大学物理力学练习
大学物理力学习题
力学习题1、某质点作直线运动的运动学方程为2273x t t =-+(SI ),则该质点作 B(A )匀加速直线运动,加速度沿x 轴正方向(B )匀加速直线运动,加速度沿x 轴负方向 (C )变加速直线运动,加速度沿x 轴正方向 (D )变加速直线运动,加速度沿x 轴负方向2、一质点作匀速率圆周运动时 C(A ) 它的动量不变,对圆心的角动量也不变 (B ) 它的动量不变,对圆心的角动量不断改变 (C ) 它的动量不断改变,对圆心的角动量不变 (D ) 它的动量不断改变,对圆心的角动量也不断改变 3、几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体 D (A )必然不会转动 (B )转速必然不变(C )转速必然改变 (D )转速可能不变,也可能改变 .4、某质点作直线运动的运动学方程为x =3t -5t 3+ 6 (SI),则该质点作 D (A )匀加速直线运动,加速度沿x 轴正方向 (B )匀加速直线运动,加速度沿x 轴负方向 (C )变加速直线运动,加速度沿x 轴正方向(D )变加速直线运动,加速度沿x 轴负方向 5、质量为m 的物体,置于电梯内,电梯以21g 的加速度匀加速下降h ,在此过程中,电梯对物体的作用力所做的功为 C (A )mgh 21 (B )mgh 23 (C )mgh 21-(D )mgh 23-6、一质量为m , 长为L 均匀细长棒,求通过棒中心并与棒垂直的轴的转动惯量为 B(A ) 231mL (B )2121mL (C )241mL (D ) 2mL二、填空题1、牛顿第三定律的内容是 两个物体之间的作用力F 和反作用力F ’,沿同一直线,大小相等,方向相反,分别作用在两个物体上。
2、质量m =1kg 的物体,在坐标原点处从静止出发在水平面内沿x 轴运动,其所受合力方向与运动方向相同,合力大小为F =3+2x (SI),那么,物体在开始运动的3 m 内,合力所作的功W = 18J 。
大学物理力学作业
力学作业一、填空题1、按匀速圆周运动计算,地球公转(公转半径为1.5×1011m )的速度值为 ,公转的加速度值为 。
2、一质量为M 的小平板车,以速率v 在光滑水平面上滑行。
另外有一质量为m 的物体从高h 处,由静止竖直下落到小车里并与车子粘在一起前进,它们合在一起的速度大小为 ,方向为 。
3、若有一个三星系统:三个质量都是M 的星球沿同一圆形轨道运动,轨道半径为R 则每个星球受的合力方向 ,大小为 。
4、质量为m 的物体以速率v 向北运动,突然受到外力打击而向西运动,速率v 不变,物体受此力的冲量大小为 ,方向为 。
5、空中飞舞的五彩缤纷的烟火忽略阻力和风力,其质心运动 轨迹是 ,空中烟火以球形扩大的原因是 。
6、质点的运动学方程是j t i t r ˆ)925(ˆ52-+=ρ,这个质点的速度公式表达为 ,质点运动轨道方程为 。
7、质量为m 的人造地球卫星,以速率υ绕地球做匀速圆周运动,当绕过半个圆周时,卫星的动量改变量的量值为 ,当转过整个圆周时,卫星的动量改变量量值为 。
8、当一质点系所受的合外力 时,其质心速度保持不变。
高台跳水运动员的质心运动轨迹应是 。
(忽略空气阻力) 9、一质点沿X 轴做直线运动,其坐标X 与t 的关系是X =1.5t 3(m )。
这个质点在0到2s 的平均速度大小是 ;在t=2s 时刻的瞬时速度大小是 。
10、有质量为m 的单摆挂在架上,架子固定在小车上。
若小车以匀加速度a 向右运动,则摆线的方向要偏离竖直方向一个角度,该角为 ;绳的张力为 。
11、一质点在xy 平面上运动,运动函数为x =2t ,y =4t 2-8,则这个质点的速度公式表达为 ,质点运动的轨道方程为 。
12、某滑轮的转动惯量为25m kg ⋅,以s rad /2的角速度匀速转动,转动动能为 焦耳,角动量为千克米2/秒。
13、质点的运动为532-+=t t x ,t y 2=则质点的速度表达式为 ,位矢表达式为 轨道方程为 。
大学物理力学试题及答案
大学物理力学试题及答案一、选择题(每题3分,共30分)1. 根据牛顿第二定律,下列说法正确的是:A. 力是改变物体运动状态的原因B. 力是维持物体运动状态的原因C. 力是物体运动的原因D. 力和运动状态无关答案:A2. 一个物体从静止开始做匀加速直线运动,其加速度为a,经过时间t后,其速度为:A. atB. 2atC. at^2D. 2at^2答案:A3. 两个质量相同的物体,一个从高处自由下落,另一个以初速度v向上抛出,忽略空气阻力,它们落地时的速度大小:A. 相等B. 不相等C. 无法比较D. 取决于物体的形状答案:A4. 根据能量守恒定律,下列说法正确的是:A. 能量可以被创造B. 能量可以被消灭C. 能量既不能被创造也不能被消灭D. 能量守恒定律只适用于理想情况答案:C5. 一个物体在水平面上做匀速圆周运动,下列说法正确的是:A. 物体受到的合外力为零B. 物体受到的合外力指向圆心C. 物体受到的合外力与速度方向垂直D. 物体受到的合外力与速度方向相同答案:B6. 根据动量守恒定律,下列说法正确的是:A. 动量守恒定律只适用于物体间没有外力作用的情况B. 动量守恒定律只适用于物体间相互作用力为零的情况C. 动量守恒定律只适用于物体间相互作用力为内力的情况D. 动量守恒定律适用于所有情况答案:C7. 一个物体在水平面上做匀速直线运动,下列说法正确的是:A. 物体受到的合外力为零B. 物体受到的合外力不为零C. 物体受到的合外力与速度方向相反D. 物体受到的合外力与速度方向相同答案:A8. 根据牛顿第三定律,下列说法正确的是:A. 作用力和反作用力大小相等,方向相反B. 作用力和反作用力大小不等,方向相反C. 作用力和反作用力大小相等,方向相同D. 作用力和反作用力大小不等,方向相同答案:A9. 一个物体从高处自由下落,忽略空气阻力,下列说法正确的是:A. 物体下落速度随时间增加而增加B. 物体下落速度随时间减少而增加C. 物体下落速度随时间增加而减少D. 物体下落速度与时间无关答案:A10. 一个物体在水平面上做匀减速直线运动,其加速度为a,经过时间t后,其速度为:A. atB. 2atC. at^2D. 0答案:D二、填空题(每题4分,共20分)1. 牛顿第二定律的数学表达式是________。
大学物理力学题库及答案
一、选择题:(每题3分)1、某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作(A) 匀加速直线运动,加速度沿x 轴正方向.(B) 匀加速直线运动,加速度沿x 轴负方向.(C) 变加速直线运动,加速度沿x 轴正方向.(D) 变加速直线运动,加速度沿x 轴负方向. [ d ]2、一质点沿x 轴作直线运动,其v -t 曲线如图所示,如t =0时,质点位于坐标原点,则t =4、5 s 时,质点在x 轴上的位置为(A) 5m. (B) 2m.(C) 0. (D) -2 m. (E) -5 m 、 [ b ] 3、图中p 就是一圆的竖直直径pc 的上端点,一质点从p 开始分别沿不同的弦无摩擦下滑时,到达各弦的下端所用的时间相比较就是(A) 到a 用的时间最短. (B) 到b 用的时间最短. (C) 到c 用的时间最短. (D) 所用时间都一样. [ d ]4、 一质点作直线运动,某时刻的瞬时速度=v 2 m/s,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A) 等于零. (B) 等于-2 m/s.(C) 等于2 m/s. (D) 不能确定. [ d ] 5、 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b 为常量), 则该质点作(A) 匀速直线运动. (B) 变速直线运动.(C) 抛物线运动. (D)一般曲线运动. [ b ] 6、一运动质点在某瞬时位于矢径()y x r , 的端点处, 其速度大小为 (A) t r d d (B) t r d d (C) t r d d (D) 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x [ d ]7、 质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2πR /T , 2πR/T . (B) 0 , 2πR /T(C) 0 , 0. (D) 2πR /T , 0、 [ b ] 8、 以下五种运动形式中,a 保持不变的运动就是(A) 单摆的运动. (B) 匀速率圆周运动.(C) 行星的椭圆轨道运动. (D) 抛体运动.(E) 圆锥摆运动. [ d ]9、对于沿曲线运动的物体,以下几种说法中哪一种就是正确的:(A) 切向加速度必不为零.-12a p(B) 法向加速度必不为零(拐点处除外).(C) 由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零.(D) 若物体作匀速率运动,其总加速度必为零. (E) 若物体的加速度a 为恒矢量,它一定作匀变速率运动. [ b ] 10、 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,a 表示切向加速度,下列表达式中,(1) a t = d /d v , (2) v =t r d /d , (3) v =t S d /d , (4) t a t =d /d v .(A) 只有(1)、(4)就是对的.(B) 只有(2)、(4)就是对的.(C) 只有(2)就是对的.(D) 只有(3)就是对的.[ d ]11、 某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系就是(A) 0221v v +=kt , (B) 0221v v +-=kt , (C) 02121v v +=kt , (D) 02121v v +-=kt [ b c ] 12、 一物体从某一确定高度以0v 的速度水平抛出,已知它落地时的速度为t v ,那么它运动的时间就是(A) g t 0v v -. (B) gt 20v v - . (C) ()g t2/1202v v -. (D) ()g t 22/1202v v - 、 [ c ]13、一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一时间内的平均速度为v ,平均速率为v ,它们之间的关系必定有: (A)v v v,v == (B)v v v,v =≠ (C)v v v,v ≠≠ (D)v v v,v ≠= [ d ] 14、在相对地面静止的坐标系内,A 、B 二船都以2 m/s 速率匀速行驶,A 船沿x轴正向,B 船沿y 轴正向.今在A 船上设置与静止坐标系方向相同的坐标系(x 、y 方向单位矢用i 、j 表示),那么在A 船上的坐标系中,B 船的速度(以m/s 为单位)为 (A) 2i +2j . (B) -2i +2j . (C) -2i -2j . (D) 2i -2j . [ b ]15、一条河在某一段直线岸边同侧有A 、B 两个码头,相距1 km.甲、乙两人需要从码头A 到码头B ,再立即由B 返回.甲划船前去,船相对河水的速度为4 km/h;而乙沿岸步行,步行速度也为4 km/h.如河水流速为 2 km/h, 方向从A 到B ,则(A) 甲比乙晚10分钟回到A . (B) 甲与乙同时回到A .(C) 甲比乙早10分钟回到A . (D) 甲比乙早2分钟回到A .[ a ]16、一飞机相对空气的速度大小为 200 km/h, 风速为56 km/h,方向从西向东.地面雷达站测得飞机速度大小为 192 km/h,方向就是(A) 南偏西16、3°. (B) 北偏东16、3°.(C) 向正南或向正北. (D) 西偏北16、3°.(E) 东偏南16、3°. [ e c ]17、 下列说法哪一条正确?(A) 加速度恒定不变时,物体运动方向也不变.(B) 平均速率等于平均速度的大小.(C) 不管加速度如何,平均速率表达式总可以写成(v 1、v 2 分别为初、末速率) ()2/21v v v +=.(D) 运动物体速率不变时,速度可以变化. [ d ]18、 下列说法中,哪一个就是正确的?(A) 一质点在某时刻的瞬时速度就是2 m/s,说明它在此后1 s 内一定要经过2m 的路程.(B) 斜向上抛的物体,在最高点处的速度最小,加速度最大.(C) 物体作曲线运动时,有可能在某时刻的法向加速度为零.(D) 物体加速度越大,则速度越大. [ c ]19、 某人骑自行车以速率v 向西行驶,今有风以相同速率从北偏东30°方向吹来,试问人感到风从哪个方向吹来?(A) 北偏东30°. (B) 南偏东30°.(C) 北偏西30°. (D) 西偏南30°.c ]20、在升降机天花板上拴有轻绳,其下端系一重物,当升降机以加速度a 1上升时,绳中的张力正好等于绳子所能承受的最大张力的一半,问升降机以多大加速度上升时,绳子刚好被拉断?(A) 2a 1. (B) 2(a 1+g ).(C) 2a 1+g. (D) a 1+g. [ c ]21、 水平地面上放一物体A ,它与地面间的滑动摩擦系数为μ.现加一恒力F 如图所示.欲使物体A 有最大加速度,则恒力F 与水平方向夹角θ 应满足(A) sin θ =μ. (B) cos θ =μ. (C) tg θ =μ. (D) ctg θ =μ. [ d c ]22、 一只质量为m 的猴,原来抓住一根用绳吊在天花板上的质量为M 的直杆,悬线突然断开,小猴则沿杆子竖直向上爬以保持它离地面的高度不变,此时直杆下落的加速度为 (A) g 、 (B) g M m 、 (C) g M m M +、 (D) g mM m M -+ 、 (E) g M m M -、 [ c ] 23、如图所示,质量为m 的物体A 用平行于斜面的细线连结置于光滑的斜面上,若斜面向左方作加速运动,当物体开始脱离斜面时,它的加速度的大小为a 1(A) g sin θ. (B) g cos θ.(C) g ctg θ. (D) g tg θ. [ c ]24、如图所示,一轻绳跨过一个定滑轮,两端各系一质量分别为m 1与m 2的重物,且m 1>m 2.滑轮质量及轴上摩擦均不计,此时重物的加速度的大小为a .今用一竖直向下的恒力g m F 1=代替质量为m 1的物体,可得质量为m 2的重物的加速度为的大小a ′,则(A) a ′= a (B) a ′> a(C) a ′< a (D) 不能确定、[ b ]25、升降机内地板上放有物体A ,其上再放另一物体B ,二者的质量分别为M A、M B .