节 其他形状物体的瞬态导热
一、无限长圆柱体和球体——计算线图法 分无 布限 计长 算圆 步柱 骤温 度
计算Bi和Fo
由图3-13计算中心温度
由图3-14计算任意处温度 无限大平壁—— 半壁厚δ
定型尺寸
无限长圆柱体和球体—— 半径 R 其他不规则形状物体——V/A
或:
傅立叶准则——
二、正常情况阶段——Fo准则对温度分布的影响
对
进行收敛性分析: 随着β n的递增,级数中指数一项收敛很快,所以级数收敛很快,尤其当Fo较 大时,收敛性更加明显。 因此,当Fo>0.2时,仅用级数第一项来描述,已足够精确,即:
工程传热学第三章-非稳态导热概述
2.两个阶段
非正规状况阶段(初始状况阶段)
在=3时刻之前的阶段,物体内的温度
分布受初始温度分布的影响较大。
正规状况阶段
在 = 3时刻之后,初始温度分布的影
响已经消失,物体内的温度分布主要 受边界条件的影响.
3.热量变化
与稳态导热的另一区别:由于有温 度变化要积聚或消耗热量,同一时刻 流过不同界面的热流量是不同的。
体已达到热平衡状态
如果导热体的热容量( Vc )小、换
cV 热条件好(hA大),那么单位时间所
hA
传递的热量大、导热体的温度变化快, 时间常数小。
时间常数反映了物体对周围环境温度变化响 应的快慢,时间常数小的响应快,时间常数 大的响应慢,其主要影响因素为物体的热容 量和物体表面的对流换热条件。
可见,同一物质不同的形状其时间常数不同, 同一物体在不同的环境下时间常数也是不相 同。
VV
t0 t
1 1 dV
V V 0
1
0
1 V
V (t t )dV
是时刻物体的平均过余温度。
2.非稳态导热的正规状况阶段
当Fo>0.2时,采用级数的第一项计算偏差小于 1%,故当Fo>0.2时:
(x, )
0
n 1
n
2 sin( n ) sin n cos n
cos( n
x ) exp(
首先,物体紧挨高温表面的部分温度上升
很快,经过一定时间后内部区域温度依次变
化,最终整体温度分布保持恒定,当为常数
时,最终温度分布为直线。
t1
tA
tB
t2
tC
t0
tD
3
传热学(第四版)第三章:非稳态热传导
方程求解
dt cV hA t t d
一阶非齐次方程
0时,t =t0
令: t t — 过余温度,则有
d -hA Vc d 0时, t t 0 0
一阶齐次方程
方程式改写为:
d hA d Vc
3 拟合线1: t 12.7 79.4 exp 79.4 0.216 3 拟合线2 : t 11.1 80.0 exp 80.0 第三章 非稳态导热 1.252
8
时间常数 ( Vc / hA)反应导热体的热惯性。 如果导热体的热容量( Vc )小、换热条件好(h大), 那么单位时间所传递的热量大、导热体的温度变化快。 对于测温的热电偶节点,时间常数越小、说明热电偶对 流体温度变化的响应越快。这是测温技术所需要的。
Q Q= Q 0 Q0
3.2 正规热状况的实用计算方法-近似拟合公式法(了解) 对上述公式中的A,B,μ 1,J0 可用下式拟合
b 1 (a ) Bi
2 1
A a b( 1 e cBi ) a cBi B 1 bBi J 0 ( x ) a` b` x c` x 2 d` x 3
第三章 非稳态导热 11
讨论4:零维问题(集中参数法)的应用条件 理论上,集中参数法是在Bi->0的条件下提出的。 在实际应用中,可以适当放宽适用条件: h(V A) Bi 0.1 (V/A)是物体的特征长度
对厚为2δ 的
无限大平板
对半径为R 的无限长 圆柱 对半径为R 的球
V A A A V R2 R A 2 R 2 4 R3 R V 3 2 A 4 R 3
传热学3-33.3 典型一维物体非稳态导热的分析解
数值计算表明,Fo>0.2后,略去无穷级数中的第二项及以 后各项所得的计算结果与按完整级数计算结果的偏差小于 1%。
以平板为例进行分析
θ
( x,τ θ0
)
=
μ1
+
2 sin μ1 sin μ1 cos
μ1
cos(
μ1
e x ) −μ12F0
δ
e θm (τ ) = θ (0,τ ) =
传热学 第三章 非稳态导热
