复变函数部分习题解答分析 复拉

合集下载

数学物理方法习题解答(完整版)

数学物理方法习题解答(完整版)

数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。

证明:令Re z u iv =+。

Re z x =,,0u x v ∴==。

1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。

于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。

2、试证()2f z z=仅在原点有导数。

证明:令()f z u iv =+。

()22222,0f z z x y u x y v ==+ ∴ =+=。

2,2u u x y x y ∂∂= =∂∂。

v vx y∂∂ ==0 ∂∂。

所以除原点以外,,u v 不满足C -R 条件。

而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。

()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。

或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。

22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。

【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。

证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。

复变函数习题及答案解释

复变函数习题及答案解释

第一篇 复变函数第一章 复数与复变函数1. 求下列复数的实部、虚部、共轭复数、模与幅角.(1) 72)52)(43(ii i −+;(2) .4218i i i +−2. 当x ,y 等于什么实数时,等式i iiy x +=+−++135)3(1 成立?3.证明:(1);2z z z = (2)1122,z z z z = .02≠z4.求下列各式的值: (1)();35i −(2)().131i +−5.求方程083=+z 的所有根.6.设1z ,2z ,3z 三点适合条件0321=++z z z ,证明1z ,2z ,3z 是内接于单位圆1=z 的一个正三角形的顶点.7.指出下列各题中点z 的轨迹或所在的范围:(1);65=−z(2);12≥+i z(3).i z i z −=+8.描述下列不等式所确定的区域,并指出它是有界的还是无界的: (1);32≤≤z(2).141+<−z z9.将方程tt z 1+=(t 为实参数)给出的曲线用一个实直角坐标方程表出.第一章 复习题1.单项选择题(1)设iy x z +=,y x ≠||,4z 为实数,则( ).A .0=xy B.0=+y x C .0=−y x D.022=−y x(2)关于复数幅角的运算,下列等式中正确的是( ). A .Argz Argz 22= B.z z arg 2arg 2=C .2121arg arg )arg(z z z z += D.2121)(Argz Argz z z Arg += (3)=+31i ( ).A .ie 62πB.ie 62π−C .ie 62π± D.i e62π±(4)2210<++<i z 表示( ). A .开集、非区域 B.单连通区域 C .多连通区域 D.闭区域(5)z i z f =−1,则()=+i f 1( ).A .1 B.21i+ C .21i− D.i −1 (6)若方程1−=z e ,则此方程的解集为( ).A .空集 B.π)12(−=k z ,(k 为整数) C .i k z π)12(−= D. πi z =2.对任何复数22,z z z =是否一定成立?3. 解方程.0)1(22=−++i z z4. 求)(i Ln −,)43(i Ln +−和它们的主值.5. 求i e 21π−,i i e41π+,i 3和ii )1(+值.第二章 导数1.下列函数何处可导?何处解析? (1) ();2iy x z f −=(2) ().22y ix xy z f +=2.指出下列函数()z f 的解析性区域,并指出其导数.(1) ();22iz z z f +=(2) ();112−=z z f(3)(),dcz baz z f ++=(d c ,中至少有一个不为0).3.设()2323lxy x i y nx my +++为解析函数,试确定l 、m 、n 的值.4.证明:如果()z f 在区域D 内解析,并满足下列条件之一,那么是常数. (1)()z f 恒取实值. (2))(z f 在区域D 内解析. (3)()z f 在区域D 内是一个常数.5.应用导数的定义讨论下列函数的是否存在?(1)())Re(z z f =;(2)())Im(z z f =.6.证明;,sin z e z 在复平面上任一点都不解析.第二章 复习题1.单项选择题(1)函数()z f w =在点0z 可导是可微的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(2)函数()z f w =在点0z 可导是连续的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(3)函数()),(),(y x iv y x u z f +=,则在()00,y x 点,v u ,均可微是函数()z f 在点0z 可微的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(4)函数()22ix xy z f −=,那么( ). A .()z f 处处可微 B. ()z f 处处不可导 C .()z f 仅在原点可导 D. ()z f 仅在x 轴上可导(5)若,0,,00,),(222222=+≠++=y x y x y x xy y x u ,,),(xy y x v =()iv u z f +=,则()z f ( ).A .()z f 仅在原点可导 B. ()z f 处处不可导C .()z f 除原点外处处可导 D. ()z f 处处可微(6)若()()y x y i xy x z f 233333+−+−=, 那么()z f ( ).A .()z f 仅在原点可导且()00=′f B. ()z f 处处解析且()xy i y x z f 63322+−=′ C .()z f 处处解析且()xy i y x z f 63322−−=′ D. ()z f 处处解析且()xy i x y z f 63322+−=′ (7)函数()z z z f = ,则( ). A .()z f 在全平面解析 B. ()z f 仅在原点解析C .()z f 仅在原点可导但不解析 D. ()z f 处处不可导(8)设()34−=′z z f ,且()i i f 31−=+,则()=z f ( ).A . i z z −−322 B. i z z 3322+− C .i z z 43322+−+ D. i z z 43322−+− 2.指出函数112+z 的解析性区域,并求导数.3.如果0z 是()z f 的奇点,而()z g 在0z 解析,那么0z 是否是())(z g z f +和())(z g z f 的奇点.4.若()iv u z f +=是区域D 内的解析函数,那么在D 内v +iu 是否也是解析函数.第三章 积分1.沿下列路径计算积分∫Czdz Re .(1)自原点至1+i 的直线段;(2)自原点沿实轴至1,再由1铅直向上至1+i ;(3)自原点沿虚轴至i ,再由i 沿水平向右至1+i .2.分别沿y =x 与2x y =计算积分()∫++i dz iy x102的值.3计算积分dz zzC∫,其中C 为正向圆周,2=z .4.计算下列积分 ,其中C 为正向圆周,1=z . (1);21dz z C ∫− (2);4212dz z z C ∫++(3);cos 1dz zC ∫ (4);211dz z C∫−(5);dz ze Cz ∫(6)().)2(21dz i z z C∫−+5.沿指定曲线正向计算下列积分:(1)dz z C ∫−21,C :12=−z ;(2)dz a z C ∫−221,C: a a z =−;(3),3dz z zC ∫− C :2=z ;(4)()()dz z z C∫++41122,C :23=z ;(5)dz zzC ∫sin ,C :1=z ; (6)dz z zC∫−22sin π,C :2=z .6.计算下列各题: (1)∫−ii z dz e ππ32;(2)∫−iizdz ππ2sin ;(3).)(0∫−−iz dz e i z7.计算下列积分:(1)dz i z z C ∫+++2314,C :4=z ,正向; (2)dz z iC ∫+122,C :61=−z ,正向; (3),cos 213dz z zC C C ∫+= 1C :2=z ,正向,2C :3=z ,负向;(4)dz i z C ∫−1,C 为以i 56,21±±为顶点的正向菱形; (5)()dz a z eC z∫−3;其中a 为1≠a 的任何复数,C :1=z ,正向.9. 设C 为不经过a 与a −的简单正向闭曲线,a 为不等于0的任何复数,试就a 与a −跟C 的各种不同位置,计算积分dz a z zC ∫−22的值.第三章 复习题1.单项选择题.(1)设C 为θi e z =,θ从2π−到2π的一段,则=∫Cdz z ( ).A .i B.2i C .-2i D.- i(2)设C 是从0=z 到i z +=1的直线段,则=∫Cdz z ( ).A .1+i B.21i+ C .i e4π− D. ie 4π(3)设C 为θi e z =,θ从0到π的一段,则=∫Czdz arg ( ).A .i 2−−π B. π− C .i 2+π D. i 2−π(4)设C 为t i z )1(−=,t 从1到0的一段,则=∫Cdz z ( ).A .1 B.-1 C .i D.- i(5)设C 为1=z 的上半部分逆时针方向,则=−∫Cdz z )1(( ).A .2i B.2 C .-2i D.- 2(6)设C 为θi e z 21=,正向,则=−∫C z dz e e zsin ( ).A .sin1 B.e i 1sin 2π C .e i 1sin 2π− D.0(7)=++∫=dz z z z 12221( ).A .i π2 B.i π2− C .0 D.π2 (8)设C 为沿抛物线12−=x y 从()0,1−到()0,1的弧度,则=+∫C dz z )1sin(( ).A .0 B.2cos − C .12cos − D. 12cos − (9)=++∫=+dz z z e z z 232)1(232( ). A .0 B.i π32C .i π2 D. i π2−(10)=++∫=dz z z zz 121682cos π( )A .0 B.i π C .i π− D. i π2.