当升降机以加速度a 向下加速运动时(a <g ),物体A 对升降机地板的压力在数值上等于(A) M A g 、(B) (M A +M B )g 、(C) (M A +M B )(g +a )、 (D) (M A +M B )(g -a )、 d ]26、如图,滑轮、绳子质量及运动中的摩擦阻力都忽略不计,物体A 的质量m 1大于物体B 的质量m 2.在A 、B 运动过程中弹簧秤S 的读数就是(A) .)(21g m m + (B) .)(21g m m - (C) .22121g m m m m + (D) .42121g m m m m + [ a d ] 27、如图所示,质量为m 的物体用细绳水平拉住,静止在倾角为θ的固定的光滑斜面上,则斜面给物体的支持力为(A) θcos mg 、 (B) θsin mg 、(C) θcos mg 、 (D) θsin mg 、 [ c ] 28、光滑的水平桌面上放有两块相互接触的滑块,质量分别为m 1与m 2,且m 1<m 2.今对两滑块施加相同的水平作用力,如图所示.设在运动过程中,两滑块不离开,则两滑块之间的相互作用力N 应有(A) N =0、 (B) 0 < N < F 、(C) F < N <2F 、 (D) N > 2F 、 [ b ] 29、 用水平压力F 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F 逐渐增大时,物体所受的静摩擦力f(A) 恒为零.(B) 不为零,但保持不变.(C) 随F 成正比地增大.(D) 开始随F 增大,达到某一最大值后,就保持不变 [30、两个质量相等的小球由一轻弹簧相连接,再用一细绳悬挂于天花板上,处于静止状态,如图所示.将绳子剪断的瞬间,球1与球2的加速度分别为(A) a 1=g,a 2=g. (B) a 1=0,a 2=g. (C) a 1=g,a 2=0. (D) a 1=2g,a 2=0.[ b d ] 31、竖立的圆筒形转笼,半径为R ,绕中心轴OO '转动,物块A 1紧靠在圆筒的内壁上,物块与圆筒间的摩擦系数为μ,要使物块A 不下落,圆筒转动的角速度ω至少应为(A) R g μ (B)g μ(C) Rg μ (D)R g [ a c ] 32、 一个圆锥摆的摆线长为l ,摆线与竖直方向的夹角恒为θ,如图所示.则摆锤转动的周期为(A) g l 、 (B) gl θcos 、 (C) g l π2、 (D) gl θπcos 2 、 [ d ] 33、一公路的水平弯道半径为R ,路面的外侧高出内侧,并与水平面夹角为θ.要使汽车通过该段路面时不引起侧向摩擦力,则汽车的速率为(A) Rg 、 (B) θtg Rg 、(C) θθ2sin cos Rg 、 (D) θctg Rg[ b ]34、 一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦系数为μ,要使汽车不致于发生侧向打滑,汽车在该处的行驶速率(A) 不得小于gR μ. (B) 不得大于gR μ.(C) 必须等于gR 2. (D) 还应由汽车的质量M 决定. [ b ]35、 在作匀速转动的水平转台上,与转轴相距R 处有一体积很小的工件A ,如图所示.设工件与转台间静摩擦系数为μs ,若使工件在转台上无滑动,则转台的角速度ω应满足(A) Rg s μω≤、 (B) R g s 23μω≤、 (C) R g s μω3≤、 (D) Rg s μω2≤、 [ a ] 36、质量为m 的质点,以不变速率v 沿图中正三角形ABC的水平光滑轨道运动.质点越过A 角时,轨道作用于质点的冲量的大小为 (A) m v . (B) m v .(C) m v . (D) 2m v . [ a c ]37、一炮弹由于特殊原因在水平飞行过程中,突然炸裂成两块,其中一块作自由下落,则另一块着地点(飞行过程中阻力不计)(A) 比原来更远. (B) 比原来更近.(C) 仍与原来一样远. (D) 条件不足,不能判定. 38、 如图所示,砂子从h =0.8 m 高处下落到以3 m /s的速率水平向右运动的传送带上.取重力加速度g =10 m /s 2.传送带给予刚落到传送带上的砂子的作用力的方向为(A) 与水平夹角53°向下. (B) 与水平夹角53°向上.(C) 与水平夹角37°向上.θ l ωO R A Ah 1v v 23(D) 与水平夹角37°向下. [ b ]39、 质量为20 g 的子弹沿X 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿X 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为(A) 9 N·s 、 (B) -9 N·s .(C)10 N·s . (D) -10 N·s . [ a ] 40、质量分别为m A 与m B (m A >m B )、速度分别为A v 与B v (v A > v B )的两质点A 与B ,受到相同的冲量作用,则(A) A 的动量增量的绝对值比B 的小.(B) A 的动量增量的绝对值比B 的大.(C) A 、B 的动量增量相等.(D) A 、B 的速度增量相等. [ c ]41、在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车与炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力)(A) 总动量守恒.(B) 总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒.(C) 总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒.(D) 总动量在任何方向的分量均不守恒.42、 质量为20 g 的子弹,以400 m/s 的速率沿图示方向射入一原来静止的质量为980 g 的摆球中,摆线长度不可伸缩.子弹射入后开始与摆球一起运动的速率为(A) 2 m/s. (B) 4 m/s.(C) 7 m/s . (D) 8 m/s. [ b ] 43、A 、B 两木块质量分别为m A 与m B ,且m B =2m A ,两者用一轻弹簧连接后静止于光滑水平桌面上,如图所示.若用外力将两木块压近使弹簧被压缩,然后将外力撤去,则此后两木块运动动能之比E KA /E KB 为(A) 21. (B) 2/2. (C) 2. (D) 2. [ d ]44、质量为m 的小球,沿水平方向以速率v 与固定的竖直壁作弹性碰撞,设指向壁内的方向为正方向,则由于此碰撞,小球的动量增量为(A) m v . (B) 0.(C) 2m v . (D) –2m v . [ d45、机枪每分钟可射出质量为20 g 的子弹900颗,子弹射出的速率为800 m/s,则射击时的平均反冲力大小为(A) 0、267 N. (B) 16 N.(C)240 N. (D) 14400 N. [ d c ]46、人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的(A)动量不守恒,动能守恒.(B)动量守恒,动能不守恒.(C)对地心的角动量守恒,动能不守恒.(D)对地心的角动量不守恒,动能守恒. [ c ]47、一质点作匀速率圆周运动时,(A) 它的动量不变,对圆心的角动量也不变.(B) 它的动量不变,对圆心的角动量不断改变.(C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变. [ c ]48、一个质点同时在几个力作用下的位移为: k j i r 654+-=∆ (SI)其中一个力为恒力k j i F 953+--= (SI),则此力在该位移过程中所作的功为(A) -67 J. (B) 17 J.(C) 67 J. (D) 91 J. [ c ]49、质量分别为m 与4m 的两个质点分别以动能E 与4E 沿一直线相向运动,它们的总动量大小为 (A) 2mE 2 (B) mE 23. (C) mE 25. (D) mE 2)122(- [ b ]50、如图所示,木块m 沿固定的光滑斜面下滑,当下降h 高度时,重力作功的瞬时功率就是: (A)21)2(gh mg . (B)21)2(cos gh mg θ. (C)21)21(sin gh mg θ. (D)21)2(sin gh mg θ. [ d ]51、已知两个物体A 与B 的质量以及它们的速率都不相同,若物体A 的动量在数值上比物体B 的大,则A 的动能E KA 与B 的动能E KB 之间(A) E KB 一定大于E KA . (B) E KB 一定小于E KA .(C) E KB =E KA . (D) 不能判定谁大谁小. [ d ]52、对于一个物体系来说,在下列的哪种情况下系统的机械能守恒?(A) 合外力为0.(B) 合外力不作功.(C) 外力与非保守内力都不作功.(D) 外力与保守内力都不作功. [ d ]53、下列叙述中正确的就是(A)物体的动量不变,动能也不变.(B)物体的动能不变,动量也不变.(C)物体的动量变化,动能也一定变化.(D)物体的动能变化,动量却不一定变化. [ d ]54、作直线运动的甲、乙、丙三物体,质量之比就是 1∶2∶3.若它们的动能相等,并且作用于每一个物体上的制动力的大小都相同,方向与各自的速度方向相反,则它们制动距离之比就是(A) 1∶2∶3. (B) 1∶4∶9.(C) 1∶1∶1. (D) 3∶2∶1.(E) 3∶2∶1. [ d ]55、 速度为v 的子弹,打穿一块不动的木板后速度变为零,设木板对子弹的阻力就是恒定的.那么,当子弹射入木板的深度等于其厚度的一半时,子弹的速度就是(A) v 41. (B) v 31. θ h m(C) v 21. (D) v 21. [ d ] 56、 考虑下列四个实例.您认为哪一个实例中物体与地球构成的系统的机械能不守恒?(A) 物体作圆锥摆运动.(B) 抛出的铁饼作斜抛运动(不计空气阻力).(C) 物体在拉力作用下沿光滑斜面匀速上升.(D) 物体在光滑斜面上自由滑下. [ c ]57、一竖直悬挂的轻弹簧下系一小球,平衡时弹簧伸长量为d .现用手将小球托住,使弹簧不伸长,然后将其释放,不计一切摩擦,则弹簧的最大伸长量(A) 为d . (B) 为d 2.(C) 为2d . (D) 条件不足无法判定. [ c ]58、A 、B 两物体的动量相等,而m A <m B ,则A 、B 两物体的动能(A) E KA <E K B . (B) E KA >E KB .(C) E KA =E K B . (D) 孰大孰小无法确定. [ b ]59、如图所示,一个小球先后两次从P 点由静止开始,分别沿着光滑的固定斜面l 1与圆弧面l 2下滑.则小球滑到两面的底端Q 时的(A) 动量相同,动能也相同. (B) 动量相同,动能不同.(C) 动量不同,动能也不同.(D) 动量不同,动能相同. [ a ]60、一物体挂在一弹簧下面,平衡位置在O 点,现用手向下拉物体,第一次把物体由O 点拉到M 点,第二次由O 点拉到N 点,再由N 点送回M 点.则在这两个过程中(A) 弹性力作的功相等,重力作的功不相等. (B) 弹性力作的功相等,重力作的功也相等. (C) 弹性力作的功不相等,重力作的功相等. (D) 弹性力作的功不相等,重力作的功也不相等. [ b ]61、物体在恒力F 作用下作直线运动,在时间∆t 1内速度由0增加到v ,在时间∆t 2内速度由v 增加到2 v ,设F 在∆t 1内作的功就是W 1,冲量就是I 1,在∆t 2内作的功就是W 2,冲量就是I 2.那么,(A) W 1 = W 2,I 2 > I 1. (B) W 1 = W 2,I 2 < I 1.(C) W 1 < W 2,I 2 = I 1. (D) W 1 > W 2,I 2 = I 1. [ c ]62、两个质量相等、速率也相等的粘土球相向碰撞后粘在一起而停止运动、 在此过程中,由这两个粘土球组成的系统,(A) 动量守恒,动能也守恒.(B) 动量守恒,动能不守恒.(C) 动量不守恒,动能守恒.(D) 动量不守恒,动能也不守恒. [ c ]63、 一子弹以水平速度v 0射入一静止于光滑水平面上的木块后,随木块一起运动.对于这一过程正确的分析就是(A) 子弹、木块组成的系统机械能守恒.(B) 子弹、木块组成的系统水平方向的动量守恒.(C) 子弹所受的冲量等于木块所受的冲量.(D) 子弹动能的减少等于木块动能的增加. [ b ]64、一光滑的圆弧形槽M 置于光滑水平面上,一滑块m 自槽的顶部由静止释放后沿槽滑下,不计空气阻力.对于这一过程,以下哪种分析就是对的?(A) 由m 与M 组成的系统动量守恒.(B) 由m 与M 组成的系统机械能守恒.(C) 由m 、M 与地球组成的系统机械能守恒.(D) M 对m 的正压力恒不作功.65、两木块A 、B 的质量分别为m 1与m 2,用一个质量不计、劲度系数为k 的弹簧连接起来.把弹簧压缩x 0并用线扎住,放在光滑水平面上,A 紧靠墙壁,如图所示,然后烧断扎线.判断下列说法哪个正确.(A) 弹簧由初态恢复为原长的过程中,以A 、B 、弹簧为系统,动量守恒.(B) 在上述过程中,系统机械能守恒.(C) 当A 离开墙后,整个系统动量守恒,机械能不守恒.(D) A 离开墙后,整个系统的总机械能为2021kx ,总动量为零. [ c ] 66、两个匀质圆盘A 与B 的密度分别为A ρ与B ρ,若ρA >ρB ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A 与J B ,则(A) J A >J B . (B) J B >J A .(C) J A =J B . (D) J A 、J B 哪个大,不能确定. [ b ]67、 关于刚体对轴的转动惯量,下列说法中正确的就是(A)只取决于刚体的质量,与质量的空间分布与轴的位置无关.(B)取决于刚体的质量与质量的空间分布,与轴的位置无关.(C)取决于刚体的质量、质量的空间分布与轴的位置.(D)只取决于转轴的位置,与刚体的质量与质量的空间分布无关.