初中数学绝对值专项练习题(有问题详解)
初中七年级数学上册绝对值专项练习题
初中七年级数学上册绝对值专项练习题下面是一些初中七年级数学上册的绝对值专项练习题,共30道题目。
你可以针对每个题目进行解答,每题解答约100字,这样总字数将达到3000字以上。
1. 计算下列各式的值:a) |-5| b) |4| c) |-7| d) |-3 - 11|2. 如果x = -8,计算 |x - 5|。
3. 如果y = 10,计算 |y - 8|。
4. 计算下列各式的值:a) |2 - 4| b) |7 - 10| c) |-6 - 3| d) |3 - (-5)|5. 如果a = -6,计算 |a + 2|。
6. 如果b = -3,计算 |b + 7|。
7. 查找 |7 - 10| 的值。
8. 查找 |5 - (-12)| 的值。
9. 查找 |-7 + 19| 的值。
10. 查找 |12 - (-18)| 的值。
11. 解方程 |x - 3| = 7.12. 解方程 |2x - 5| = 11.13. 解方程 |3x + 5| = 10.14. 解方程 |4x - 8| = 20.15. 解方程 |2x - 3| = 14.16. 计算下列各式的值:a) |3x - 4| + 2 b) |4x + 5| - 317. 解不等式 |x - 5| ≥ 10.18. 解不等式 |3x - 1| < 7.19. 解不等式 |2x - 3| ≤ 5.20. 解不等式 |x + 4| > 9.21. 计算下列各式的值:a) |x - 3| + |x + 2| b) |2x - 5| - |3x + 1|22. 如果|x + 3| = 7,求x的值。
23. 如果|2x - 5| = 11,求x的值。
24. 如果|3x + 5| = 10,求x的值。
25. 如果|4x - 8| = 20,求x的值。
26. 如果|2x - 3| = 14,求x的值。
27. 解方程组:{ |x - 3| = 7{ x - 2y = 5.28. 解方程组:{ |2x - 5| = 11{ 3x + 2y = 0.29. 解方程组:{ |3x + 5| = 10{ 2x - y = 7.30. 解方程组:{ |4x - 8| = 20{ x + y = 10.以上是初中七年级数学上册的绝对值专项练习题,希望能够帮助到你。
部编数学七年级上册专题绝对值压轴题(最值与化简)专项讲练重难题型技巧提升专项精练(人教版)含答案
专题03 绝对值压轴题(最值与化简)专项讲练专题1. 最值问题最值问题一直都是初中数学中的最难点,但也是高分的必须突破点,需要牢记绝对值中的最值情况规律,解题时能达到事半功倍的效果。
题型1. 两个绝对值的和的最值【解题技巧】b x a x -+-目的是在数轴上找一点x ,使x 到a 和b 的距离和的最小值:分类情况(x 的取值范围)图示b x a x -+-取值情况当a x <时无法确定当b x a ≤≤时b x a x -+-的值为定值,即为b a -当b x >无法确定结论:式子b x a x -+-在b x a ≤≤时,取得最小值为b a -。
例1.(2021·珠海市初三二模)阅读下面材料:数轴是数形结合思想的产物.有了数轴以后,可以用数轴上的点直观地表示实数,这样就建立起了“数”与“形”之间的联系.在数轴上,若点A ,B 分别表示数a ,b ,则A ,B 两点之间的距离为AB a b =-.反之,可以理解式子3x -的几何意义是数轴上表示实数x 与实数3两点之间的距离.则当25x x ++-有最小值时,x 的取值范围是()A .2x <-或5x >B .2x -≤或5x ≥C .25x -<<D .25x -≤≤【答案】D【分析】根据题意将25x x ++-可以理解为数轴上表示实数x 与实数-2的距离,实数x 与实数5的距离,两者的和,分三种情况分别化简,根据解答即可得到答案.【解析】方法一:代数法(借助零点分类讨论)当x<-2时,25x x ++-=(-2-x )+(5-x )=3-2x ;当25x -≤≤时,25x x ++-=(x+2)+(5-x )=7;当x>5时,25x x ++-=(x+2)+(x-5)=2x-3;∴25x x ++-有最小值,最小值为7,此时25x -≤≤,故选:D.方法二:几何法(根据绝对值的几何意义)25x x ++-可以理解为数轴上表示实数x 与实数-2的距离,实数x 与实数5的距离,两者的和,通过数轴分析反现当25x -≤≤时,25x x ++-有最小值,最小值为7。
初中数学七年级上册绝对值练习题含答案
初中数学七年级上册绝对值练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________ 1. 化简−|−3|等于( )A.−3B.−13C.13D.32. 如果一个数的绝对值等于它的相反数,那么这个数一定是( )A.正数B.负数C.非正数D.非负数3. 已知a、b、c都是负数,且|x−a|+|y−b|+|z−c|=0,则xyz是()A.负数B.非负数C.正数D.非正数4. 下列推断正确的是( )A.若|a|=|b|,则a=bB.若|a|=|b|,则a=−bC.若|m|=|−n|,则m=−nD.若m=−n,则|m|=|n|5. 已知x、y、z为有理数,且x+y+z=0,xyz<0,则y−z|x|+x−z|y|+x+y|z|的值为().A.−1B.1C.1或−1D.−36. 下列判断正确的是()A.−14>−15B.−35<−45C.−34>−45D.−1>−0.017. 若关于x的方程|2x−3|+m=0无解,|3x−4|+n=0只有一个解,|4x−5|+k=0有两个解,则m, n, k的大小关系是()A.m>n>kB.n>k>mC.k>m>nD.m>k>n8. 下列四组有理数大小的比较正确的是()A.−12>13B.−|−1|>−|+1|C.12<13D.|−12|>|−13|9. 绝对值大于2,且不大于5的整数有( )10. 以下选项中比|−12|小的数是( )A.2B.32C.12D.−1311. 在数−4,−3,−1,2中,大小在−2和1之间的数是________.12. 已知1<x <2,化简|x −1|+|x −2|=________.13. √3−2的相反数是________,绝对值是________.14. 绝对值小于227的整数有________.15. 若|x −1|=|−3|,那么x =________.16. 当a =________时,代数式|a −4|+3有最小值是________.17. 已知|a −2|+|b −4|=0,则2a +3b =________.18. 已知,则的值可能是________.19. 已知有理数a ,b 在数轴上的位置如图所示,则︱b −a ︱=________.20. 比较大小:−34________−45;−(−2)________−|−2|.21. 已知|x −1|+|y +2|=0,则x −y =________.22. 比较下列各对数的大小:(2)−518和−29.23. 已知|x|=3,|y|=4,且xy <0,求x +y 的值.24.(1)计算:|−6|−√9+(1−√2)0−(−3).(2)如图,BD 是菱形ABCD 的对角线,∠ABF =30∘,EF 为AB 的垂直平分线, 垂足为E ,交AD 于F ,连接BF ,求∠ABD 的度数.25. 某检修小组从A 地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下(单位:千米):(1)求收工时检修小组是否回到A 地?(2)在第________次纪录时距A 地最远.(3)若每千米耗油0.2升,每升汽油需8元,问检修小组工作一天需汽油费多少元?26. 问题:比较 −|65| 与+(−43) 的大小. 解:化简可得−|65|=−65,+(−43)=−43①,因为|65|=65,|−43|=43②又65=1815<2015=43③,所以−65<−43④,所以−|6|<+(−4)⑤(2)请按照上述方法比较 −(+1011)与−|910|的大小.27. 比较下列各数的大小,用“<”连接起来.−1017,−1219,−1523,−3031,−6091.28. 已知a =−4,b =−5,求a −b 的值.29. 已知|a|=2,|b|=3,且a +b <0,求a +b 的值.30. 比较下面两个数的大小.(1)−43与−32(2)比较−(−3.1)与3.2的绝对值.31. 比较有理数的大小.(1)−57与23(2)−8与−5(3)−57与−34(4)已知a >b >0,试比较−a 和−b 的大小.32. 已知a <b <0<c ,化简|a|−|−b|+|c|.33. 有理数a 、b 在数轴上的位置如图,计算|a −b|−2|a −c|−|b +c|.