(11)=+∫=dz z zz 221( ).A .0 B.i π2 C .i π2− D. i π(12)=∫=dz z e z z12( ).A .i π2 B. i π C .0 D. π (13)1322z z z e dz ==∫( ).A .i π2 B. i π16 C .i π8 D. i π4 2.计算()∫Γ−=dz z z e I z12,其中Γ是圆环域:221≤≤z 的边界.3.(1)证明:当C 为任何不经过原点的闭曲线时,则;012=∫dz zC(2)沿怎样的简单闭曲线有;012=∫dz z C(3)沿怎样的简单闭曲线有.0112=++∫dz z z C4.设(),4ζζζπd ze zf C ∫−=其中C :2=z ,试求()i f ,()i f −及()i f 43−的值.5.计算()22,2z Ce z I dz z =+∫其中C :.1=z6.()()∫=−=12,ζζζdz z e z f z()1≠z ,求().z f ′第四章 级数1.判别下列级数的绝对收敛性与收敛性:();11∑∞=n nni()∑∞=2;ln 2n nni();8)56(30∑∞=+n n ni().2cos 40∑∞=n n in2.求下列幂级数的收敛半径:()为正整数);p nz n p n(,11∑∞=()∑∞=12;)!(2n nn z nn()∑∞=+0;)1(3n nnz i().41∑∞=n n n iz e π3.把下列各函数展开成z 的幂级数,并指出它们的收敛半径: ();1113z +();)1(1223z +();cos 32z();4shz();5chz().sin 622z e z4.求下列各函数在指定点0z 处的泰勒展开式,并指出它们的收敛半径: ();1,1110=+−z z z()();110,10,1122<−<<<−z z z z()()(),2113−−z z;21,110+∞<−<<−<z z()()为中心的圆环域内;在以i z i z z =−,142第四章 复习题1.单项选择题:()().112的收敛半径为幂级数∑∞=n nin z e0.A 1.B 2.C ∞.D()()∑∞=1.1sin 2n nnz n 的收敛半径为幂级数0.A 1.B e C . ∞.D()()()∑∞=−1.13n n n z i 的收敛半径为幂级数1.A 21.B 2.C 21.D()()()∑∞=+12.434n n n z i 的收敛半径为幂级数5.A 51.B 5.C 51.D ()()∑∞=1.!5n nn z n 的收敛半径为幂级数1.A ∞.B 0.C e D .()()∑∞−∞=−=>=n nne a z za z z.,0,6721则设!71.A !71.−B !91.C !91.−D()∑∞==−10,2.2n nn z z a 收敛,能否在幂级数 .3发散而在=z().1.32的和函数求n n z n n ∑∞=−.0cos 1.40处的泰勒展开式在求=−∫z d zζζζ上的罗朗展开在求函数11sin .512>−∫=ζζζζz d z .式第五章 留数1.判断下列函数奇点的类型,如果是极点,指出它的阶数:()();11122+z z();sin 23z z();11323+−−z z z()();1ln 4zz +();511−z e()().1162−z e z()..2在有限奇点处的留数求下列各函数z f();2112zz z −+();1242z e z −()();113224++zz();cos 4zz();11cos5z−().1sin 62zz3.计算下列各积分(利用留数,圆周均取正向).();sin 123∫=z dz z z()();12222dz z e z z∫=−()();,cos 1323为整数m dz z zz m∫=−();tan 43∫=z zdz π().521111∫=−−z z dz ze点?并是下列各函数的什么奇判断∞=z .4.的留数求出在∞();121z e();sin cos 2z z −().3232zz+()[]的值,如果:求∞,Re 5.z f s()();112−=z ez f z()()()().41124−+=z z z z f6.计算下列各积分,C 为正向圆周:()()()∫=++Cz C dz zzz ;3:,211342215().2:,1213=+∫z C dz e z z zC7.计算下列积分:();sin 351120θθπd ∫+()();0,cos sin 2202>>+∫b a d b a θθθπ()()∫+∞∞−+;11322dx x()∫+∞∞−++.54cos 42dx x x x第五章 复习题1.单项选择题:()().1sin101的是函数zz = 本性奇点.A 可去奇点.B 一级奇点.C 非孤立奇点.D()().0,1cos Re 2=z z s0.A 1.B 21.C 21.−D()()()().,11Re 32=+−i z i z s 4.i A 4.i B − 41.C 41.−D()().0,1Re 44=−−z e s z !31.A !31.−B !41.C !41.−D()()()∫=−=+21.,15z n n n dz z z 为正整数0.A i B π2. i n C π2. niD π2.()()∫=−=11.6z zz dz zei e A 1.−π i B π2. i e C 12.−π i D π2.−()()∫==−25.117z dz z 0.A i B π2. i C π25. i D π52.2.判断zz e 1+的孤立奇点的类型,并求其留数.3.计算n dz z z z n,1cos 1∫=是正整数.4.计算积分∫=−+114.1z z dz5.计算积分∫+πθθ20.cos 2d6.计算∫+∞+04.11dx x7.计算∫+∞+02.42cos dx x x复变函数总复习题一、单项选择题:(1) 函数z w ln =在i e z =处的值为(). (k 为整数)A. ()i k 12+πB. ()i k π12+C. i k π2D. i k π+212(2) 设积分路径C 为从原点到i +2的直线段, 则积分()=∫Cydz .A. 21i− B. 21i +C. i +1D. i −1(3) 1=z 是函数1ln 2−z z的( ).A. 可去奇点B. 极点C. 本性奇点D. 非孤立奇点 (4) 设()33iy x z f −=, 则()z f 在复平面上( ).A. 处处可导 B. 仅在0=z 处解析 C. 处处不可导 D. 仅在0=z 处可导(5) ()()=−∫=−dz z e z iz211221. A.21i+ B. i +1 C. ()i e i +−12π D. 2π−(6) 函数21z e z+以∞=z 为( ).A. 可去奇点 B. 极点 C. 本性奇点 D. 解析点(7) 0=z 是ze z 111−−的( ).A. 可去奇点 B. 极点 C. 本性奇点 D. 解析点(8) 由2121>−z 与2123>−i z 所确定的点集是( ).A. 开集、非区域 B. 单连通区域 C. 多连通区域 D. 闭区域(9) ()=+−∫=dz z z z z z 122sin cos 1. A. 0 B. i π2 C. i π D. i π3二、填空题:1. =i e π9 .2.=+∫=dz z z 12121. 3. 设()()z z z f Im =, 则()=′0f .4. 级数()()()∑∞=+−+−0124121n n nz n 的收敛范围为 .5. 函数z 211−在+∞<<z 21内的罗朗展式为 . 6.()=−∫=dz z z 12 .7. 级数()∑∑∞=∞=+−12121n n n n n nn z z 的收敛范围是 .8. ()2236z z z z z f ++−=, ()()=∞,Re z f s .9. =−1,1sin Re z z s ;=−1,11sin Re z z s .三、解答下列各题:1. 已知()(),21i i z −+= 求()Re z .2. 求2122lim 1z zz z z z →+−−−.3. 讨论()2z z f =在0=z 处的可导性及解析性.4. 讨论()()yx i x y x z f 322322−++−−=的解析性, 并求出在解析点处的导数.5. 计算()12CIi z dz =+−∫, 其中C 为连接01=z , 12=z 和i z +=13, 从1z 至2z 至3z 的折线段.6. 将z 2sin 展开为z 的幂级数.7. 求级数()n n nn z n 214302+++∑∞=的收敛圆, 并讨论在47−=z 和49−=z 处的收敛性.8. 求()242−=z z z f 在3<z 内所有留数之和.9. 求函数z cot 在它所有有限孤立奇点处的留数.10. 求()()222aze zf ibz+=在ai −处的留数,(a , b 为实数).11. 计算积分()()dz z e z zI z z∫=−+−=232189.12. 计算积分dz z z I z ∫=++=2365112.13. 计算积分dz z z I z ∫=+−=22211.14. 计算积分dz z z e i I z z∫=++=2241221π.15. 计算积分()dx axx I ∫∞++=02222, ()0>a .四、证明题:1. 证明()=≠+=0,00,22z z yx xyz f 在0=z 处不连续.2. 证明0→z 时, 函数()()22Re zz z f =的极限不存在.第二篇 积分变换1. 设() >≤=1,01,1t t t f , 试算出()ωF , 并推证:>=<=∫∞+1,01,41,2cos sin 0t t t d t ππωωωω. (提示()t f 为偶函数)2. 求矩形脉冲函数()≤≤=其它,00,τt A t f 的傅氏变换.3. 求()><−=1,01,1222t t t t f 的傅氏积分. 4. 求()2sin tt f = 的拉氏变换.5. 求()≥<≤−<≤=4,042,120,3t t t t f 的拉氏变换.6. 求下列函数的拉氏逆变换:(1) ()221as s F +=;(2) ()441a s s F −=答案第一章:,2295,135.3,13Im ,5.3Re )1.(1=+−=−=−=z i z z z ).(,23arctan ,10||,31,3Im ,1Re )2();(,)12()726arctan(arg Z k k Argz z i z z z Z k k z ∈+−==+=−==∈++=ππ.11,1.2==y x().2,1,0,2)2(;16316)1.(43275.06=−−+k ei k iπ5..31,2,31i i −−+7.(1)以z =5为圆心,6为半径的圆;(2)以z =-2i 为圆心,1为半径的圆周及圆周的外部;(3)i 和i 两点的连线的中垂线. 8.(1)圆环形闭区域,有界; (2)中心在,1517−=z 半径为158的圆周的外部区域,无界. 9.xy =1。

