永磁同步电动机直接转矩控制系统-外文翻译
永磁同步电机直接转矩控制系统理论及控制方案的研究
永磁同步电机直接转矩控制系统理论及控制方案的研究Study of the Scheme and Theory of the Direct Torque Control in PermanentMagnet Synchronous Motor Drives田 淳 胡育文(南京航空航天大学航空电源航空科技重点实验室 210016)Tian Chun H u Yuw en (Nanjing University of Aeronautics and Astronautics 210016 China ) 摘要 进一步研究了永磁同步电机直接转矩控制理论,明确了零电压矢量在控制过程中的作用,实现了基于定子磁链观测的永磁同步电机调速系统。
电机系统具有良好的性能。
实验结果论证了该方法在永磁同步电机拖动系统中的实用性。
关键词:永磁同步电机 直接转矩控制 磁链中图分类号:T M92115Abstract This paper im proves the theory of direct torque control (DT C )in permanent magnet syn 2chronous m otor (PMS M )and im plements the variable -speed PMS M system 1The function of zero -v oltage vector is proposed in the control method 1The system has shown g ood performances and its experimental results verify the reliability and practicability of this method in PMS M drives 1K eyw ords :Permanent magnet synchronous m otor Direct torque control Flux linkage航空基础科学重点基金项目资助(98Z 52001)。
永磁同步电机直接转矩控制介绍
Fig.2PMSM Direct Torque Control System Frame
2.3PMSM直接转矩控制的弱磁控制
随着稀士永磁材料的发展,高性能的永磁材料应用到电机中,使得永磁电机的抗去磁能力增强,为电机的高速弱磁运行提供了可能性。永磁同步电机直接转矩控制系统能够直接控制定子磁链,因此其弱磁控制变得很容易,且比矢量控制简单。永磁同步电机的弱磁控制的基本思想是利用电机直轴电枢反应,使电机的气隙磁场减弱,达到等效于直接减弱励磁磁场的控制效果。文献[6]首次将内永磁同步电机直接转矩控制拓展到弱磁范围,具有对电流母线电压的最大利用和控制受电机参数影响小等优点。
永磁同步电机直接转矩控制介绍
梅 妮 张 波
(华南理工大学电力学院,广州,510640)
摘要:永磁同步电机(PMSM)直接转矩控制已成为目前一个研究热点,它不同于异步电动机直接转矩控制,也不同于一般同步电动机直接转矩控制,有其明显的控制特点。本文在分析永磁同步电机模型和直接转矩控制原理基础上,介绍几种智能算法在直接转矩控制调速系统中的应用,展望了PMSM直接转矩控制今后的研究方向。
2PMSM直接转矩控制理论概述出了PMSM的直接转矩控制理论。建立如图1所示的PMSM矢量图,其中 坐标系是固定在转子上的旋转坐标系, 坐标系是固定在定子上的旋转坐标系。PMSM具有正弦形的反电势波形,其定子电压、电流也应为正弦波。假设电动机是线性的,参数不随温度的变化而变化,忽略磁滞、涡流损耗,且转子无阻尼绕组,那么可以导出在定子旋转 坐标系下永磁同步电机的电磁转矩方程为:
文[16]永磁同步电机滑模变结构直接转矩控制根据指数趋近律来设计滑模控制器,能改善系统正常运动段的动态品质;用连续函数替代滑模控制器中的开关函数,能有效减小高频抖动;采用转矩和磁链两个滑模控制器替代传统直接转矩控制的滞环调节器,并用其输出的 两相静止坐标系下的电压实现空间电压矢量调制,保证了功率变换器开关频率恒定。其部分仿真和实验结果如下图5,6。
永磁同步电机论文:永磁同步电机直接转矩控制系统的研究
永磁同步电机论文:永磁同步电机直接转矩控制系统的研究【中文摘要】永磁同步电机以其结构简单、效率高、调速范围宽等优点,广泛应用于机械加工、航空航天和电力牵引等领域,而直接转矩控制是继矢量控制技术之后发展起来的一种新型高性能的交流调速技术,因此,永磁同步电机的直接转矩控制系统成为研究的热点。
本文以研究永磁同步电机直接转矩控制系统为,具有重要的理论和实际意义。
本文结合大量的文献资料,介绍了永磁同步电机的结构以及其直接转矩控制的研究现状与方向。
从空间矢量原理出发,介绍了调速系统中常涉及到的三种坐标系以及它们之间的变换理论,推导了永磁同步电机在各种坐标系下的数学模型。
深入分析了直接转矩控制的基本思想,对基于Bang-Bang滞环控制的传统方式进行了研究,分析了空间电压矢量对定子磁链和电磁转矩的影响。
针对传统控制方式存在的缺限,本文将空间矢量脉宽调制技术引入永磁同步电机的直接转矩控制系统中,以解决传统直接转矩控制方式中磁链、转矩脉动大的问题,给出了定子磁链和电磁转矩协调控制的改进算法。
借助Matlab/Simulink工具对永磁同步电机的传统直接转矩控制系统和基于SVPWM的直接转矩控制系统各子环节进行建模设计,建立了基于两种控制策略的仿真模型。
得到了与理论分析相一致的实验结果:改进后系统具有良好的动、静态性能,减少了转矩和磁链的脉动。
【英文摘要】Permanent magnet synchronous machine with its simple structure, high efficiency, wide speed range, are widelyapplied in many fields, such as machining operation, aerospace, electric traction etc., and direct torque control is a new type of high-performance AC driving system after vector control technique, as a result, the research of direct torque control of permanent magnet synchronous machine has become a focus. Therefore, this thesis take studies of the direct torque control system of permanent magnet synchronous machine as a goal; it has important theoretical and practical significance.After consulted many literatures, the thesis introduced the structure of permanent magnet synchronous machine, and then analyzed the status and trend of permanent magnet synchronous machine’s direct torque control system. Based on space vector principle, the three kinds of coordinate systems as well as the transformation of them which usually used in motor’s speed control system are introduced, then, the mathematic models on different coordinate systems are derived. After that, the theory of DTC is studied deeply and traditional control system based on Bang-Bang mode is researched. The effects of space voltage vectors towards to stator flux and electromagnetic torque are also analyzed. Due to existent disadvantages of traditional DTC mode, Space Vector Pulse Width Modulation is brought into PMSM DTC system in order to resolvethe problems such as remarkable fluctuations of flux and torque. Moreover, the improved algorithm is given for the harmonious control of stator flux and electromagenic torque.WithMatlab/Simulink the subsystems of traditional DTC system and SVPWM DTC system for PMSM are modeled and designed. Then the simulation models of the above two control strategies are also established. Simulation research is conducted and the experimental results are corresponding with theoryanalysis:the improved system has good dynamic and static performance, less flux and torque ripple.