东北电力大学 柏静儒
1
毕渥数 Bi 对温度分布的影响
分析:设有一块金属平板 2δ,λ,a,фV=0,h, 初始温度t0,突置于流体t∞中,且t∞ < t0。
Bi → 0
Bi → ∞
Bi →0 (1)
t
τ=0 τ1
t0
τ2 τ3
t∞ -δ
t∞ 0 δx
9内部导热热阻
趋于零;
2 sin μ1
− μ12 F0
θ0
θ0
μ1 + sin μ1 cos μ1
θ (x,τ ) θm (τ )
=
θ (x,τ ) /θ0 θ m (τ ) / θ0
=
co
s(
μ1
x
δ
)
平板中心处 过余温度
与时间无关, 只取决于边界条件
2. 正规状况阶段三个分析解的简化表达式
平板;
θ (x / δ ,τ ) θ0
∂θ ∂τ
=
a
∂ 2θ
∂x 2
(0 ≤ x < δ , τ > 0)
t τ=0
I.C τ = 0 θ = θ 0 (0 ≤ x ≤ δ )
大学传热学第三章 非稳态导热2
• 为便于计算,工程中广泛采用按分析解的级数第一项而绘 制的一些线图(诺模图),其中用以确定温度分布的图线 称为海斯勒图。
• 对于无限大平板这些线图有三张
(1)中心点无量纲过余温度线算图 ;
(2)任意点无量纲过余温度与中心点无量纲过余温度比值
/的m 线算图
;
(3)热流量线算图。
m /0
任意点无量纲过余温度的计算
• 从初始时刻到平板与周围介质处于热平衡,这一过程中 所传递的热量为
Q0 cV t0 t
• 从初始时刻到某一时刻,这一阶段中所能传递的热量为
Q cV t0 tx, dV • 热量之比为
Q Q0
c t0 t x, dV
V
cV t0 t
1 V
V
t0
t
t
t
dV
t0 t
1 1 t t dV 1
平板中不同点的温度值
• 任意点的温度
x,
0
1
2sin 1 sin 1 cos 1
e12 Fo
cos
1
x
• 中心点的温度
0,
2 sin 1
e 12FO
0 1 sin 1 cos 1
• 任意点的温度与中心点温度的比值
x, 0,
x, m
cos
1
x
正规工况的特点
上面的计算式反映了非稳态导热过程中的一种很 重要的物理现象,即当 Fo 0.2以后,虽然任意点 的过余温度及中心点的过余温度均与时间有关, 但其比值却与时间无关,而仅取决于几何位置及 边界条件。这表明,此时初始条件的影响已经消 失,无论什么样的初始分布都是一样的。非稳态 导热的这一阶段就称为正规状况阶段或充分发展 阶段。确定正规状况阶段的存在有重要的工程实 用意义,因为工程技术中关心的非稳态导热过程 常常处于正规状况阶段,此时的计算可以采用简 化的公式。
传热学-第三章非稳态导热问题分析解
单位时间 0, t t0
物体内能 的减少(或 增加)
Φ hAt t
Φ cV dt d
当物体被冷却时(t 0 >t),由能量守恒可
知
hA(t t ) -Vc dt
d
令: t t — 过余温度,则有
hA
-Vc
d d
( 0) t0 t 0
控制方程 初始条件
方程式改写为:d hA d 分离变量法 Vc
由于表面对流换热热阻与导热热阻相对大小的不同, 平板中温度场的变化会出现以下三种情形:
(1) 1/ h / Bi
(2) / 1/ h Bi 0
(3) δ/ λ 与1/h 的数值比较接近 0 Bi
Bi 准则对温度分布的影响
1/ h /
/ 1/ h δ/ λ 与1/h的数值接近
是一种理想化模型; 物体内导热热阻忽略不计; 物体内温度梯度忽略不计,认为整个物体具有相
同的温度;
通过表面传递的热量立即使整个物体的温度同时 发生变化; 把一个有分布热容的物体看成是一个集中热容的物体;
只考虑与环境间的换热不考虑物体内的导热。
问题的提出:
2 温度分布 如图所示,任意形状的物体,参数均为已知。
0.049 0.05 可采用集总参数法。
F cp V
cp
dl 2d 2 d 2l 4
4
cp
4(l d dl
2)
140 4 (0.3 0.025) 480 7753 0.05 0.3
0.326102
t tf 800 1200 0.342
0 t0 tf 30 1200
由式(3-1)得:
???