(1)如果甲报的数为x ,则乙报的数为x −1,丙报的数为________,丁报的数为________;(2)若丁报出的答案为2,则甲报的数是多少?35. 大家都知道,|5−(−2)|表示5与−2之差的距离,试探索:若x 表示一个有理数,且|x −2|+|x +4|>6,则有理数x 的取值范围是________.36. 若|a −2|+|b −3|+|c −1|=0,求a +2b +3c 的值.37. 已知x|=|−7|,|y|=|−5|,求x +y 的值.38. 若|x|<1,化简|x +1|+|x −1|.39. 已知下列有理数:−(−3)、−4、0、+5、−12(1)这些有理数中,整数有________个,非负数有________个.(2)画数轴,并在数轴上表示这些有理数.(3)把这些有理数用“<“号连接起来:________.40. 利用绝对值比较大小(1)−3.14与−π(2)−32与−54(3)−56与−57参考答案与试题解析初中数学七年级上册绝对值练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】A【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答2.【答案】C【考点】绝对值的意义【解析】此题暂无解析【解答】此题暂无解答3.【答案】A【考点】非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答4.【答案】D【考点】绝对值的意义【解析】此题暂无解析【解答】此题暂无解答5.【答案】B此题暂无解析【解答】此题暂无解答6.【答案】C【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答7.【答案】A【考点】有理数大小比较非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答8.【答案】D【考点】有理数大小比较绝对值【解析】此题暂无解析【解答】此题暂无解答9.【答案】D【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答10.有理数大小比较绝对值【解析】此题暂无解析【解答】此题暂无解答二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】−1【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答12.【答案】1【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答13.【答案】2−√3,2−√3【考点】绝对值的意义相反数的意义【解析】此题暂无解析【解答】此题暂无解答14.【答案】7个【考点】绝对值【解析】此题暂无解析【解答】【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答16.【答案】4,3【考点】绝对值的意义非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答17.【答案】16【考点】非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答18.【答案】2或0或−2【考点】绝对值的意义【解析】此题暂无解析【解答】此题暂无解答19.【答案】a−b【考点】非负数的性质:绝对值【解析】此题暂无解析【解答】【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答三、解答题(本题共计 20 小题,每题 10 分,共计200分)21.【答案】3【考点】非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答22.【答案】解:(1)∵−(−5)=5,−(+6)=−6,∴−(−5)>−(+6);(2)∵|−518|=518,|−29|=29,∴−518<−29.【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答23.【答案】解:∵|x|=3,|y|=4,∴x=±3,y=±4,∵xy<0,∴x=3时,y=−4,x+y=−1,x=−3时,y=4,x+y=−3+4=1,综上所述,x+y的值是1或−1.【考点】绝对值【解析】此题暂无解析【解答】24.【答案】解:(1)原式=6−3+1+3=7.(2)∵ EF 为AB 的垂直平分线,∴ FA =FB ,∴ ∠A =∠ABF =30∘.∵ 四边形ABCD 是菱形,∴ AD =AB ,∴ ∠ABD =180∘−30∘2=75∘.【考点】绝对值的意义零指数幂、负整数指数幂二次根式的性质与化简菱形的性质线段垂直平分线的性质【解析】此题暂无解析【解答】此题暂无解答25.【答案】解:(1)−3+8−9+10+4−6−2=2(千米).∴ 收工时检修小组未回到A 地.五(3)(3+8+9+10+4+6+2)×0.2×8=42×0.2×8=67.2(元)答:检修小组工作一天需汽油费67.2元.【考点】绝对值的意义有理数的混合运算正数和负数的识别【解析】此题暂无解析【解答】此题暂无解答26.【答案】(1)②(2)解:化简可得−(+1011)=−1011,−|910|=−910,因为|−1011|=1011,|−910|=910, 又1011=100110>99110=910,所以−1011<−910, 所以−(+1011)<−|910|.【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答27.【答案】解:∵ |−1017|=1017=60102,|−1219|=1219=6095,|−1523|=1523=6092,|−3031|=3031=6062,|−6091|=6091 ∴ −3031<−6091<−1523<−1219<−1017.(各负数绝对值的分子相同,分母越小,其绝对值就越大,本身反而越小)【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答28.【答案】解:因为a =−4,b =−5,所以a −b =−4+5=1.【考点】实数的运算【解析】此题暂无解析【解答】此题暂无解答29.【答案】解:由题意得|a|=2,|b|=3,a +b <0,∴ a =±2 ,b =−3,①当a =2,b =−3时,a +b =−1;②当a =−2,b =−3时,a +b =−5.∴a+b=−1或−5【考点】绝对值的意义绝对值【解析】此题暂无解析【解答】此题暂无解答30.【答案】解:(1)∵|−43|=43=86,|−32|=32=96,∴−43>−32.(2)∵−(−3.1)=3.1,3.2的绝对值是3.2,∴−(−3.1)<3.2的绝对值.【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答31.【答案】解:(1)−57<23;(2)−8<−5(3)∵57<34,∴−57>−34;(4)∵a>b>0,∴|a|>|b|>0,又∵−a<0,−b<0,∴−a<−b.【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答32.【答案】解:∵a<b<0<c,|a|−|−b|+|c|=−a−(−b)+c=−a+b+c.【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答33.【答案】解:根据数轴可知:b<a<0<c,且|a|<|c|<|b|,∴a−b>0,a−c<0,b+c<0,∴|a−b|−2|a−c|−|b+c|=a−b+2a−2c+b+c=3a−c.【考点】有理数大小比较绝对值【解析】此题暂无解析【解答】此题暂无解答34.【答案】|x−1|,|x−1|−1设甲为x,则|x−1|−1=2,解得:x=4或x=−2.所以甲报的数是4或者−2.【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答35.【答案】x>2或x<−4【考点】绝对值的意义绝对值【解析】此题暂无解析【解答】此题暂无解答36.【答案】解:根据题意得:{a −2=0b −3=0c −1=0,解得:{a =2b =3c =1,则原式=2+6+3=11.【考点】非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答37.【答案】解:∵ |x|=|−7|=7,|y|=|−5|=5, ∴ x =±7,y =±5,∴ 当x =7、y =5时,x +y =12, 当x =7、y =−5时,x +y =2, 当x =−7、y =5时,x +y =−2, 当x =−7、y =−5时,x +y =−12.【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答38.【答案】解:∵ 由|x|<1可得−1<x <1, ∴ x −1<0,x +1>0,则|x +1|+|x −1|=x +1+1−x =2.【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答39.【答案】4,3解:在数轴上表示这些有理数如图:−4<-12<0<−(−3)<+5【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答40.【答案】解:∵ |−3.14|<|−π|, ∴ −3.14>−π 解:∵ |−32|>|−54|,∴ −32<−54解:∵ |−56|>|−57|,∴ −56<−57【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答。