【关键词】永磁同步电机直接转矩控制空间矢量脉宽调制Matlab/Simulink【英文关键词】Permanent magnet synchronous machine Direct torque control SVPWM Matlab/Simulink 【目录】永磁同步电机直接转矩控制系统的研究摘要6-7Abstract7第1章绪论10-15 1.1 课题研究的背景与意义10-11 1.2 永磁同步电机的特点及其应用的发展11-13 1.3 永磁同步电机直接转矩控制的发展和研究现状13-14 1.4 论文的主要工作14-15第2章永磁同步电机的结构及数学模型分析15-27 2.1 永磁同步电机的结构简介15-17 2.2 空间矢量原理介绍17-18 2.3 坐标变换18-22 2.3.1 三相静止坐标系与两相静止坐标系之间的变换18-20 2.3.2 三相静止坐标系与两相旋转坐标系之间的变换20-21 2.3.3 两相静止坐标系与两相旋转坐标系之间的变换21-22 2.4 永磁同步电机的数学模型22-26 2.4.1 电机在三相静止坐标系中的数学模型23-24 2.4.2 电机在两相旋转坐标系中的数学模型24-25 2.4.3 电机在两相静止坐标系中的数学模型25 2.4.4 电机在磁场旋转坐标系中的数学模型25-26 2.5 本章小结26-27第3章永磁同步电机直接转矩控制系统的原理及实现27-47 3.1 永磁同步电机直接转矩控制的基本思想27 3.2 传统永磁同步电机直接转矩控制系统27-37 3.2.1 逆变器和空间电压矢量28-29 3.2.2 定子磁链的估算与滞环控制29-34 3.2.3 电磁转矩的估算与滞环控制34-35 3.2.4 开关表35-36 3.2.5 传统控制系统存在的问题36-37 3.3 基于SVPWM的永磁同步电机直接转矩控制系统37-45 3.3.1 空间矢量脉宽调制(SVPWM)原理介绍38-39 3.3.2 基于SVPWM的永磁同步电机直接转矩控制系统39-40 3.3.3 空间矢量脉宽调制技术的实现40-45 3.4 传统与SVPWM直接转矩控制比较45-46 3.5 本章小结46-47第4章永磁同步电机直接转矩控制系统的仿真研究47-61 4.1 MATLAB/simulink简介47-48 4.2 传统永磁同步电机直接转矩控制系统仿真48-53 4.2.1 永磁同步电机的模块48-49 4.2.2 定子电流从三相到两相的变换单元49 4.2.3 定子电压分量获取模块49-50 4.2.4 定子磁链、电磁转矩及定子磁链位置角的估算模块50-51 4.2.5 定子磁链区域号的判断模块51-52 4.2.6 开关表及逆变器驱动信号模块52-53 4.3 基于SVPWM的永磁同步电机直接转矩控制系统仿真53-56 4.3.1 参考电压矢量U_s生成模块54-55 4.3.2 SVPWM仿真实现的模块55-56 4.4 仿真结果的比较分析56-60 4.5 本章小结60-61结论61-62致谢62-63参考文献63-67攻读硕士学位期间发表的论文67。
永磁同步电机的矢量控制翻译
设计最优的永磁同步电动机矢量控制摘要:永磁同步电机(PMSM )是在应用程序中非常有用。
矢量控制的永磁同步电机控制是其流行的一种。
在本文中,首先是设计最优的永磁同步电动机矢量控制,然后将结果与传统的矢量控制相比。
然后我们假设,测量噪声和线性二次型高斯(LQG )方法用于过滤的噪音并将嘈杂的最优矢量控制和筛选最优矢量控制的结果相互比较。
非线性的永磁同步电机和逆变器及其控制电路的存在,造成该系统是非线性和时变。
派生平均模型,该系统改变了非线性时间不变,时间不变转换为线性系统模型的线性平均模型周围。
仿真结果表明,噪声控制系统的性能和鲁棒性已大大提高关键词:卡尔曼滤波器,线性二次型高斯(LQG ),线性二次调节器(LQR ),永磁同步电机 术语:d i ,i q d-q 定子电流vd,v q d-q 定子电压r d-p 坐标系旋转角频率(rad/s) θr 旋转角度 T L负载转矩R 阻力系数D 阻尼系数L 相感应系数N 极坐标数 ψ 磁链J 转动惯量1引言:矢量控制的方法,合并快速信号处理和快速电力电子,使交流电机驱动器用于高性能任务的应用程序,这是传统伺服传动装置才能做到的。
一个应用矢量控制的永磁同步电机特别有利于使用良好的高性能伺服驱动应用程序,因为它实现了伺服驱动的高性能设计准则,如结构紧凑,高气隙磁通密度,高功率惯量比,高转矩惯性比例和高扭矩的能力[1]。
由于永磁同步的交流电机小功率输出取代传统的直流马达额定功率变频调速控制系统,永磁交流电动机使用矢量控制的性能并具有快速瞬态响应,同时必须改善[2]。
线性二次型调节器(LQR)是一个最优控制方法,可用于广泛的应用。
二次成本函数设计师提供了大量的灵活性,以执行权衡各性能标准。
成本函数的权重和的关系性能标准,甚至持有高阶多个输入系统,经典控制变得。
一个LQR主要限制是整个系统完全时产生的状态必须测量,控制。
此限制变得越来越麻烦的高阶系统,其中测量所有数据可以是非常昂贵。
永磁同步电动机矢量控制外文翻译文献
永磁同步电动机矢量控制外文翻译文献永磁同步电动机矢量控制外文翻译文献(文档含中英文对照即英文原文和中文翻译)燕山大学本科生毕业设计(论文)附录译文:永磁同步电动机的矢量控制——综述摘要——在高性能伺服应用中,最理想的方法莫过于不使用运动状态传感器的快速精确的转矩控制。
结合直接转矩控制器的永磁同步电动机使用计划为实现这一目标提供了许多机会。
最近,已经有一些作者提出了可能实现的永磁同步电动机的直接转矩控制。
本文给出了一些概述,解释了永磁同步电动机的基本原则。
讨论了内嵌式和面贴式的拓扑结构和算法描述。
在这些控制计划需要估计定子磁链和初始转子位置。
本文也讨论了实现这些估计的技术。
本文的主要目标是对已经取得的成果给出一个大纲,同时为进一步研究确定兴趣点。
1 绪论在各种工业应用中,如工业机器人和机床,永磁同步电动机驱动器已经取代了传统的直流电机和异步电机驱动器。
永磁同步电动机的优点有高转矩/惯量比,高效率,高功率密度和高可靠性。
因为这些优势,永磁同步电动机确实在需要快速和精确转矩响应的高性能伺服驱动器中有很好的应用。
在永磁同步电动机驱动器中,电磁转矩通常是在一个固定在转子上的坐标系上来间接控制定子电流元件。
这一领域的方向创造需要一个位置传感器,从而降低了驱动器的可靠性同时增加了成本。
有人提议,异步电动机直接转矩控制作为一种替代控制方案在过去二十年非常流行。
直接转矩控制的异步电机具有作为计算固定参考系的内在的运动状态传感器。
此外,与磁场定向控制相比,采用无电流控制器和电机参数以外的定子电阻的直接转矩控制的转矩响应更快,参数依赖更低。
在90 年代末,出现了一种把直接转矩控制和永磁同步电动机的优势结合的理念应用到充满生机的驱动器中的文章。
在过去十年中,一些作者已经提出了将直接转矩控制应用到永磁同步电动机的方法。
这篇文章给出了在这个领域中的研究综述。
第三部分给出了内嵌式和面贴式的永磁同步电动机的可能实施方法。
第四节和第五节讨论了实施方法中的问题。
永磁同步电机的直接转矩控制(中文)外文翻译【范本模板】
在永磁同步电机直接转矩控制系统中的模拟研究摘要—为了提高永磁同步电机的动态性能,提出了永磁同步电机( PMSM)的直接转矩控制( DTC )方案。
基于永磁同步电机的数学模型和DTC 系统的工作原理的深入分析,在Matlab / Simulink 中建立这个系统的仿真模型,来进行模型的广泛研究.大量的仿真结果表明永磁同步电机的DTC 系统具有较快的响应速度和良好的动态性能,验证了这个系统的正确性和可行性。
关键词-永磁同步电机;磁链估计;直接转矩控制; 空间矢量脉宽调制I.引言在过去的几年里永磁同步电机( PMSM)在越来越多的广泛应用中被熟悉,由于它的特性,例如体积小、重量轻、效率高、惯性小、转子无散热问题等[ 1].直接转矩控制( DTC )是矢量控制之后的一种新的控制方法。
它摈弃了矢量解耦思想控制,并使用该定子磁链直接控制磁链和电动机的转矩。
因此,该系统的动态反应是非常快的[2]。
DTC 控制策略应用于永磁同步电动机,以提高电机的转矩特性,其目前已经引起了人们的广泛关注。
传统的DTC 通常采用开关控制策略来实施.但这种控制策略不能同时满足系统在转矩和磁链上的要求,这导致由系统生成的磁链和转矩有很大的波动并导致脉冲电流的问题和更高的开关频率变化引起的开关噪声.空间矢量脉宽调制( SVPWM )控制策略已广泛用于电机速度控制领域,由于其潜在的优点,例如小电流波形畸变,直流电压的高利用率,易于数字实现,恒定的开关逆变器的频率,从而有效地降低电机转矩和磁链的脉动等等。
本文研究的对象是永磁同步电机。
在应用中, 基于空间矢量脉宽调制的DTC 策略被用来模拟。
结果表明,该系统具有响应速度快的优势,良好的动态性能等[3] [4].II 。
永磁同步电机的直接转矩控制技术永磁同步电机的定子磁链不仅包括由定子电流产生的,而且还包括由永磁转子产生的,这取决于定子和转子的参考系之间的位置角度r θ。
因此定子磁链可以表示为:rj s s s PM L i e θψψ=+ (1)其中,下标s 是静态的参考坐标系,sL 是定子自感, PM ψ是转子永磁磁链。
永磁同步电机的直接转矩控制(英文)外文翻译
d, q: rotor rotation axis, d-axis direction is the rotor pole
direction
dc, qc: synchronous rotation axis, dc-axis direction is the
Te =
� P[(lf/sd (i,de
-If/,q (isde
{
If/Sd = LIdi'd III 'f'sq = Lsq.isq.