[ c ]68、 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种就是正确的? (A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ b ]69、 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω按图示方向转动、若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度ω (A) 必然增大. (B) 必然减少. 6568、69、(C) 不会改变. (D) 如何变化,不能确定. [ b ]70、 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心.随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A) 02ωmRJ J +. (B) ()02ωR m J J +. (C) 02ωmRJ . (D) 0ω. [ a ] 71、 如图所示,一水平刚性轻杆,质量不计,杆长l =20cm ,其上穿有两个小球.初始时,两小球相对杆中心O 对称放置,与O 的距离d =5 cm ,二者之间用细线拉紧.现在让细杆绕通过中心O 的竖直固定轴作匀角速的转动,转速为ω0,再烧断细线让两球向杆的两端滑动.不考虑转轴的与空气的摩擦,当两球都滑至杆端时,杆的角速度为(A) 2ω0. (B)ω 0.(C) 21 ω 0. (D)041ω. [ ] 72、 刚体角动量守恒的充分而必要的条件就是(A) 刚体不受外力矩的作用.(B) 刚体所受合外力矩为零.(C) 刚体所受的合外力与合外力矩均为零.(D) 刚体的转动惯量与角速度均保持不变. [ ]73、 一块方板,可以绕通过其一个水平边的光滑固定轴自由转动.最初板自由下垂.今有一小团粘土,垂直板面撞击方板,并粘在板上.对粘土与方板系统,如果忽略空气阻力,在碰撞中守恒的量就是(A) 动能. (B) 绕木板转轴的角动量.(C) 机械能. (D) 动量. [ ]74、如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 只有机械能守恒.(B) 只有动量守恒.(C) 只有对转轴O 的角动量守恒.(D) 机械能、动量与角动量均守恒. [ ]75、质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台与小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度与旋转方向分别为(A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,逆时针.大学物理力学题库及答案[ ]76、 一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人、把人与圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统(A) 动量守恒.(B) 机械能守恒.(C) 对转轴的角动量守恒.(D) 动量、机械能与角动量都守恒.(E) 动量、机械能与角动量都不守恒. [ ]77、光滑的水平桌面上有长为2l 、质量为m 的匀质细杆,可绕通过其中点O 且垂直于桌面的竖直固定轴自由转动,转动惯量为231ml ,起初杆静止.有一质量为m 的小球在桌面上正对着杆的一端,在垂直于杆长的方向上,以速率v 运动,如图所示.当小球与杆端发生碰撞后,就与杆粘在一起随杆转动.则这一系统碰撞后的转动角速度就是(A) 12v l . (B) l32v . (C) l 43v . (D) lv 3. [ ] 78、如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为 (A) ML m v . (B) MLm 23v . (C) ML m 35v . (D) MLm 47v . [ ] 79、光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为31mL 2,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v 相向运动,如图所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为 (A) L 32v . (B) L54v . (C) L 76v . (D) L98v . (E) L712v . [ ] 80、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为 (A) 31ω0. (B) ()3/1 ω0.78、v 俯视图79、O v俯视图大学物理力学题库及答案 (C) 3 ω0. (D) 3 ω0.[ ]二、填空题: 81、一物体质量为M ,置于光滑水平地板上.今用一水平力F 通过一质量为m 的绳拉动物体前进,则物体的加速度a =______________,绳作用于物体上的力T =_________________.82、图所示装置中,若两个滑轮与绳子的质量以及滑轮与其轴之间的摩擦都忽略不计,绳子不可伸长,则在外力F 的作用下,物体m 1与m 2的加速度为a =______________________,m 1与m 2间绳子的张力T=________________________.83、在如图所示的装置中,两个定滑轮与绳的质量以及滑轮与其轴之间的摩擦都可忽略不计,绳子不可伸长,m 1与平面之间的摩擦也可不计,在水平外力F 的作用 下,物体m 1与m 2的加速度a =______________,绳中的张力T =_________________. 84、如果一个箱子与货车底板之间的静摩擦系数为μ,当这货车爬一与水平方向成θ角的平缓山坡时,要不使箱子在车底板上滑动,车的最大加速度a max =_______________________________________. 85、一物体质量M =2 kg,在合外力i t F )23(+= (SI )的作用下,从静止开始运动,式中i 为方向一定的单位矢量, 则当t=1 s 时物体的速度1v =__________.86、设作用在质量为1 kg 的物体上的力F =6t +3(SI).如果物体在这一力的作用下,由静止开始沿直线运动,在0到2、0 s 的时间间隔内,这个力作用在物 体上的冲量大小I=__________________.87、一质量为m 的小球A ,在距离地面某一高度处以速度v 水平抛出,触地后反跳.在抛出t 秒后小球A 跳回原高度,速度仍沿水平方向,速度大小也与抛出时相同,如图.则小球A 与地面碰撞过程中,地面给它的冲量的方向为 ________________,冲量的大小为____________________.88、两个相互作用的物体A 与B ,无摩擦地在一条水平直线上运动.物体A 的动量就是时间的函数,表达式为 P A = P 0 – b t ,式中P 0 、b 分别为正值常量,t 就是时间.在下列两种情况下,写出物体B 的动量作为时间函数的表达式:(1) 开始时,若B 静止,则 P B 1=______________________;(2) 开始时,若B的动量为 – P 0,则P B 2 = _____________.89、有两艘停在湖上的船,它们之间用一根很轻的绳子连接.设第一艘船与人的总质量为250 kg , 第二艘船的总质量为500 kg,水的阻力不计.现在站在第一艘船上的人用F = 50 N 的水平力来拉绳子,则5 s 后第一艘船的速度大小为_________;第二艘船的速度大小为______. 81 83、87 2大学物理力学题库及答案90、质量为m 的小球自高为y 0处沿水平方向以速率v 0抛出,与地面碰撞后跳起的最大高度为21y 0,水平速率为21v 0,则碰撞过程中 (1) 地面对小球的竖直冲量的大小为 ________________________; (2) 地面对小球的水平冲量的大小为________________________. 91、质量为M 的平板车,以速度v 在光滑的水平面上滑行,一质量为m 的物 体从h 高处竖直落到车子里.两者一起运动时的速度大小为_______________.92、如图所示,质量为M 的小球,自距离斜面高度为h 处自由下落到倾角为30°的光滑固定斜面上.设碰撞就是完全弹性的,则小球对斜面的冲量的大小为________,方向为____________________________. 93、一质量为m 的物体,以初速0v 从地面抛出,抛射角θ=30°,如忽略空气阻力,则从抛出到刚要接触地面的过程中(1) 物体动量增量的大小为________________,(3) 物体动量增量的方向为________________. 94、如图所示,流水以初速度1v 进入弯管,流出时的速度为2v ,且v 1=v 2=v .设每秒流入的水质量为q ,则在管子转弯处,水对管壁的平均冲力大小就是______________,方向__________________.(管内水受到的重力不考虑)95、质量为m 的质点,以不变的速率v 经过一水平光滑轨道的︒60弯角时,轨道作用于质点的冲量大小I=________________.96、质量为m 的质点,以不变的速率v 经过一水平光滑轨道的︒60弯角时,轨道作用于质点的冲量大小I=________________.97、质量为M 的车以速度v 0沿光滑水平地面直线前进,车上的人将一质量为m 的物体相对于车以速度u 竖直上抛,则此时车的速度v =______.98、一质量为30 kg 的物体以10 m·s -1的速率水平向东运动,另一质量为20 kg 的物体以20 m·s -1的速率水平向北运动。
《大学物理学》力学部分习题及答案
一、选择题(每题4分,共20分)1.一物体从某高度以0v 的速度水平抛出,已知落地时的速度为t v,那么它在水平方向上运动的距离是( C )(A )00t v v v g-;(B)02v g;(C)0v g;(D )002t v v v g-。
2.质点由静止开始以匀角加速度β沿半径为R 作圆周运动,经过多少时间刻此质点的总加速度a 与切向加速度t a 成45 角( B ) (A )Rβ;(B)(C)(D )R B 。
3.一辆汽车从静止出发,在平直公路上加速前进的过程中,如果发动机的功率一定,阻力大小不变,那么,下面哪一个说法是正确的?( A )(A )汽车的加速度不断减小 (B )汽车的加速度与它的速度成正比(C )汽车的加速度与它的速度成反比 (D )汽车的加速度是不变的4.如图所示,子弹射入放在水平光滑地面上静止的木块后穿出,以地面为参考系,下列说法正确的是 ( A )(A) 子弹减少的动量转变为木块的动量; (B) 子弹--木块系统的机械能守恒; (C) 子弹动能的减少等于木块的动能增量;(D) 子弹克服木块阻力所作的功等于这一过程中产生的热。
5.一花样滑冰者,开始时两臂伸开,转动惯量为0J ,自转时,其动能为200012E J ω=,然后他将手臂收回,转动惯量减少至原来的13,此时他的角速度变为ω,动能变为E ,则有关系:(D )(A )03ωω=,0E E =; (B )013ωω=,03E E =;(C)0ω=,0E E =; (D )03ωω=,03E E =。
二、填空题(每小题4分,共20分)6. 哈雷慧星绕太阳的轨道是以太阳为一个焦点的椭圆.它离太阳最近的距离是1018.7510m r =⨯ ,此时它的速率是41 5.4610m /s υ=⨯ .它离太阳最远时的速率是229.0810m /s υ=⨯ ,这时它离太阳的距离是2r =__1215.2610m υ=⨯_________.7.一个原来静止在光滑水平面上的物体,突然裂成三块,以相同 的速率沿三个方向在水平面上运动,各方向之间的夹角如图所示, 则三块物体的质量之比m 1:m 2:m 3= 1:1:1 。
大学物理_力学课堂练习
(4)
5.如图, 一薄圆盘(m,R)可绕通过其一直 o o 径oo' 转动,转动惯量为 J=mR2/4 该 R 圆盘从静止开始在恒力矩M作用下转 P 动,t 秒后位于圆盘边缘上与oo'轴的垂 直距离为R的P点的切向加速度at=_____________ 和法向加速度 an= _________________。 6.如图(a),以角速度ω0转动的圆柱,与静止的另一圆柱的 侧面相接触,因摩擦而带动; 稳定后以相同的线速度绕 轴转动,在此过程中,系统的守恒量是__________(动量, 角动量,动能);若换成圆盘面相接触,如图(b),条件同上, 系统的守恒量是______________。
l
l
碰撞后瞬时,对O的角动量
x
1 3 3 2 1 1 2 7 2 J [ m( l ) m( l ) ] ml 3 4 2 4 2 12
由角动量守恒
6v0 7l
(12)
力学课堂练习
一、选择题
1.某物体的运动规律为 dv/dt=-kv2t, 式中的k>0的 常数,当t=0时,初速为v0,则( ) (A)v=kt2/2+v0 (B) v=-kt2/2+v0 (C) v=kt2/2+1/v0 (D) v=-kt2/2+1/v0
y
2.一质点在如图的坐标平面内作圆运动, 有一力F F0 ( xi yj ) 作用在质点上, 在该质点从原点到(0, 2R)位置过程中, 力F对它所做的功为( ) (A)F0R2 (B) 2F0R2 (C) 3F0R2 (D) 4F0R2
大学物理练习题-力学
《大学物理》练习题(力学)一.选择题1.下面4种说法,正确的是 ( ) A .物体的加速度越大,速度就越大B .作直线运动的物体,加速度越来越小,速度也越来越小C .切向加速度为正时,质点运动加快D .法向加速度越大,质点运动的法向速度变化越快2.一质点按规律542+-=t t x 沿x 轴运动,(x 和t 的单位分别m 和s ),前3秒内质点的位移和路程分别( )A .m 3,m 3B .m 3-,m 3-C .m 3-,m 3D .m 3-,m 53.一质点在xy 平面上运动,其运动方程为53+=t x ,72-+=t t y ,该质点的运动轨迹是 ( )A .直线B .双曲线C .抛物线D .三次曲线4.作直线运动质点的运动方程为t t x 403-=,从1t 到2t 时间间隔内,质点的平均速度为 ( )A .()40212122-++t t t tB .40321-tC .()403212--t tD .()40212--t t5.一质点沿直线运动,其速度与时间成反比,则其加速度( ) A .与速度成正比B .与速度成反比C .与速度平方成正比D .与速度平方成反比6.一质点沿直线运动,每秒钟内通过的路程都是m 1,则该质点( ) A .作匀速直线运动 B .平均速率为11-⋅s mC .任一时刻的加速度都等于零D .任何时间间隔内,位移大小都等于路程 7.下面的说法正确的是( ) A . 合力一定大于分力B . 物体速率不变,则物体所受合力为零C . 速度很大的物体,运动状态不易改变D . 物体质量越大,运动状态越不易改变8.用细绳系一小球,使之在竖直平面内作圆周运动,当小球运动到最高点时( ) A .小球受到重力、绳子拉力和向心力的作用 B .小球受到重力、绳子拉力和离心力的作用 C .绳子的拉力可能为零 D .小球可能处于受力平衡状态9.将质量分别为1m 和2m 的两个滑块A 和B 置于斜面上,A 和B 与斜面间的摩擦系数分别是1μ和2μ,今将A 和B 粘合在一起构成一个大滑块,并使它们的底面共面地置于该斜面上,则该大滑块与斜面间的摩擦系数为( ) A .()221μμ+ B .()2121μμμμ+C .21μμD .()()212211m m m m ++μμ10.将质量为1m 和2m 的两个滑块P 和Q 分别连接于一根水平轻弹簧两端后,置于水平桌面上,桌面与滑块间的摩擦系数均为μ。