初中数学绝对值专题
初中数学绝对值专题数学练习题【篇一】1.已知|x|=3 ,|y|=1,且x-y<0,则1/3x+y²ºº¹=( )2.已知|a|=3,|b|=5 ,且a<b,求a-b< p=""></b,求a-b<>3.已知∣a-4∣+∣B-2∣=0,求a,b的值4.已知|4+a|+|2-5b|=8,求a+b=( )5.|x-2|+1=196.|2x+3|-|x-1|=4x-37.a<b<0<c,化简|2a-b|+2|b-c|-2|c-a|+3|b|< p=""></b<0<c,化简|2a-b|+2|b-c|-2|c-a|+3|b|<>8.a9.c<b<0<a,化简|a+c|-|a-b-c|-|b-a|+|b+c|< p=""></b<0<a,化简|a+c|-|a-b-c|-|b-a|+|b+c|<>10.b<c<0<a,化简|a+c|+|b+c|-|a-b|+|2a-c|< p=""></c<0<a,化简|a+c|+|b+c|-|a-b|+|2a-c|<>一、选择题1.下列说法中正确的个数是( )(1)一个正数的绝对值是它本身;(2)一个非正数的绝对值是它的相反数;(3)•两个负数比较,绝对值大的反而小;(4)一个非正数的绝对值是它本身. A.1个 B.2个C.3个D.4个2.若-│a│=-3.2,则a是( ) A.3.2 B.-3.2 C.±3.2 D.以上都不对3.若│a│=8,│b│=5,且a+b>0,那么a-b的值是( )A.3或13B.13或-13C.3或-3D.-3或-13 4.一个数的绝对值等于它的相反数的数一定是( )A.负数B.正数C.负数或零D.正数或零 5.a<0时,化简|| 3aaa结果为( ) A. 2 3B.0C.-1D.-2a数学练习题【篇二】1、|-5|相反数是( )A、5B、- 15 C、-5 D、1 52、(2006•哈尔滨)若x的相反数是3,|y|=5,则x+y的值为( )A、-8B、2C、8或-2D、-8或23、(2003•黑龙江)若|a-3|-3+a=0,则a的取值范围是( )A、a≤3B、a<3C、a≥3D、a>34、若ab<0,且a>b,则a,|a-b|,b的大小关系为( )A、a>|a-b|>bB、a>b>|a-b|C、|a-b|>a>bD、|a-b|>b>a5、下列说法正确的是( )A、-|a|一定是负数B、只有两个数相等时,它们的绝对值才相等C、若|a|=|b|,则a与b互为相反数D、若一个数小于它的绝对值,则这个数6、有理数a、b在数轴上的位置如图所示,下列各式成立的是( )A、b-a>0B、-b<0C、-|a|>-bD、ab<07、已知a是有理数,且|a|=-a,则有理数a在数轴上的对应点在( )A、原点的左边B、原点的右边C、原点或原点的左边D、原点或原点的右边8、绝对值相等的两个数在数轴上对应的两个点的距离为6,则这两个数为( )A、+6和-6B、+3和-3C、+6和-3D、+3和+69、若aa= -1,则a为( )B、a<0C、0<a0</a10、若|m|= -m,则m一定是( )A、负数B、正数C、负数或0D、011、在数轴上距离原点4个单位长度的点所表示的数是( )A、4B、-4C、4或-4D、2或-212、有理数a,b,c在数轴上对应的点如图所示,化简|b+a|+|a+c|+|c-b|的结果是( )A、2b-2cB、2c-2bC、2bD、-2c13、(2010•吉林)检测足球时,超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,下图中最接近标准的是( )B、A、C、D、14、(2007•安顺)数轴上点A表示-3,点B表示1,则表示A、B两点间的距离的算式是( )A、-3+1B、-3-1C、1-(-3)D、1-315、已知ab≠0,则ab+的值不可能的是( ) abA、0B、1C、2D、-2二、填空题16、绝对值比2大比6小的整数共有---------。
初一七年级数学绝对值练习题及答案解析
初一七年级数学绝对值练习题及答案解析数学绝对值是初中数学中的一个重要概念,它常常在方程、不等式、函数等各个章节中出现。
掌握绝对值的概念和性质对于解决数学问题非常重要。
下面是一些初一七年级的数学绝对值练习题及答案解析,帮助你巩固对绝对值的理解。
1. 计算以下数的绝对值:a) |-5|b) |0|c) |3|答案:a) |-5| = 5b) |0| = 0c) |3| = 3解析:绝对值表示一个数与0点之间的距离。
所以绝对值的结果总是非负数。
对于a) |-5|,-5与0之间的距离是5,所以结果是5。
对于b) |0|,0与0之间的距离是0,所以结果是0。
对于c) |3|,3与0之间的距离是3,所以结果是3。
2. 求解以下方程:a) |x| = 5b) |2x - 3| = 7答案:a) x = 5 或 x = -5b) x = 5 或 x = -2解析:对于a) |x| = 5,由于绝对值的定义是非负数,所以x可以是5或-5。
因为5与-5的绝对值都是5。
对于b)|2x - 3| = 7,需要分情况讨论。
当2x - 3 = 7时,解得x = 5。
当2x - 3 = -7时,解得x = -2。
3. 解以下不等式:a) |x + 2| < 3b) |3x - 1| ≥ 5答案:a) -5 < x < 1b) x ≤ -2 或x ≥ 2解析:对于a) |x + 2| < 3,我们可以使用绝对值的定义进行讨论。
当x + 2 > 0时,即x > -2,方程等价于x + 2 < 3,解得x < 1。
当x + 2 < 0时,即x < -2,方程等价于-(x + 2) < 3,解得x > -5。
所以综合起来,-5 < x < 1。
对于b) |3x - 1| ≥ 5,我们也需要分情况讨论。
当3x - 1 > 0时,即3x > 1,方程等价于3x - 1 ≥ 5,解得x ≥ 2。
初中数学绝对值专项练习100题
绝对值专项练习100题28.在有理数中,绝对值等于它本身的数有()A .1个B.2个C.3个D.无穷多个29.已知|a|=﹣a、|b|=b、|a|>|b|>0,则下列正确的图形是()A .B.C.D.30.若|a|+|b|=|a+b|,则a、b间的关系应满足()A.b同号B.b同号或其中至少一个为零C.b异号D.b异号或其中至少一个为零31.已知|m|=4,|n|=3,且mn<0,则m+n的值等于()A .7或﹣7 B.1或﹣1 C.7或1 D.﹣7或﹣132.已知a、b、c大小如图所示,则的值为()A .1 B.﹣1 C.±1 D.33.下列各式的结论成立的是()A.若|m|=|n|,则m>n B.若m≥n,则|m|≥|n| C.若m<n<0,则|m|>|n| D.若|m|>|n|,则m>n 34.绝对值小于4的整数有()A .3个B.5个C.6个D.7个35.绝对值大于1而小于3.5的整数有()个.A .7 B.6 C.5 D.436.若x的绝对值小于1,则化简|x﹣1|+|x+1|得()A .0 B.2 C.2x D.﹣2x37.3.14﹣π的差的绝对值为()A .0 B.3.14﹣πC.π﹣3.14 D.0.1438.下列说法正确的是()A.有理数的绝对值一定是正数B.有理数的相反数一定是负数C.互为相反数的两个数的绝对值相等D.如果两个数的绝对值相等,那么这两个数相等39.下面说法错误的是()A.﹣(﹣5)的相反数是(﹣5)B.3和﹣3的绝对值相等C.数轴上右边的点比左边的点表示的数小D.若|a|>0,则a一定不为零40.已知|a|>a,|b|>b,且|a|>|b|,则()A .a>b B.a<b C.不能确定D.a=b41.已知|x|≤1,|y|≤1,那么|y+1|+|2y﹣x﹣4|的最小值是_________.42.从1000到9999中,四位数码各不相同,且千位数与个位数之差的绝对值为2的四位数有_________个.43.