小学六年级上册分数除法知识总结(整理版)
六年级数学上册第2单元《分数除法》知识点整理
六年级数学上册第2单元《分数除法》知识点整理 为了能帮助广大小学生朋友们及时掌握所学知识,查字典数学网小学频道特地为大家整理了六年级数学上册第2单元分数除法知识点,希望能够切实的帮到大家,同时祝大家学业进步!六年级数学上册第2单元«分数除法»知识点整理【一】分数除法1、分数除法的意义:分数除法与整数除法的意义相同,表示两个因数的积和其中一个因数,求另一个因数的运算。
2、分数除法的计算法那么:除以一个不为0的数,等于乘这个数的倒数。
3、规律(分数除法比较大小时):(1)、当除数大于1,商小于被除数;(2)、当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。
4、叫做中括号。
一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
【二】分数除法解决问题(未知单位1的量(用除法):单位1的几分之几是多少,求单位1的量。
)1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是的:单位1的量分率=分率对应量(2)分率前是多或少的意思:单位1的量(1 分率)=分率对应量2、解法:(建议:最好用方程解答)(1)方程:根据数量关系式设未知量为X,用方程解答。
(2)算术(用除法):分率对应量对应分率 = 单位1的量3、求一个数是另一个数的几分之几:就一个数另一个数4、求一个数比另一个数多(少)几分之几:①求多几分之几:大数小数 1 ②求少几分之几: 1 - 小数大数或①求多几分之几(大数-小数)小数②求少几分之几:(大数-小数)大数【三】比和比的应用(一)、比的意义1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
例如 15 :10 = 1510= (比值通常用分数表示,也可以用小数或整数表示)前项比号后项比值3、比可以表示两个相同量的关系,即倍数关系。
新苏教版六年级上册数学-分数除法知识题型归纳总结
分数除法(一)知识梳理1、分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
2、分数除法的计算法则: 甲数除以乙数(0除外),等于甲数乘乙数的倒数。
模块一 分数除以整数例154里面有2个( ),38吨是40吨的)()(。
例2 5次运走了这堆货物的72。
(1)平均每次运走这堆货物的几分之几?(2)照这样计算,14次一共运走这堆货物的几分之几?例3 小明用56分钟从1楼跑到6楼,小明平均每上一层楼需要几分钟?变式1 一块菜地有127公顷,现在要将这块菜地平均分成4份种不同的蔬菜,每种蔬菜占地多少公顷,列式是( )变式2 一个正方体的棱长总和是1312米,这个正方体的棱长是多少米?变式3 如果n m ,都是不为0的自然数,请比较n m ÷1和m n÷1的大小。
模块二 整数除以分数例4 填空。
(1)一台拖拉机每小时耕地52公顷,要耕完2公顷地需要( )小时。
(2)某工程队30天修了一段地铁的53,平均每天修)()(,( )天可以修完。
例5 某化工厂生产了25吨化肥,如果每201吨装一袋,这些化肥能装多少袋?例6 一个同学在做题时,粗心大意,把除数53看成35,得到的商是18,那么正确的商是多少?变式4 食堂运来6吨煤,每天要用32吨,可以用几天?( )÷( )=( )(天)变式5 已知一块长方形玻璃的面积是18平方分米,宽是79分米,它的长是多少米?变式6 计算:2016201520152015÷模块三 分数除以分数例7 先比较大小,再填一填。
7289÷○72 7298÷○72 721÷○72 我发现:两个不为零的数相除,如果除数小于1,那么商就( )被除数;如果除数大于1,那么商 就( )被除数;如果除数等于1,那么商就( )被除数。
例8 一台磨面机,65小时磨面粉30千克。
人教版小学六年级数学上册分数除法相关知识点
中公教师网小编为大家整理了人教版小学六年级数学上册分数除法相关知识点,希望对大家有所帮助。
小学六年级数学上册——分数除法1.分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
2.分数除以整数(0除外),等于分数乘这个整数的倒数。
整数除以分数等于整数乘以这个分数的倒数。
3.一个数除以分数的计算法则:一个数除以分数,等于这个数乘以分数的倒数。
4.分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
5.两个数相除又叫做两个数的比。
比的前项除以后项所得的商,叫做比值。
从应用的角度理解,比可以分为同类量比和不同类量比;同类量比表示倍数关系,比的前项和后项必须单位一致;不同类量比的结果产生新的量,比的前项和后项的单位不相同。
6.比值通常用分数、小数和整数表示。
7.比的后项不能为0。
8.同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;9.根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。
10.比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
11.在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。
这种方法通常叫做按比例分配。