+ If/PM
(8)
Te =
It can be seen that:
� PIf/.,<r
x i"
(13)
(Notes: L,q = L,d = L, when it is non-salient pole motor)
. U,d = R.,Isd
Abstract-In order to improve the dynamic performance of
PMSM, a Direct Torque Control (DTC) scheme of Permanent Magnet Synchronous Motor (PMSM) is presented. Based on in depth analysis of PMSM mathematical model and the operation principle of DTC system, Matlab / Simulink is used to establish a simulation model of this system, and extensive research of simulation is conducted. A large number of simulation results show that the DTC System of PMSM has fast response and good dynamic performance, which verify correctness and feasibility of this system.
外文翻译译文
永磁同步电机高性能速度控制的最优模糊PI控制器摘要:本文的目的是介绍改进的永磁同步电机(PMSM)工作的控制性能的自适应方法。
该方法允许降低速度追踪误差及应对外部干扰。
本文提出了详细速度控制的方法,并针对两个控制器进行测试,传统的综合比例(PI)控制器和模糊综合成正比(模糊-PI)控制器。
从有着类似动作的实验中,两个控制器都表现出了良好的效果。
然而,模糊-PI 在某些方面脱颖而出。
本文的主要目的是模糊逻辑算法的扩展,以提高工业应用中的伺服控制性能。
关键词:模糊PI;速度控制;干扰;永磁同步电机1 引言用于永磁同步电机(PMSM)的高性能伺服系统在机电一体化,如精密工程,电脑数控机床及各种自动化工业厂房的其他应用领域的许多应用中是必不可少的。
由于不确定性因素,例如不可预测的工厂参数变化,负载扰动,以及固有的非线性动态过程,永磁同步电机伺服系统的控制性能受到严重影响。
在这种情况下,伺服驱动器可能需要比较快地响应命令的变化,并对于不确定性有足够的鲁棒性。
为了满足高速、高精度的直线电机的发展要求,我们希望有一个可以针对操作环境的干扰和不确定性有更高的抗扰动性能的智能控制器。
目前为止,已经有大量的具有不同的复杂性的控制技术(模糊,PI,PID等)被提出。
模糊控制在1970年初首次被提出并实施是在一次设计控制器的实验中,那是在结构上很难建模由于自然存在的非线性和其他建模复杂系统。
桑特等在永磁同步电机的矢量控制与交换计算功能的基础上,提出了权重混合模糊PI速度控制器。
颜善等人提出的直接转矩控制异步电机驱动具有快速跟踪能力,更低的稳态误差,和强大的负载扰动,是一种新的混PI型模糊控制器。
总之,当流程过于复杂时,通过常规的定量技术来分析模糊逻辑控制显得非常有用。
众所周知,调速技术已能够在伺服系统领域执行越来越复杂的任务。
模糊-PI控制器的性能还取决于选择合适的优化算法。
在本文中,提出了一种自适应速度控制器,它以最小化或消除的速度跟踪误差,所设计的混合模糊PI控制器改善了瞬态和稳态系统性能。
永磁同步电机的直接转矩控制系统
永磁同步电机的直接转矩控制系统目录前言摘要 ....................................................................IABSTRACT ................................................................ II 第1章绪论 (1)1.1本课题的背景及研究意义 .............................................. 11.2永磁同步电机控制相关领域发展概况 (2)1.2.1永磁同步电机的特点 (2)1.2.2电力电子器件的发展 (3)1.2.3微处理器的发展 (4)1.2.4永磁同步电机控制策略 (4)1.3直接转矩控制的研究现状及发展趋势 .................................... 6 1.4本课题的研究内容 .................................................... 7 第2章永磁同步电机的数学模型 ........................................... 9 2.1引言 (9)2.2三相永磁同步电机的基本结构 ..........................................9 2.3三相永磁同步电机的数学模型 (10)2.3.1 A-B-C坐标系下的PMSM模型 ......................................112.3.2 α-β坐标系下的PMSM模型 ......................................122.3.3 d-q坐标系下的PMSM模型 ........................................142.3.4 M-T坐标系下的PMSM模型 ........................................15 2.4本章小结 ........................................................... 16 第3章永磁同步电机的直接转矩控制 ...................................... 17 3.1引言 (17)3.2三相永磁同步电机的直接转矩控制 .....................................173.2.1直接转矩控制的基本思想 .........................................173.2.2逆变器和空间电压矢量 ...........................................193.2.3定子磁链的观测与控制 ...........................................213.2.4电磁转矩的观测与控制 ...........................................243.2.5逆变器开关表 ...................................................25 3.3本章小结 ........................................................... 26 第4章永磁同步电机直接转矩控制系统的仿真研究 .. (27) (27)4.1引言4.2 MATLAB7.1/SIMULINK仿真工具箱简介 .................................... 27 4.3三相永磁同步电机传统直接转矩控制系统仿真 (28)4.3.1 PMSM模型及主电路模块 ..........................................28-B-C/α-β坐标变换单元 ................................... 28 4.3.2电流A4.3.3α-β坐标系的定子电压分量获取模块 ..............................294.3.4ψs、Te及γ估算模块 ...........................................304.3.5定子磁链区域号的判断模块 .......................................314.3.6开关表及逆变器驱动信号模块 .....................................32 4.4仿真结果与分析 (33)4.5本章小结 ........................................................... 37第5章系统软硬件设计 . (38)5.1永磁同步电机直接转矩控制系统的硬件构成 .............................385.2软件设计 ........................................................... 38 5.3本章小结 ........................................................... 39 结论 ...................................................................40 参考文献 ............................................................. 41 致谢 ...................................................................42 附录1: 三相永磁同步电机直接转矩控制系统仿真图 (43)附录2:三相永磁同步电机直接转矩控制系统结构框图 (43)2009届电气工程与自动化毕业论文摘要直接转矩控制策略因其具有转矩控制直接、动态响应较快、算法相对简单等优点在交流电机调速领域得到越来越多的关注。
永磁同步电机转矩控制的特点
永磁同步电机转矩控制的特点一、引言永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)是一种高效、高性能的电机,具有结构简单、功率密度大、转矩平滑等优点,在工业控制领域得到广泛应用。
在PMSM控制中,转矩控制是一个重要的问题,本文将从特点角度探讨永磁同步电机转矩控制的特点。
二、永磁同步电机转矩控制方法永磁同步电机的转子上带有永久磁铁,当定子上施加三相交流电压时,产生旋转磁场与永久磁场相互作用,使得转子旋转。
常见的PMSM控制方法有FOC(Field-Oriented Control)、DTC(Direct Torque Control)、Sliding Mode Control等。
三、FOC控制下的PMSM转矩特点FOC是一种广泛应用于PMSM控制中的方法,其基本思想是将三相交流电压分解为两个正交轴上的分量,即d轴和q轴分量。
d轴分量与永久磁铁方向相同,q轴分量垂直于d轴和永久磁铁方向。
通过控制d轴和q轴分量的电压,实现对PMSM的转矩和速度控制。
在FOC控制下,PMSM的转矩特点主要有以下几个方面:1. 转矩响应快:FOC控制下,可以实现快速响应转矩指令。
通过调节d轴和q轴电压,可以实现对转矩的精确控制。
2. 转矩平滑:由于FOC控制下,d轴电压与永久磁铁方向相同,因此可以实现转矩平滑输出。
这种特点尤其适用于需要高精度、高稳定性的应用场合。
3. 转速范围宽:FOC控制下,可以实现对PMSM的高效、精确控制,因此适用于转速范围较宽的应用场合。
四、DTC控制下的PMSM转矩特点DTC是一种基于直接观测法的PMSM控制方法,在该方法中不需要进行坐标变换和反演操作。
DTC将PMSM看做一个动态系统,在每个采样周期内直接计算出所需电压,并直接施加到电机上。
在DTC控制下,PMSM的转矩特点主要有以下几个方面:1. 转矩响应快:DTC控制下,可以实现快速响应转矩指令。
永磁同步电动机英文翻译
英文原文Research on Voltage Space-vector Control System of Synchronous Motor Vector control of field oriented control, the basic idea is: through coordinate transformation control method for simulation of DC motor to control the permanent magnet synchronous motor. Three-phase symmetrical windings in three-phase AC can produce a rotating magnetic motive force, two phase symmetrical windings into two symmetric alternating current can produce the same rotating magnet ometive force; therefore the three-phase symmetric winding can be replaced with two phase symmetrical windings equivalent independent of each other, equivalent principle is the constant magnetomotive force produced before and after transformation, transformation and total power constant.In oil field, the power factor was reduced and the reactive power consumption was increased because of the usage of the large number of asynchronous motor, and resulting in a huge waste of energy, which reduced the integrated cost-effective of field. The permanent magnet synchronous motor possess all the advantages of synchronous motor and it has high efficiency and higher power factor. For the advantages of permanent magnet synchronous,it will bring good energy saving results if it is used in pumping unit. As a result,the study on permanent magnet synchronous motor control system is important.In this paper the theory of vector control system on PMSM is first deeply studied,and the idea of coordinate transformation is used to build the mathematical model of PMSM. An in-depth theoretical analysis of voltage space vector control algorithm is done. Secondly,based on the mathematical model of permanent magnet synchronous motor and SVPWM theory,the model of PMSM vector control system is established by of Matlab/Simulink. The simulation result shows the possibility of using the control system.In the paper, the software and hardware of PMSM vector