复变函数课后部分答案讲解

复变函数课后部分答案讲解

x y
1 3
2 ,
8

x 1 .
y 11
3.将下列复数化为三角式和指数式: 1) 5i; 3)1 i 3;
解:
1)z

5[cos(

)

i
sin(

)]


5e 2
i
;
2
2
3) z

2[cos(
)

i
sin(
)]


2e 3
i
;
3
3
4. 求下列各式的值:
1)(1 i 3)10;
知识点3.
课堂练习:
2.若(1 i)n (1 i)n , 试求n的值。
解:由已知可得,
n
22 (cos
n
i sin
n
)

n
22 (cos
n
i sin
n
),

4
4
4
4
sin n sin n
4
4
n n 2k.
44
则n 4k, k Z.
ecos1[cos(sin1) i sin(sin1)]
Im{exp[exp(i)]} ecos1 sin(sin1);
sin(1 i) ei(1i) ei(1i)
e1i e1i
2i
2i
e1(cos1 i sin1) e1(cos1 i sin1) 2i
知识点4. 知识点5.
知识点6.
课堂练习: 4.讨论函数f (z) x3 i(1 y)3的可导性与解析性。
解:因为u x3, v (1 y)3,

数理习题解答

数理习题解答

数学物理方法习题解答一、复变函数部分习题解答第一章1、证明Re z 在z 平面上处处不可导。

证明:令Re z u iv =+。

Re z x =,,0u x v ∴==。

1u x ∂=∂,0v y ∂=∂,u v x y∂∂≠∂∂。

于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。

2、试证()2f z z=仅在原点有导数。

证明:令()f z u iv =+。

()22222,0f z z x y u x y v ==+ ∴ =+=。

2,2u u x y x y ∂∂= =∂∂。

v v x y∂∂ ==0 ∂∂。

所以除原点以外,,u v 不满足C -R 条件。

而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。

()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。

或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。

22***0*000lim lim lim()0z z z z z z z zz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。

【当0,i z z re θ≠∆=,*2i ze zθ-∆=∆与趋向有关,则上式中**1z z z z ∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。

证明:令()()(),,f z u x y iv x y =+,则()332222220,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩,332222220(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。

复变函数部分习题解答分析(复拉)