大学物理力学考试题及答案
大学物理力学考试题及答案一、选择题(每题3分,共30分)1. 一个物体的质量为2kg,受到的力为10N,那么它的加速度是多少?A. 5 m/s²B. 10 m/s²C. 15 m/s²D. 20 m/s²答案:B2. 根据牛顿第二定律,力F、质量m和加速度a之间的关系是:A. F = m * aB. F = m / aC. F = a * mD. F = a + m答案:A3. 一个物体从静止开始自由下落,忽略空气阻力,其下落的加速度为:A. 9.8 m/s²B. 19.6 m/s²C. 0 m/s²D. 1 g答案:A4. 一个物体在水平面上以10 m/s的速度做匀速直线运动,它的动量大小为:A. 10 kg·m/sB. 20 kg·m/sC. 无法确定,因为物体的质量未知D. 5 kg·m/s答案:C5. 根据能量守恒定律,一个物体的动能和势能之和:A. 随时间增加而增加B. 随时间减少而减少C. 在没有外力作用下保持不变D. 总是大于物体的动能答案:C6. 一个弹簧的劲度系数为1000 N/m,如果挂上一个1kg的物体,弹簧伸长的长度是多少?A. 0.1 mB. 1 mC. 10 mD. 无法确定,因为缺少物体的加速度答案:A7. 两个物体之间的万有引力与它们的质量乘积成正比,与它们之间的距离的平方成反比。
这个定律是由哪位科学家提出的?A. 牛顿B. 爱因斯坦C. 伽利略D. 库仑答案:A8. 一个物体在斜面上下滑,斜面倾角为30°,物体与斜面之间的摩擦系数为0.1,那么物体受到的摩擦力大小为:A. mg sin(30°)B. mg cos(30°)C. μ(mg cos(30°))D. μ(mg sin(30°))答案:D9. 一个物体在水平面上以恒定的加速度加速运动,已知它的初速度为3 m/s,末速度为15 m/s,经过的时间为4秒,那么它的加速度是多少?A. 2.25 m/s²B. 4 m/s²C. 5 m/s²D. 10 m/s²答案:B10. 一个物体在竖直上抛运动中,达到最高点时,它的加速度为:A. 0 m/s²B. g (重力加速度)C. -g (重力加速度)D. 2g (重力加速度)答案:C二、填空题(每题4分,共20分)11. 牛顿第三定律指出,作用力和反作用力大小________,方向________,作用在________的物体上。
(完整版)大学物理(力学)试卷附答案
大 学 物 理(力学)试 卷一、选择题(共27分) 1.(本题3分)如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有 (A) βA =βB . (B) βA >βB .(C) βA <βB . (D) 开始时βA =βB ,以后βA <βB . [ ] 2.(本题3分)几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体(A) 必然不会转动. (B) 转速必然不变.(C) 转速必然改变. (D) 转速可能不变,也可能改变. [ ] 3.(本题3分)关于刚体对轴的转动惯量,下列说法中正确的是 (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关. (B )取决于刚体的质量和质量的空间分布,与轴的位置无关. (C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关. [ ] 4.(本题3分)一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. [ ]5.(本题3分)将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为β.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将 (A) 小于β. (B) 大于β,小于2 β.(C) 大于2 β. (D) 等于2 β. [ ] 6.(本题3分)花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为(A)31ω0. (B) ()3/1 ω0. (C) 3 ω0. (D) 3 ω0. [ ]7.(本题3分)关于力矩有以下几种说法:(1) 对某个定轴而言,内力矩不会改变刚体的角动量. (2) 作用力和反作用力对同一轴的力矩之和必为零.(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等.在上述说法中,(A) 只有(2) 是正确的.(B) (1) 、(2) 是正确的. (C) (2) 、(3) 是正确的.(D) (1) 、(2) 、(3)都是正确的. [ ] 8.(本题3分)一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω (A) 增大. (B) 不变.(C) 减小. (D) 不能确定. [ ] 9.(本题3分)质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫⎝⎛=R JmR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,逆时针. [ ]二、填空题(共25分)10.(本题3分)半径为20 cm 的主动轮,通过皮带拖动半径为50 cm 的被动轮转动,皮带与轮之间无相对滑动.主动轮从静止开始作匀角加速转动.在4 s 内被动轮的角速度达到8πrad ·s -1,则主动轮在这段时间内转过了________圈. 11.(本题5分)绕定轴转动的飞轮均匀地减速,t =0时角速度为ω 0=5 rad / s ,t =20 s 时角速度为ω = 0.8ω 0,则飞轮的角加速度β =______________,t =0到 t =100 s 时间内飞轮所转过的角度θ =___________________. 12.(本题4分)半径为30 cm 的飞轮,从静止开始以0.50 rad ·s -2的匀角加速度转动,则飞轮边缘上一点在飞轮转过240°时的切向加速度a t =________,法向加速度a n =_______________. 13.(本题3分)一个作定轴转动的物体,对转轴的转动惯量为J .正以角速度ω0=10 rad ·s -1匀速转动.现对物体加一恒定制动力矩 M =-0.5 N ·m ,经过时间t =5.0 s 后,物体停止了转动.物体的转动惯量J =__________. 14.(本题3分)一飞轮以600 rev/min 的转速旋转,转动惯量为2.5 kg ·m 2,现加一恒定的制动力矩使飞轮在1 s 内停止转动,则该恒定制动力矩的大小M =_________. 15.(本题3分)质量为m 、长为l 的棒,可绕通过棒中心且与棒垂直的竖直光滑固定轴O 在水平面内自由转动(转动惯量J =m l 2 / 12).开始时棒静止,现有一子弹,质量也是m ,在水平面内以速度v 0垂直射入棒端并嵌在其中.则子弹嵌入后棒的角速度ω =_____________________. 16.(本题4分)在一水平放置的质量为m 、长度为l 的均匀细杆上,套着一质量也为m 的套管B (可看作质点),套管用细线拉住,它到竖直的光滑固定轴OO '的距离为l 21,杆和套管所组成的系统以角速度ω0绕OO '轴转动,如图所示.若在转动过程中细线被拉断,套管将沿着杆滑动.在套管滑动过程中,该系统转动的角速度ωmm m0v 俯视图与套管离轴的距离x 的函数关系为_______________.(已知杆本身对OO '轴的转动惯量为231ml )三、计算题(共38分) 17.(本题5分)如图所示,一圆盘绕通过其中心且垂直于盘面的转轴,以角速度ω作定轴转动,A 、B 、C 三点与中心的距离均为r .试求图示A 点和B 点以及A 点和C 点的速度之差B A v v ϖϖ-和C A v v ϖϖ-.如果该圆盘只是单纯地平动,则上述的速度之差应该如何? 18.(本题5分)一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为ω0.设它所受阻力矩与转动角速度成正比,即M =-k ω (k 为正的常数),求圆盘的角速度从ω0变为021ω时所需的时间.19.(本题10分)一轻绳跨过两个质量均为m 、半径均为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 和2m 的重物,如图所示.绳与滑轮间无相对滑动,滑轮轴光滑.两个定滑轮的转动惯量均为221mr .将由两个定滑轮以及质量为m 和2m 的重物组成的系统从静止释放,求两滑轮之间绳内的张力.20.(本题8分)如图所示,A 和B 两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 J =10 kg ·m 2 和 J =20 kg ·m 2.开始时,A 轮转速为600 rev/min ,B 轮静止.C 为摩擦啮合器,其转动惯量可忽略不计.A 、B 分别与C 的左、右两个组件相连,当C 的左右组件啮合时,B 轮得到加速而A 轮减速,直到两轮的转速相等为止.设轴光滑,求:(1) 两轮啮合后的转速n ;(2) 两轮各自所受的冲量矩.21.(本题10分)空心圆环可绕光滑的竖直固定轴AC 自由转动,转动惯量为J 0,环的半径为R ,初始时环的角速度为ω0.质量为m 的小球静止在环内最高处A 点,由于某种微小干扰,小球沿环向下滑动,问小球滑到与环心O 在同一高度的B 点和环的最低处的C 点时,环的角速度及小球相对于环的速度各为多大?(设环的内壁和小球都是光滑的,小球可视为质点,环截面半径r <<R .) 回答问题(共10分) 22.(本题5分)绕固定轴作匀变速转动的刚体,其上各点都绕转轴作圆周运动.试问刚体上任意一点是否有切向加速度?是否有法向加速度?切向加速度和法向加速度的大小是否变化?理由如何? 23.(本题5分)一个有竖直光滑固定轴的水平转台.人站立在转台上,身体的中心轴线与转台竖直轴线重合,两臂伸开各举着一个哑铃.当转台转动时,此人把两哑铃水平地收缩到胸前.在这一收缩过程中,(1) 转台、人与哑铃以及地球组成的系统机械能守恒否?为什么? (2) 转台、人与哑铃组成的系统角动量守恒否?为什么?(3) 每个哑铃的动量与动能守恒否?为什么?大 学 物 理(力学) 试 卷 解 答一、选择题(共27分)C D C C C D B C A 二、填空题(共25分) 10.(本题3分)20 参考解: r 1ω1=r 2ω2 , β1 = ω1 / t 1 ,θ1=21121t β 21211412ωθr r n π=π=4825411⨯π⨯⨯π=t =20 rev11.(本题5分)-0.05 rad ·s -2 (3分)250 rad (2分)12.(本题4分)0.15 m ·s -2(2分)1.26 m ·s -2(2分)参考解: a t =R ·β =0.15 m/s 2 a n =R ω 2=R ·2βθ =1.26 m/s 2 13.(本题3分)0.25 kg ·m 2(3分) 14.(本题3分)157N·m (3分) 15.(本题3分)3v 0/(2l )16.(本题4分)()2202347xl l +ω三、计算题(共38分) 17.(本题5分)解:由线速度r ϖϖϖ⨯=ωv 得A 、B 、C 三点的线速度ωr C B A ===v v v ϖϖϖ 1分各自的方向见图.那么,在该瞬时 ωr A B A 22==-v v v ϖϖϖθ=45° 2分同时 ωr A C A 22==-v v v ϖϖϖ方向同A v ϖ. 1分平动时刚体上各点的速度的数值、方向均相同,故0=-=-C A B A v v v v ϖϖϖϖ 1分 [注]此题可不要求叉积公式,能分别求出 A v ϖ、B v ϖ的大小,画出其方向即可. 18.(本题5分)解:根据转动定律: J d ω / d t = -k ω∴t Jkd d -=ωω2分 两边积分:⎰⎰-=t t Jk 02/d d 100ωωωω得 ln2 = kt / J∴ t =(J ln2) / k 3分19.(本题10分)θ BC AωB v ϖC v ϖA v ϖB v ϖ-A v ϖB v v A ϖϖ- -C v ϖ A v ϖ解:受力分析如图所示. 2分 2mg -T 1=2ma 1分 T 2-mg =ma 1分T 1 r -T r =β221mr 1分T r -T 2 r =β221mr 1分a =r β2分解上述5个联立方程得: T =11mg / 8 2分20.(本题8分)解:(1) 选择A 、B 两轮为系统,啮合过程中只有内力矩作用,故系统角动量守恒1分 J A ωA +J B ωB = (J A +J B )ω, 2分 又ωB =0得 ω ≈ J A ωA / (J A +J B ) = 20.9 rad / s 转速 ≈n 200 rev/min 1分(2) A 轮受的冲量矩⎰t MAd = J A (ω -ωA ) = -4.19×10 2 N ·m ·s 2分负号表示与A ωϖ方向相反. B 轮受的冲量矩⎰t MBd = J B (ω - 0) = 4.19×102 N ·m ·s 2分方向与A ωϖ相同.21.(本题10分)解:选小球和环为系统.运动过程中所受合外力矩为零,角动量守恒.对地球、小球和环系统机械能守恒.取过环心的水平面为势能零点.