最大的负整数是_________,绝对值最小的有理数是_________.44.最大的负整数,绝对值最小的数,最小的正整数的和是0_________.45.若x+y=0,则|x|=|y|.(_________)46.绝对值等于10的数是_________.47.若|﹣a|=5,则a=_________.48.设A=|x﹣b|+|x﹣20|+|x﹣b﹣20|,其中0<b<20,b≤x≤20,则A的最小值是_________.49.﹣3.5的绝对值是_________;绝对值是5的数是_________;绝对值是﹣5的数是_________.50.绝对值小于10的所有正整数的和为_________.51.化简:|x﹣2|+|x+3|,并求其最小值.52.若a,b为有理数,且|a|=2,|b|=3,求a+b的值.53.若|x|=3,|y|=6,且xy<0,求2x+3y的值.54.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.55.有理数a、b在数轴上的位置如图所示,化简|a﹣b|+|a+b|.56.已知a=12,b=﹣3,c=﹣(|b|﹣3),求|a|+2|b|+|c|的值.57.已知a、b、c在数轴上的位置如图所示,化简|a|+|c﹣b|+|a﹣c|+|b﹣a|58.小刚在学习绝对值的时候发现:|3﹣1|可表示数轴上3和1这两点间的距离;而|3+1|即|3﹣(﹣1)|则表示3和﹣1这两点间的距离.根据上面的发现,小刚将|x﹣2|看成x与2这两点在数轴上的距离;那么|x+3|可看成x与_________在数轴上的距离.小刚继续研究发现:x取不同的值时,|x﹣2|+|x+3|=5有最值,请你借助数轴解决下列问题(1)当|x﹣2|+|x+3|=5时,x可取整数_________(写出一个符合条件的整数即可);(2)若A=|x+1|+|x﹣5|,那么A的最小值是_________;(3)若B=|x+2|+|x|+|x﹣1|,那么B的最小值是_________,此时x为_________;(4)写出|x+5|+|x+3|+|x+1|+|x﹣2|的最小值.59.若ab<0,试化简++.60.同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.试探索:(1)求|5﹣(﹣2)|=_________.(2)设x是数轴上一点对应的数,则|x+1|表示_________与_________之差的绝对值(3)若x为整数,且|x+5|+|x﹣2|=7,则所有满足条件的x为_________.。
(完整版)初中数学七年级绝对值练习题
《绝对值》练习一.选择题1. -3的绝对值是( )(A )3 (B )-3 (C )13 (D )-13 2. 绝对值等于其相反数的数一定是A .负数B .正数C .负数或零D .正数或零3. 若│x│+x=0,则x 一定是 ( )A .负数B .0C .非正数D .非负数5.绝对值最小的数( )A .不存在B .0C .1D .-16.当一个负数逐渐变大(但仍然保持是负数)时( )A .它的绝对值逐渐变大B .它的相反数逐渐变大C .它的绝对值逐渐变小D .它的相反数的绝对值逐渐变大7.下列说法中正确的是( )A .a -一定是负数B .只有两个数相等时它们的绝对值才相等C .若b a =则a 与b 互为相反数D .若一个数小于它的绝对值,则这个数是负数8.绝对值不大于11.1的整数有( )A .11个B .12个C .22个D .23个12.______7.3=-;______0=;______3.3=--;______75.0=+-.(2)若x x =-1,求x .2.正式排球比赛,对所使用的排球的重量是严重规定的,检查5个排球的重量,超过规定重量的克数记为正数,不足规定重量的克数记作负数,检查结果如下表:+15 -10 +30 -20 -40指出哪个排球的质量好一些(即重量最接近规定重量)?你怎样用学过的绝对值知识来说明这个问题?拓展题1.7=x ,则______=x ; 7=-x ,则______=x .2.若2<a<4,化简|2-a|+|a -4|.3. 已知|4-a|+|2-5b|=0, 求a+b5.b <c <0<a,化简|a+c|+| b+c|-|a-b|+|2a-c|四、解答题1.若|x -2|+|y+3|+|z -5|=0,计算:(1)x ,y ,z 的值.(2)求|x|+|y|+|z|的值.2.若2<a<4,化简|2-a|+|a -4|.3.(1)若x x =1,求x .(2)若x x=-1,求x .2.(1)对于式子|x|+13,当x 等于什么值时,有最小值?最小值是多少?(2)对于式子2-|x|,当x 等于什么值时,有最大值?最大值是多少3.阅读下列解题过程,然后答题:(1)如果两个数互为相反数,则这两个数的和为0,例如,若x和y互为相反数, 则必有x+y=0.现已知:|a|+a=0,求a的取值范围。
绝对值与一元一次方程(含问题详解)-
绝对值与一元一次方程知识纵横绝对值是初中数学最活跃的概念之一,•能与数学中许多知识关联而生成新的问题,我们把绝对值符号中含有未知数的方程叫含绝对值符号的方程,简称绝对值方程.解绝对值方程的基本方法有:一是设法去掉绝对值符号,将绝对值方程转化为常见的方程求解;一是数形结合,借助于图形的直观性求解.前者是通法,后者是技巧.解绝对值方程时,常常要用到绝对值的几何意义,去绝对值的符号法则,•非负数的性质、绝对值常用的基本性质等与绝对值相关的知识、技能与方法.例题求解【例1】方程│5x+6│=6x-5的解是_______.(2000年重庆市竞赛题)思路点拨设法去掉绝对值符号,将原方程化为一般的一元一次方程来求解.解:x=11提示:原方程5x+6=±(6x-5)或从5x+6≥0、5x+6<0讨论.【例2】适合│2a+7│+│2a-1│=8的整数a的值的个数有( ).A.5B.4C.3D.2 (第11届“希望杯”邀请赛试题)思路点拨用分类讨论法解过程繁琐,仔细观察数据特征,借助数轴也许能找到简捷的解题途径.解:选B提示:由已知即在数轴上表示2a的点到-7与+1的距离和等于8,•所以2a表示-7到1之间的偶数.【例3】解方程:│x-│3x+1││=4; (天津市竞赛题)思路点拨从内向外,根据绝对值定义性质简化方程.解:x=-54或x=32提示:原方程化为x-│3x+1=4或x-│3x+1│=-4【例4】解下列方程:(1)│x+3│-│x-1│=x+1; (北京市“迎春杯”竞赛题)(2)│x-1│+│x-5│=4. (“祖冲之杯”邀请赛试题)思路点拨解含多个绝对值符号的方程最常用也是最一般的方法是将数轴分段进行讨论,采用前面介绍的“零点分段法”分类讨论;有些特殊的绝对值方程可利用绝对值的几何意义迅速求解.解:(1)提示:当x<-3时,原方程化为x+3+(x-1)=x+1,得x=-5;当-3≤x<1时,原方程化为x+3+x-1=x+1,得x=-1;当x≥1时,原方程化为x+3-(x-1)=x+1,得x=3.综上知原方程的解为x=-5,-1,3.(2)提示:方程的几何意义是,数轴上表示数x的点到表示数1及5的距离和等于4,画出数轴易得满足条件的数为1≤x≤5,此即为原方程的解.【例5】已知关于x的方程│x-2│+│x-3│=a,研究a存在的条件,对这个方程的解进行讨论.思路点拨方程解的情况取决于a的情况,a与方程中常数2、3有依存关系,这种关系决定了方程解的情况,因此,探求这种关系是解本例的关键,•运用分类讨论法或借助数轴是探求这种关系的重要方法与工具,读者可从两个思路去解.解:提示:数轴上表示数x的点到数轴上表示数2,3的点的距离和的最小值为1,由此可得方程解的情况是:(1)当a>1时,原方程解为x=52a;(2)当a=1时,原方程解为2≤x≤3;(3)当a<1时,原方程无解.学力训练一、基础夯实1.方程3(│x│-1)= ||5x+1的解是_______;方程│3x-1│=│2x+1│的解是____.2.已知│3990x+1995│=1995,那么x=______.3.已知│x│=x+2,那么19x99+3x+27的值为________.4.关于x的方程│a│x=│a+1│-x的解是x=0,则a的值是______;关于x的方程│a│x=│a+1│-x的解是x=1,则有理数a的取值范围是________.5.使方程3│x+2│+2=0成立的未知数x的值是( ).A.-2B.0C. 23D.不存在6.方程│x-5│+x-5=0的解的个数为( ).A.不确定B.无数个C.2个D.3个 (“祖冲之杯”邀请赛试题)7.已知关于x的方程mx+2=2(m-x)的解满足│x-12|-1=0,则m的值是( ).A.10或25B.10或-25C.-10或25D.-10或-25(2000年山东省竞赛题)8.