比的应用1、比的第一种应用:已知两个或几个数量的和,这两个或几个数量的比,求这两个或这几个数量是多少?例如:六年级有60人,男女生的人数比是5:7,男女生各有多少人?题目解析:60人就是男女生人数的和。
解题思路:第一步求每份:60÷(5+7)=5人第二步求男女生:男生:5×5=25人女生:5×7=35人。
2、比的第二种应用:已知一个数量是多少,两个或几个数的比,求另外几个数量是多少?例如:六年级有男生25人,男女生的比是5:7,求女生有多少人?全班共有多少人?题目解析:“男生25人”就是其中的一个数量。
六年级上册数学《分数除法 》分数除法 知识点整理
分数除法1、分数除法的意义乘法: 因数 × 因数 = 积; 除法: 积 ÷ 一个因数 = 另一个因数分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
例:3/4÷4/5表示已知两个因数的积是3/4和其中一个因数是4/5,求另一个因数的运算。
2、分数除法的计算法则除以一个不为0的数,等于乘这个数的倒数。
先约分在计算。
只有在乘号的两边或连乘时才能约分如:注:0不能做除数。
3、规律(分数除法比较大小时)3/5÷5/6>3/5一个数(零除外)除以比1小的数(0除外),商就大于这个数;3/5÷7/6<3/5一个数(零除外)除以比1大的数,商就小于这个数;3/5÷1=3/5任何数除以1都得任何数0÷3/5=00除以任何数都得04、混合运算:1.运算顺序:先乘除后加减,有括号的先算括号里面的。
只有加减法或只有乘除法从左往右依此计算。
2.运算定律:加法:加法交换律 a+b=b+a 加法结合律a+b+c=a+(b+c)减法:减法的性质 a-b-c=a-(b+c)乘法:乘法交换律ab=ba 乘法结合律abc=a(bc) 乘法分配律a(b+c)=ab+ac或a(b-c)=ab-ac除法:a÷b÷c=a×(b+c)3.注意:先观察,看清运算符号,思考能否用运算定律使计算变简便;不能用运算定律,按照运算顺序计算;计算时看清运算符号,按照相应的计算方法认真计算;注意在约分之后不要漏掉分子或分母;计算结束,认真验算。
5、分数除法应用题a. 1.观察题目中有没有分率,发现分率先找关键句。
(关键句是指含有分率的句子)2.找单位“1”(单位“1”是指要平均分的量,一般在“比”“相当于”“是”“占”的后面)3.分析数量关系单位“1”的量×分率= 分率对应量例:一批煤,运走3/5,正好是6吨,这批煤有多少吨?“3/5”是分率,找单位“1”,根据“运走3/5”就是“运走的是这批煤的3/5”把这批煤看做单位“1”;数量关系:一批煤×3/5=运走的;这批煤的吨数不知道,用方程解解:设这批煤有X吨3/5X=6X=6÷3/5X=6×5/3X=10例:一批煤,运走3/5,剩下6吨,这批煤有多少吨?“3/5”是分率,找单位“1”,根据“运走3/5”就是“运走的是这批煤的3/5”把这批煤看做单位“1”;数量关系:一批煤×3/5=运走的;这批煤的吨数不知道,用方程解解:设这批煤有X吨X—3/5X=62/5X=6X=6÷2/5X=6×5/2X=156.比A.意义:两个数相除又叫做两个数的比B.比各部分名称前项:后项=比值(后向不能为0)C.求比值:前项÷后项=比值前项÷比值=后项后项×比值=前项D.比和分数除法的关系比前项比号后项比值比的基本性质除法被除数除号除数商商不变性质分数分子分数线分母分数值分数基本性质E.比的基本性质:比的前项和后项都乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。
小学数学六年级上册《分数除法》归纳总结知识点
二、分数除法一、分数除法1、分数除法的意义:乘法:因数×因数 = 积除法:积÷一个因数 = 另一个因数分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。
3、规律(分数除法比较大小时):(1)、当除数大于1,商小于被除数;(2)、当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。
4、“[]”叫做中括号。
一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
二、分数除法解决问题(未知单位“1”的量(用除法):已知单位“1”的几分之几是多少,求单位“1”的量。
)1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”:单位“1”的量×分率=分率对应量(2)分率前是“多或少”的意思:单位“1”的量×(1±分率)=分率对应量2、解法:(建议:最好用方程解答)(1)方程: 根据数量关系式设未知量为X ,用方程解答。
(2)算术(用除法): 分率对应量÷对应分率 = 单位“1”的量3、求一个数是另一个数的几分之几:就 一个数÷另一个数4、求一个数比另一个数多(少)几分之几: 两个数的相差量÷单位“1”的量 或:① 求多几分之几:大数÷小数 – 1② 求少几分之几: 1 - 小数÷大数三、比和比的应用(一)、比的意义 1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
例如 15 :10 = 15÷10=23(比值通常用分数表示,也可以用小数或整数表示)∶ ∶ ∶ ∶前项 比号 后项 比值3、比可以表示两个相同量的关系,即倍数关系。
也可以表示两个不同量的比,得到一个新量。
【RJ】六年级上册数学:第三单元 分数除法知识总结(整理版)·人教部编版
②仓库里有若干吨化肥,第一天运出总数的 ,第二天运出总数的 ,还剩49吨,仓库里原有化肥多少吨?