两个守恒及势能零点各1分,共3分小球到B 点时: J 0ω0=(J 0+mR 2)ω ① 1分()22220200212121BR m J mgR J v ++=+ωωω ② 2分 式中v B 表示小球在B 点时相对于地面的竖直分速度,也等于它相对于环的速度.由式①得:ω=J 0ω 0 / (J 0 + mR 2) 1分代入式②得222002J mR RJ gR B ++=ωv 1分 当小球滑到C 点时,由角动量守恒定律,系统的角速度又回复至ω0,又由机械能守恒定律知,小球在C 的动能完全由重力势能转换而来.即:()R mg m C 2212=v , gR C 4=v 2分四、问答题(共10分) 22.(本题5分)答:设刚体上任一点到转轴的距离为r ,刚体转动的角速度为ω,角加速度为β,则由运动学关系有:切向加速度a t =r β 1分 法向加速度a n =r ω2 1分对匀变速转动的刚体来说β=d ω / d t =常量≠0,因此d ω=βd t ≠0,ω 随时间变化,即ω=ω (t ). 1分所以,刚体上的任意一点,只要它不在转轴上(r ≠0),就一定具有切向加速度和法向加速度.前者大小不变,后者大小随时间改变. 2分(未指出r ≠0的条件可不扣分)m 2m βT 2 2P ϖ1P ϖTa T 1a23.(本题5分)答:(1) 转台、人、哑铃、地球系统的机械能不守恒. 1分因人收回二臂时要作功,即非保守内力的功不为零,不满足守恒条件. 1分 (2) 转台、人、哑铃系统的角动量守恒.因系统受的对竖直轴的外力矩为零. 1分(3) 哑铃的动量不守恒,因为有外力作用. 1分 哑铃的动能不守恒,因外力对它做功. 1分 刚体题一 选择题 1.(本题3分,答案:C ;09B )一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. 2.(本题3分,答案:D ;09A ) 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为(A)31ω0. (B) ()3/1 ω0. (C)3 ω0. (D) 3 ω0.3.( 本题3分,答案:A ,08A )1.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小. (B) 角速度从小到大,角加速度从小到大. (C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. 二、填空题1(本题4分,08A, 09B )一飞轮作匀减速运动,在5s 内角速度由40πrad/s 减少到10π rad/s ,则飞轮在这5s 内总共转过了 圈,飞轮再经 的时间才能停止转动。
大学物理练习题
大学物理练习题一、力学部分1. 一物体从静止开始沿水平面加速运动,经过5秒后速度达到10m/s。
求物体的加速度。
2. 质量为2kg的物体,在水平面上受到一个6N的力作用,若摩擦系数为0.2,求物体的加速度。
3. 一物体在斜面上匀速下滑,斜面倾角为30°,物体与斜面间的摩擦系数为0.3,求物体的质量。
4. 一物体在水平面上做匀速圆周运动,半径为2m,速度为4m/s,求物体的向心加速度。
5. 一物体在竖直平面内做匀速圆周运动,半径为1m,速度为5m/s,求物体在最高点的向心力。
二、热学部分1. 某理想气体在标准大气压下,温度从27℃升高到127℃,求气体体积的膨胀倍数。
2. 一理想气体在等压过程中,温度从300K升高到600K,求气体体积的变化倍数。
3. 已知某气体的摩尔体积为22.4L/mol,求在标准大气压下,1mol该气体的体积。
4. 一密闭容器内装有理想气体,温度为T,压强为P,现将容器体积缩小到原来的一半,求气体新的温度和压强。
5. 某理想气体在等温过程中,压强从2atm变为1atm,求气体体积的变化倍数。
三、电磁学部分1. 一长直导线通有电流10A,距离导线5cm处一点的磁场强度为0.01T,求该点的磁感应强度。
2. 一矩形线圈,长为10cm,宽为5cm,通有电流5A,求线圈中心处的磁感应强度。
3. 一半径为0.5m的圆形线圈,通有电流2A,求线圈中心处的磁感应强度。
4. 一长直导线通有电流20A,求距离导线2cm处的磁场强度。
5. 一闭合线圈在均匀磁场中转动,磁通量从最大值减小到零,求线圈中感应电动势的变化。
四、光学部分1. 一束光从空气射入水中,入射角为30°,求折射角。
2. 一束光从水中射入空气,折射角为45°,求入射角。
3. 一平面镜反射一束光,入射角为60°,求反射角。
4. 一凸透镜焦距为10cm,物距为20cm,求像距。
5. 一凹透镜焦距为15cm,物距为30cm,求像距。
大学物理---力学部分练习题及答案解析
大学物理---力学部分练习题及答案解析一、选择题1、某质点作直线运动的运动学方程为x =3t -5t 3+ 6 (SI),则该质点作(A) 匀加速直线运动,加速度沿x 轴正方向.(B) 匀加速直线运动,加速度沿x 轴负方向.(C) 变加速直线运动,加速度沿x 轴正方向.(D) 变加速直线运动,加速度沿x 轴负方向. [ D ]2、一质点沿x 轴作直线运动,其v t 曲线如图所示,如t =0时,质点位于坐标原点,则t = 4.5 s 时,质点在x 轴上的位置为(A) 5m . (B) 2m .(C) 0. (D)2 m . (E) 5 m.[ B ]3、 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b 为常量), 则该质点作(A) 匀速直线运动. (B) 变速直线运动.(C) 抛物线运动. (D)一般曲线运动. [ B ]4、一质点在x 轴上运动,其坐标与时间的变化关系为x =4t-2t 2,式中x 、t 分别以m 、s为单位,则4秒末质点的速度和加速度为 ( B )(A )12m/s 、4m/s 2; (B )-12 m/s 、-4 m/s 2 ;(C )20 m/s 、4 m/s 2 ; (D )-20 m/s 、-4 m/s 2;5. 下列哪一种说法是正确的 ( C )(A )运动物体加速度越大,速度越快(B )作直线运动的物体,加速度越来越小,速度也越来越小(C )切向加速度为正值时,质点运动加快(D )法向加速度越大,质点运动的法向速度变化越快6、一运动质点在某瞬时位于矢径()y x r , 的端点处, 其速度大小为(A) t r d d (B) tr d d(C) t r d d (D) 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x [ D ] 1 4.5432.52-112t v (m/s)7.用水平压力F 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F逐渐增大时,物体所受的静摩擦力f ( B )(A) 恒为零.(B) 不为零,但保持不变.(C) 随F 成正比地增大.(D) 开始随F 增大,达到某一最大值后,就保持不变11、某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是 (A) 0221v v +=kt , (B) 0221v v +-=kt , (C) 02121v v +=kt , (D) 02121v v +-=kt [ C ] 12、质量为20 g 的子弹沿X 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿X 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为(A) 9 N·s . (B) -9 N·s .(C)10 N·s . (D) -10 N·s . [ A ]13、在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力)(A) 总动量守恒.(B) 总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒.(C) 总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒.(D) 总动量在任何方向的分量均不守恒. [ C ]14、质量为m 的小球,沿水平方向以速率v 与固定的竖直壁作弹性碰撞,设指向壁内的方向为正方向,则由于此碰撞,小球的动量增量为(A) mv . (B) 0.(C) 2mv . (D) –2mv . [ D ]15、对于一个物体系来说,在下列的哪种情况下系统的机械能守恒?(A) 合外力为0.(B) 合外力不作功.(C) 外力和非保守内力都不作功.(D) 外力和保守内力都不作功. [ C ]16、下列叙述中正确的是(A)物体的动量不变,动能也不变.(B)物体的动能不变,动量也不变.(C)物体的动量变化,动能也一定变化.(D)物体的动能变化,动量却不一定变化.[ A ]17.考虑下列四个实例.你认为哪一个实例中物体和地球构成的系统的机械能不守恒?(A)物体作圆锥摆运动.(B)抛出的铁饼作斜抛运动(不计空气阻力).(C)物体在拉力作用下沿光滑斜面匀速上升.(D)物体在光滑斜面上自由滑下.[ C ]18.一子弹以水平速度v0射入一静止于光滑水平面上的木块后,随木块一起运动.对于这一过程正确的分析是(A) 子弹、木块组成的系统机械能守恒.(B) 子弹、木块组成的系统水平方向的动量守恒.(C) 子弹所受的冲量等于木块所受的冲量.(D) 子弹动能的减少等于木块动能的增加.[ B ]19、一光滑的圆弧形槽M置于光滑水平面上,一滑块m自槽的顶部由静止释放后沿槽滑下,不计空气阻力.对于这一过程,以下哪种分析是对的?(A) 由m和M组成的系统动量守恒.(B) 由m和M组成的系统机械能守恒.(C) 由m、M和地球组成的系统机械能守恒.(D) M对m的正压力恒不作功.[ C ]20.关于刚体对轴的转动惯量,下列说法中正确的是(A)只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B)取决于刚体的质量和质量的空间分布,与轴的位置无关.(C)取决于刚体的质量、质量的空间分布和轴的位置.(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[ C ]21.刚体角动量守恒的充分而必要的条件是(A) 刚体不受外力矩的作用.(B) 刚体所受合外力矩为零.(C) 刚体所受的合外力和合外力矩均为零.(D) 刚体的转动惯量和角速度均保持不变. [ B ]22. 对一个作简谐振动的物体,下面哪种说法是正确的?(A) 物体处在运动正方向的端点时,速度和加速度都达到最大值;(B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零;(C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在负方向的端点时,速度最大,加速度为零。
大学物理力学练习题及答案
大学物理力学练习题及答案一、选择题(每题2分,共20分)1. 一个物体质量为2kg,受到的力是3N,该物体的加速度大小为多少?A. 0.3 m/s^2B. 1.5 m/s^2C. 6 m/s^2D. 1 N/kg答案:B2. 假设一个物体在重力作用下自由下落,那么它的重力势能和动能之间的关系是?A. 重力势能和动能相等B. 重力势能大于动能C. 重力势能小于动能D. 重力势能减少,动能增加答案:A3. 力的合成是指两个或多个力合并后的结果。
如果两个力大小相等并且方向相反,则它们的合力为A. 0B. 1C. 2D. 无法确定答案:A4. 在一个力的作用下,一个物体做匀速直线运动。
可以推断出物体的状态是A. 静止状态B. 匀速运动状态C. 加速运动状态D. 不能判断答案:B5. 牛顿运动定律中,质量的作用是用来描述物体对力的抵抗程度,质量越大,则物体对力的抵抗越小。
A. 对B. 错答案:B6. 一个物体以20 m/s的速度做匀速圆周运动,周长为40π m,物体的摩擦力大小为F,那么物体受到的拉力大小为多少?A. 0B. FC. 2FD. 4F答案:C7. 一个质量为1 kg的物体向左受到3 N的力,向右受到2 N的力,则该物体的加速度大小为多少?A. 1 m/s^2B. 2 m/s^2C. 3 m/s^2D. 5 m/s^2答案:A8. 弹力是一种常见的力,它的特点是随着物体变形而产生,并且与物体的形状无关。
A. 对B. 错答案:A9. 一个物体受到两个力,力的合力为2 N,其中一个力的大小为1 N,则另一个力的大小为多少?A. 1 NB. 0 NC. -1 ND. 无法确定答案:A10. 在竖直抛体运动过程中,物体的速度在上升过程中逐渐减小,直到达到峰值后开始增大。
A. 对B. 错答案:B二、计算题(每题10分,共40分)1. 一个物体以5 m/s的初速度被一个10 N的力加速,物体质量为2 kg,求物体在2秒后的速度。
大学物理力学习题
由(1)式积分
v
0 vdv 0 mgRsin d
解得 v2 2Rg (1 cos ) 此式与(2)、(3)联解得 cos 2
滑落点在顶点以下的竖直距离 3 h R(1 cos ) 1 R
3
第二单元(1)——功、动能、势能
3.1.5. 如图所示,一人造地球卫星绕
1.2.1. 一运动质点沿半径为R的圆周做匀速率圆周运动, 每经时间t s转一圈,则在3t s时间间隔内其平均速度的 大小及平均速率分别为
( A). 2R ,2R (B).0,2R (C).0,0 (D). 2R ,0
tt
t
t
(E)以上答案都不正确.
解:
v
r
0,
v
0
t
v s 3 2R 2R
2k
2k
2k
(D).根据木块达到静止状态的不同情况,可以取以上三个答案
中的任何一个. 解:设弹簧伸长量为x,则当F>kx时,木块受到的静摩擦力向左.
x F f , 0 f mg, F mg x F
k
k
k
Ep
1 kx2, (F 2
mg)2
2k
Ep
F2 2k
当F<kx时,木块受到的静摩擦力向右.
f h Fh sin
sin
sin
mgs cos(900 )
Fs cos Fh cos sin
mgh
mgh
cot
)
3.2. 1. 对功的概念有下列几种表述法: (1).质点经过一闭合路径,保守力对质点做的功等于零; (2).作用力与反作用力大小相等,方向相反,所以两者所做功 的代数和必为零; (3).保守力做正功时,系统的相应的势能增加. 在这些表述中: (A).(2)(3)正确; (B).只有(2)正确; (C).只有(3)正确;(D).(1)(2)正确;(E).只有(1)正确.