control system is designed core-based TI Company’s motor control DSP chip TMS320LF2407A. Hardware ncludes the main circuit,control circuit and its peripheral circuits;software contains the main program and SVPWM interrupt subroutine,it achieves the implementation of the dual closed-loop current. At last,the motor experiments are carried on under the laboratory,the experimental results verify the correctness of the hardware and control program.Permanent magnet synchronous motor with the advantages of simple structure,high efficiency,wide speed range,widely used in machining,aerospace and electric traction fields,this paper introduces the structure,control strategy of permanent magnet synchronous motor and its vector torque control research present situation and direction.Based on space vector principle,the three kind of coordinate systems as well as the transformation of them which usually used in motor’s speed control system areintroduced,then,the mathematic models on different coordinate systems are derived,be based on that,the principle of traditional direct torque control system as well as the direct torque control system based on SVPWM are analyzed detailed,meanwhile,the realization process of SVPWM algorithm is derived.Finally,the simulation model of convientional DTC Control system are established in MATLAB/Simulink.Control of permanent magnet synchronous motor mainly in the following1.1 vector controlThe core idea of vector control of three-phase current,voltage,the flux of the motor by coordinate transformation into the rotor flux oriented phase reference coordinate system, control idea according to DC motor, control motor torque.The advantages of the field oriented vector control is good torque response,precise speed control,zero speed can achieve full load.However,the vector control system needs to determine the rotor flux,to coordinate transformation,a large amount of calculation,but also consider the effect of changes in the rotor of the motor parameters,which makes the system more complex,this is the vector control deficiencies.1.2 direct torque controlIt is based on stator flux orientation,implementation of direct control of stator flux and torque.The control is based on the idea of amplitude real-time detection of motor torque and flux are given,and the torque and flux linkage value comparison,the torque and flux adjusting the appropriate stator voltage space vector selection table switch calculated directly from an offline,power switch and control of inverter state.Direct torque control does not need the vector coordinate transformation complex,the motor model is simplified,no pulse width modulation signal generator,control has the advantages of simple structure,motor parameter changes,can obtain good dynamic performance.But there are also some shortcomings,such as the inverter switching frequency is not fixed,large torque ripple current to realize digital control requires high sampling frequency.1.3 direct torque control based on space vector modulation(SVM-DTC)The SVM-DTC control is the vector control and direct torque control together,its theory foundation and DTC control theory,is based on torque angle control.According to the change of torque angle and flux vector position,get the flux of the next cycle position,which can be the reference voltage vector is required,then the reference voltage vector modulation,PWM wave inverter driving.The SVM-DTC control,the flux changes to determine the next position,so the accurate estimation of flux has great effect on the control system,and the flux estimation depends on motor parameters are stable.In addition,the electromagnetic torque and torque angle is a nonlinear relationship,but in the practical application is approximately linear,using PIregulation,performance so that the PI parameters can also affect the system.1.4 The model reference adaptive control(MRAS)The model system requirements of the control system with a model for the adaptive control,the output response model is ideal,this model is called the reference model.The system always tries to make dynamic consistency can bedynamic reference model and the adjustable model in operation.By comparing the output of reference model and actual process,and through the adaptive controller to adjust some parameters of the adjustable model or generate anauxiliary input,so that the output error between actual output and the reference model as small as possible.In practical application,usually used for speed estimation,to realize the speed sensor less operation.Therefore,the model reference adaptive depends mainly on the accuracy of the adjustable model,the stable operation of the system plays a decisive role in.In addition,the adaptive control law parameters tuning is a difficult problem,the control accuracy of the control system has a great impact.1.5The state observer based controlControl based on state observer is developed based on the modern control theory,observer based on the mathematical model of permanent magnet synchronous motor,used for each observation control system and the state,thus extracting speed control.It is also dependent on the accuracy of the motor model,the appearance of large error will run at low speed or increasing temperature leads to the variation of motor parameters,so as to bring large deviation to control.1.6 intelligent controlThe use of intelligent algorithms,intelligent control of the control system, such as fuzzy control,neural network control,self-tuning parameters and so on,through one or several times after the trial operation, automatic parameter tuning out,to realize the optimization control.Intelligent control has many advantages,especially in the motor is multi variable,nonlinear control system,however,control and its performance depends on the control object,that is to say not every control system can achieve good control,which require sexperience.At the same time,the large amount of computation,but also has certain requirements for the controller.Synchronous Motor because of having power factor higher run – time efficiency higher , stability good, the revolving speed settles to wait a merit, is extensively been applied to industrial production amid. The starting fault that acquaints with synchronous motor, and debugging in time, all have important meaning to the motor and the production systems . By way of energy in time, accurate debugging and transaction fault, have the familiar faultprogress of the synchronous motor in detail analytical!2 Familiar fault2.1 The synchro motor after switching on electricity the incapability startsThe synchro motor after starting the incapability run - time generally has the reason of severals as follows:(1)Power supply voltage over low.Because at the square of voltage, the starting torque direct proportion of synchro motor's the voltage of power supply over make low the starting torque of synchro motor significantly the droop is lower than load troque, can not start thus and want to raise vs this power supply voltage to enlarge the starting torque of dynamo.