(3)训练写等量关系式:
常用的等量关系的标志词有:“是、为、占、相当于、等于、得、比、共 ”
知识点二:分数连除应用题的解题方法
(1)分数连除应用题的结构特点:题中有3个数量,两个单位“1”,都是未知的。
(2)分数连除应用题的解题方法:①方程解法:设所求单位“1”的量为x,根据等量关系列方程解答。即x× × =已知量。②算术解法:用已知量连续除以它们所对应的单位“1”的几分之几。即已知量÷ ÷ =另一个单位“1”的量。
列方程解题的关键:找出题中数量间的等量关系。
用算术法解除法应用题的关键:找准已知数量对应的单位“1”的几分之几。
解简单的“已知一个数的几分之几是多少,求这个数”的解题方法:方程解法:(1)找出单位“1”,设未知量为x;(2)找出题中的数量关系式;(3)列出方程。
算术法:(1)找出单位“1”;(2)找出已知量和已知量占单位“1”的几分之几;(3)列除法算式。即已知量÷已知量占单位“1”的几分之几=单位“1”的量。
练习:
1.填空
(1)根据 和分数除法意义可得: ( ), ( )。
(2)把 m长的绳子平均剪成4段,每段是 m的( )。
(3)打字员打一份文件,打了20分钟后还剩 ,平均每分钟打这份文件的( )。
2.列式计算。
(1)一个数的6倍是 ,这个数是多少?
(2) 的 是多少?
3.看图列式计算。
(2)一个数除以分数
练习:1.画线段图表示下面各数量关系,并写出等量关系式。
苏教版数学六年级上册第三单元《分数除法》知识点整理(重点归纳)
苏教版数学六年级上册第三单元《分数除法》知识点整理(重点归纳)第三单元:分数除法1、计算方法分数除法的法则为:甲数除以乙数(不为0)等于甲数乘以乙数的倒数。
因此,计算分数除法时,可以遵循“一变、二倒、三算、四验”的步骤。
对于分数连除或乘除混合计算,可以从左向右依次计算,但一般是遇到除以一个数,把它改写成乘这个数的倒数来计算,即转化成分数的连乘来计算。
需要注意的是,只能把除号后面的数改写成它的倒数,其他数字不能改写。
2、已知一个数的几分之几是多少,求这个数。
例如,一条裤子的价钱是45元,是上衣单价的8分之5,求上衣的单价。
解决这个问题需要将上衣的单价看成单位1,平均分成8份,裤子的价钱是其中的5份。
因此,可以得出数量关系式:上衣的单价×5/8=裤子的价钱。
解答时,可以采用两种方法,一种是设上衣的单价是x元,然后通过方程来解,另一种是逆向思考,用裤子的单价除以5/8得到上衣的单价。
3、分数乘除法应用题的比较举例说明,XXX家养了20只公鸡,母鸡占公鸡的4/5,求母鸡的只数。
可以得出数量关系式:公鸡的只数×5/4=母鸡的只数。
解答时,可以直接用单位“1”的量×分率=分率所对应的量,即20×5/4=16只母鸡。
另一个例子是,XXX家养了20只公鸡,公鸡占母鸡的4/5,求母鸡的只数。
此时,数量关系式为:母鸡的只数×4/5=公鸡的只数。
解答时,可以设母鸡有x只,然后通过方程或比较量÷对应的分率求出单位“1”的量,即20÷4/5=25只母鸡。
4、认识比比指的是两个数相除,也称为两个数的比。
比与分数、除法的关系为:a:b=a÷b=(b≠0)。
比的前项除以后项得到的商称为比值,可以是整数、分数或小数,不带单位名称。
比的前项和后项同时乘或除以一个相同的数(除外),比值不变。
最简整数比是指比的前项和后项是互质数,即除了1以外没有其他公因数。
(期末复习专题)分数除法(专项讲义)人教版六年级数学上册(知识梳理+典型例题+对应练习+答案)
(期末复习专题)分数除法(专项讲义)人教版六年级数学上册(知识梳理+典型例题+对应练习+答案)考点一、认识倒数1、乘积是1的两个数互为倒数。
2、倒数是指两个数之间的关系,相互依存,一个数不能叫倒数。
3、1的倒数是1,0没有倒数。
【例1】9的倒数是()。
8【解答】89。
【名师点睛】求一个数(0除外)的倒数,只要把这个数的分子、分母交换位置。
考点二、分数除法的计算分数除法计算法则:1、除以一个不等于0的数,等于乘这个数的倒数。
2、被除数÷除数=被除数×除数的倒数。
【例2】计算下面各题。
(1)1211÷18 =(2)310÷65=(3)815÷0.8=【解答】【名师点睛】除法转化成乘法时,被除数一定不能变,要将“÷”变成“×”,除数变成它的倒数。
考点三、分数的混合运算分数混合计算方法:1、同级运算,按照从左往右的顺序进行计算;2、没有括号的先乘、除后加、减;3、有括号的先算括号里面,再算括号外面。
【例3】计算下面各题。
(1)2514÷521×0.3(2) 12÷65÷213(3)815÷45+56×49(4)112÷(23-14)【例2】计算下面各题。
(1)÷18=(2)÷=(3)÷0.8=×=3×22÷=×1 3【解答】【例4】解方程。
(1) x +15x =130(2)14x ÷18=10 (3) 13x −19x =518(4)85x ÷25=56×310【例3】计算下面各题。
(1)÷×0.3(2)12÷÷=××10×=6512 ××522(3)÷+×(4)÷()×3++==÷(-)=÷=1=【解答】考点四、解决问题1、已知一个数的几分之几是多少,求这个数:已知量÷已知量占单位“1”的几分之几=单位“1”的量; 2、已知比一个数多(或少)几分之几的数是多少,求这个数: 已知量÷(1±几分之几)=单位“1”的量;【例4】解方程。
人教版六年级数学上册第三单元分数除法的知识