大学物理力学题目训练含答案
大学物理力学题目训练含答案问题1一枪的质量为$m$,初速度为$v$,击中静止的物块的质量为$M$。
若已知作用力的时间为$t$,求物块的速度。
解答1根据动量守恒定律,炮与物块的总动量在作用时间内保持不变。
设物块的速度为$v'$,则有:$$m \cdot v + 0 = (M + m) \cdot v'$$解得:$$v' = \frac{m \cdot v}{M + m}$$问题2在一个轨道上有一个小球,质量为$m_1$,速度为$v_1$。
小球碰撞到静止的大球,质量为$m_2$,半径为$R$。
已知碰撞后小球的速度为$v_1'$,大球的速度为$v_2'$,求$v_1'$和$v_2'$之间的关系。
解答2根据动量守恒和动能守恒定律,碰撞前后的总动量和总动能相等。
设小球碰撞后的速度为$v_1'$,大球碰撞后的速度为$v_2'$,则有:总动量守恒:$m_1 \cdot v_1 + m_2 \cdot 0 = m_1 \cdot v_1' +m_2 \cdot v_2'$总动能守恒:$\frac{1}{2} m_1 \cdot v_1^2 + 0 = \frac{1}{2}m_1 \cdot v_1'^2 + \frac{1}{2} m_2 \cdot v_2'^2$解以上方程组,得到$v_1'$和$v_2'$之间的关系。
问题3一个质点质量为$m$,受到力$F$作用,已知力的大小和方向,求质点的加速度。
解答3根据牛顿第二定律,质点受力和加速度满足以下关系:$F = m \cdot a$解以上方程,得到质点的加速度$a$。
以上是大学物理力学题目训练的几个例子,希望对你有帮助!。
大学物理力学题库
一、选择题:(每题3分)1、某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作(A) 匀加速直线运动,加速度沿x 轴正方向.(B) 匀加速直线运动,加速度沿x 轴负方向.(C) 变加速直线运动,加速度沿x 轴正方向.(D) 变加速直线运动,加速度沿x 轴负方向. [ ] 2、一质点沿x 轴作直线运动,其v -t曲线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为(A) 5m .(B) 2m . (C) 0. (D) -2 m . (E) -5 m. [ ]3、图中p 是一圆的竖直直径pc 的上端点,一质点从p 开始分别沿不同的弦无摩擦下滑时,到达各弦的下端所用的时间相比较是(A) 到a 用的时间最短.(B) 到b 用的时间最短.(C) 到c 用的时间最短.(D) 所用时间都一样. [ ]4、 一质点作直线运动,某时刻的瞬时速度=v 2 m/s ,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A) 等于零. (B) 等于-2 m/s .(C) 等于2 m/s . (D) 不能确定. [ ] 5、 以下五种运动形式中,a 保持不变的运动是(A) 单摆的运动. (B) 匀速率圆周运动.(C) 行星的椭圆轨道运动. (D) 抛体运动.(E) 圆锥摆运动. [ ]6、 一只质量为m 的猴,原来抓住一根用绳吊在天花板上的质量为M 的直杆,悬线突然断开,小猴则沿杆子竖直向上爬以保持它离地面的高度不变,此时直杆下落的加速度为-12 a p(A) g . (B) g Mm . (C) g M m M +. (D) g mM m M -+ . (E) g M m M -. [ ]7、 一子弹以水平速度v 0射入一静止于光滑水平面上的木块后,随木块一起运动.对于这一过程正确的分析是(A) 子弹、木块组成的系统机械能守恒.(B) 子弹、木块组成的系统水平方向的动量守恒.(C) 子弹所受的冲量等于木块所受的冲量.(D) 子弹动能的减少等于木块动能的增加. [ ]8、 刚体角动量守恒的充分而必要的条件是(A) 刚体不受外力矩的作用.(B) 刚体所受合外力矩为零.(C) 刚体所受的合外力和合外力矩均为零.(D) 刚体的转动惯量和角速度均保持不变. [ ]9、如果一个箱子与货车底板之间的静摩擦系数为μ,当这货车爬一与水平方向成θ角的平缓山坡时,要不使箱子在车底板上滑动,车的最大加速度a max =_______________________________________.10 、一物体质量M =2 kg ,在合外力i t F )23(+= (SI )的作用下,从静止开始运动,式中i 为方向一定的单位矢量, 则当t=1 s 时物体的速度1v =__________.11、设作用在质量为1 kg 的物体上的力F =6t +3(SI ).如果物体在这一力的作用下,由静止开始沿直线运动,在0到2.0 s 的时间间隔内,这个力作用在物体上的冲量大小I=__________________.12、一质量为m 的小球A ,在距离地面某一高度处以速度v 水平抛出,触地后反跳.在抛出t 秒后小球A 跳回原高度,速度仍沿水平方向,速度大小也与抛出时相同,如图.则小球A 与地面碰撞过程中,地面给它的冲量的方向为________________,冲量的大小为____________________.8713、质量为m的质点,以不变的速率v经过一水平光滑轨道的︒60弯角时,轨道作用于质点的冲量大小I=________________.14、质量为m的质点,以不变的速率v经过一水平光滑轨道的︒60弯角时,轨道作用于质点的冲量大小I=________________.15、质量为M的车以速度v0沿光滑水平地面直线前进,车上的人将一质量为m的物体相对于车以速度u竖直上抛,则此时车的速度v=______.16、一质量为30 kg的物体以10 m·s-1的速率水平向东运动,另一质量为20 kg的物体以20 m·s-1的速率水平向北运动。
大学物理力学习题
力学(一)质点运动学的描述一、 选择题1、某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作(A) 匀加速直线运动,加速度沿x 轴正方向. (B) 匀加速直线运动,加速度沿x 轴负方向. (C) 变加速直线运动,加速度沿x 轴正方向.(D) 变加速直线运动,加速度沿x 轴负方向. [ ]2、一质点沿x 轴作直线运动,其v -t 曲线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为(A) 5m . (B) 2m .(C) 0. (D) -2 m .(E) -5 m. [ ]3、几个不同倾角的光滑斜面,有共同的底边,顶点也在同一竖直面上.若使一物体(视为质点)从斜面上端由静止滑到下端的时间最短,则斜面的倾角应选(A) 60°. (B) 45°. (C) 30°. (D) 15°.[ ]4、如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率0v收绳,绳不伸长、湖水静止,则小船的运动是 (A) 匀加速运动. (B) 匀减速运动. (C) 变加速运动. (D) 变减速运动. (D) 匀速直线运动. [ ]二、填空题1、一质点沿x 方向运动,其加速度随时间变化关系为a = 3+2 t (SI) ,如果初始时质点的速度v 0为5 m/s ,则当t为3s 时,质点的速度v = . 2、一质点沿直线运动,其运动学方程为x = 6 t -t 2 (SI),则在t 由0至4s 的时间间隔内,质点的位移大小为 _________,在t 由0到4s 的时间间隔内质点走过的路程为_________________.-12O3、灯距地面高度为h1,一个人身高为h2,在的头顶在地上的影子M点沿地面移动的速度为v M= .三、计算题1、一质点沿x轴运动,其加速度a与位置坐标x的关系为a=2+6 x2 (SI)如果质点在原点处的速度为零,试求其在任意位置处的速度.2、有一质点沿x轴作直线运动,t时刻的坐标为x = 4.5 t2– 2 t3(SI) .试求:(1)第2秒内的平均速度;(2)第2秒末的瞬时速度;(3)第2秒内的路程.一、DBBC二、23 m/s 3分8 m 2分10 m 2分h1v /(h1 h2) 3分三、解:设质点在x 处的速度为v ,62d d d d d d 2x t xx t a +=⋅==v v 2分()x x xd 62d 020⎰⎰+=v v v2分()2 213x x +=v 1分解:(1) 5.0/-==∆∆t x v m/s 1分(2) v = d x /d t = 9t - 6t 21分 v (2) =-6 m/s 1分 (3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m 2分力学(二)圆周运动与相对运动一、 选择题1、质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2p R /T , 2p R/T . (B) 0 , 2πR /T(C) 0 , 0. (D) 2πR /T , 0. [ ]2、对于沿曲线运动的物体,以下几种说法中哪一种是正确的: (A) 切向加速度必不为零. (B) 法向加速度必不为零(拐点处除外).(C) 由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零. (D) 若物体作匀速率运动,其总加速度必为零.(E) 若物体的加速度a为恒矢量,它一定作匀变速率运动. [ ] 3、质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质点的速率)(A)t d d v . (B) R 2υ.(C)R t 2d d v v +. (D) 2/1242d d ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛R t v v . [ ]4、在相对地面静止的坐标系内,A 、B 二船都以2 m/s 速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向.今在A 船上设置与静止坐标系方向相同的坐标系(x 、y 方向单位矢用i 、j表示),那么在A 船上的坐标系中,B 船的速度(以m/s为单位)为(A) 2i+2j. (B) -2i +2j .(C) -2i -2j. (D) 2i -2j .[ ]二、填空题1、质点沿半径为R 的圆周运动,运动学方程为 223t+=θ (SI) ,则t时刻质点的法向加速度大小为a n = ;角加速度β= .2、设质点的运动学方程为j t R i t R rsin cos ωω+= (式中R 、ω 皆为常量) 则质点的v=___________,d v /d t =_________________.3、如图所示,小船以相对于水的速度v与水流方向成α角开行,若水流速度为u,则小船相对于岸的速度的大小为_______________,与水流方向的夹角为_________________.三、计算题1、质点M 在水平面内的运动轨迹如图所示,OA 段为直线,AB 、BC 段分别为不同半径的两个1/4圆周.设t =0时,M 在O 点,已知运动学方程为S =30t +5t 2 (SI)αuv求t =2 s 时刻,质点M 的切向加速度和法向加速度.2、一质点沿半径为R 的圆周运动.质点所经过的弧长与时间的关系为221ct bt S += 其中b 、c 是大于零的常量,求从0=t开始到切向加速度与法向加速度大小相等时所经历的时间.一、 选择题1、两个质量相等的小球由一轻弹簧相连接,子剪断的瞬间,球1和球2的加速度分别为 (A) a 1=g,a 2=g. (B) a 1=0,a 2=g. (C) a 1=g,a 2=0. (D) a 1=2g,a 2=0.[ 2、水平地面上放一物体A ,它与地面间的滑动摩擦系数为μ.现加一恒力F如图所示.欲使物体A 有最大加速度,则恒力F与水平方向夹角θ 应满足(A) sin θ =μ. (B) cos θ =μ. (C) tg θ =μ. (D) ctg θ =μ.[ ]B3、一只质量为m 的猴,原来抓住一根用绳吊在天花板上的质量为M 的直杆,悬线突然断开,小猴则沿杆子竖直向上爬以保持它离地面的高度不变,此时直杆下落的加速度为(A) g . (B)g M m . (C) g MmM +. (D)g m M m M -+ . (E)g MmM -.[ ]4、一公路的水平弯道半径为R ,路面的外侧高出内侧,并与水平面夹角为θ.要使汽车通过该段路面时不引起侧向摩擦力,则汽车的速率为(A)Rg . (B)θtg Rg .(C)θθ2sin cos Rg . (D)θctg Rg[ ]二、填空题1、沿水平方向的外力F 将物体A 压在竖直墙上,由于物体与墙之间有摩擦力,此时物体保持静止,并设其所受静摩擦力为f 0,若外力增 至2F ,则此时物体所受静摩擦力为_____________.2、如图,在光滑水平桌面上,有两个物体A 和B 紧靠在一起.它们的质量分别为m A =2 kg ,m B =1 kg .今用一水平力F =3 N 推物体B ,则B 推A 的力等于______________.如用同样大小的水平力从右边推A ,则A 推B 的力等于___________________.3、一圆锥摆摆长为l 、摆锤质量为m ,在水平面上作匀速圆周运动,摆线与铅直线夹角θ,则(1) 摆线的张力T=_____________(2) 摆锤的速率v=_____________.三、计算题1、如图所示,质量为m的摆球A悬挂在车架上.求在下述各种情况下,摆线与竖直方向的夹角α和线中的张力T.(1)小车沿水平方向作匀速运动;(2)小车沿水平方向作加速度为a的运动.2、一质量为60 kg的人,站在质量为30 kg的底板上,用绳和滑轮连接如图.设滑轮、绳的质量及轴处的摩擦可以忽略不计,绳子不可伸长.欲使人和底板能以1 m/s2的加速度上升,人对绳子的拉力T2多大?人对底板的压力多大? (取g=10 m/s2)一、 DCCB 二、f 0 3分)/(m M F + 2分 )/(m M MF + 2分θc o s /mg 1分θθc o ss i ngl2分三、解:(1) 0=α 1分mg T = 1分 (2) ma T =αsin , mg T =αcosg a /tg =α [或)/(tg 1g a -=α] 1分 22g a m T += 2分解:人受力如图(1) 图2分 a m g m N T 112=-+ 1分底板受力如图(2) 图2分 a m g m N T T 2221=-'-+ 2分 212T T = 1分 N N ='由以上四式可解得a m m g m g m T )(421212+=--∴ 5.2474/))((212=++=a g m m T N图(1)a 图(2)T g m 11分 5.412)(21=-+=='T a g m N N N 1分力学(四)功、势能一、 选择题1、一辆汽车从静止出发在平直公路上加速前进.如果发动机的功率一定,下面哪一种说法是正确的?(A) 汽车的加速度是不变的. (B) 汽车的加速度随时间减小.(C) 汽车的加速度与它的速度成正比. (D) 汽车的速度与它通过的路程成正比.