复变函数部分习题解答分析(复拉)
1 分 析: 双 曲 函 数 的 定 义. 解 法 一 chz = ch(−z ) = ch(iiz ) = cos(iz ) = 0, z = (k + 2 )πi. 解 法 二
∂u ∂y 2
= 2vvy = −vx 两式相乘并整理得 (4v 2 + 1)vx vy = 0. 由以上
ux = vy = 6xy ⇒ u = 3x2 y + D(y ) (4) 将(3),(4)代入(0)式,得 u =
3x2 y − y 3 + C, v = 3xy 2 − x3 + C .
chz =
ez +e−z 2
1 = 0, e2z + 1 = 0. 2z = Ln(−1) = ln | − 1| + i arg(−1) + 2kπi, z = (k + 2 )πi.
作业卷(三) 一 判断题 1.设 C 为 f (z ) 的解析域 D 内的一条简单正向闭曲线, 则 |z | < 2 内解析, C 取 |z | = 1, 则
的解为 z =
分析:两边同乘以 eiz , 得e2iz = 1. 两边取自然对数, 得 2iz = Ln1 = ln |1| + i arg(1) + 2kπi = 2kπi, z =
条件.
分析:f (z ) 在该点解析, 则 f (z ) 在该点的某一个邻域内可导, 在该点当然连续。填必要.
分析: 解析的充要条件. ux =
复变函数部分习题解答分析
作业卷(一) 一 判断题 1.复数 7 + 6i > 1 + 3i. ×. 两个复数, 只有都是实数时, 才可比较大小. 2.若 z 为纯虚数,则 z = z ¯. √ . 按书上定义, 纯虚数指 yi, y = 0, 若 z = yi , 则 z ¯ = −yi. 3.函数 w = arg(z ) 在 z = −3 处不连续. √ . 当 z 从下方 → −3时, w = arg(z ) 的极限为 −π ; 当 z 从上方 → −3 时, w = arg(z ) 的极限为 π . 4. f (z ) = u + iv 在 z0 = x0 + iy0 点连续的充分必要条件是 u(x, y ), v (x, y ) 在(x0 , y0 ) 点连续. √ . Th1.4.3. 5.参数方程 z = t2 + ti ( t 为实参数)所表示的曲线是抛物线 y = x2 . ×. x = y 2 . 二 填空题 1.若等式 i(5 − 7i) = (x + i)(y − i) 成立,则 x= 2.方程 Im(i − z ¯) = 3 表示的曲线是 3.方程z 3 + 27 = 0的根为 4.复变函数 w =

复变函数课后习题答案(全)

复变函数课后习题答案(全)

创作编号:BG7531400019813488897SX创作者:别如克*习题一答案1.求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)ii i--(3)131ii i--(4)8214i i i-+-解:(1)1323213i zi-==+,因此:32 Re, Im1313 z z==-,232arg arctan,31313z z z i==-=+(2)3(1)(2)1310i i izi i i-+===---,因此,31Re, Im1010z z=-=,131arg arctan,31010 z z z iπ==-=--(3)133335122i i iz ii i--=-=-+=-,因此,35Re, Im32z z==-,535,arg arctan,232iz z z+ ==-=(4)82141413z i i i i i i=-+-=-+-=-+因此,Re1,Im3z z=-=,arg arctan3,13z z z iπ==-=--2. 将下列复数化为三角表达式和指数表达式: (1)i (2)1-+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ-(5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)1-+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 22sin [cossin]2sin 2222ii eπθθπθπθθ---=+=3. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin()))66i i ππ=-+-=-+(2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+--2[cos()sin()](cos sin)33)sin()][cos()sin()]44i ii iππθθππθθ-+-+=-+--+-)sin()](cos2sin2)1212i iππθθ=-+-+(2)12)sin(2)]1212iiπθππθθ-=-+-=(4)23(cos5sin5)(cos3sin3)iiϕϕϕϕ+-cos10sin10cos19sin19cos(9)sin(9)iiiϕϕϕϕϕϕ+==+-+-(5=11cos(2)sin(2)3232k i kππππ=+++1,0221,122,2i ki ki k+=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6=11(2)sin(2)]2424k i kππππ=+++88,0,1iie ke kππ==⎪=⎩4.设12,z z i==-试用三角形式表示12z z与12zz解:12cos sin, 2[cos()sin()]4466 z i z iππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,12z z 1155[cos()sin()](cos sin )2464621212i i ππππππ=+++=+ 5. 解下列方程: (1)5()1z i += (2)440 (0)z a a +=>解:(1)z i += 由此25k i z i ei π=-=-, (0,1,2,3,4)k =(2)z==11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:(1), 1), 1), )i i i i +-+--- 6. 证明下列各题:(1)设,zx iy =+z x y≤≤+证明:首先,显然有z x y =≤+;创作编号:BG7531400019813488897SX创作者: 别如克*其次,因222,x y x y +≥ 固此有2222()(),x y x y +≥+从而z =≥。

复变函数—课后答案拉氏变换习题解答

复变函数—课后答案拉氏变换习题解答

( Re s > max{k , −k})
-1-
(6) & ⎡ ⎣ f ( t )⎤ ⎦=

+∞
0
cosh kte− st dt = ∫
+∞
0
ekt + e− kt − st 1 e dt = 2 2
(∫
+∞
0
e− ( s − k )t dt + ∫ e − ( s + k ) t dt
0
+∞
)
⎛ − ( s − k ) t +∞ e − ( s + k )t +∞ ⎞ |0 + |0 ⎟ = 1 ⎛ 1 + 1 ⎞ = s 1⎜e = ⎜ ⎟ 2 ⎜ −( s − k ) − ( s + k ) ⎟ 2 ⎝ s − k s + k ⎠ s 2 − k 2 ⎝ ⎠

+∞
0
f (t )e − st dt = ∫ 3e − st dt + ∫π cos t ⋅ e − st dt
0 2
π 2
+∞
=
+∞ e i t + e − i t 3 − st 2 3 3 − 1 +∞ e | + ∫π e − st dt = − e 2 + ∫π (e −( s −i)t + e −( s +i)t )dt t =0 s s 2 2 −s 2 2
⎧ 1, f (t ) = ⎨ ⎩− 1,
(4)由图易知, f (t ) 是周期为 2b 的周期函数,在一个周期内
0≤t <b b ≤ t < 2b
由公式 & [ f (t )] =