§3-2 集总参数法
基本思想:对任意形状的物体,忽略物体内部的导热 热阻,认为物体温度均匀一致。
传热学课件-第3章-非稳态导热分析解法精选全文
是与物体几何形状 有关的无量纲常数
对厚为2δ的 无限大平板
M 1
对半径为R的无 限长圆柱
M
1 2
对半径为R的 球
M 1 3
V A
AA
V R2 R
A 2R 2
V A
4 R3
3
4R 2
R 3
Biv Bi
Biv
Bi 2
Biv
Bi 3
对于一个复杂形体的形状修正系数时,可以将
修正系数M取为1/3,即 BiV 0.0333
由此可见,上述两个热阻的 相对大小对于物体中非稳态导热 的温度场的变化具有重要影响。 为此,我们引入表征这两个热阻 比值的无量纲数毕渥数。
Bi h 1h
1)毕渥数的定义:
Bi h 1h
毕渥数属特征数(准则数)。
2)Bi 物理意义: 固体内部单位导热面积上的导 热热阻与单位表面积上的换热热阻之比。Bi的大小
0
1
τ/τs
工程上认为= 4τc时导热体已达到热平衡状态
3 Bi F物o 理意义
hl l
Bi =
物体内部导热热阻
1 h 物体表面对流换热热阻
换热时间
Fo l2 a 边界热扰动扩散到l2面积上所需的时间
无量纲 热阻
无量纲 时间
Fo越大,热扰动就能越深入地传播到物体内部物体, 各点地温度就越接近周围介质的温度。
t(x, ) t — 过余温度
2
a
x2
0, t -t
0
0
x 0, 0
x , - x h x
采用分离变量法求解:
(, 0
)
n 1
Cn
exp(n2Fo) cos(n)
传热学课件-第三章非稳态热传导共66页文档
0
物体中的温度 呈指数分布
方程中指数的量纲:
hA
mW2Km2
w1
cV
kg m3
JKkg[m3]
J
s
即与 1 的量纲相同,当
时hVAc,则
hA 1
Vc
此时, e1 36.8% 0
上式表明:当传热时间等于 Vc时,物体的过余温度已经达
到了初始过余温度的36.8%。hA称 为Vc 时间常数,用 表示 。c
非周期性非稳态导热:物体的温度随时间的推移逐渐趋 近于恒定的值
非周期性非稳态导热实例(汽轮机外壳)
冷态启动前:tf1=tw1=tw2=tf2
进汽后 tf1
内壁 q1=h1(tf1-tw1) 到某一时刻 h1A1(tf1-tw1)=h2A2(tw2-tf2) 以后为稳态导热
3 温度分布:
问题描述:
3 、了解内容:
①无限大物体非稳态导热的基本特点。 ②二维非稳态导热问题。
§3-1 非稳态导热的基本概念
一、非稳态导热的特点及类型
1 非稳态导热的定义
物体的温度随时间而变化的导热过程称非稳态导热。
2 非稳态导热的分类
周期性非稳态导热:物体的温度随时间而作周期性的变化
例如太阳辐射的周期性变化引起的房屋的墙壁温度随时间的变化。
这 时 , 由 于 导 热 热 阻 δ/λ几乎可以 忽略,因而任一时刻平板中各点的 温度接近均匀,并随着时间的推移, 整体地下降,逐渐趋近于t∞ 。
(3) δ/λ与 1/h 的数值比较接近
这时,平板中不同时刻的温度分布介于上述两种极 端情况之间。
由此可见,上述两个热阻 的相对大小对于物体中非稳态 导热的温度场的变化具有重要 影响。为此,我们引入表征这 两个热阻比值的无量纲数毕渥 数: Bi h
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 非稳态导热分析解法1、 重点内容:① 非稳态导热的基本概念及特点;② 集总参数法的基本原理及应用;③一维及二维非稳态导热问题。