人教版六年级数学上册第三单元分数除法的知识分数除法的知识点一、倒计时1、倒数的特征及意义。
乘积为1的两个数是相互倒数的。
倒数是两个数字之间的特殊关系。
两个相互倒数的数字是相互依存的。
因此,必须说一个数字是另一个数字的倒数,一个数字不能孤立地说是倒数。
2、求倒数的方法。
将这个数的分子和分母调换。
3、1的倒数仍是1;0没有倒数。
0没有倒数,是因为在分数中,0不能做分母。
4.求整数、分数倒数和小数的方法:(1)求整数(0除外)的倒数,要先把整数化成分母是1的假分数,再交换分子、分母的位置。
(2)要求带分数的倒数,首先将带分数转换为假分数,然后交换分子和分母的位置。
(3)要求小数的倒数,首先将小数转换成分数,然后交换分子和分母的位置。
2、分数除法1、分数除法的意义分数除法的含义与整数除法的含义相同。
这是一种操作,知道两个因素的乘积,其中一个因素找到另一个因素。
除法是乘法的逆运算。
331?3?的意义是:已知两个因数的积是10,其中一个因数是3,求另一个因数是1010多少。
2.分数除以整数把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。
分数除以整数(0除外)的计算方法:(1)用分子和整数相除的商做分子,分母不变。
(2)分数除以整数,等于分数乘这个整数的倒数。
3、分数除法的统一计算法则数字a除以数字B(0除外)等于数字a乘以数字B的倒数。
数字除以分数等于数字乘以分数的倒数。
4、商与被除数的大小关系一个数(0除外)除以一个小于1的数,商大于除数,除以1,商等于除数,除以一个大于1的数,商小于除数。
0除以任意数的商为03,分数除1的混合运算。
分数除、加、减运算顺序:8÷-4=8×-4=8除加、除减混合运算,如果没有括号,先算除法,后算加减。
2、连除的计算方法例:÷÷292714152332分数除法可以一步一步转换成乘法计算,也可以一次转换成乘法重新计算,可以降低报价分数。
新苏教版六年级上册数学-分数除法知识题型归纳总结
分数除法(一)知识梳理1、分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
2、分数除法的计算法则: 甲数除以乙数(0除外),等于甲数乘乙数的倒数。
模块一 分数除以整数例154里面有2个( ),38吨是40吨的)()(。
例2 5次运走了这堆货物的72。
(1)平均每次运走这堆货物的几分之几(2)照这样计算,14次一共运走这堆货物的几分之几例3 小明用56分钟从1楼跑到6楼,小明平均每上一层楼需要几分钟变式1 一块菜地有127公顷,现在要将这块菜地平均分成4份种不同的蔬菜,每种蔬菜占地多少公顷,列式是( )变式2 一个正方体的棱长总和是1312米,这个正方体的棱长是多少米变式3 如果n m ,都是不为0的自然数,请比较n m ÷1和m n÷1的大小。
模块二 整数除以分数例4 填空。
(1)一台拖拉机每小时耕地52公顷,要耕完2公顷地需要( )小时。
(2)某工程队30天修了一段地铁的53,平均每天修)()(,( )天可以修完。
例5 某化工厂生产了25吨化肥,如果每201吨装一袋,这些化肥能装多少袋例6 一个同学在做题时,粗心大意,把除数53看成35,得到的商是18,那么正确的商是多少变式4 食堂运来6吨煤,每天要用32吨,可以用几天( )÷( )=( )(天)变式5 已知一块长方形玻璃的面积是18平方分米,宽是79分米,它的长是多少米变式6 计算:2016201520152015÷模块三 分数除以分数例7 先比较大小,再填一填。
7289÷○72 7298÷○72 721÷○72 我发现:两个不为零的数相除,如果除数小于1,那么商就( )被除数;如果除数大于1,那么商 就( )被除数;如果除数等于1,那么商就( )被除数。
例8 一台磨面机,65小时磨面粉30千克。
(1)平均每小时磨面粉多少千克 (2)平均磨1千克面粉需要多少小时例9 一桶油,平均每次倒出103千克,倒了4次,桶里还剩下109千克,一共要倒多少次才能把这桶油全部倒完变式7 在○里填上“>”“<”或“=”。
六年级数学上册:分数除法知识点归纳
六年级数学上册:分数除法知识点归纳
一、分数除法的概念
分数除法是指将一个分数除以另一个分数,得到一个新的分数或一个整数的运算方法。
二、分数除法的运算规则
1. 同分母的分数相除,只需将分子相除,分母保持不变。
2. 不同分母的分数相除,需要先化为同分母,再按同分母的情况处理。
3. 除以一个真分数,可以先求它的倒数,再乘以被除数。
三、分数除法的解题步骤
1. 如果分数中有括号,先计算括号内的分数除法。
2. 按照运算规则进行分数除法运算。
3. 根据需要进行分数化简或转化。
四、注意事项
1. 在计算分数除法时,要注意约分和化简。
2. 在解决问题中,可以将分数转化为小数进行运算,最后再将小数转化为分数表示。
五、实例演练
例1:计算 2/3 ÷ 4/5。
解:根据运算规则,同分母的分数相除,只需将分子相除,分母保持不变。
所以,2/3 ÷ 4/5 = (2 ÷ 4) / (3 ÷ 5) = 1/2 ÷ 3/5 = 5/6。
例2:计算 5/8 ÷ 2。
解:根据运算规则,除以一个整数,可以先求它的倒数,再乘以被除数。
所以,5/8 ÷ 2 = 5/8 × 1/2 = 5/16。
六、总结
分数除法是数字运算中的一种重要运算方式,掌握分数除法的概念、运算规则和解题步骤,能够帮助我们解决与分数除法相关的数学问题。