第1章复变函数习题答案习题详解

第1章复变函数习题答案习题详解

第一章习题详解1. 求下列复数z 的实部与虚部,共轭复数、模与辐角: 1)i231+ 解:()()()132349232323231231ii i i i i -=+-=-+-=+实部:133231=⎪⎭⎫⎝⎛+i Re 虚部:132231-=⎪⎭⎫⎝⎛+i Im共轭复数:1323231ii +=⎪⎭⎫⎝⎛+ 模:1311323231222=+=+i辐角:πππk arctg k arctg k i i Arg 23221331322231231+⎪⎭⎫ ⎝⎛-=+-=+⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+arg 2) ii i --131 解:()()()2532332113311131312i i i i i i i i i i i i i i -=-+-=++---=+-+-=--实部:23131=⎪⎭⎫⎝⎛--i i i Re 虚部:25131-=⎪⎭⎫⎝⎛--i i i Im共轭复数:253131i i i i +=⎪⎭⎫⎝⎛-- 模:234434253131222==+=--iii 辐角:πππk arctg k arctg k i i i i i i Arg 235223252131131+⎪⎭⎫ ⎝⎛-=+⎪⎪⎪⎭⎫ ⎝⎛-=+⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--arg3)()()ii i 25243-+解:()()()22672267272625243ii ii ii i --=-+=--=-+ 实部:()()2725243-=⎪⎭⎫⎝⎛-+i i i Re虚部:()()1322625243-=-=⎪⎭⎫⎝⎛-+i i i Im 共轭复数:()()226725243ii i i +-=⎪⎭⎫⎝⎛-+ 模:()()2925226272524322=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=-+ii i辐角:()()ππk arctg k arctg i i i Arg 272622722625243+⎪⎭⎫ ⎝⎛=+⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-+ 4) i ii +-2184解:i i i i ii 31414218-=+-=+-实部:()14218=+-i i i Re 虚部:()34218-=+-i ii Im共轭复数:()i i i i 314218+=+- 模:1031422218=+=+-i ii辐角:()()πππk arctg k arctg k i i i i ii Arg 23213244218218+-=+⎪⎭⎫⎝⎛-=++-=+-arg2. 当x 、y 等于什么实数时,等式()i iy i x +=+-++13531成立?解:根据复数相等,即两个复数的实部和虚部分别相等。

复变函数课后习题答案(全)

复变函数课后习题答案(全)

习题一答案之巴公井开创作1.求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+ (2)(1)(2)i i i -- (3)131i i i -- (4)8214i i i -+- 解:(1)1323213i z i -==+, 因此:32Re , Im 1313z z ==-, (2)3(1)(2)1310i i i z i i i -+===---, 因此,31Re , Im 1010z z =-=, (3)133335122i i i z i i i --=-=-+=-, 因此,35Re , Im 32z z ==-, (4)82141413z i i i i i i =-+-=-+-=-+因此,Re 1, Im 3z z =-=,2. 将下列复数化为三角表达式和指数表达式: (1)i (2)1-+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤解:(1)2cos sin 22ii i e πππ=+= (2)1-+23222(cos sin )233i i e πππ=+= (3)(sin cos )r i θθ+()2[cos()sin()]22i r i re πθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 3. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+- (5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+- (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=- (3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+- (5=(6=4.设12 ,z z i ==-试用三角形式暗示12z z 与12z z 解:12cos sin , 2[cos()sin()]4466z i z i ππππ=+=-+-,所以 12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+, 5. 解下列方程:(1)5()1z i += (2)440 (0)z a a +=> 解:(1)z i += 由此25k i z i e i π=-=-, (0,1,2,3,4)k =(2)z ==11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:(1), 1), 1), )i i i i +-+--- 6. 证明下列各题:(1)设,z x iy =+则z x y ≤≤+证明:首先,显然有z x y =≤+;其次,因 222,x y x y +≥ 固此有 2222()(),x y x y +≥+从而z =≥。

复变函数经典习题及答案

复变函数经典习题及答案

于是 z 2i 9i
3
cos
π 2
2kπ
π i sin 2
2kπ
,
2
2
k 0,1
故z132来自223
2
2
i
,
z2
3 2
2 2 3 2 i. 2
3
例5 满足下列条件的点组成何种图形?是不是区 域?若是区域请指出是单连通区域还是多连通区域.
(1) Im (z) 0;
解 Im (z) 0是实数轴,不是区域.
使C1和C2也在C内,且C1与C2互不相交,互不包含,
据复合闭路定理有
y
ez
C z(1 z)3 dz
C1
ez z(1
z)3dz
ez C2 z(1 z)3 dz
C1
C

O 1x C2
30
而积分
C1
ez z(1
z)3dz即为2)的结果2i,
而积分
C2
ez z(1
z)3dz
即为3)的结果
x
y
x
y
由于 f (z) 解析,所以 u v , u v x y y x
即 2bxy 2cxy b c,
3ay2 bx2 3x2 cy2 3a c,b 3 故 a 1, b 3, c 3.
11
例5 研究 f (z) z Re z 的可导性.
解 设 z0 x0 iy0 为 z 平面上任意一定点,
1( x iy), 9
于是 w u iv 1 x 1 iy u 1 x, v 1 y
99
9
9
u2 v2 1 ( x2 y2) 1 表示 w 平面上的圆.
81
9
6

复变函数习题答案习题详解

复变函数习题答案习题详解

第一章习题详解1. 求下列复数z 的实部与虚部,共轭复数、模与辐角: 1)i231+ 解:()()()132349232323231231ii i i i i -=+-=-+-=+实部:133231=⎪⎭⎫⎝⎛+i Re 虚部:132231-=⎪⎭⎫⎝⎛+i Im共轭复数:1323231ii +=⎪⎭⎫⎝⎛+ 模:1311323231222=+=+i辐角:πππk arctg k arctg k i i Arg 23221331322231231+⎪⎭⎫ ⎝⎛-=+-=+⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+arg 2) ii i --131 解:()()()2532332113311131312i i i i i i i i i i i i i i -=-+-=++---=+-+-=-- 实部:23131=⎪⎭⎫⎝⎛--i i i Re 虚部:25131-=⎪⎭⎫⎝⎛--i i i Im共轭复数:253131i i i i +=⎪⎭⎫⎝⎛-- 模:234434253131222==+=--iii 辐角:πππk arctg k arctg k i i i i i i Arg 235223252131131+⎪⎭⎫ ⎝⎛-=+⎪⎪⎪⎭⎫ ⎝⎛-=+⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--arg3)()()ii i 25243-+解:()()()22672267272625243ii ii ii i --=-+=--=-+ 实部:()()2725243-=⎪⎭⎫⎝⎛-+i i i Re虚部:()()1322625243-=-=⎪⎭⎫⎝⎛-+i i i Im 共轭复数:()()226725243ii i i +-=⎪⎭⎫⎝⎛-+ 模:()()2925226272524322=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=-+ii i辐角:()()ππk arctg k arctg i i i Arg 272622722625243+⎪⎭⎫ ⎝⎛=+⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-+ 4) i ii +-2184解:i i i i ii 31414218-=+-=+-实部:()14218=+-i i i Re 虚部:()34218-=+-i ii Im共轭复数:()i i i i 314218+=+- 模:1031422218=+=+-i ii辐角:()()πππk arctg k arctg k i i i i ii Arg 23213244218218+-=+⎪⎭⎫⎝⎛-=++-=+-arg2. 当x 、y 等于什么实数时,等式()i iy i x +=+-++13531成立?解:根据复数相等,即两个复数的实部和虚部分别相等。