(2)The fault of motor. Check motor settle, the rotor winding had no short circuit, open circtui, open soldering and link bad etc. fault, these the faults will make the dynamo can not start to create starting of rating of intensity of magnetic field, make thus the dynamo can not start;Checking the motor bearing has already had no failure, the port cap has have no loose, if bearing failure port shroud loose, result in bearing's down sinking, mutually rub with stator iron core, result in thus dynamo's canning not start, vs settle the rotor fault can be shaken table with the low tension, gradually click to check to seek a fault condition and adopt homologous treatment;The countersgaft accepts and carries to shroud a loose condition and all wants a pan car before driving each time and sees motor rotor whether slewing is vivid, if bearing or shaft kiowatt damage and replace in time.(3)The control device breaks down.This kind of faults are mostly the d.c. output voltage of the windings of Li magnetic belt to adjust not appropriate or don't output, result in the stator current of motor over big, cause the motor conduct electricity the run make or the losing of dynamo magnetic belt run - time.Should check whether output voltage current and its waveform that the Li magnetic belt equips is normal at this time, the Rong breaks whether the machine Rong breaks, the contact is bad;Whether circuit board plug-in puts prison or alignment;Check loop resistance, put out whether crystal gate tube of magnet burns out or brokes through.(4)Mechanical trouble. Such as be dragged along a dynamic machinery to block, result in motor incapability's starting, the rotor that moves motor in response to the pan at this time sees whether the slewing is vivid, machinery burden whether existence fault2.2The synchro motor incapability leads long into synchronization.Synchro motor in common use law of nonsynchronous starting,throw in Li magnetic belt when the motor rotor revolving speed hits synchronous revolving speed of 95%, make it leads long into synchronization. The synchro motor incapability leads long into synchronous reason as follows:(1)The Li magnetic belt winding short circuit.Because the winding of Li magnetic belt, existence short circuit breaks down, as a result makes motor able to stabilize run - time but incapability and lead long into synchronization while being lower than synchronous revolving speed. Check to seek the Li magnetic belt winding short circuit, can open into low - tension(about the 30 Vs) in the rotor derivation on - line, put on the magnetic poles surface with a hand work steel saw, pursue inspection magnetic poles, if vibrating is violent, explain the magnetic poles to have no short circuit on steel saw of the magnetic poles' surface, if the vibrating of saw blade micro or don't flap, explain the magnetic poles short circuit. After unloading the magnetic poles, check the fault to click,is short-circuit degree, adopt local to mend or re- round to make.(2) Power supply voltage over low. Power supply voltage over low, result in the strong Li link of the device of Li magnetic belt incapability working, make the motor incapability lead long into synchronization thus, the concrete way is to raise power supply voltage appropriately.(3) The fault of Li magnetic belt device. Such as throw Li over speedy(namely throw in Li magnetic belt, motor rotor revolving speed over low), will make the motor can not lead long into synchronization, should check to throw if the Li link exists fault at this time. If Li magnetic belt device fault, the output's current is lower than a rating value, cause the electricity magnetic troque of dynamo over small but can not lead long into synchronization, at this time in response to scrutiny Li magnetic belt device of throw Li link and phase - shifting link, waveform use oscillo graph to check to throw Li link and phase - shifting link, should also check and put out magnetic belt link and put out crystal gate of magnetic belt whether tube discovers a question as usual, handle in time, if the incapability handles in time, by way of the energy quickly restore capacity, should replace to provide for use circuit board.2.3 Brush and compress tightly spring and gather to give or get an electric shock ring fault.The brush leads short and compresses tightly spring press scarcity and make brush and gather to give or get an electric shock ring of indirectly touch badly, thus generate spark or arc electric, arc electric or spark to on the other hand and easily spark short circuit, will make arc electric burn on the other hand shorter, spark open circtui thus, result in Li magnetic belt device only the Li magnetoelectricity press but have no Li magnetoelectricity streaming;Compress tightly spring ageing lapse, make brush and gather to give or get an electric shock ring of indirectly touch badly, effect the starting of motor thus;Gather to give or get an electric shock a ring surface to there is grease stain and scar or slot scar, will make brush and gather to give or get an electric shock ring of indirectly touch badly, generate spark, spark further burn gather to give or get an electric shock ring, will also make gnd short-circuit, the spark effects the starting of motor thus.For gather to give or get an electric shock ring superficial grease stain, can wipeto clean with the acetone; For thin trace, use many fettle shagging rings of sandpapers surface, is ring surface roughness to hit R1.6 ums, if the slot scar obviously needs to get on the car bed transform, truning, enter amount of knife to take every time 1 mm as proper, in the 1-1.5 ms/s, the truning speed control's roughness hits of the ums of R1.5-1.8 and becomes bad anti to finally polish with the sandpaper 2-3 times over the 0.05 mms.2.4 The damper winding breaks down.The damper winding of synchro motor rotor is provided for synchro motor starting to use and wipe - out run - time at the same time amid spark because of loading to change of out of step osc.Start the damper winding in the process to incise the magnetic field of stator revolution but induced very big starting current in the synchro motor, so the big current by all means will result in damping hair thermal expansion, under the normal condition because of starting time short, the damper winding starting is behind soon will cool off, but block up revolution in the motor, lack phase, start the super - in time to length ways wait a condition down, if don't shut down in time, will result in the damping take off soldering to split etc. condition.The damper winding is weaker link in the synchro motor parts, the damper winding familiar fault has:The damping takes off soldering and split, the damping ring discharges wildfire, damping ring the strain