最新版六年级数学上册第三单元小学六年级分数除法知识总结(整理版)
最新版六年级数学上册第三单元分数除法1.分数除法计算(1)分数除法的意义和分数除以整数整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。
已知两个因数的积与其中一个因数,求另一个因数,用(除法)计算。
1013103=÷的意义是:已知两个因数的积是103,其中一个因数是3,求另一个因数是多少。
分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
分数除以整数的计算方法把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。
分数除以整数(0除外)的计算方法:(1)用分子和整数相除的商做分子,分母不变。
(2)分数除以整数,等于分数乘这个整数的倒数。
练习: 1.填空(1)根据3565372=⨯和分数除法意义可得:=÷53356( ),=÷72356( )。
(2)把29m 长的绳子平均剪成4段,每段是29m 的( )。
(3)打字员打一份文件,打了20分钟后还剩52,平均每分钟打这份文件的( )。
2.列式计算。
(1)一个数的6倍是51,这个数是多少?(2)51的61是多少?3.看图列式计算。
811(2)一个数除以分数知识点一:一个数除以分数的计算方法:一个数除以分数,等于这个数乘分数的倒数。
知识点二:分数除法的统一计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
知识点三:商与被除数的大小关系:一个数(0除外)除以小于1的数,商大于被除数,除以1,商等于被除数,除以大于1的数,商小于被除数。
0除以任何数商都为0.练习:1.算一算4851625÷ 44392213÷ 1427277⨯ 210÷2.填空。
(1)32的43是( ),它和32÷( )得数相同。
(2)分数除法可以转化为( )进行计算,计算过程中,转变成乘( )的倒数。
4.判断。
(1)两个真分数相除,商大于被除数。
六年级上册《分数除法》知识点总结
第三单元《分数除法》知识点汇总一、倒数的认识1.乘积是1的两个数互为倒数。
和 互为倒数,就是指: 的倒数是 , 的倒数是 。
2.怎样找一个数的倒数?(分子分母交换位置。
)3.1的倒数是1,0没有倒数。
4.只要两个数的乘积是1,那么这两个数就互为倒数,与这两个数是分数、小数还是整数无关。
二、分数除法1.分数除法的计算方法:除以一个不等于0的数,等于乘上这个数的倒数。
计算方法要点:①被除数不变。
②除号变乘号。
③除数变成它的倒数。
2.除法算式中商与被除数的大小关系的判断方法:除以一个大于1的数,得到的商比被除数小。
除以一个小于1的数,得到的商比被除数大。
例如: < >三、分数的混合运算分数的混合运算顺序与整数混合运算的顺序相同。
1.有小括号的要先算小括号里面的。
2.既有乘除又有加减,要先算乘除,再算加减。
3.只有乘除或只有加减,要按照从左到右的顺序计算。
四、分数除法的解决问题1.已知一个数的几分之几是多少,求这个数。
833883383883376÷763221÷21①用除法计算。
(对应的量÷对应的分率=单位“1”)②根据题意找到等量关系,列出方程。
2.已知比一个数多(或少)几分之几的数是多少,求这个数。
①用除法计算。
(对应的量÷对应的分率=单位“1”)注意:算式的量和分率必须相互对应的。
②根据题意找到等量关系,列出方程。
3.已知两个数的和(差),其中一个量是另一个量的几分之几,求这两个量。
解决方法:根据题意找到等量关系,列出方程。
注意:通常设单位“1”为x。
4.用抽象的单位“1”解决问题。
(参考教材42~43页)备注:本单元的解决问题是难点,要注重引导学生理清数量关系,鼓励学生列方程解决问题。
六年级上册数学知识点总结(7篇)
六年级上册数学知识点总结六年级上册数学知识点总结(7篇)总结是事后对某一时期、某一项目或某些工作进行回顾和分析,从而做出带有规律性的结论,它可以促使我们思考,因此我们要做好归纳,写好总结。
总结你想好怎么写了吗?以下是小编精心整理的六年级上册数学知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。
六年级上册数学知识点总结1一、分数除法的意义和分数除以整数知识点一:分数除法的意义整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。
知识点二:分数除以整数的计算方法把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。
分数除以整数(0除外)的计算方法:(1)用分子和整数相除的商做分子,分母不变。
(2)分数除以整数,等于分数乘这个整数的倒数。
二、一个数除以分数知识点一:一个数除以分数的计算方法一个数除以分数,等于这个数乘分数的倒数。
知识点二:分数除法的统一计算法则甲数除以乙数(0除外),等于甲数乘乙数的倒数。
知识点三:商与被除数的大小关系一个数(0除外)除以小于1的数,商大于被除数,除以1,商等于被除数,除以大于1的数,商小于被除数。
0除以任何数商都为0。
三、分数除法的混合运算知识点一:分数除加、除减的运算顺序除加、除减混合运算,如果没有括号,先算除法,后算加减。