复变函数课后部分习题解答

复变函数课后部分习题解答

复变函数课后部分习题解答(1)(3-i)5解:3-i=2[cos( -30°)+isin(-30°)] =2[cos30°- isin30°](3-i)5=25[cos(30°⨯5)-isin(30°⨯5)]=25(-3/2-i/2) =-163-16i(2)(1+i )6解:令z=1+i 则x=Re (z )=1,y=Im (z )=1 r=z =22y x +=2tan θ=x y =1x>0,y>0∴θ属于第一象限角∴θ=4π ∴1+i=2(cos4π+isin 4π) ∴(1+i )6=(2)6(cos 46π+isin 46π) =8(0-i )=-8i1.2求下式的值 (3)61-因为-1=(cos π+sin π)所以61-=[cos(ππk 2+/6)+sin(ππk 2+/6)] (k=0,1,2,3,4,5,6).习题一1.2(4)求(1-i)31的值。

解:(1-i)31 =[2(cos-4∏+isin-4∏)]31=62[cos(12)18(-k ∏)+isin(12)18(-k∏)](k=0,1,2)1.3求方程3z +8=0的所有根。

解:所求方程的根就是w=38-因为-8=8(cos π+isin π) 所以38-= ρ [cos(π+2k π)/3+isin(π+2k π)/3] k=0,1,2其中ρ=3r=38=2即w=2[cosπ/3+isinπ/3]=1—3i1w=2[cos(π+2π)/3+isin(π+2π)/3]=-22w=2[cos(π+4π)/3+isin(π+4π)/3]= 1—3i3习题二1.5 描出下列不等式所确定的区域或者闭区域,并指明它是有界还是无界的,单连通还是多连通的。

(1) Im(z)>0解:设z=x+iy因为Im(z)>0,即,y>0而)∈x-∞(∞,所以,不等式所确定的区域D为:不包括实轴的上半平面。

复变函数习题及解答

复变函数习题及解答

第一章 复变函数习题及解答1.1 写出下列复数的实部、虚部;模和辐角以及辐角的主值;并分别写成代数形式,三角形式和指数形式.(其中,,R αθ为实常数)(1)1-; (2)ππ2(cosisin )33-; (3)1cos isin αα-+;(4)1ie +; (5)i sin R e θ; (6)i +答案 (1)实部-1;虚部 2;辐角为4π2π,0,1,2,3k k +=±±;主辐角为4π3;原题即为代数形式;三角形式为4π4π2(cosisin )33+;指数形式为4πi 32e .(2)略为 5πi 35π5π2[cos sin ], 233i e +(3)略为 i arctan[tan(/2)][2sin()]2c e αα(4)略为 i;(cos1isin1)ee e +(5)略为:cos(sin )isin(sin )R R θθ+(6)该复数取两个值略为 i i isin ),arctan(1isin ),πarctan(1θθθθθθθθ+=+=+1.2 计算下列复数 1)()103i 1+-;2)()31i 1+-;答案 1)3512i 512+-;2)()13π/42k πi632e 0,1,2k +=;1.3计算下列复数(1 (2答案 (1(2)(/62/3)i n eππ+1.4 已知x 的实部和虚部.【解】令i ,(,)p q p q R =+∈,即,p q 为实数域(Real).平方得到2212()2i x p q xy +=-+,根据复数相等,所以即实部为 ,x ±虚部为 说明 已考虑根式函数是两个值,即为±值.1.5 如果 ||1,z =试证明对于任何复常数,a b 有||1az bbz a +=+【证明】 因为||1,11/z zz z z =∴=∴=,所以1.6 如果复数b a i +是实系数方程()01110=++++=--n n n n a z a z a z a z P 的根,则b a i -一定也是该方程的根.证 因为0a ,1a ,… ,n a 均为实数,故00a a =,11a a =,… ,n n a a =.且()()kkz z =,故由共轭复数性质有:()()z P z P =.则由已知()0i ≡+b a P .两端取共轭得 即()0i ≡-b a P .故b a i -也是()0=z P 之根.注 此题仅通过共轭的运算的简单性质及实数的共轭为其本身即得证.此结论说明实系数多项式的复零点是成对出现的.这一点在代数学中早已被大家认识.特别地,奇次实系数多项式至少有一个实零点.1.7 证明:2222121212||||2(||||)z z z z z z ++-=+,并说明其几何意义. 1.8 若 (1)(1)n n i i +=-,试求n 的值.【解】 因为222244444444(1)2(cos sin )2(cos sin )(1)2(cos sin )2(cos sin )n nnnn n n n n n n n i i i i i i ππππππππ+=+=+-=-=- 所以 44sin sin n n ππ=- 即为4sin 0n π=所以4,4,(0,1,2,)n k n k k ππ===±±1.9将下列复数表为sin ,cos θθ的幂的形式 (1) cos5θ; (2)sin5θ答案 53244235(1) cos 10cos sin 5cos sin (2) 5cos sin 10cos sin sin θθθθθθθθθθ-+-+1.10 证明:如果 w 是1的n 次方根中的一个复数根,但是1≠w 即不是主根,则必有1.11 对于复数,k k αβ,证明复数形式的柯西(Cauchy)不等式:22221111||(||||)||||n n nnk k k k k kk k k k αβαβαβ====≤≤∑∑∑∑ 成立。

复变函数课后习题答案(全)

复变函数课后习题答案(全)

习题一答案1.求以下复数的实部、虚部、模、幅角主值及共轭复数:( 1)1(2)i2i1)(i2)3(i(3)13i(4)i84i 21i i1i解:( 1)z132i 32i13,所以: Re z 3,Im z2,13 13( 2)z(ii2)1i3i ,1)(i3i10所以, Re z 3 ,Im z1,1010( 3)z 13ii33i35i i1i2,2所以, Re z 3 ,Im z5,32( 4)z i 84i 21i 1 4i i 1 3i 所以, Re z1,Im z3,2.将以下复数化为三角表达式和指数表达式:( 1)i ()13i() r (sin i cos ) 23( 4)r (cos i sin) (5)1 cos i sin(02)解:( 1)i cos i sini e2222(cos 2i sin22(2)13i)i 2e333( 3)r (sin i cos) r[cos()i sin()]() i re 222( ) r (cosi sin )r[cos( ) i sin( )] rei4(5) 1 cosi sin2sin 22i sin cos2 2 23. 求以下各式的值:(1)( 3i)5( 2) (1 i )100(1 i)100(13i )(cosi sin)(cos5 i sin 5 )2 (3)i )(cosi sin ) (4)(cos3 i sin 3 )3(1(5) 3i ( 6)1 i解:( 1) ( 3 i )5[2(cos() i sin())] 56 6(2) (1 i )100(1i)100(2i )50( 2i )502(2)50251(1 3i )(cos i sin )(3)i )(cosi sin )(1(4) (cos5i sin 5 ) 2 (cos3i sin 3 )3(5) 3i3cosi sin22(6) 1i2(cosi sin )444. 设z 1 1i, z 23 i, 试用三角形式表示 z z 与z 121 2z 2解: zcos i sin, z 22[cos() i sin( )] ,所以14466z 1z 2 2[cos(4) i sin(4)] 2(cos i sin ) ,6 612 125. 解以下方程:(1) (z i )51z4a 40 ( a 0)( 2)解:( 1) zi51,由此z51i2k ii , (k0,1,2,3,4)e5( 2)z4a44 a4 (cos i sin)a[cos 1(2k)i sin1(2k)] ,当 k0,1,2,3 时,对应的4个根分别为:44a(1i ),a(1i),a( 1 i ),a(1i)22226.证明以下各题:( 1)设z x iy, 则x yz x y 2证明:第一,明显有z x2y2x y ;其次,因 x2y2 2 x y , 固此有 2( x2y2 )( x y )2 ,进而 z x2y2x y2。