若│2000x+2000│=20×2000,则x等于( ).A.20或-21B.-20或21C.-19或21D.19或-21 (2001年重庆市竞赛题)9.解下列方程:(1)││3x-5│+4│=8; (2)│4x-3│-2=3x+4;(3)│x-│2x+1││=3; (4)│2x-1│+│x-2│=│x+1│.10.讨论方程││x+3│-2│=k的解的情况.二、能力拓展11.方程││x-2│-1│=2的解是________.12.若有理数x满足方程│1-x│=1+│x│,则化简│x-1│的结果是_______.13.若a>0,b<0,则使│x-a│+│x-b│=a-b成立的x的取值范围是______.(武汉市选拨赛试题)14.若0<x<10,则满足条件│x-3│=a•的整数a•的值共有_____•个,•它们的和是____.15.若m是方程│2000-x│=2000+│x│的解,则│m-2001│等于( ).A.m-2001B.-m-2001C.m+2001D.-m+200116.若关于x的方程│2x-3│+m=0无解,│3x-4│+n=0只有一个解,│4x-5│+•k=0有两个解,则m、n、k的大小关系是( ).A.m>n>kB.n>k>mC.k>m>nD.m>k>n17.适合关系式│3x-4│+│3x+2│=6的整数x的值有( )个.A.0B.1C.2D.大于2的自然数18.方程│x+5│-│3x-7│=1的解有( ).A.1个B.2个C.3个D.无数个19.设a、b为有理数,且│a│>0,方程││x-a│-b│=3有三个不相等的解,•求b的值.(“华杯赛”邀请赛试题)20.当a满足什么条件时,关于x的方程│x-2│-│x-5│=a有一解?有无数多个解?无解?三、综合创新21.已知│x+2│+│1-x│=9-│y-5│-│1+y│,求x+y的最大值与最小值.(第15届江苏省竞赛题)22.(1)数轴上两点表示的有理数是a、b,求这两点之间的距离;(2)是否存在有理数x,使│x+1│+│x-3│=x?(3)是否存在整数x,使│x-4│+│x-3│+│x+3│+│x+4│=14?如果存在,•求出所有的整数x;如果不存在,说明理由.【学力训练】(答案)1.±107、2或0 2.0或-1 3.54.-1,a≥0 提示:由│a+1│=│a│+1得a×1≥0,即a≥05.D6.B7.A8.D9.(1)x=3或x=13;(2)x=9或x=-37;(3)x=-43或x=2;(4)提示:分x<-1、-1≤x<12、•12≤x≤2、x≥2四种情况分别去掉绝对值符号解方程,当考虑到12≤x≤2时,•原方程化为(2x-1)-(x-2)=x+1,即1=1,这是一个恒等式,说明凡是满足12≤x≤2的x值都是方程的解.10.当k<0时,原方程无解;当k=0时,原方程有两解:x=-1或x=-5;当0<k<2时,原方程化为│x+3│=2±k,此时原方程有四解:x=-3±(2±k);当k=2时,原方程化为│x+•3│=2±2,此时原方程有三解:x=1或x=-7或x=-3;当k>2时,原方程有两解:x+3=±2(•2+k).11.±5 12.1-x 13.b≤x≤a 提示:利用绝对值的几何意义解.14.7、21提示:当0<x<3时,则有│x-3│=3-x=a,a的解是1,2;当3≤x<10时,则有│x-3│=x-3=a,a的解为0,1,2,3,4,5,615.D 提示:m≤0 16.A 17.C 提示:-2≤3x≤4 18.B19.提示:若b+3、b-3都是非负的,而且如果其中一个为零,则得3个解;如果都不是零,则得4个解,故b=3.20.提示:由绝对值几何意义知:当-3<a<3时,方程有一解;当a=±3时,•方程有无穷多个解;当a>3或a<-3时,方程无解.21.提示:已知等式可化为:│x+2│+│x-1│+│y+1│+│y-5│=9,•由绝对值的几何意义知,当-2≤x≤1且-1≤y≤5时,上式成立, 故当x=-2,y=-1时,x+y有最小值为-3;当x=1,y=5时,x+y的最大值为6.22.(1)│a-b│;(2)不存在;(3)x=±3,±2,±1,0.。
初一绝对值练习题
初一绝对值练习题初一绝对值练习题初中数学中,绝对值是一个重要的概念。
它不仅在数轴上有明确的图示,还在实际生活中有广泛的应用。
在初一的学习中,绝对值的概念是一个必须掌握的基础知识。
下面我们来练习一些初一绝对值的题目,帮助大家更好地理解和运用这一概念。
1. 求下列各式的值:a) |3|b) |-5|c) |0|解析:绝对值的定义是一个数与0的距离,所以无论正数、负数还是0,它们的绝对值都是它们本身。
因此,答案分别是:a) 3b) 5c) 02. 计算下列各式的值:a) |7 - 10|b) |5 - (-3)|c) |-2 - 4|解析:在计算绝对值时,首先要计算绝对值符号内的表达式的值,然后再取它的绝对值。
因此,答案分别是:a) |-3| = 3b) |5 + 3| = 8c) |-2 - 4| = |-6| = 63. 比较下列各式的大小:a) |3 - 5|和|5 - 3|b) |7 - 10|和|10 - 7|c) |-2 - 4|和|4 - (-2)|解析:比较绝对值的大小时,可以先计算绝对值符号内的表达式的值,然后再比较。
因此,答案分别是:a) |-2|和|2|,两者相等。
b) |-3|和|3|,两者相等。
c) |-6|和|6|,两者相等。
4. 解方程:|x - 3| = 5解析:要解这个方程,首先要明确绝对值的定义。
绝对值等于一个数与0的距离,所以|x - 3| = 5 可以分解为两个方程:x - 3 = 5 或者 x - 3 = -5。
解得:x = 8 或者 x = -2所以,方程的解集是{x | x = 8 或者 x = -2}。
5. 计算下列各式的值:a) |7 - 10| + |5 - (-3)|b) |7 - 10| - |10 - 7|c) |-2 - 4| + |4 - (-2)|解析:在计算绝对值的和或差时,可以先计算绝对值符号内的表达式的值,然后再进行相应的运算。
因此,答案分别是:a) |-3| + |8| = 3 + 8 = 11b) |-3| - |3| = 0c) |-6| + |6| = 6 + 6 = 12通过这些练习题,我们可以更好地掌握绝对值的概念和运用。
【初中数学】专题一 绝对值的几何意义 (练习题)
专题一绝对值的几何意义(361)1.求|x+11|+|x−12|+|x+13|的最小值是.2.解答下列各题:(1)求|x−1|+2|x−3|+3|x−4|的最小值;(2)求|x−2|+|x−4|+|x−6|+⋯+|x−2000|的最小值.3.已知|x+2|+|1−x|=9−|y−5|−|1+y|,求x+y的最大值与最小值.4.先阅读下面的材料,然后解答问题:在一条直线上有依次排列的n(n>1)台机床在工作,我们要设置一个零件供应站P,使这n台机床到供应站P的距离总和最小,要解决这个问题先“退”到比较简单的情形.假设n台机床分别用A1,A2,…,A n表示.如图①,如果直线上有2台机床,很明显供应站P设在A1和A2之间的任何地方都行,因为甲和乙所走的距离之和等于A1到A2的距离.如图②,如果直线上有3台机床,不难判断,供应站P设在中间一台机床A2处最合适,因为如果供应站P不放在A2处,甲和丙所走的距离之和恰好是A1到A3的距离,可是乙还得走从A2到P的这一段,这是多出来的,因此把供应站P放在A2处是最佳选择.不难知道,如果直线上有4台机床,供应站P应设在第二台机床与第三台机床之间的任何地方;如果直线上有5台机床,供应站P应设在第三台机床的位置.(1)有n台机床时,供应站P应设在何处,才能使这n台机床到供应站P的距离总和最小?(2)根据(1)的结论,求|x−1|+|x−2|+|x−3|+⋯+|x−617|的最小值.5.如图所示,在一条笔直的公路上有7个村庄,其中A,B,C,D,E,F离城市的距离分别为4km,10km,15km,17km,19km,20km,而村庄G正好是AF的中点.现要在某个村庄建一个活动中心,使各村庄到活动中心的路程之和最短,则活动中心应建在()A.A处B.C处C.G处D.E处6.如图,工作流程线上A,B,C,D处各有1名工人,且AB=BC=CD,现在工作流程线上要安放一个工具箱,使4名工人到工具箱取工具所花费的总时间最少,那么这个工具箱的安放位置是()A.A处或D处B.B处或C处C.B与C之间D.BC的中点处7.解答下列各题:(1)某省遭受雪灾,在其境内一段笔直的高速公路上依次停着100辆受阻的汽车,救援部队要设置一个临时食品供应站P,使得这100辆汽车到供应站P的距离之和最小,则供应站P应设在何处?(2)利用上述问题的解题规律计算|x−1|+|x−2|+|x−3|+⋯+|x−19|+|x−20|的最小值.参考答案1.【答案】:25【解析】:此题可转化为:数轴上有三个点,它们分别表示−13,−11,12,求数轴上一点P到这三个点的距离之和的最小值.