知识点二:连除的计算方法分数连除,可以分步转化为乘法计算,也可以一次都转化为乘法再计算,能约分的要约分。
知识点三:不含括号的分数混合运算的运算顺序在一个分数混合运算的算式里,如果只含有同一级运算,按照从左到右的顺序计算;如果含有两级运算,先算第二级运算,再算第一级运算。
知识点四:含有括号的分数混和运算的运算顺序在一个分数混合运算的算式里,如果既有小括号又有中括号,要先算小括号里面的,再算中括号里面的。
知识点五:整数的运算定律在分数混和运算中的运用分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
新苏教版六年级上册数学-分数除法知识题型归纳总结
分数除法(一)知识梳理1、分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
2、分数除法的计算法则: 甲数除以乙数(0除外),等于甲数乘乙数的倒数。
模块一 分数除以整数例154里面有2个( ),38吨是40吨的)()(。
例2 5次运走了这堆货物的72。
(1)平均每次运走这堆货物的几分之几?(2)照这样计算,14次一共运走这堆货物的几分之几?例3 小明用56分钟从1楼跑到6楼,小明平均每上一层楼需要几分钟?变式1 一块菜地有127公顷,现在要将这块菜地平均分成4份种不同的蔬菜,每种蔬菜占地多少公顷,列式是( )变式2 一个正方体的棱长总和是1312米,这个正方体的棱长是多少米?变式3 如果n m ,都是不为0的自然数,请比较n m ÷1和m n÷1的大小。
模块二 整数除以分数例4 填空。
(1)一台拖拉机每小时耕地52公顷,要耕完2公顷地需要( )小时。
(2)某工程队30天修了一段地铁的53,平均每天修)()(,( )天可以修完。
例5 某化工厂生产了25吨化肥,如果每201吨装一袋,这些化肥能装多少袋?例6 一个同学在做题时,粗心大意,把除数53看成35,得到的商是18,那么正确的商是多少?变式4 食堂运来6吨煤,每天要用32吨,可以用几天?( )÷( )=( )(天)变式5 已知一块长方形玻璃的面积是18平方分米,宽是79分米,它的长是多少米?变式6 计算:2016201520152015÷模块三 分数除以分数例7 先比较大小,再填一填。
7289÷○72 7298÷○72 721÷○72 我发现:两个不为零的数相除,如果除数小于1,那么商就( )被除数;如果除数大于1,那么商 就( )被除数;如果除数等于1,那么商就( )被除数。
例8 一台磨面机,65小时磨面粉30千克。
人教版小学六年级分数除法知识点详细整理
人教版小学六年级分数除法知识点详细整理一、分数除法的概念分数除法是指将一个数(被除数)除以一个分数(除数)的运算。
在分数除法中,被除数可以是整数、分数、小数等。
分数除法常常需要用到倒数的概念来进行计算。
二、分数除法的运算法则1.分数除以整数:将被除数分子与整数相乘作为新的分子,分母不变。
例如:3/4 ÷ 2 = (3 × 1) / 4 = 3/8。
2.分数除以分数:将被除数乘以除数的倒数。
例如:(2/3) ÷ (1/2) = (2/3)× (2/1) = 4/3。
3.带分数除法:先将带分数化为假分数,再按照上述规则进行计算。
例如:(2 1/2) ÷ (1/3) = (5/2) ÷ (1/3) = (5/2) × 3 = 15/2 = 7 1/2。
三、分数除法的应用1.解决生活中的实际问题:分数除法在日常生活中的应用非常广泛,比如计算单价、工作效率等。
o单价计算:如总花费是9/4元,购买的商品数量为3个,则每个商品的单价为:(9/4) ÷ 3 = 3/4元/个。
o工作效率计算:如一项工作由甲单独完成需要3/2小时,乙单独完成需要2小时,则甲的工作效率是乙的多少倍:(1 ÷ (3/2)) ÷ (1 ÷ 2)= 2/3 ÷ 1/2 = 4/3。
2.比例问题:分数除法也常用于解决比例问题,如比例分配、比例关系等。
o比例分配:如将一堆糖果按照3:2的比例分给甲和乙,如果总共有10颗糖果,则甲得到(3/5) × 10 = 6颗,乙得到(2/5) × 10 = 4颗。
四、分数除法的注意事项1.在进行分数除法时,需要注意约分的情况,即分子分母是否有公约数可以约去。
2.注意除法中的除数不能为0,这在分数除法中同样适用,即分数的分母不能为0。
3.在进行带分数除法时,需要先将带分数化为假分数,再进行计算。
(新)苏教版六年级数学上册分数除法知识点归纳(附答案)
分数除法知识点归纳(1)分数除法的意义和分数除以整数➢知识点一:分数除法的意义整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。
..........................已知两个因数的积与其中一个因数,求另一个因数,用(除法..)计算。
分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
............................➢知识点二:分数除以整数的计算方法把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。
分数除以整数(0除外)的计算方法:(.1.)用分子和整数相除的商做分子,分母不变。
....................(.2.)分数除以整数,等于分数乘这个整数的倒数。