复变函数课后习题答案解析(全)

复变函数课后习题答案解析(全)

习题一答案1. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+ (2)(1)(2)i i i --(3)131i i i-- (4)8214i i i -+-解:(1)1323213iz i -==+, 因此:32Re , Im 1313z z ==-,1232, arg arctan , 3131313z z z i ==-=+(2)3(1)(2)1310i i iz i i i -+===---, 因此,31Re , Im 1010z z =-=,1131, arg arctan , 3101010z z z i π==-=--(3)133335122i i iz i i i --=-=-+=-, 因此,35Re , Im 32z z ==-,34535, arg arctan , 232i z z z +==-=(4)82141413z i i i i i i =-+-=-+-=-+因此,Re 1, Im 3zz =-=,10, arg arctan3, 13z z z i π==-=--2. 将下列复数化为三角表达式和指数表达式: (1)i (2)13i -+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)13i -+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 22sin [cossin]2sin 2222ii eπθθπθπθθ---=+=3. 求下列各式的值:(1)5(3)i - (2)100100(1)(1)i i ++-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5)3i (6)1i +解:(1)5(3)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin())16(3)66i i ππ=-+-=-+ (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+--2[cos()sin()](cos sin )332[cos()sin()][cos()sin()]44i i i i ππθθππθθ-+-+=-+--+-2[cos()sin()](cos2sin 2)1212i i ππθθ=-+-+(2)122[cos(2)sin(2)]21212ii eπθππθθ-=-+-=(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- cos10sin10cos19sin19cos(9)sin(9)i i i ϕϕϕϕϕϕ+==+-+- (5)3i 3cossin22i ππ=+11cos (2)sin (2)3232k i k ππππ=+++31, 02231, 122, 2i k i k i k ⎧+=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6)1i +2(cossin )44i ππ=+ 4112[cos (2)sin (2)]2424k i k ππππ=+++48482, 02, 1i i e k e k ππ⎧=⎪=⎨⎪-=⎩4. 设121, 3,2iz z i +==-试用三角形式表示12z z 与12z z解:12cossin, 2[cos()sin()]4466z i z i ππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,12z z 1155[cos()sin()](cos sin )2464621212i i ππππππ=+++=+ 5. 解下列方程: (1)5()1z i += (2)440 (0)z a a +=>解:(1)51,z i += 由此2551k i z i ei π=-=-, (0,1,2,3,4)k =(2)4444(cos sin )za a i ππ=-=+11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:(1), (1), (1), (1)2222a a a ai i i i +-+--- 6. 证明下列各题:(1)设,zx iy =+则2x y z x y+≤≤+证明:首先,显然有22z x y x y =+≤+;其次,因222,x y x y +≥ 固此有2222()(),x y x y +≥+从而222x y z x y +=+≥。

复变函数习题答案

复变函数习题答案

复变函数习题答案复变函数习题答案复变函数是数学中的一个重要分支,它研究的是定义在复数域上的函数。

复变函数理论在物理学、工程学以及金融学等领域有着广泛的应用。

为了更好地理解和应用复变函数,我们需要进行大量的习题练习。

在本文中,我将为大家提供一些复变函数习题的答案,希望能够帮助大家更好地掌握这一领域的知识。

1. 求函数f(z) = z^2 - 1的解析性条件。

解答:根据复变函数的定义,函数f(z)在复平面上解析的条件是其对z的偏导数存在且连续。

对于函数f(z) = z^2 - 1,我们可以计算其对z的偏导数:∂f/∂x = 2x∂f/∂y = 0由于∂f/∂x存在且连续,而∂f/∂y为0,所以函数f(z) = z^2 - 1在复平面上解析。

2. 求函数f(z) = e^z的导数。

解答:根据复变函数的导数定义,对于函数f(z) = e^z,我们需要计算其对z的偏导数:∂f/∂x = e^x * cos(y)∂f/∂y = e^x * sin(y)因此,函数f(z) = e^z的导数为:df/dz = ∂f/∂x + i * ∂f/∂y = e^x * cos(y) + i * e^x * sin(y)3. 求函数f(z) = z^3 - 3z的奇点。

解答:奇点是指函数在某一点上不解析的点。

对于函数f(z) = z^3 - 3z,我们需要找到其奇点。

奇点的定义是函数在该点处不解析,即其导数不存在或者无穷大。

首先,我们计算函数f(z)的导数:df/dz = 3z^2 - 3然后,我们令导数等于零,解得z = ±1。

所以,函数f(z) = z^3 - 3z的奇点为z = ±1。

4. 求函数f(z) = sin(z)/z的留数。

解答:留数是指函数在奇点处的特殊值。

对于函数f(z) = sin(z)/z,我们需要计算其在奇点z = 0处的留数。

根据留数的计算公式,我们可以将函数f(z)在z = 0处展开为泰勒级数:f(z) = sin(z)/z = (z - z^3/3! + z^5/5! - ...) / z可以看出,分子中的z可以约去,所以:f(z) = 1 - z^2/3! + z^4/5! - ...因此,在z = 0处的留数为1。

复变函数部分习题解答分析(复场拉)

复变函数部分习题解答分析(复场拉)

±
3 2

3i.
的实部 u(x, y ) =
, 虚部 v (x, y ) =
x2 − x+ y 2 − 2 , (x+1)2 +y 2
. v (x, y ) = .
3y . (x+1)2 +y 2
分析:将 z = x + iy 代入, 分离实部、 虚部, 得 u(x, y ) = 5.设 z1 = 2i, z2 = 1 − i, 则 Arg(z1 z2 ) = 分析: arg(z1 ) = π , arg(z2 ) = − π , Arg(z1 z2 ) = 4 √ 2 6.复数 z = − 12 − 2i 的三角表示式为 分析: 4[cos(− 5 π) 6 + i sin(− 5 π )], 6 4e
1 dz z
C
f (z ) dz = 0.
1 z
×.分析:f (z )的解析域D不足以保证f (z )在C 上及内解析。关键词 单连通区域.反例 f (z ) =
C
在0 <
= 2πi = 0
2.若 u,v 都是调和函数, 则 f (z ) = u + iv 是解析函数. ×.分析: 解析对 u,v 的要求很高,它们之间有本质的内在联系即 Cauchy-Riemann 方程,知道其一, 另一 若不考虑差一个常数, 则完全确定. 调和这一要求达不到. 反例俯拾即是 u(x, y ) = x, v (x, y ) = −y 都是 调和函数,但 f (z ) = x − yi 不解析. 3.设 f (z ) 在单连通区域 D 内解析, F (z ) 是 f (z ) 的一个原函数, C 为 D 内的一条正向闭曲线,则 0. √
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