is serious.These faults will effect the starting of synchro motor. The damping takes off soldering and chooses silver actinium welding rod and adopts oxyacetylene welding to weld, the dynamo after taking out the core heats into rotor 200 Celsius degrees set rotor vertical in the oven, after taking out and adopt 750 Celsius degrees to or soly weld temperature, damping and the blind side of of damping ring complete solderings are full, clear a soldering dirt again, ;For split of the damping , after dismantling original damping, choose the material of material homology and adopt the above-mentioned method to weld after packing good damping.Damping ring the wildfire is mainly what damping ring indirectly touches bad or get in touch with area isn't enough to result in. Damping ring the strain seriously is mainly a damping to fix anticoincidence in the slot, the damping plugs into damping ring while welding hole falsely, appear additional stress after welding, at plus damping ring intensity not enough to, treatment is loose open all connectivity bolts of damping rings, vs strain anti big of damping ring, after oxyacetylene welding heating adjust with the exclusive use fixture even, vs strain serious replace a new damping of ring.3 ConclusionWhen the synchro motor appears fault, cautiously analytical possible reason, gradually expel, look into related data when it's necessary, absorb experience, propose corrective actions.Analytical the dynamo fault not only need to have firm theory knowledge and experience of prolific maintenance repairs, but also need to aim at concrete fault, deepconsideration, brave creative, the dynamo after ensuring to break down removal can stabilize run - time over a long period of time.中文翻译永磁同步电动机矢量控制系统(中文对照)矢量控制亦称磁场定向控制,其基本思路是:通过坐标变换实现模拟直流电机的控制方法来对永磁同步电机进行控制。
电机及其控制专业英语词汇
电机及其控制专业英语词汇ac motor 交流电动机active (passive) circuit elements 有(无)源电路元件active component 有功分量active in respect to 相对….呈阻性admittance 导纳air-gap flux distribution 气隙磁通分布air-gap flux 气隙磁通air-gap line 气隙磁化线algebraic 代数的algorithmic 算法的alloy 合金ampere-turns 安匝(数)amplidyne 微场扩流发电机Amplitude Modulation (AM) 调幅armature circuit 电枢电路armature coil 电枢线圈armature m.m.f. wave 电枢磁势波attenuate 衰减automatic station 无人值守电站automatic Voltage regulator(AVR)自动电压调整器auxiliary motor 辅助电动机bandwidth 带宽base 基极bilateral circuit 双向电路bimotored 双马达的biphase 双相的bipolar junction transistor (BJT) 双极性晶体管block diagram 方框图boost 增加breakaway force 起步阻力breakdown torque 极限转矩bronze 青铜buck 补偿capacitance effect 电容效应carbon-filament lamp 碳丝灯泡carrier 载波Cartesian coordinates 笛卡儿坐标系cast-aluminum rotor 铸铝转子chopper circuit 斩波电路circuit branch 支路circuit components 电路元件circuit diagram 电路图circuit parameters 电路参数coaxial 共轴的,同轴的coil winding 线圈绕组coincide in phase with 与….同相collector 集电极converter 变流器commutation condition 换向状况commutator-brush combination 换向器-电刷总线complex impedance 复数阻抗complex number 复数compound generator 复励发电机compounded 复励conductance 电导conductor 导体corridor 通路coupling capacitor 耦合电容cumulatively compounded motor 积复励电动机dc generator 直流发电机dc motor 直流电动机de machine 直流电机demodulator 解调器differentiation 微分digital signal processing 数字信号处理digital signal processor (DSP) 数字信号处理器direct axis transient time constant 直轴瞬变时间常数direct axis 直轴direct-current 直流direct torque control (DTC) 直接转矩控制displacement current 位移电流dynamic response 动态响应dynamic-state operation 动态运行e.m.f = electromotive fore 电动势eddy current 涡流effective values 有效值effects of saturation 饱和效应electric energy 电能electrical device 电气设备electrode 电极电焊条electromagnetic torque 电磁转矩emitter 发射管放射器发射极end ring 端环energy converter 电能转换器epoch angle 初相角equivalent T – circuit T型等值电路error detector 误差检测器error signal 误差信号excitation system 励磁系统excited by 励磁exciting voltage 励磁电压external armature circuit 电枢外电路external characteristic 外特性feedback component 反馈元件feedback loop 反馈回路feedback signal 反馈信号feedback system 反馈系统feedforward signal 前馈信号feedforward system 前馈系统fidelity 保真度field coils 励磁线圈field current 励磁电流field effect transistor (FET) 场效应管field oriented control (FOC) 磁场定向控制field winding 磁场绕组励磁绕组flux linkage 磁链form-wound 模绕forward transfer function 正向传递函数Frequency Shift Keying(FSK) 移频键控frequency 频率full load 满载full-load torque 满载转矩full-order observer 全阶观测器gain 增益generating 发电generator voltage 发电机电压Geometrical position 几何位置harmonic 谐波的heating appliance 电热器high frequency 高频high-gain 高增益high-performance 高性能的horsepower (HP) 马力horseshoe magnet 马蹄形磁铁hydropower station 水电站ideal source 理想电源imaginary part 虚部impedance 阻抗incident 入射的induced current 感生电流induction generator 感应发电机induction machine 感应电机induction machine 感应式电机induction motor 感应电动机inductive component 感性(无功)分量infinite voltage gain 无穷大电压增益inrush current 涌流instantaneous electric power 瞬时电功率instantaneous mechanical power 瞬时机械功率insulation 绝缘integration 积分下限internal resistance 内阻interoffice 局间的inverse 倒数inverter 逆变器iron-loss 铁损isolation 隔离分离绝缘隔振laminated core 叠片铁芯lamination 叠片leakage current 漏电流leakage flux 漏磁通leakage reactance 漏磁电抗leakage 泄漏left-hand rule 左手定则light emitting diode 发光二极管lightning shielding 避雷limiter 限幅器line trap 限波器linear zone 线性区line-to-neutral 线与中性点间的load characteristic 负载特性load-saturation curve 负载饱和曲线locked-rotor torque 锁定转子转矩locked-rotor 锁定转子magnetic amplifier 磁放大器magnetic circuit 磁路magnetic field 磁场magnetic torque 电磁转矩magnetizing reacance 磁化电抗manual control 手动控制mature 成熟的mechanical rectifier 机械式整流器micro-controller 微控制器mid-frequency band 中频带mismatch 失配model reference adaptive control (MRAS) 模型参考自适应控制model reference adaptive system (MRAS) 模型参考自适应系统modulator 调制器modulus 模motoring 电动机驱动mutual flux 交互(主)磁通mutual-inductor 互感no-load 空载number of poles 极数observer 观测器operating condition 运行状态operational calculus 算符演算optical fiber 光纤Oscillation 振荡overhauling 检修P.D. = potential drop 电压降per unit value 标么值percentage 百分数performance characteristic 工作特性permanent magnet 永磁permanent magnet synchronous motor 永磁同步电机per-unit value 标么值phase displacement 相位差Phase Modulation (PM) 相位调制phase reversal 反相plugging 反向制动polarity 极性pole 极点polyphase rectifier 多相整流器polyphase rectifier 多相整流器Polyphase 多相(的)potential distribution 电位分布potential transformer 电压互感器power amplifier 功率放大器power frequency 工频primary cell 原生电池prime motor 原动机prime mover 原动机process of self – excitation 自励过程propagate 传导传播r.m.s values = root mean square values 均方根值random-wound 散绕reactive component 无功分量reactive in respect to 相对….