.....................(2)一个数除以分数➢知识点一:一个数除以分数的计算方法一个数除以分数,等于这个数乘分数的倒数。
➢知识点二:分数除法的统一计算法则甲数除以乙数(0除外),等于甲数乘乙数的倒数。
➢知识点三:商与被除数的大小关系一个数(0除外)除以小于1的数,商大于被除数,除以1,商等于被除数,除以大于1的数,商小于被除数。
0除以任何数商都为0.(3)分数除法的混合运算➢知识点一:分数除加、除减的运算顺序除加、除减混合运算,如果没有括号,先算除法,后算加减。
➢知识点二:连除的计算方法分数连除,可以分步转化为乘法计算,也可以一次都转化为乘法再计算,能约分的要约分。
➢知识点三:不含括号的分数混合运算的运算顺序在一个分数混合运算的算式里,如果只含有同一级运算,按照从左到右的顺序计算;如果含有两级运算,先算第二级运算,再算第一级运算。
➢知识点四:含有括号的分数混和运算的运算顺序在一个分数混合运算的算式里,如果既有小括号又有中括号,要先算小括号里面的,再算中括号里面的。
➢知识点五:整数的运算定律在分数混和运算中的运用在进行分数的混和运算中,可以利用加法、减法、乘法、除法的运算定律或运算性质,使计算简便。
人教版六年级上册数学 第3单元 《分数除法》归纳总结
三、 圆一、 认识圆1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母O 表示。
它到圆上任意一点的距离都相等.3、半径:连接圆心到圆上任意一点的线段叫做半径。
一般用字母r 表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d 表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,有无数条直径。
所有的半径都相等,所有的直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的21。
用字母表示为:d =2r 或r =2d 8、轴对称图形: 如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。
(经过圆心的任意一条直线或直径所在的直线)9、长方形、正方形和圆都是对称图形,都有对称轴。
这些图形都是轴对称图形。
10、只有1一条对称轴的图形有: 角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是: 长方形只有3条对称轴的图形是: 等边三角形只有4条对称轴的图形是: 正方形;有无数条对称轴的图形是: 圆、圆环。
二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。
用字母C 表示。
2、圆周率实验:在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。
发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。
3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母π(pai)表示。
(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。
圆周率π是一个无限不循环小数。
在计算时,一般取π ≈ 3.14。
(2)、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。
(3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数除法
1.分数除法计算
(1)分数除法的意义和分数除以整数
整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。
已知两个因数的积与其中一个因数,求另一个因数,用(除法)计算。
10
1
3103=÷的意义是:已知两个因数的积是103
,其中一个因数是3,求另一个因数是多少。
分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
分数除以整数的计算方法
把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。
分数除以整数(0除外)的计算方法:(1)用分子和整数相除的商做分子,分母不变。
(2)分数除以整数,等于分数乘这个整数的倒数。
练习: 1.填空
(1)根据3565372=⨯和分数除法意义可得:=÷53356( ),=÷72
356( )。
(2)把29m 长的绳子平均剪成4段,每段是2
9
m 的( )。
(3)打字员打一份文件,打了20分钟后还剩5
2
,平均每分钟打这份文件的( )。
2.列式计算。
(1)一个数的6倍是5
1
,这个数是多少?
(2)51的6
1
是多少?
3.看图列式计算。
? ? ? ?
811
(2)一个数除以分数
知识点一:一个数除以分数的计算方法:一个数除以分数,等于这个数乘分数的倒数。
知识点二:分数除法的统一计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
知识点三:商与被除数的大小关系:
一个数(0除外)除以小于1的数,商大于被除数,除以1,商等于被除数,除以大于1的数,商小于被除数。
0除以任何数商都为0.