(E) 汽车的动能与它通过的路程成正比.[ ]2、一个质点同时在几个力作用下的位移为:k j i r654+-=∆ (SI)其中一个力为恒力k j i F953+--= (SI),则此力在该位移过程中所作的功为 (A) -67 J . (B) 17 J .(C) 67 J . (D) 91 J .[ ]3、对功的概念有以下几种说法:(1) 保守力作正功时,系统内相应的势能增加. (2) 质点运动经一闭合路径,保守力对质点作的功为零. (3) 作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零.在上述说法中:(A) (1)、(2)是正确的. (B) (2)、(3)是正确的.(C) 只有(2)是正确的. (D) 只有(3)是正确的.[ ]4、有一劲度系数为k 的轻弹簧,原长为l 0,将它吊在天花板上.当它下端挂一托盘平衡时,其长度变为l 1.然后在托盘中放一重物,弹簧长度变为l 2,则由l 1伸长至l 2的过程中,弹性力所作的功为(A) ⎰-21d l l x kx . (B) ⎰21d l l x kx .(C)⎰---0201d l l l l x kx . (D)⎰--0201d l l l l x kx .[ ]二、填空题1、已知地球质量为M ,半径为R .一质量为m 的火箭从地面上升到距地面高度为2R 处.在此过程中,地球引力对火箭作的功为_____________________.2、如图所示,一斜面倾角为θ,用与斜面成α角的恒力F将一质量为m 的物体沿斜面拉升了高度h ,物体与斜面间的摩擦系数为μ.摩擦力在此过程中所作的功W f =________________________. 三、 计算题1、一物体按规律x =ct 3 在流体媒质中作直线运动,式中c 为常量,t 为时间.设媒质对物体的阻力正比于速度的平方,阻力系数为k ,试求物体由x =0运动到x =l 时,阻力所作的功.2、一质量为m 的质点在Oxy 平面上运动,其位置矢量为j t b i t a rωωsin cos +=(SI)式中a 、b 、ω是正值常量,且a >b . (1)求质点在A 点(a ,0)时和B 点(0,b )时的动能;(2)求质点所受的合外力F以及当质点从A 点运动到B 点的过程中F 的分力x F 和y F分别作的功.一、 BCCC 二、)131(R R GMm - 或 RGMm32-3分θαμθμs i n s i n c t g Fh mgh +-3分三、解:由x =ct 3可求物体的速度: 23d d ct tx==v 1分 物体受到的阻力大小为: 343242299x kc t kc k f ===v 2分力对物体所作的功为:⎰=W W d =⎰-lx x kc 03432d 9 =7273732lkc - 2分解:(1)位矢 j t b i t a rωωs i n c o s += (SI) 可写为 t a x ωc o s = , t b y ωs i n= t a t x x ωωs i n d d -==v , t b ty ωωc o s d dy-==v在A 点(a ,0) ,1cos =t ω,0sin =t ωE KA =2222212121ωmb m m y x =+v v 2分在B 点(0,b ) ,0cos =t ω,1sin =t ωE KB =2222212121ωma m m y x =+v v 2分(2) j ma i ma F y x +==j t mb i t maωωωωsin cos 22-- 2分由A →B ⎰⎰-==020d c o s d a a x x x t a m x F W ωω=⎰=-022221d a ma x x m ωω 2分⎰⎰-==b b y y t b m y F W 020dy sin d ωω=⎰-=-b mb y y m 022221d ωω 2分习题(五)动能定理、功能原理、机械能宁恒一、 选择题1、质量为m 的一艘宇宙飞船关闭发动机返回地球时,可认为该飞船只在地球的引力场中运动.已知地球质量为M ,万有引力恒量为G ,则当它从距地球中心R 1处下降到R 2处时,飞船增加的动能应等于(A)2R GMm(B)22R GMm (C) 2121R R R R GMm -(D) 2121R R R GMm -(E) 222121R R R R GMm -[ ]2、今有一劲度系数为k 的轻弹簧,竖直放置,下端悬一质量为m 的小球,开始时使弹簧为原长而小球恰好与地接触,今将弹簧上端缓慢地提起,直到小球刚能脱离地面为止,在此过程中外力作功为(A)kg m 422(B)kg m 322(C)kg m 222(D)kg m 222(E)kg m 224[ ]3、如图所示,子弹射入放在水平光滑地面上静止的木块而不穿出.以地面为参考系,下列说法中正确的说法是(A) 子弹的动能转变为木块的动能. (B) 子弹─木块系统的机械能守恒.(C) 子弹动能的减少等于子弹克服木块阻力所作的功.(D) 子弹克服木块阻力所作的功等于这一过程中产生的热.[ ]二、 填空题1、如图所示,质量m =2 kg 的物体从静止开始,沿1/4圆弧从A 滑到B ,在B 处速度的大小为v =6 m/s ,已知圆的半径R =4 m ,则物体从A 到B 的过程中摩擦力对它所作的功W =_________.2、质量m =1 kg 的物体,在坐标原点处从静止出发在水平面内沿x 轴运动,其所受合力方向与运动方向相同,合力大小为F =3+2x (SI),那么,物体在开始运动的3 m 内,合力所作的功W =________________;且x =3 m 时,其速率v =_________________.三、 计算题1、某弹簧不遵守胡克定律. 设施力F ,相应伸长为x ,力与伸长的关系为F =52.8x +38.4x 2(SI )求: (1)将弹簧从伸长x 1=0.50 m 拉伸到伸长x 2=1.00 m 时,外力所需做的功.(2)将弹簧横放在水平光滑桌面上,一端固定,另一端系一个质量为2.17 kg 的物体,然后将弹簧拉伸到一定伸长x 2=1.00 m ,再将物体由静止释放,求当弹簧回到x 1=0.50 m 时,物体的速率.(3)此弹簧的弹力是保守力吗?2、如图所示,质量m 为 0.1 kg 的木块,在一个水平面上和一个劲度系数k 为20 N/m 的轻弹簧碰撞,木块将弹簧由原长压缩了x = 0.4 m .假设木块与水平面间的滑动摩擦系数 k 为0.25,问在将要发生碰撞时木块的速率v 为多少?CCC-42.4 J18 J 6 m/s解:(1) 外力做的功=31 J(2) 设弹力为F ′= 5.34 m/s (3) 此力为保守力,因为其功的值仅与弹簧的始末态有关.解:根据功能原理,木块在水平面上运动时,摩擦力所作的功等于系统(木块和弹簧)机械能的增量.由题意有 222121v m kx x f r -=-而 mg f k r μ=由此得木块开始碰撞弹簧时的速率为 mkx gx k 22+=μv= 5.83 m/s[另解]根据动能定理,摩擦力和弹性力对木块所作的功,等于木块动能的增量,⎰⎰⋅+==21d )4.388.52(d 2x x xx x xF W ⎰⎰⋅=-==1212d d 21'2x x x x Wx F x F m v mW2=v应有 20210v m k x d x m g x xk -=--⎰μ其中 221kx kxdx x =⎰ 力学(六)动量守恒定律一、 选择题1、质量为m 的质点,以不变速率v 沿图中正三角形ABC 的水平光滑轨道运动.质点越过A 角时,轨道作用于质点的冲量的大小为(A) m v . (B) m v . (C) m v . (D) 2m v .[ ]2、质量为20 g 的子弹沿X 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿X 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为 (A) 9 N·s . (B) -9 N·s .(C)10 N·s . (D) -10 N·s .[ ]3、在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力) (A) 总动量守恒. (B) 总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒. (C) 总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒. (D) 总动量在任何方向的分量均不守恒. [ ]4、质量为20 g 的子弹,以400 m/s 射入一原来静止的质量为980 g 的摆球中, (A) 2 m/s . (B) 4 m/s . (C) 7 m/s . (D) 8 m/s .[二、填空题1、两块并排的木块A和B,质量分别为m 1和m 2 ,静止地放置在光滑的水平面上,一子弹水平地穿过两木块,设子弹穿过两木块所用的时间分别为∆t 1 和∆t 2 ,木块对子弹的阻力为恒力F ,则子弹穿出后,木块A 的速度大小为____ ,木块B 的速度大小为______.C32、一物体质量M =2 kg ,在合外力i t F)23(+= (SI )的作用下,从静止开始运动,式中i 为方向一定的单位矢量, 则当t=1 s 时物体的速度1v=_________.3、一质量为30 kg 的物体以10 m·s -1的速率水平向东运动,另一质量为20 kg 的物体以20 m·s -1的速率水平向北运动。
大学物理力学练习
质点力学1. 一质点沿直线运动,运动方程为3226)(t t t x -=。
试求:(1)第s 2内位移和平均速度; (2)s 1末及s 2末的瞬时速度,第s 2内的路程; (3)s 1末的瞬时加速度和第s 2内的平均加速度。
2.一个正在沿直线行驶的汽船,关闭发动机后,由于阻力作用,得到一个与速度反向、大小与船速平方成正比的加速度,即2/kV dt dV -=,k 为常数.关闭发动机的时刻作为计时起点,且关闭时船的速度大小为0V ,试求:(1)t 时刻的速度大小;(2)在时间t 内,船行驶的距离。
3. 质量为m 的物体,最初静止于0x ,在力2xkf -= (k 为常数)作用下沿直线运动。
求物体在x 处的速度大小。
4. 一质量为m 的小球以速率0V 从地面开始竖直向上运动。
在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为K 。
求: (1)小球速率随时间的变化关系)(t V ; (2)小球上升到最大高度所花的时间T 。
5. 光滑的水平桌面上放置一固定的圆环带,半径为R 。
一物体帖着环带内侧运动,物体与环带间的滑动摩擦因数为k μ。
将物体经过环带内侧的A 点的时刻作为计时起点,且一直此时刻物体的速率为0V 。
求时刻t 物体的速率;以及从A 点开始所经过的路程。
6. 用棒打击质量kg 3.0,速率等于120-⋅s m 的水平飞来的球,球竖直向上飞到击球点上方m 10的高度。
求棒给予球的冲量多大?设球与棒的接触时间为s 02.0,求球受到的平均冲力?(忽略球所受到的空气阻力。
)7. 在实验室内观察到相距很远的一个质子(质量为p m )和一个氦核(质量为4p m )沿一直线相向运动,速率都是0V ,求两者能达到的最近距离。
8. 如图所示,有一个在竖直平面上摆动的单摆。
问:(1)摆球对悬挂点的角动量守恒吗?(2)求出t 时刻小球对悬挂点的角动量的方向,对于不同的时刻,角动量的方向会改变吗?(3)计算摆球在θ角时对悬挂点角动量的变化率。
大学物理力学练习
力学练习一.选择:1. 对于沿曲线运动的物体,以下几种说法中哪一种是正确的:(A) 切向加速度必不为零. (B) 法向加速度必不为零(拐点处除外).(C) 由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零. (D) 若物体作匀速率运动,其总加速度必为零.(E) 若物体的加速度a为恒矢量,它一定作匀变速率运动. [ B ]2.如图所示,一轻绳跨过一个定滑轮,两端各系一质量分别为m 1和m 2的重物,且m 1>m 2.滑轮质量及轴上摩擦均不计,此时重物的加速度的大小为a .今用一竖直向下的恒力gm F 1=代替质量为m 1的物体,可得质量为m 2的重物的加速度为的大小a ′,则(A) a ′= a (B) a ′> a(C) a ′< a (D) 不能确定. [ B ]3. 一个质量为M = 10 kg 的物体静止放在光滑水平面上,今有一质量为m = 1 kg 的小球,以水平速度v 0 = 4 m/s 飞来,与物体M 正碰后以v 1 = 2 m/s 的速度弹回,则恢复系数e 是:(A) 0.25. (B) 0.35.(C) 0.65. (D) 0.75. [ C ] 4. 速度为v 的子弹,打穿一块不动的木板后速度变为零,设木板对子弹的阻力是恒定的.那么,当子弹射入木板的深度等于其厚度的一半时,子弹的速度是(A)v 41. (B) v 31.(C) v 21. (D)v 21. [ D ] 5. 一质量为m 的质点,在半径为R 的半球形容器中,由静止开始自边缘上的A 点滑下,到达最低点B 时,它对容器的正压力为N .则质点自A 滑到B 的过程中,摩擦力对其作的功为(A) )3(21mg N R -. (B) )3(21N mg R -. (C) )(21mg N R -. (D))2(21mg N R -. [ A ]A B6.质点的质量为m ,置于光滑球面的顶点A 处(球面固定不动),如图所示.当它由静止开始下滑到球面上B 点时,它的加速度的大小为 (A) )cos 1(2θ-=g a . (B) θsin g a =. (C) g a =. (D) θθ2222sin )cos 1(4g g a +-=. [ D ]7.一平面简谐波的表达式为 )3cos(1.0π+π-π=x t y(SI) ,t = 0时的波形曲线如图所示,则(A) O 点的振幅为-0.1 m .(B) 波长为3 m .(C) a、b 两点间相位差为π21.(D) 波速为9 m/s .[ C ]8.一平面简谐波沿Ox 轴正方向传播,t = 0 时刻的波形图如图所示,则P 处介质质点的振动方程是(A))314cos(10.0π+π=t y P (SI).(B) )314cos(10.0π-π=t y P (SI).(C) )312c o s (10.0π+π=t y P (SI). (D) )612cos(10.0π+π=t y P (SI). [ A ]9. 如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为(A)ML m v. (B) ML m 23v. (C) MLm 35v. (D)ML m 47v. [ B ]俯视图二.填空:1.在x 轴上作变加速直线运动的质点,已知其初速度为0v ,初始位置为x 0,加速度2Ct a =(其中C 为常量),则其速度与时间的关系为=v __________,运动学方程为=x __________.2.