呈感性reactive power 无功功率real part 实部rectifier 整流器reference Voltage 基准电压regeneration 再生, 后反馈放大regulator 调节器reluctance 磁阻retarding torque 制动转矩revolutions per minute 转/分revolutions per second 转/秒rheostat 变阻器right-hand rule 右手定则rotating commutator 旋转(整流子)换向器rotating magnetic field 旋转磁场rotor (stator) winding 转子(定子绕组)rotor core 转子铁芯rotor resistance 转子电阻rotor 转子salient poles 凸极saturation curve 饱和曲线saturation effect 饱和效应self–excitation process 自励过程self excited 自励self-bias resistor 自偏置电阻self-exciting 自励的self-inductor 自感self-sensing 位置自检测sensorless 无传感器的separately excited 他励的series excited 串励series 串励shaft 轴shaft-less 无轴承的short-circuiting ring 短路环shunt displacement current 旁路位移电流shunt excited 并励shunt field 并励磁场shunt 并励shunt 分路器signal amplifier 小信号放大器silica 硅石二氧化硅Single Side Band(SSB) 单边带sinusoidal – density wave 正弦磁密度sinusoidal time function 正弦时间函数slip 转差率solid state 固体solt 槽spatial waveform 空间波形spectral 频谱的spectrum 频谱speed regulation 速度调节speed-torque characteristic 速度转矩特性speed-torque curve 转速力矩特性曲线squirrel cage 鼠笼stabilization network 稳定网络stabilizer 稳定器stabilizing transformer 稳定变压器staor winding 定子绕组stator 定子steady–state condition 稳态条件steady direct current 恒稳直流电storage battery 蓄电池summing circuit 总和线路反馈系统中的比较环节synchronous condenser 同步进相(调相)机synchronous generator 同步发电机synchronous reactance 同步电抗synchronous reluctance motor (SRM) 同步磁阻电机synchronous speed 同步转速technical specifications 技术条件terminal voltage 端电压the dielectric 电介质time constant 时间常数time delay 延时time invariant 时不变的time-phase 时间相位transformer 变压器transient response 瞬态响应transistor 晶体管triangular symbol 三角符号trigonometric transformations 瞬时值tuner 调谐器turns ratio 变比匝比two-way configuration 二线制unidirectional current 单方向性电流variable frequency drive (VFD) 变频器vector equation 矢量方程vector control 矢量控制voltage across the terminals 端电压voltage control system 电压控制系统volt-ampere characteristics 伏安特性waveguide 波导波导管wind-driven generator 风动发电机winding loss 绕组(铜)损耗winding 绕组。
基于Super-twisting算法的永磁同步电机直接转矩控制
3 Pn鬃f 2Ld
cosSRskn
(27)
当控制器参数满足式(6)的设计要求,并在此
IRsix-pi |<ka1 |s追 11/2
基础上令
3f;鬃f cosSRsiy-p2 2Ld
<k a2 I s Te
,由此可
以得岀在考虑有外部干扰时,永磁同步电机系统
仍会保持稳定,具有鲁棒性遥
4实验仿真及结果分析 为验证上述理论的正确性及控制方法的有效
H_ Rs d 鬃 Ld dt
Rs sin啄 d 啄 Ld dt
G=1
(18)
由式(6)可以设计磁链控制的参数為,鬲
PMSM的电磁转矩表达式为
Te=1.5严渣如鬃『sing+3(L4-Lq) I 姑(19)
由于隐极式PMSM中,d轴和q轴上的电感 Ld = Lq,其电磁转矩二阶导数为
2Ld -sin啄
Super-twisting滑模控制器不需要滑模变量 的导数,在滑模面上收敛和稳定性的充分必要条 件为
k、HM 厶〉4Hm + GM(ka H) A Gm , _ G2m Gm(ka-H)
⑹
式中:Hm逸渣 H I;Gm逸G逸Gmo
由式(6)可以得出ka,kb参数o
2.2二阶滑模控制器设计 为得到磁链控制器的表达式,定义磁链的滑
dTe dt
叫皿cosS dS
2Ld
dt +P1
d鬃s dt
=ux-Rsix+p2
式中:籽1,籽2为扰动遥
(26)
将式(4),(8),(9),(12),(13)带入式(26), 并将控制器中的导数形式改为积分形式 ,可得:
k b1sta(s 追)dt+R six-p 1
永磁同步电机直接转矩控制(svpwm)
三相永磁同步电动机直接转矩控制技术及仿真研究 1引言随着社会实际生产要求的不断提高,现代电机控制技术也不断得以升级。
继矢量控制之后,1986年日本I.TakhaShi 和德国M.Depenbrock 分别提出了直接转矩控制技术。
直接转矩控制(Direct Torque Control ,DTC)是基于定子磁场定向和电压空间矢量分析的方法,根据转矩偏差、磁链偏差及定子磁链的空间位置,选择合适的电压矢量。
这项技术的问世,以其新颖的控制思想、简洁明了的系统结构、优良的动静态性能等优点受到普遍关注并被广泛研究。
常规的DTC 方案其实是一种Bang —Bang 控制方法:针对定子磁链幅值和转矩偏差以及磁链的空间位置, 在一个控制周期内,选择和发出单一空间电压矢量,这个电压矢量要同时控制磁链和转矩的误差方向,而忽略了转矩和磁链误差大小,从而经常造成转矩和磁链脉动,不能达到期望的最佳控制效果。
减小滞环容差可以减小脉动,但又会导致逆变器的开关频率增大,开关损耗随之增加;矢量细分法改善了磁链轨迹,但结构相对复杂。
矢量调制 (Space V oltage Vector Modulation)是在一个控制周期内,通过相邻电压矢量和零矢量合成得到所需的任意电压矢量,实现电压矢量的连续可调。
本文在分析了直接转矩控制原理(DTC)和空间电压矢量脉宽调制技术(SVPWM)的基础上,做了基于磁链空间电压矢量脉宽调制技术的永磁同步电机直接转矩控制技术的仿真。
1直接转矩控制原理永磁同步电机在转子坐标系下的数学模型:⎥⎦⎤⎢⎣⎡ψ+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+-+=⎥⎦⎤⎢⎣⎡f q d q d q d q d i i pL R L L pL R u u ωωω0 (1) []sm q d s sm q f q d sn e L L L L L P t δδ2sin )(sin 243-ψ-ψψ= (2)[]t sm q d s sm q f q d s n t t d d L L L L L P d d eδδδ2cos )(2cos 243-ψ-ψψ= (3)式中:q d q d q d L L i i u u ,,,,,——定子电压、电流、电感在q d ,轴上的分量;s f ψψ,——励磁磁链和定子磁链;p P t n e ,,——电磁转矩、转子极对数和微分算子;δsm ——负载角;式(2)表明,电机参数确定后,在实际运行中,永磁同步电机转子上励磁磁场的磁链幅值一般为恒值,为保证充分利用电动机铁心,通常要使定子磁链的幅值为额定值,这样就可以直接通过控制负载角δsm 的大小来控制电磁转矩的大小,这就是DTC 的核心思想。
直接转矩控制
直接转矩控制直接转矩控制(Direct Torque Control,简称DTC)是一种电机控制技术,用于直接控制交流电机的转矩和转速。
它是由法国斯特拉斯堡理工大学的Andrzej M. Trzynadlowski 教授于1985年提出的。
相比传统的电机向量控制(Field Oriented Control,简称FOC),DTC具有更快的响应速度、更宽的可调速范围和更精确的转矩控制能力,因此在工业应用中得到了广泛的应用。
直接转矩控制的基本原理是根据电机的状态变量,即电机电流和转速,直接计算所需的转矩控制量,并通过适当的电压矢量选择器生成相应的电压矢量,从而实现对电机的转矩和转速控制。
与FOC相比,DTC不需要进行逆变器电流矢量的坐标变换和空间矢量调制,因此减少了计算开销,提高了控制系统的响应速度。
在直接转矩控制中,最重要的是转矩和磁通的估算。
转矩估算一般通过测量电机绕组的电流和电压来实现,可以利用数学模型、数据曲线和反演算法等方式进行估算。
而磁通估算则是通过测量电机反电动势来实现,反电动势的测量可以利用传感器或者观测器等方法进行。
直接转矩控制的优点主要体现在以下几个方面:1. 响应速度快:由于DTC不需要坐标变换和空间矢量调制,可以更快地响应转矩和转速的变化,提高了系统的动态性能。
2. 转矩和转速控制精度高:DTC可以直接计算所需的转矩控制量,精确地控制电机的转矩和转速,使系统响应更加准确和稳定。
3. 拓扑简单:DTC的控制电路结构相对简单,不需要传统的坐标变换和PWM技术,减少了电路复杂性和硬件实现难度。
4. 高可靠性:由于DTC的拓扑简单,减少了电路元器件的数量和故障点,提高了系统的可靠性和稳定性。
5. 宽工作范围:DTC适用于大范围的转矩和转速控制需求,可以满足不同工况下的运行要求。
然而,直接转矩控制也存在一些缺点和挑战。
首先,由于DTC直接计算所需的控制量,对参考值的变化非常敏感,因此对速度和磁通参数的准确测量和估算至关重要。
永磁同步电机直接扭矩控制原理
永磁同步电机直接扭矩控制原理永磁同步电机(Permanent Magnet Synchronous Motor,PMSM)直接扭矩控制是一种通过直接控制电机的扭矩来实现精确控制的方法。
这种控制方法通常使用磁链电流和转子位置信息来直接生成所需的电磁扭矩,而无需传统的电流矢量控制。
以下是永磁同步电机直接扭矩控制的基本原理:1.空间矢量控制:•永磁同步电机的直接扭矩控制通常基于空间矢量控制的原理。
该方法通过调整电流空间矢量的方向和大小,实现对电机扭矩的精确控制。
2.磁链电流控制:•通过控制电机的磁链电流,可以实现对电机磁场的控制。
这包括直接控制永磁同步电机的磁链电流的大小和相位。
3.位置反馈:•直接扭矩控制通常需要准确的转子位置反馈。
这可以通过使用编码器或其他位置传感器来实现,以确保控制系统具有对转子位置的准确了解。
4.转子定位:•控制系统需要定期检测和更新转子位置信息。
这通常通过使用传感器来监测电机的转子位置,以便在控制系统中实时调整。
5.磁链定向:•通过调整电机的磁链定向,直接扭矩控制可以实现对电机磁场方向的准确控制,从而影响电机的扭矩输出。
6.电流控制环:•为了实现对电机磁链电流的直接控制,通常会在控制系统中设置电流控制环。
这个环路负责确保实际电流与期望电流一致。
7.动态响应:•直接扭矩控制可以实现快速动态响应,即在电机负载和速度变化时能够迅速调整电机的扭矩输出。
直接扭矩控制方法通常需要高级的电机控制器和数字信号处理器(DSP)来实现。
这种控制方法在高性能、高精度和动态响应要求较高的应用中广泛应用,如电动汽车、风力发电等领域。
车辆用永磁同步电机-外文翻译
车辆用永磁同步电机-外文翻译————————————————————————————————作者:————————————————————————————————日期:2全数字电流控制的永久磁铁同步电动机的车辆应用程序阿德尔·纳西里、高级会员 IEEE摘要:鉴于永磁同步电机的高效率,结构紧凑,和所产生的较少噪音,使得它们具有可以接收更多关注于陆地,海上的牵引应用,和铁路车辆的能力。
在本文中,一个新的数字无差拍控制器的设计,将实现和应用到永磁体同步机中。
控制器的目标是实现对机器的速度的无差拍的动态响应。
通过对控制器的分析表明,它调节电流并用2和4个采样周期电压的机器。
鲁棒传感器简单的方式来估计转子的位置和速度。
以及一个实验结果其中显示的可行性雏型电路的呈现,并提出了如何控制这台机器。
关键词:电流控制,数字控制,电机驱动器,永磁同步电机(PMSM),传感器,牵引。
引言牵引电机必须具有提供高效率,体积小,耐用性好,重量轻的特性。
且也应该需要最少的维护。
目前,感应及直流电机用作牵引马达的铁路车辆中一般是减小电机的尺寸。
通常,齿轮箱的使用会增加传输损耗,发出噪音,并且需要频繁的维护。
用常规牵引电机变速箱的优点是:1)减少机械冲击在电机轴上; 2)重量更轻,更快的旋转,较小的力矩需求3)较小的簧下质量。
使得永久永磁同步电机(PMSM)更紧凑,重量轻,它们可以用在直接驱动系统,而不具备其他设备中所提到的缺点。
采用永磁同步电机的另一个优点是使用了全封闭的牵引电机。
通常情况下,牵引电机采用了大量的通风散热风扇来降低电机温度。
这些风扇通常迫使灰尘和污物进入,需要预定启用和牵引电机,清洁电机。
一个永磁同步电动机工作时,需要较高的效率和少产生的热量,故而完全封闭的牵引电动机可利用很高。
然而,还需要一个独立的冷却系统的轴承。
其中的最重要的特点是永磁同步电机是高效率的,它的特点是没有磁场和转子电流损失。
这一因素使得它在其他电动机上显著用于高电流牵引应用。
永磁同步电机最优直接转矩控制
第31卷第27期中国电机工程学报V ol.31 No.27 Sep.25, 20112011年9月25日Proceedings of the CSEE ©2011 Chin.Soc.for Elec.Eng. 109 文章编号:0258-8013 (2011) 27-0109-07 中图分类号:TM 761 文献标志码:A 学科分类号:470·40永磁同步电机最优直接转矩控制杨建飞,胡育文(南京航空航天大学航空电源航空科技重点实验室,江苏省南京市 210016) Optimal Direct Torque Control of Permanent Magnet Synchronous MotorYANG Jianfei, HU Yuwen(Aero-power Sci-tech Center, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu Province, China)ABSTRACT: The amplitude of stator flux and torque angle in permanent magnet synchronous motor (PMSM) are controllable, the implementation method of direct torque control in PMSM is not unique. A new torque control method was presented according to the characteristic that the amplitude of stator flux linkage and torque angle are all controllable. The amplitude of the stator flux linkage and the torque angle were controlled synthetically. The optimal voltage vector was selected according to the torque requirement directly and the stator flux linkage control loop in traditional control method was eliminated in the proposed torque control method. The validity of the theory analysis and the feasibility of the toque control method are verified by the experiment results.KEY WORDS: permanent magnet synchronous motor (PMSM); direct torque control (DTC); stator flux; torque angle摘要:永磁同步电机转矩中定子磁链幅值和转矩角均为可控变量,直接转矩控制的实现方法不唯一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Always