2、掌握内容:① 确定瞬时温度场的方法;② 确定在一时间间隔内物体所传导热量的计算方法。
3、了解内容:无限大物体非稳态导热的基本特点。
许多工程问题需要确定:物体内部温度场随时间的变化,或确定其内部温度达某一极限值所需的时间。
如:机器启动、变动工况时,急剧的温度变化会使部件因热应力而破坏。
因此,应确定其内部的瞬时温度场。
钢制工件的热处理是一个典型的非稳态导热过程,掌握工件中温度变化的速率是控制工件热处理质量的重要因素;金属在加热炉内加热时,要确定它在炉内停留的时间,以保证达到规定的中心温度。
§3—1 非稳态导热的基本概念一、非稳态导热1、定义:物体的温度随时间而变化的导热过程称非稳态导热。
2、分类:根据物体内温度随时间而变化的特征不同分:1)物体的温度随时间的推移逐渐趋于恒定值,即:const t =↑τ2)物体的温度随时间而作周期性变化1)物体的温度随时间而趋于恒定值如图3-1所示,设一平壁,初值温度t 0,令其左侧的表面温度突然升高到1t 并保持不变,而右侧仍与温度为0t 的空气接触,试分析物体的温度场的变化过程。
首先,物体与高温表面靠近部分的温度很快上升,而其余部分仍保持原来的t 0 。
如图中曲线HBD ,随时间的推移,由于物体导热温度变化波及范围扩大,到某一时间后,右侧表面温度也逐渐升高,如图中曲线HCD 、HE 、HF 。
最后,当时间达到一定值后,温度分布保持恒定,如图中曲线HG (若λ=const ,则HG 是直线)。
由此可见,上述非稳态导热过程中,存在着右侧面参与换热与不参与换热的两个不同阶段。
(1)第一阶段(右侧面不参与换热)温度分布显现出部分为非稳态导热规律控制区和部分为初始温度区的混合分布,即:在此阶段物体温度分布受t 分布的影响较大,此阶段称非正规状况阶段。
(2)第二阶段,(右侧面参与换热)当右侧面参与换热以后,物体中的温度分布不受to 影响,主要取决于边界条件及物性,此时,非稳态导热过程进入到正规状况阶段。
正规状况阶段的温度变化规律是本章讨论的重点。
2)二类非稳态导热的区别:前者存在着有区别的两个不同阶段,而后者不存在。
3、特点;非稳态导热过程中,在与热流量方向相垂直的不同截面上热流量不相等,这是非稳态导热区别于稳态导热的一个特点。
原因:由于在热量传递的路径上,物体各处温度的变化要积聚或消耗能量,所以,在热流量传递的方向上Φconst ≠。
二、非稳态导热的数学模型1、数学模型⇒⎭⎬⎫边界条件初始条件 特定的非稳态导热问题定解条件导热微分方程⇒⎭⎬⎫ 非稳态导热问题的求解⇒规定的{初始条件,边界条件}下,求解导热微分方程。
2、讨论物体处于恒温介质中的第三类边界条件问题在第三类边界条件下,确定非稳态导热物体中的温度变化特征与边界条件参数的关系。
已知:平板厚2δ、初温to 、表面传热系数h 、平板导热系数λ,将其突然置于温度为∞t 的流体中冷却。
试分析在以下三种情况:λδ/ <<1/h 、λδ/ >>1/h 、λδ/ =1/h 时,平板中温度场的变化。
1)1/h<<λδ/因为1/h 可忽略,当平板突然被冷却时,其表面温度就被冷却到∞t ,随着时间的延长,平板内各点t →∞t 如图3-3(a )。
2)1/h>>λδ/因为λδ/忽略不计,即平板内导热的流量接近于无穷大,所以任意时刻平板中各点温度接近均匀,随着时间的延长,平板内各点t →∞t ,而且整体温度下降如图3-3(b )。