×. 若 u(x, y) 和 v(x, y) 可导,则 u, v之间一般没有什么直接关系. f (z) = u + iv 可导, u, v 之间一个几乎
完全确定另一个(活动的余地只是一个常数).
3.若 f (z) 在 z0 点不解析, 则 f (z) 在点 z0 必不可导. ×. 参见三2.
4. | sin z| ≤ 1.
×.复变函数中,
sin z 无界.

|
sin
ik|
=
| eiik−e−iik
2i
|
=
| ek−e−k
2
|

+∞(k
→ +∞, k
> 0).
5.函数 f (z) = u(x, y) + iv(x, y) 在点 z0 = x0 + iy0 可微等价于 u(x, y) 和 v(x, y) 在点 (x0, y0) 可微.

Re(iz)
=
i[iarg(−3
+
4i)
+
2kπi]
=
arctan
4 3
+
(2k
+
1)π.(注:这里是从集合角度说)
2. 3i =
分析:3i = eiLn3 = ei[ln3+i arg(3)+2kπi] = ei[ln3+2kπi] = e2kπ(cos ln 3 + i sin ln 3).
6.复数 z = − 12 − 2i 的三角表示式为
,指数表示式为
.
分析:
4[cos(−
5 6
π
)
+
i
sin(−
5 6
π)],
4ei(−
5 6
π).
三 计算、证明题

1.求出复数 z = (−1 + 3i)4 的模和辐角.

z
=
(−1
+
√ 3i)4
=
24(cos
2π 3
+
i sin
2π 3
)4
=
16ei
=
arg(z¯),


π 3
<
arg(z¯)
<
0,
角形域 0
<
arg(z)
<
π 3
在映射 w
=

下的象为

π 3
<
arg(w)
<
0.
5.将直线方程 2x + 3y = 1 化为复数形式.

将x
=
z+z¯ 2
,
y
=
z−z¯ 2i
代入 2x
+
3y
=
1 并整理得 (1

3 2
i)z
+
(1
+
3 2
i)z¯
×. 函数 f (z) = u(x, y) + iv(x, y) 在点 z0 = x0 + iy0 可微等价于 u(x, y) 和 v(x, y) 在点 (x0, y0) 可微且满
足 C −R 条件. 反例 u = x, v = −y. du = dx+0dy, dv = 0dx−dy, u, v 都可微但 f (z) = u+iv = x−iy 无
复变函数部分习题解答分析
作业卷(一)
一 判断题
1.复数 7 + 6i > 1 + 3i.
×. 两个复数, 只有都是实数时, 才可比较大小.
2.若 z 为纯虚数,则 z = z¯. √. 按书上定义, 纯虚数指 yi, y = 0, 若 z = yi , 则 z¯ = −yi.
3.函数 w = arg(z) 在 z = −3 处不连续. √. 当 z 从下方 → −3时, w = arg(z) 的极限为 −π; 当 z 从上方 → −3 时, w = arg(z) 的极限为 π.
3.方程z3 + 27 = 0的根为
.
分析:
z3
=
27eiπ, z
=
271/3(cos(
π+2kπ 3
)
+
sin(
π+2kπ 3
)),
k
=
0, 1, 2,
z
=
−3,
3 2
±
3 2
√ 3i.
4.复变函数 w
=
z−2 z+1
的实部 u(x, y)
=
, 虚部 v(x, y) =
.
分析:将 z = x + iy 代入, 分离实部、虚部, 得 u(x, y) =
处可微.
6.函数 ez 是周期函数. √. 2πi 为其周期.
二 填空题
1.设 ez = −3 + 4i, 则 Re(iz) =
分析:对 z = −3 + 4i 两边取自然对数,有 z = Ln(−3 + 4i) = ln | − 3 + 4i| + i arg(−3 + 4i) + 2kπi, 从
4. f (z) = u + √. Th1.4.3.
iv

z0
=
x0
+
iy0
点连续的充分必要条件是
u(x,
y),
v(x,
y)
在(x0,
y0)
点连续.
5.参数方程 z = t2 + ti ( t 为实参数)所表示的曲线是抛物线 y = x2.
×. x = y2.
二 填空题
1.若等式 i(5 − 7i) = (x + i)(y − i) 成立,则 x=
, x2−x+y2−2
(x+1)2+y2
v(x, y) =
. 3y
(x+1)2+y2
5.设 z1 = 2i, z2 = 1 − i, 则 Arg(z1z2) =
.
分析:
arg(z1)√=
π 2
,
arg(z2)
=

π 4
,
Arg(z1z2) =
π 2

π 4
+ 2kπ
=
π 4
+ 2kπ, (k = 0, ±1, ±2, · · · )
,y =
.
分析: 两复数相等的定义. x = −6, y = −1, 或x = 1, y = 6.
2.方程 Im(i − z¯) = 3 表示的曲线是
.
分析: 由复数相等, Im(i − z¯) = Im[i − (x − iy)] = Im[−x + (1 + y)i] = 1 + y = 3, 故填 y z|
=
16,
2.设 z = x + iy 满足 Re(z2 + 3) = 4, 求 x 与 y 的关系式.
Arg(z)
=
2π 3
+
2kπ, k
=
0, ±1, ±2, · · · .
解 Re(z2 + 4) = Re(x2 − y2 + 3 + 2xyi) = 4, x2 − y2 = 1.
3.求 f (z)
=
1 z
将平面上的直线 y
=
1 所映射成 w
平面上的曲线方程.

由w
=
1 z

z
=
1 w
,
x
+
iy
=
1 u+iv
=
u u2+v2

v u2+v2
i.
又由 y
= 1得
−v
u2+v2
=
1,
u2 + v2 + v
= 0.
4.求角形域 0
<
arg(z)
<
π 3
在映射 w
=
z¯ 下的象.

arg(w)
=
1.
作业卷(二)
一 判断题
1
1.若 f (z) 在区域 D 内处处为零, 则 f (z) 在 D 内必恒为常数. √. 在 D 内 f (z) = ux + ivx ≡ 0, ux = vx = 0. 从而 vy = ux = 0, uy = −vx = 0. 综上结论成立. 2.若 u(x, y) 和 v(x, y) 可导,则 f (z) = u + iv 也可导.
相关文档
最新文档