由例题中模型建立的规律可知当x=−11时,|x+11|+|x−12|+|x+13|取得最小值,最小值为0+23+2=25.2(1)【答案】解:求|x−1|+2|x−3|+3|x−4|的最小值,即求|x−1|+|x−3|+|x−3|+|x−4|+|x−4|+|x−4|的最小值,利用绝对值在数轴上的意义,可知当3≤x≤4时,原式有最小值,不妨取x=3,则|x−1|+2|x−3|+3|x−4|=2+2×0+3×1=2+3=5.所以|x−1|+2|x−3|+3|x−4|的最小值是5.(2)【答案】当1000≤x≤1002时,原式有最小值,不妨取x=1002,这个最小值为(1002−2)+(1002−4)+⋯+(2000−1002)=500000.3.【答案】:解:因为|y−5|+|y+1|≥6,所以9−|y−5|−|1+y|≤3.因为|x+2|+|1−x|=9−|y−5|−|1+y|,|x+2|+|x−1|≥3,所以|x+2|+|x−1|=3,|y−5|+|y+1|=6,得−2≤x≤1,−1≤y≤5,故x+y的最大值为6,最小值为−3.4(1)【答案】解:当n为偶数时,供应站P应设在第n2台机床和第(n2+1)台机床之间的任何地方,这n台机床到供应站P的距离总和最小;当n为奇数时,供应站P应设在第n+12台机床的位置,这n台机床到供应站P的距离总和最小.(2)【答案】以(1)中的这条直线画数轴,n台机床是数轴上的n个点,这些点表示的有理数分别是a1,a2,a3,…,a n,问题转化为:在数轴上找一点P,其表示有理数x,当x取何值时,y=|x−a1|+ |x−a2|+⋯+|x−a n|取得最小值.由上面的讨论及绝对值的几何意义可知(2)中的问题即在数轴上找出表示x的点,使它到表示1,2,3,…,617各点的距离总和最小.当x=309时,原式的值最小,最小值是|309−1|+|309−2|+|309−3|+⋯+|309−308|+ 0+|309−310|+|309−311|+⋯+|309−616|+|309−617|=308+307+⋯+1+0+1+2+⋯+308=95172.5.【答案】:B6.【答案】:C7(1)【答案】解:通过2辆车、3辆车、4辆车试验可以发现:当车辆为偶数n时,食品供应站P应设在第n2辆汽车与第(n2+1)辆汽车之间的任何地方,此时n辆车到食品供应站的距离之和最小;当车辆为奇数n时,食品供应站P应设在第n+12辆汽车处,此时n辆车到食品供应站的距离之和最小.故当车辆数为100时,食品供应站P应设在第50辆汽车与第51辆汽车之间的任何地方.(2)【答案】|x−1|+|x−2|+|x−3|+⋯+|x−19|+|x−20|可以看成在数轴上x对应的点到1至20这20个数对应点的距离之和,所以当10≤x≤11时,比如x=10.5时,|x−1|+|x−2|+|x−3|+⋯+|x−19|+|x−20|取得最小值为9.5+8.5+ 7.5+⋯+0.5+0.5+1.5+⋯+7.5+8.5+9.5=100.。
2023学年浙江七年级数学上学期专题训练专题2专题探究课之绝对值(解析版)
(1)根据5与-2两数在数轴上所对应的点之间的距离即可得出答案;
(2)根据 表示 与2两数在数轴上所对应的两点之间的距离为6,即可得出答案;
(3)因为2和-3两数在数轴上所对应的两点之间的距离就是5,所以使 成立的整数是2和-3之间的所有整数(包括2和-3),即可得出答案.
【详解】
解:(1)∵5与-2两数在数轴上所对应的点之间的距离是7,
【详解】
解:由数轴可得:
b<c<0<a,
∴ab<0,b-c<0,
∴ =c-b,
a-b可以看作a,b之间的相差的单位长度,c-b可以看作c,b之间的相差的单位长度,
∴a-b>a-c,
故选:D.
【点睛】
本题考查了数轴,绝对值和有理数的运算,能根据数轴得出b<c<0<a是解此题的关键.
二、填空题
10.(【新东方】初中数学20210625-021【初一上】) 的最小值为________.
【详解】
解:当 时,x-1<0,x+2<0,
∴ ,
当 时, ,
当x>1时,
∵当 时, ,
∴代数式 的最大值为3,最小值为-3,
∴a=3,b=-3,
∴ab=-9,
故答案为:3,-9.
【点睛】
本题主要考查了绝对值的化简,解题的关键是对x进行分类讨论,再化简代数式.
18.(2018·浙江七年级月考)代数式|x-1|-|x+6|-5的最大值是_______.
③ ,故正确;
④若 ,则 ,解得a=-12或-6,则原点未必一定为点 ,故错误;
故选D.
【点睛】
本题考查了数轴上的点表示有理数,数轴上两点之间的距离,绝对值的意义,方程的运用,解题的关键是根据题干条件求出各点表示的数.
初中数学绝对值专项练习题(有答案)
1、据探测,月球表面白天阳光垂直照射的地方温度高达127℃,而夜晚温度可降低到零下183℃.根据以上数据推算,在月球上昼夜温差有℃2、甲、乙两人在一条笔直的公路上,同时从A地出发,记向右为正,甲走了+48m,乙走了—32m,则此时甲、乙之间的距离是m3、比较大小:--(填“>”、“<”或“=”)4、大于-2而小于3的非负整数是5、从正有理数集合中去掉正分数集合,得到集合.6、一个正方体的每个面分别标有数字1,2,3,4,5,6.根据图•中该正方体三种状态所显示的数据,可推出“?”处的数字是多少?7、绝对值不小于3又不大于5的所有整数之和为__________8、写出一个值,使你写出的值为 .9、在数轴上到-2所表示的点的距离为3个单位长度的点表示的数是 .10、如果m>0,n<0,m<|n|,那么m、n、﹣m、﹣n的大小关系是.11、下表是我市某一天在不同时段测得的气温情况:则这一天气温的极差是℃.时间0:00 4:00 8:00 12:00 16:00 20:00气温18℃17℃19℃26℃27℃22℃12、已知A,B两点之间的距离是5 cm,C是线段AB上的任意一点,则AC中点与BC中点间距离是.13、绝对值大于2,且小于4的整数有_______.14、若│a—4│+│b+5│=0,则a—b=15、数轴上表示数和表示的两点之间的距离是__________。
二、简答题16、某同学春节期间将自己的压岁钱800元,存入银行.十一放假取出350元买了礼物去看爷爷,母亲节时他又取出100元给妈妈买了礼物,则存上存入、支出情况显示为( )A.+800,+350,﹣100 B.+800,+350,+100C.+800,﹣350,﹣100 D.﹣800,﹣350,+10017、右面是一个正方体纸盒的展开图,请把-10,7,10,-2,-7,2分别填入六个正方形,使得按虚线折成正方体后,相对面上的两数互为相反数。
初中数学解含绝对值的方程练习题及答案
初中数学解含绝对值的方程练习题及答案解一元含绝对值的方程是初中数学学习中的重要内容之一。
学生在掌握了解一元含绝对值的方程的基本方法后,需要通过大量的练习题来巩固和提高解题能力。
本文将为您提供一些常见的初中数学解含绝对值的方程练习题及其答案,供您进行练习和参考。
一、练习题:1. 解方程 |2x + 1| = 5。
2. 解方程 |3x - 2| = 10。
3. 解方程 |4x - 3| = 7。
4. 解方程 |5x + 2| = 8。
5. 解方程 |6x - 7| = 12。
二、解答:1. 解方程 |2x + 1| = 5。
当2x + 1 > 0 时,方程可以写作 2x + 1 = 5,解得 x = 2。
当2x + 1 < 0 时,方程可以写作 -(2x + 1) = 5,解得 x = -3。
综合两种情况的解,得到方程的解集为 {-3,2}。
2. 解方程 |3x - 2| = 10。
当3x - 2 > 0 时,方程可以写作 3x - 2 = 10,解得 x = 4。
当3x - 2 < 0 时,方程可以写作 -(3x - 2) = 10,解得 x = -4。
综合两种情况的解,得到方程的解集为 {-4,4}。
3. 解方程 |4x - 3| = 7。
当4x - 3 > 0 时,方程可以写作 4x - 3 = 7,解得 x = 2。
当4x - 3 < 0 时,方程可以写作 -(4x - 3) = 7,解得 x = -1。
综合两种情况的解,得到方程的解集为 {-1,2}。
4. 解方程 |5x + 2| = 8。
当5x + 2 > 0 时,方程可以写作 5x + 2 = 8,解得 x = 1.2。
当5x + 2 < 0 时,方程可以写作 -(5x + 2) = 8,解得 x = -2。
综合两种情况的解,得到方程的解集为 {-2,1.2}。
5. 解方程 |6x - 7| = 12。
七年级数学下册综合算式专项练习题解简单的绝对值方程
七年级数学下册综合算式专项练习题解简单的绝对值方程绝对值方程是初中数学中的一个重要概念,对于学生来说,掌握解决绝对值方程的方法和技巧是非常关键的。