3)1/h=λδ/平板中的温度分布介于二者之间,如图3-3(c )。
由此可见,表面对流换热热阻1/h 与导热热阻λδ/的相对大小对物体中非稳态导热的温度场的分布有重要影响,因此,引入表征二者比值的无量纲数,毕渥数。
3、毕渥数1)定义式:λδλδh hi ==B 1 (3-1) 毕渥数属特征数(准则数)。
2)Bi 物理意义:Bi 的大小反映了物体在非稳态条件下内部温度场的分布规律。
3)特征数(准则数):表征某一物理现象或过程特征的无量纲数。
4)特征长度:是指特征数定义式中的几何尺度。
§3—2 集总参数法的简化分析一、集总参数法1、定义:当固体内的λδ<<h 1时,固体内的温度趋于一致,此时可认为整个固体在同一瞬间均处于同一温度下,这时需求解的温度仅是时间的一元函数,而与坐标无关,好象该固体原来连续分布的质量与热容量汇总到一点上,而只有一个温度值那样。
这种忽略物体内部导热热阻的简化分析方法称为集总参数法。
2、集总参数法的计算已知:有一任意形状的物体,其体积为V ,面积为A ,初始温度为t 0,在初始时刻,突然将其置于温度恒为∞t 的流体中,且t o >∞t ,固体与流体间的表面传热系数h ,固体的物性参数均保持常数。
试根据集总参数法确定物体温度随时间的依变关系。
解:① 建立非稳态导热数学模型方法一:椐非稳态有内热源的导热微分方程:c z t y t x t c t ρρλτ⋅Φ+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂=∂∂222222 ∵物体内部导热热阻很小,忽略不计。
∴物体温度在同一瞬间各点温度基本相等,即t 仅是τ的一元函数,二与坐标x 、y 、z无关,即⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂222222z t y t x t =0 则:c d dt ρτ⋅Φ= (a ) ∵⋅Φ可视为广义热源,而且热交换的边界不是计算边界(零维无任何边界)。
∴界面上交换的热量应折算成整个物体的体积热源,即:)(∞-=Φ-t t Ah V (b )∵t>∞t ,物体被冷却,∴⋅Φ应为负值由(a ),(b )式得: ττρΦ=--=∞)(t t Ah d dt cV (3-2) 这就是瞬时时刻导热微分方程式。
方法二:根据能量守恒原理,建立物体的热平衡方程,即物体与环境的对流散热量=物体内能的减少量 则有:ττρΦ=--=∞)(t t Ah d dtcV② 物体温度随时间的依变关系引入过余温度:∞-=t t θ 则上式表示成:θτθρAh d d cV -=其初始条件为:00)0(θθ=-=∞t t 将θτθρAh d d cV -=分离变量求解微分方程,τρθθd cV hAd -=对时间τ从0τ→积分,则:⎰⎰-=θθττρθθ00d cV hAd In τρθθcV hA-=0即: ex p 00=--=∞∞t t t t θθ(τρcVhA -)(3-3) 其中:τρcV hA τρλλ22cV hVA A =V V Fo i A V a A V hB ==2)/()/(τλ其中:V/A 是具有长度的量纲,记为l ;————V Bi hl λ毕渥数;————V Fo l a 2τ傅立叶数;而V 说明Fov 、Biv 中的特征长度为V/A故得:)ex p(00V V Fo Bi t t t t -=--=∞∞θθ (3-4) 由此可见,采用集总参数法分析时,物体内的过余温度随时间成指数曲线关系变化。