练习:1.算一算
4851625÷
44392213÷ 14
27
277⨯ 210÷ 2.填空。
(1)32的43是( ),它和3
2÷( )得数相同。
(2)分数除法可以转化为( )进行计算,计算过程中,转变成乘( )的倒数。
4.判断。
(1)两个真分数相除,商大于被除数。
(2)一个数除以假分数,商一定小于被除数。
(3)分数除法的混合运算 2.解决问题
知识点一:已知一个数的几分之几是多少,求这个数的应用题解法
列方程解题的关键:找出题中数量间的等量关系。
用算术法解除法应用题的关键:找准已知数量对应的单位“1”的几分之几。
解简单的“已知一个数的几分之几是多少,求这个数”的解题方法:方程解法:(1)找出单位“1”,设未知量为x ;(2)找出题中的数量关系式;(3)列出方程。
算术法:(1)找出单位“1”;(2)找出已知量和已知量占单位“1”的几分之几;(3)列除法算式。
即已知量÷已知量占单位“1”的几分之几=单位“1”的量。
知识点二:分数连除应用题的解题方法
(1)分数连除应用题的结构特点:题中有3个数量,两个单位“1”,都是未知的。
(2)分数连除应用题的解题方法:①方程解法:设所求单位“1”的量为x ,根据等量关系列
方程解答。
即x ×a b ×c
d
=已知量。
②算术解法:用已知量连续除以它们所对应的单位“1”
的几分之几。
即已知量÷c d ÷a
b
=另一个单位“1”的量。
(3)解题关键:找准单位“1”,求出中间量。
练习:1.画线段图表示下面各数量关系,并写出等量关系式。
(1)鸡的只数是鸭的3
2。
(2)女生人数占全班人数的5
3。
2.妈妈给小林一些钱买衣服,小林买毛衣花了90元,买裤子花了60元,买这两样衣物花的
钱是妈妈给小林钱数的4
3
,妈妈给小林多少钱?
3.赵老师的讲桌上有红粉笔16支,白粉笔的支数是红粉笔的45,又是蓝粉笔的11
10。
蓝粉笔
有多少支?
4.一袋面粉,用去它的5
1
,还剩20kg 。
剩下的面粉是这袋面粉的几分之几?这袋面粉重多少
千克?
5.截止2009年12月22日,世博会门票已经售出1200万张,超出原定计划的5
1
,原定售出
多少万张?
知识点三:稍复杂的“已知一个数的几分之几是多少,求这个数”的应用题的解法 (1)稍复杂的“已知一个数的几分之几是多少,求这个数”的应用题的结构特征:单位“1”是未知的,已知的比较量与所给的几分之几不对应。
(2)解题方法:①用方程解:找到题中数量间的等量关系,设未知量为x ,列出方程。
②算术法解:找到题中单位“1”,计算出已知量占单位“1”的几分之几,利用已知量÷已知量占单位“1”的几分之几=单位“1”的量(标准量)列式解答。
(3)解题关键:找准单位“1”,弄清谁是谁的几分之几,谁比谁多几分之几,计算出已知量是单位“1”的几分之几。
练习:1.画线段图表示下面各数量关系,并写出等量关系式。
(1)杨树比柳树少41。
(2)柳树比杨树多4
1
2.六(2)班的人数是六(1)班的10
9
,六(2)班比六(1)班少5人,六(1)班有多少人?
二、基础练习: (1)寻找单位“1”(先说出表示单位“1”的量,再说出另一个量所对应的分率)
1、男生是女生的31
2、女生是男生的31
3、男生比女生多31
4、女生比男生少31
5、一条路修了52
6、今年比去年增产5
2
7、一条路,修了50米,还剩52 8、一件衣服降价5
2
9、看了一本书的31 10、一批青菜,其中4
1
是白菜
11、四月份比三月份节约用电51 12、水结冰体积膨胀11
1
(2)寻找分率对应量
例:看了一本书的31。
全书的(3
1
)和( )相对应。
全书的(1-
3
1
)和( )相对应。
①育才小学全校共有学生1500人,五年级人数占全校人数的41,六年级人数占全校人数的5
1
,求五、六年级共有学生多少人?
②仓库里有若干吨化肥,第一天运出总数的
10
1,第二天运出总数的51
,还剩49吨,仓库里原有化肥多少
吨?
(3)训练写等量关系式: 常用的等量关系的标志词有:“是、为、占、相当于、等于、得、比、共 ”
①桃树棵数是梨树的54 ②一班的得分为二班的5
4
③五年级人数占全校人数的41 ④甲相当于乙的5
2
⑤a 的2倍与b 的51的和等于5 ⑥a 的2倍与b 的51
的差得5
⑦今年比去年增产4
1
⑧美术小组和舞蹈小组共30人
(4)变换单位“1”
①梨树48棵,桃树的棵树是梨树的56 ,又是苹果树的1
4
,苹果树有几棵?
②学校田径队有队员20人,是合唱队人数的56 ,合唱队人数是舞蹈队的43
,舞蹈队有多少人?
③食堂有大米
53吨,第一天用掉61,是第二天用掉的8
3
,第二天用掉多少吨?
三、解决问题
(一)量率对应直接解决问题:
1.电视机厂今年生产电视机36000台,相当于去年产量的4
1
,去年生产多少台?
2.电视机厂今年生产电视机36000台,比去年少生产4
1
,去年生产多少台?
3.电视机厂今年生产电视机36000台,比去年多生产4
1
,去年生产多少台?
4.电视机厂今年生产电视机36000台,去年产量是今年的4
1
,去年生产多少台?
5电视机厂今年生产电视机36000台,去年产量比今年少4
1
,去年生产多少台?
6.电视机厂今年生产电视机36000台,去年产量比今年多4
1
,去年生产多少台。