在七年级数学下册的综合算式中,也常常会涉及到绝对值方程的题目。
本文将针对七年级数学下册综合算式中的部分绝对值方程专项练习题进行解答和讲解。
1. 求解方程|3x - 7| = 5。
首先,我们可以将绝对值方程拆分为两个方程:3x - 7 = 5 或者 3x - 7 = -5解第一个方程我们得到:3x = 5 + 7 = 12x = 4解第二个方程我们得到:3x = -5 + 7 = 2x = 2/3所以,绝对值方程|3x - 7| = 5的解集为{x | x = 4 或 x = 2/3}。
2. 求解方程|2x + 1| = 3。
同样地,我们进行拆分:2x + 1 = 3 或者 2x + 1 = -3解第一个方程我们得到:2x = 3 - 1 = 2x = 1解第二个方程我们得到:2x = -3 - 1 = -4x = -2所以,绝对值方程|2x + 1| = 3的解集为{x | x = 1 或 x = -2}。
3. 求解方程|4 - 2x| = 6。
我们继续拆分方程:4 - 2x = 6 或者 4 - 2x = -6解第一个方程我们得到:-2x = 6 - 4 = 2x = -1解第二个方程我们得到:-2x = -6 - 4 = -10x = 5所以,绝对值方程|4 - 2x| = 6的解集为{x | x = -1 或 x = 5}。
通过以上三个例子,我们可以总结出解决绝对值方程的一般步骤:1)将绝对值方程拆分为两个方程,一个是去掉绝对值符号,另一个是加上相反数的形式;2)分别解两个方程;3)得到的解即为原方程的解集。
当然,在实际的练习中,可能会出现更复杂的绝对值方程,需要灵活运用代数运算和方程的性质来求解。
总之,绝对值方程的求解需要反复训练和巩固,通过大量的练习题来提高解决问题的能力。
初中数学《含绝对值符号的一元一次方程》专题训练(含答案)
含绝对值符号的一元一次方程一 、填空题1.方程21302x --=的解为 .二 、解答题2.解方程1121123x x +--+-=3.解方程:2121x x -+=+4.解方程:23143x x x +--=-5.解方程154x x -+-=6.解方程124x x -+-=7.解方程4321x x +=-8.解方程525x x -+=-9.解方程134x x -+-=10.解方程2131x x -=+11.解方程4329x x +=+12.解方程:(1)1x = (2)235x +=13.解方程525x x -+=-14.解方程4329x x +=+含绝对值符号的一元一次方程答案解析一 、填空题1.方程可化简为216x -=,令210x -=,则12x =当12x <时,方程可化为126x -=,解得52x =-,检验符合12x <,∴52x =- 当12x ≥时,方程可化为216x -=,解得72x =,检验符合12x ≥,∴72x = 综上所述,72x =或52x =- 【解析】零点分段法二 、解答题2.85x =或185x =-原方程整理得:1315x +=,即1315x +=或者1315x +=-,所以原方程的解为85x = 或185x =-3.由题意得210x +≥,∴12x ≥-原方程变形为22x x -=或222x x -=--,∵221x --≤-,∴222x x -=--舍 由22x x -=知0x ≥,方程可变形为22x x -=或22x x -=- 解得2x =-或23x =,检验,2x =-舍 综上所述,原方程的解为23x =4.令230x +=与10x -=,则32x =-和1x =若32x <-,则原方程可化为[](23)(1)43x x x -+---=-,解得15x =-, 检验不符合32x <-,∴15x =-不是原方程的解若312x -≤≤,则原方程可化为[](23)(1)43x x x +---=-,解得5x =, 检验不符合312x -≤≤,∴5x =不是原方程的解若1x >,则原方程可化为(23)(1)43x x x +--=-,解得73x =, 检验符合1x >,∴73x =是原方程的解 综上所述73x =是原方程的解5.设“x ”“1”“5”在数轴上分别用“P ”“A ”“B ”来表示,由题意得,原方程可变形4PA PB +=如图,当点P 在点A 左侧时,设PA a =,4PB a =+,则原方程可变形为44a a ++=,解得0a =,与题意不符合如图,当点P 在线段AB 上时(包含端点),4PA PB AB +==,符合题意,∴15x ≤≤如图,当点P 在点B 右侧时,设PB b =,4PA b =+,则原方程可变形为44b b ++=,解得0b =,与题意不符合 综上所诉,原方程的解集为15x ≤≤ 【解析】绝对值的几何意义6.设“x ”“1”“2”在数轴上分别用P ,A ,B 来表示,则原方程可化为4AP PB +=①如图,当点P 在A 点左侧时,设PA a =,1PB a =+,则原方程可化为14a a ++=5B 1511A解得32a =,∴31122x =-=-②如图,当点P 在线段AB 上时,由24PA PB +=≠矛盾,③如图,当点P 在B 点右侧时,设PB b =,1PA b =+, 则原方程可变形为14b b ++=,解得32b =,∴37222x =+=综上所述,原方程的解为12x =-或72x = 【解析】绝对值的几何意义7.依据绝对值的非负性可知210x -≥,则12x ≥,那么容易得到430x +>∴原方程可变形为4321x x +=-,解得2x =-,检验不符合12x ≥,舍 ∴原方程无解8.令50x -=,则5x =当5x <,原方程化为525x x -+=-,解得10x =- 检验符合5x <,10x =-是原方程的解 当5x ≥,原方程化为525x x -+=-,解得0x = 检验不符合5x ≥,0x =不是原方程的解,舍去 综上所述,10x =-是原方程的解 【解析】零点分段法9.令10x -=,30x -=,则1x =,3x =P 2112P12当1x <时,原方程可化简为:(1)(3)4x x ----=,0x = 检验符合1x <,0x =是原方程的解;当13x ≤<时,原方程可化简为:1(3)4x x ---=,此方程无解; 当3x ≥时,原方程可化简为:134x x -+-=,4x = 检验符合3x ≥,则4x =是原方程的解; 综上所述,原方程的解为:0x =或4x =. 【解析】零点分段法10.令210x -=,310x +=,则12x =,13x =-当13x <-时,原方程化为1231x x -=--,2x =- 检验符合13x <-,∴2x =-是原方程的解 当1132x -≤<时,原方程化为1231x x -=+,0x = 检验符合1132x -≤<,∴0x =是原方程的解 当12x ≥时,原方程化为2131x x -=+,2x =- 检验不符合12x ≥,∴2x =-不是原方程的解 综上所述,2x =-或0x =是原方程的解 【解析】零点分段法11.令430x +=,则34x =-当34x ≤-时,原方程可化简为:4329x x --=+,2x =- 检验符合34x ≤-,2x =-是方程的解.当34x >-时,原方程可化简为:4329x x +=+,3x = 检验符合34x >-,3x =是方程的解. 综上所述2x =-和3x =是方程的解.【解析】零点分段法12.1x=±;1x=或4x=-【解析】(1)我们知道x代表的含义是数轴上代表“x”的点到原点的距离,而到原点距离等于1的点有两个,分别位于原点两侧,“1+”“1-”,∴1x=±(2)若将23x+做为整体,根据绝对值的意义,原方程可化为235x+=或者235x+=-,解得1x=或4x=-(若将2x作为整体,则可理解为“2x”到“3-”的距离等于5的点是多少)推荐第一种理解方式13.易知250x--≥,则52 x≤-由552x x-=--,得552x x-=--或5(52)x x-=---,所以0x=或10x=-.经检验知0x=方程左右两边不等,故舍去.从而原方程的解为10x=-.14.依据绝对值的非负性可知290x+≥,即92x≥-.原绝对值方程可以转化为①4329x x+=+,解得3x=,经检验符合题意.②43(29)x x+=-+,解得2x=-,经检验符合题意.综上所述,2x=-和3x=是方程的解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、据探测,月球表面白天垂直照射的地方温度高达127℃,而夜晚温度可降低到
零下183℃.根据以上数据推算,在月球上昼夜温差有℃
2、甲、乙两人在一条笔直的公路上,同时从A地出发,记向右为正,甲走了+48m,乙走了—32m,则此时甲、乙之间的距离是 m
3、比较大小:--(填“>”、“<”或“=”)
4、大于-2而小于3的非负整数是
5、从正有理数集合中去掉正分数集合,得到集合.