而且开始变化较快,随后逐渐变慢。
指数函数中的cV hA ρ/ 的量纲与 τ1 的量纲相同,如果时间=τhAcV ρ,则 %8.36368.0)1ex p(00==-=--=∞∞t t t t θθ则:hA cV ρ称时间常数,记为c τ。
c τ的物理意义:表示物体对外界温度变化的响应程度。
当时间 =τ c τ时,物体的过余温度已是初始过余温度值的36.8%。
③ 确定从初始时刻到某一瞬间这段时间内,物体与流体所交换的热流量首先求得瞬时热流量:将 τd dt带入瞬时热流量的定义式得:cV ρτ-=Φτd dt= cV ρ-)ex p())((0τρρcV hAcV hAt t ---∞(3-5) = )ex p()(0τρcV hAhA t t --∞式中负号是为了使Φ恒取正值而引入的。
若∞<t t 0(物体被加热),则用)(0t t -∞代替)(0∞-t t 即可。
然后求得从时间=τ0到τ时刻间的总热流量:⎰Φ=Φ→ττττ00d= )(0∞-t t ττρτd cV hAhA ⎰-0)ex p(= )(0∞-t t )]ex p(1[τρρcV hAcV --(3—6) 3、集总参数法的判别条件对形如平板、圆柱和球这一类的物体,如果毕渥数满足以下条件:V Bi =h(V/A)/λ<0.1M (3-7)则物体中各点间过余温度的偏差小于5%。
其中M 是与物体几何形状有关的无量纲数。
无限大平板:M=1无限长圆柱:M=1/2球 :M=1/3毕渥数的特征长度为V/A ,不同几何形状,其值不同,对于:厚度为 2δ的平板:δδ=⋅=AA A V 半径为R 的圆柱:22R RL l R A V ==ππ 半径为R 的球 :343/423R R A V ==ππ 由此可见,对平板:V Bi =Bi圆柱: V Bi = Bi /2球体: V Bi = Bi/3二、毕渥数V Bi 与傅立叶数V Fo 的物理意义1、V Bi1)定义:表征固体内部单位导热面积上的导热热阻与单位面积上的换热热阻(即外部热阻)之比。
V Bi =h1λδV Bi 越小,表示内热阻越小,外部热阻越大。
此时采用集总参数法求解更为合适。
2)物理意义:V Bi 的大小反映了物体在非稳态导热条件下,物体内温度场的分布规律。
2、V Fo1)定义:V Fo 表征两个时间间隔相比所得的无量纲时间。
V Fo =()ατ2l分子τ是从边界上开始发生热扰动的时刻起到所计时刻为止的时间间隔。
分母可视为边界上发生的有限大小的热扰动穿过一定厚度的固体层扩散到2l 的面积上所需的时间。
2)物理意义:表示非稳态导热过程进行的程度,V Fo 越大,热扰动就越深入地传播到物体内部,因而物体内各点的温度越接近周围介质的温度。
§3—3 一维非稳态导热的分析解本节介绍第三类边界条件下:无限大平板、无限长圆柱、球的分析解及应用。
如何理解无限大物体,如:当一块平板的长度、宽度>>厚度时,平板的长度和宽度的边缘向四周的散热对平板内的温度分布影响很少,以至于可以把平板内各点的温度看作仅是厚度的函数时,该平板就是一块“无限大”平板。
若平板的长度、宽度、厚度相差较小,但平板四周绝热良好,则热量交换仅发生在平板两侧面,从传热的角度分析,可简化成一维导热问题。
一、 无限大平板的分析解已知:厚度δ2的无限大平板,初温0t ,初始瞬间将其放于温度为∞t 的流体中,而且 ∞t >0t ,流体与板面间的表面传热系数为一常数。
试确定在非稳态过程中板内的温度分布。