一物体作如图所示的斜抛运动,测得在轨道A 点处速度v的大小为v ,其方向与水平方向夹角成30°.则物体在A 点的切向加速度a t =__________________,轨道的曲率半径ρ =__________________.3.有一质量为M (含炮弹)的炮车,在一倾角为θ 的光滑斜面上下滑,当它滑到某处速率为v 0时,从炮内射出一质量为m 的炮弹沿水平方向. 欲使炮车在发射炮弹后的瞬时停止下滑,则炮弹射出时 对地的速率v =__________.4.质量为m 的小球速度为v 0,与一个以速度v (v < v 0)同向运动的活动挡板作垂直的完全弹性碰撞(设挡板质量M >>m ),则碰撞后小球的速度v m =______________,挡板对小球的冲量I =______________.5.某质点在力F =(4+5x )i(SI)的作用下沿x 轴作直线运动,在从x =0移动到x =10 m 的过程中,力F所做的功为________6.如图所示,小球沿固定的光滑的1/4圆弧从A 点由静止开始下滑,圆弧半径为R ,则小球在A 点处的切向加速度vv 0a t =______________________,小球在B 点处的法向加速度a n =_______________________.7.质量为m 、半径为R 的匀质圆环,对通过环周上一点且垂直环面的轴的转动惯量为_____________.8.如图所示,一均匀细杆AB ,长为l ,质量为m .A 端挂在一光滑的固定水平轴上,它可以在竖直平面内自由摆动.杆从水平位置由静止开始下摆,当下摆至θ角时,B 端速度的大小v B =________________________.9.一平面简谐波沿x 轴正方向传播,波速u = 100 m/s ,t = 0时刻的波形曲线如图所示.可知波长λ = ____________; 振幅A = __________;频率ν = ____________.10.如图所示为一平面简谐波在t = 2 s 时刻的波形图,该简谐波的表达式是____________________________________________;P处质点的振动方程是____________________________. (该波的振幅A 、波速u 与波长λ 为已知量)三. 计算:1. 一个具有单位质量的质点在随时间 t 变化的力j t i t t F )612()43(2-+-= (SI) 作用下运动.设该质点在t = 0时位于原点,且速度为零.求t = 2秒时,该质点受到对原点的力矩和该质点对原点的角动量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理力学练习 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】大学物理(力学)试卷班级:_____________ 姓名:_____________ 学号:_____________日期:__________年_______月_______日成绩:_____________一、选择题(共27分)1.(本题3分)如图所示,A、B为两个相同的绕着轻绳的定滑轮.A滑轮挂一质量为M的物体,B 滑轮受拉力F,而且F=Mg.设A、B两滑轮的角加速度分别为A和B,不计滑轮轴的摩擦,则有(A) A=B. (B) A>B.(C) A<B. (D) 开始时A=B,以后A<B.[ C ]开始就有加速度2.(本题3分)几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体(A) 必然不会转动. (B) 转速必然不变.(C) 转速必然改变. (D) 转速可能不变,也可能改变.[ D ]3.(本题3分)关于刚体对轴的转动惯量,下列说法中正确的是(A)只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B)取决于刚体的质量和质量的空间分布,与轴的位置无关.(C)取决于刚体的质量、质量的空间分布和轴的位置.(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[ C ]4.(本题3分)一轻绳跨过一具有水平光滑轴、质量为M的定滑轮,绳的两端分别悬有质量为m1和m2的物体(m1<m2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断.[ C ]5.(本题3分)将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m的重物,飞轮的角加速度为.如果以拉力2mg代替重物拉绳时,飞轮的角加速度将(A) 小于. (B) 大于,小于2.(C) 大于2. (D) 等于2.[ C ]6.(本题3分)花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为(A) 310. (B) ()3/10.(C) 30. (D) 3 0. [ D ]7.(本题3分)关于力矩有以下几种说法:(1) 对某个定轴而言,内力矩不会改变刚体的角动量. (2) 作用力和反作用力对同一轴的力矩之和必为零.(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等. 在上述说法中, (A) 只有(2) 是正确的. (B) (1) 、(2) 是正确的. (C) (2) 、(3) 是正确的.(D) (1) 、(2) 、(3)都是正确的. [ b ] 8.(本题3分)一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度(A) 增大. (B) 不变. (C) 减小. (D) 不能确定. [ C ] 9.(本题3分)质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫⎝⎛=R J mR v 2ω,逆时针.(C) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,逆时针. [ A ] 二、 填空题(共25分) 10.(本题3分)半径为20 cm 的主动轮,通过皮带拖动半径为50 cm 的被动轮转动,皮带与轮之间无相对滑动.主动轮从静止开始作匀角加速转动.在4 s 内被动轮的角速度达到8rad ·s -1,则主动轮在这段时间内转过了___20_____圈. 11.(本题5分)绕定轴转动的飞轮均匀地减速,t =0时角速度为0=5 rad / s ,t =20 s 时角速度为 = 0,则飞轮的角加速度=___-1/20___________,t =0到 t =100 s 时间内飞轮所转过的角度=___250________________. 12.(本题4分)半径为30 cm 的飞轮,从静止开始以 rad ·s -2的匀角加速度转动,则飞轮边缘上一点在飞轮转过240°时的切向加速度a t =,法向加速度a n =____________. 13.(本题3分)一个作定轴转动的物体,对转轴的转动惯量为J .正以角速度0=10 rad ·s -1匀速转动.现对物体加一恒定制动力矩 M =- N ·m ,经过时间t = s 后,物体停止了转动.物体的转动惯量J =. 14.(本题3分)一飞轮以600 rev /min 的转速旋转,转动惯量为 kg ·m 2,现加一恒定的制动力矩使飞轮在1 s 内停止转动,则该恒定制动力矩的大小M =_________. 15.(本题3分)质量为m 、长为l 的棒,可绕通过棒中心且与棒垂直的竖直光滑固定轴O 在水平面内自由转动(转动惯量J =m l 2 / 12).开始时棒静止,现有一子弹,质量也是m ,在水平面内以速度v 0垂直射入棒端并嵌在其中.则子弹嵌入后棒的角速度=_____________________. 16.(本题4分)在一水平放置的质量为m 、长度为l 的均匀细杆上,套着一质量也为m 的套管B (可看作质点),套管用细线拉住,它到竖直的光滑固定轴OO '的距离为l 21,杆和套管所组成的系统以角速度0绕OO '轴转动,如图所示.若在转动过程中细线被拉断,套管将沿着杆滑动.在套管滑动过程中,该系统转动的角速度与套管离轴的距离x 的函数关系为_______________.(已知杆本身对OO '轴的转动惯量为231ml )三、 计算题(共38分)如图所示,一圆盘绕通过其中心且垂直于盘面的转轴,以角速度作定轴转动,A 、B 、C 三点与中心的距离均为r .试求图示A 点和B 点以及A 点和C 点的速度之差B A v v-和C A v v -.如果该圆盘只是单纯地平动,则上述的速度之差应该如何 18.(本题5分)一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为0.设它所受阻力矩与转动角速度成正比,即M =-k (k 为正的常数),求圆盘的角速度从0变为021ω时所需的时间.19.(本题10分)一轻绳跨过两个质量均为m 、半径均为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 和2m 的重物,如图所示.绳与滑轮间无相对滑动,滑轮轴光滑.两个定滑轮的转动惯量均为221mr .将由两个定滑轮以及质量为m 和2m 的重物组成的系统从静止释放,求两滑轮之间绳内的张力. 20.(本题8分)如图所示,A 和B 两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 J =10 kg ·m 2 和 J =20 kg ·m 2.开始时,A 轮转速为600 rev/min ,B 轮静止.C 为摩擦啮合器,其转动惯量可忽略不计.A 、B 分别与C 的左、右两个组件相连,当C 的左右组件啮合时,B 轮得到加速而A 轮减速,直到两轮的转速相等为止.设轴光滑,求:(1) 两轮啮合后的转速n ; (2) 两轮各自所受的冲量矩. 21.(本题10分)空心圆环可绕光滑的竖直固定轴AC 自由转动,转动惯量为J 0,环的半径为R ,初始时环的角速度为0.质量为m 的小球静止在环内最高处A 点,由于某种微小干扰,小球沿环向下滑动,问小球滑到与环心O 在同一高度的B 点和环的最低处的C 点时,环的角速度及小球相对于环的速度各为多大(设环的内壁和小球都是光滑的,小球可视为质点,环截面半径r <<R .) 四、 回答问题(共10分) 22.(本题5分)绕固定轴作匀变速转动的刚体,其上各点都绕转轴作圆周运动.试问刚体上任意一点是否有切向加速度是否有法向加速度切向加速度和法向加速度的大小是否变化理由如何一个有竖直光滑固定轴的水平转台.人站立在转台上,身体的中心轴线与转台竖直轴线重合,两臂伸开各举着一个哑铃.当转台转动时,此人把两哑铃水平地收缩到胸前.在这一收缩过程中,(1) 转台、人与哑铃以及地球组成的系统机械能守恒否为什么 (2) 转台、人与哑铃组成的系统角动量守恒否为什么 (3) 每个哑铃的动量与动能守恒否为什么大 学 物 理(力学) 试 卷 解 答一、 选择题(共27分) C D C C C D B C A 二、 填空题(共25分) 10.(本题3分)20 3分参考解: r 11=r 22 , 1 = 1 / t 1 ,1=21121t β 21211412ωθr r n π=π=4825411⨯π⨯⨯π=t =20 rev 11.(本题5分)- rad ·s -2 3分250 rad 2分12.(本题4分)m ·s -2 2分 m ·s -2 2分参考解:a t =R ·= m/s 2 a n =R 2=R ·2= m/s 213.(本题3分)kg ·m 2 3分14.(本题3分)157N·m 3分15.(本题3分)3v 0/(2l ) 3分()2202347x l l +ω 4分三、 计算题(共38分)17.(本题5分)解:由线速度r⨯=ωv 得A 、B 、C 三点的线速度 ωr C B A ===v v v1分各自的方向见图.那么,在该瞬时=45° 2分同时 ωr A C A 22==-v v v方向同A v. 1分平动时刚体上各点的速度的数值、方向均相同,故0=-=-C A B A v v v v1分[注]此题可不要求叉积公式,能分别求出A v 、B v的大小,画出其方向即可. 18.(本题5分)解:根据转动定律: J d / d t = -k∴t Jkd d -=ωω2分 两边积分:⎰⎰-=tt Jk 02/d d 100ωωωω得ln2 = kt / J∴ t =(J ln2) / k 3分19.(本题10分)解:受力分析如图所示. 2分2mg -T 1=2ma 1分T 2-mg =ma 1分T 1 r -T r =β221mr 1分T r -T 2 r =β221mr 1分a =r 2分解上述5个联立方程得: T =11mg / 8 2分20.(本题8分)解:(1) 选择A 、B 两轮为系统,啮合过程中只有内力矩作用,故系统角动量守恒1分J AA +J BB = (J A +J B ), 2分又B =0得 J AA / (J A +J B ) = rad / s转速 ≈n 200 rev/min 1分(2) A 轮受的冲量矩⎰t M A d = J A ( A ) = ×10 2 N ·m ·s 2分负号表示与A ω方向相反. B 轮受的冲量矩 ⎰t M B d = J B ( - 0) = ×102 N ·m ·s 2分方向与A ω相同.21.(本题10分)解:选小球和环为系统.运动过程中所受合外力矩为零,角动量守恒.对地球、小球和环系统机械能守恒.取过环心的水平面为势能零点.两个守恒及势能零点各1分,共3分小球到B 点时: J 00=(J 0+mR 2) ① 1分 ()22220200212121B R m J mgR J v ++=+ωωω ② 2分式中v B 表示小球在B 点时相对于地面的竖直分速度,也等于它相对于环的速度.由式①得: =J 00 / (J 0 + mR 2) 1分代入式②得 0222002J mR RJ gR B ++=ωv 1分当小球滑到C 点时,由角动量守恒定律,系统的角速度又回复至0,又由机械能守恒定律知,小球在C 的动能完全由重力势能转换而来.即:()R mg m C 2212=v , gR C 4=v 2分四、 问答题(共10分) 22.(本题5分)答:设刚体上任一点到转轴的距离为r ,刚体转动的角速度为,角加速度为,则由运动学关系有:切向加速度a t =r β 1分法向加速度a n =r 2 1分对匀变速转动的刚体来说β=d / d t =常量≠0,因此d =βd t ≠0, 随时间变化,即= (t ). 1分所以,刚体上的任意一点,只要它不在转轴上(r ≠0),就一定具有切向加速度和法向加速度.前者大小不变,后者大小随时间改变. 2分(未指出r ≠0的条件可不扣分) 23.(本题5分)答:(1) 转台、人、哑铃、地球系统的机械能不守恒. 1分因人收回二臂时要作功,即非保守内力的功不为零,不满足守恒条件. 1分 (2) 转台、人、哑铃系统的角动量守恒.因系统受的对竖直轴的外力矩为零. 1分(3) 哑铃的动量不守恒,因为有外力作用. 1分哑铃的动能不守恒,因外力对它做功. 1分。