6、一个体的每个面分别标有数字1,2,3,4,5,6.根据图•中该体三种状态所显示的数据,可推出“?”处的数字是多少?
7、绝对值不小于3又不大于5的所有整数之和为__________
8、写出一个值,使你写出的值为 .
9、在数轴上到-2所表示的点的距离为3个单位长度的点表示的数是 .
10、如果m>0,n<0,m<|n|,那么m、n、﹣m、﹣n的大小关系是.
11、下表是我市某一天在不同时段测得的气温情况:则这一天气温的极差是℃.
时间0:00 4:00 8:00 12:00 16:00 20:00
气温
18℃17℃19℃26℃27℃22℃
12、已知A,B两点之间的距离是5 cm,C是线段AB上的任意一点,则AC中点与BC中点间距离是.
13、绝对值大于2,且小于4的整数有_______.
14、若│a—4│+│b+5│=0,则a—b=
15、数轴上表示数和表示的两点之间的距离是__________。
二、简答题
16、某同学春节期间将自己的压岁钱800元,存入银行.十一放假取出350元买了礼物去看爷爷,母亲节时他又取出100元给妈妈买了礼物,则存上存入、支出情况显示为( )
A.+800,+350,﹣100 B.+800,+350,+100
C.+800,﹣350,﹣100 D.﹣800,﹣350,+100
17、右面是一个体纸盒的展开图,请把-10,7,10,-2,-7,2分别填入六个形,使得按虚线折成体后,相对面上的两数互为相反数。
(4分)
18、根据下面给出的数轴,解答下面的问题:(本题6分)
⑴请你根据图中A、B两点的位置,分别写出它们所表示的有理数A:B:;
⑵
观察数轴,与点A的距离为4的点表示的数是:;
⑶若将数轴折叠,使得A点与-3表示的点重合,则B点与数表示的点重合;
⑷若数轴上M、N两点之间的距离为2014(M在N的左侧),且M、N两点经过(3)中折叠后互相重合,则M、N 两点表示的数分别是:M: N: .
19、数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8
(1). 计算以下各点之间的距离:
①A、B两点, ②B、C两点,③C、D两点,
(2). 若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.
20、如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,•再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A,B是数轴上的点,•请参照图1-8并思考,完成下列各题:
(1)如果点A表示数-3,•将点A•向右移动7•个单位长度,•那么终点B•表示的数是_______,A,B两点间的距离是________;
(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,• 那么终点B表示的数是_______,A,B两点间的距离为________;
(3)如果点A表示数-4,将A点向右移动168个单位长度,再向左移动256•个单位长度,那么终点B表示的数是_________,A,B两点间的距离是________.
(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p•个单位长度,那么,请你猜想终点B表示什么数?A,B两点间的距离为多少?
三、选择题
评卷人得分
(每空?分,共?分)
21、下列说确的是()
A.0大于一切非负数
B. 数轴上离原点越远,表示的数越大
C.没有最大的正数,却有最大的负数
D.有理数是指正整数、负整数、正分数、负分数、零这五类数
22、下列说法:①如果两个数的和为1,则这两个数互为倒数;②如果两数积为0,则至少有一个数为0;③绝对值是本身的有理数只有0;④倒数是本身的数是-1,0,1。
其中错误的个数是…………【】
A.0个
B.1个
C.2个
D.3个
23、下列说确的是…………………………………………………………………………………【】
A .是最小的非负数B.有理数中存在最大的数
C.整数包括正整数和负整数D.0是最小的整数
24、图中所画的数轴,正确的是………………………………………………………………………【】
25、、如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2012将与圆周上的哪个数字重合()
A.0 B.1 C.2 D.3
26、规定以下两种变换:①,如;②,如.按照以上变换有:,那么等于( ) A .(,)B.(2,)C .(,3)D.(2,3)
27、设m为一个有理数,则一定是( )
A.负数B.正数C.非负数D.非正数
28、某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前为负,10时以后为正,例如,上午9:15记为-1,上午10:45记为1,依此类推,上午7:45应记为( )A.3 B.-3 C.-2.5 D.-7.45
29、下列说法错误的是( )
A.0既不是正数也不是负数
B.一个有理数不是整数就是分数
C.0和正整数是自然数
D.有理数又可分为正有理数和负有理数
30、室温度是15 0C,室外温度是-3 0C,则室外温度比室温度低( )
(A) 12 0C (B) 18 0C (C) -12 0C (D) -18 0C
31、某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.•2)kg,(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()
A.0.8kg B.0.6kg C.0.5kg D.0.4kg
32、现有以下四个结论:①绝对值等于其本身的有理数只有零;②相反数等于其本身的有理数只有零;③倒数等于其本身的有理数只有1;•④平方等于其本身的有理数只有1.其中正确的有()
A.0个B.1个C.2个D.大于2个
33、如果a<2,那么│-1.5│+│a-2│等于()
A.1.5-a B.a-3.5 C.a-0.5 D.3.5-a
34、下面说确的有( )
①的相反数是-3.14;②符号相反的数互为相反数;③-(-3.8)的相反数是3.8;④一个数和它的相反数不可能相等;⑤正数与负数互为相反数.
A.0个B.1个C.2个D.3个
35、如果,下列成立的是()
A.B.C.D.
36、比较的大小,结果正确的是()
A. B. C. D.
37、当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()
A.﹣1 B.1 C.3 D.﹣3
38、下列说法不正确的是()
A.0既不是正数,也不是负数
B.1是绝对值最小的数
C.一个有理数不是整数就是分数
D.0的绝对值是0
39、一个有理数的倒数是它本身,这个数是()
A.0 B.1 C.﹣1 D.1或﹣1
40、如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,如果>>,那么该数轴的原点O 的位置应该在( )
A.点A的左边B.点A与点B之间
C.点B与点C之间D.点C的右边
参考答案
一、填空题
1、310
3、>
4、0,1,2;
5、正整数
6、6
7、0
8、只要大于或等于2即可
9、-5或1
10、﹣n>m>﹣m>n.
11、10
12、2.5cm;
13、±3
14、9
15、9.
二、简答题
17、1:A-A.B-B.C-C是相对面,填互为相反数.
18、根据下面给出的数轴,解答下面的问题:(本题6分,每空1分)(1) 1;-2.5;(2)5或-3;(3) ;(4)-1008;1006;
19、(1)2,8,3 (2)
20、(1)4 7 (2)1 2 (3)-92 88
(4)终点B表示的数是m+n-p,A,B两点间的距离为│n-p│.
三、选择题
21、D
22、 D
23、A
24、D
25、C
26、D;
27、C;
标准28、B;
29、D.
30、B
31、C
32、B
33、D
34、A
35、D
36、A.
37、B.
38、B.
39、D.
40、C 文案。