magnetic belt synchro motor direct torque controlsystem0 - prefaceSynchro motor because of having power factor higher -, run - timeefficiency higher -, stability good, the revolving speed Heng settles to wait a merit, is extensively been applied to industrial production amid.The startingfault that acquaints with synchro motor, and debugging in time, all have important meaning to the motor and the production systemses.By wayof energy in time, accurate debugging and transaction fault, have tovsthefamiliar fault progress of the synchro motor in detail analytical!1 - Familiar fault1.1-The synchro motor after switching on electricity the incapability startsThe synchro motor after starting the incapability run - time generally has the reason of severals as follows:(1)Power supply voltage over low.Because at the square of voltage, the startingtorque direct proportion of synchro motor's the voltage of power supply overmake low the starting torque of synchro motor significantly the droop is lowerthan load troque, can not start thus and want to raise vs this power supplyvoltage to enlarge the starting torque of dynamo.(2)The fault of motor.Check motor settle, the rotor winding had no short circuit,open circtui, open soldering and link bad etc. fault, these the faults will makethe dynamo can not start to create starting of rating of intensity of magneticfield, make thus the dynamo can not start;Checking the motor bearing hasalready had no failure, the port cap has have no loose, if bearing failure portshroud loose, result in bearing's down sinking, mutually rub with stator ironcore, result in thus dynamo's canning not start, vs settle the rotor fault can beshaken table with the low tension, gradually click to check to seek a faultcondition and adopt homologous treatment;The countersgaft accepts andcarries to shroud a loose condition and all wants a pan car before driving each滨州学院专科毕业设计(外文翻译)time and sees motor rotor whether slewing is vivid, if bearing or shaft kiowattdamage and replace in time.(3)The control device breaks down.This kind of faults are mostly the d.c. outputvoltage of the windings of Li magnetic belt to adjust not appropriate or don'toutput, result in the stator current of motor over big, cause the motor conductelectricity the run make or the losing of dynamo magnetic belt run -time.Should check whether output voltage current and its waveform that the Limagnetic belt equips is normal at this time, the Rong breaks whether themachine Rong breaks, the contact is bad;Whether circuit board plug-in putsprison or alignment;Check loop resistance, put out whether crystal gate tube ofmagnet burns out or brokes through.(4)Mechanical trouble.Such as be dragged along a dynamic machinery to block,result in motor incapability's starting, the rotor that moves motor in response tothe pan at this time sees whether the slewing is vivid, machinery burdenwhether existence fault1.2-The synchro motor incapability leads long into synchronization.Synchro motor in common use law of nonsynchronous starting, throw in Li magnetic belt when the motor rotor revolving speed hits synchronous revolving speed of 95%, make it leads long into synchronization.The synchro motor incapability leads long into synchronous reason as follows:(1)The Li magnetic belt winding short circuit.Because the winding of Li magneticbelt, existence short circuit breaks down, as a result makes motor able tostabilize run - time but incapability and lead long into synchronization whilebeing lower than synchronous revolving speed.Check to seek the Li magneticbelt winding short circuit, can open into low - tension(about the 30 Vs) in therotor derivation on - line, put on the magnetic poles surface with a hand worksteel saw, pursue inspection magnetic poles, if vibrating is violent, explain themagnetic poles to have no short circuit on steel saw of the magnetic poles'surface, if the vibrating of saw blade micro or don't flap, explain the magneticpoles short circuit.After unloading the magnetic poles, check the fault to click,is short-circuit degree, adopt local to mend or re- round to make.(2)Power supply voltage over low.Power supply voltage over low, result in thestrong Li link of the device of Li magnetic belt incapability working, make themotor incapability lead long into synchronization thus, the concrete way is toraise power supply voltage appropriately.(3)The fault of Li magnetic belt device.Such as throw Li over speedy(namelythrow in Li magnetic belt, motor rotor revolving speed over low), will make themotor can not lead long into synchronization, should check to throw if the Lilink exists fault at this time.If Li magnetic belt device fault, the output's currentis lower than a rating value, cause the electricity magnetic troque of dynamoover small but can not lead long into synchronization, at this time in response toscrutiny Li magnetic belt device of throw Li link and phase - shifting link,waveform use oscillograph to check to throw Li link and phase - shifting link,should also check and put out magnetic belt link and put out crystal gate ofmagnetic belt whether tube discovers a question as usual, handle in time, if theincapability handles in time, by way of the energy quickly restore capacity,should replace to provide for use circuit board.1.3-Brush and compress tightly spring and gather to give or get an electric shock ring fault.The brush leads short and compresses tightly spring press scarcity and make brush and gather to give or get an electric shock ring of indirectly touch badly, thus generate spark or arc electric, arc electric or spark to on the other hand and easily spark short circuit, will make arc electric burn on the other hand shorter, spark open circtui thus, result in Li magnetic belt device only the Li magnetoelectricity press but have no Li滨州学院专科毕业设计(外文翻译)magnetoelectricity streaming;Compress tightly spring ageing lapse, make brush and gather to give or get an electric shock ring of indirectly touch badly, effect the starting of motor thus;Gather to give or get an electric shock a ring surface to there is grease stain and scar or slot scar, will make brush and gather to give or get an electric shock ring of indirectly touch badly, generate spark, spark further burn gather to give or get an electric shock ring, will also make gnd short-circuit, the spark effects the starting of motor thus.For gather to give or get an electric shock ring superficial grease stain, can wipe to clean with the acetone;For thin trace, use many fettle shagging rings of sandpapers surface, is ring surface roughness to hit R1.6 ums, if the slot scar obviously needs to get on the car bed transform, truning, enter amount of knife to take every time 1 mm as proper, in the 1-1.5 ms/s, the truning speed control's roughness hits of the ums of R1.5-1.8 and becomes bad anti to finally polish with the sandpaper 2-3 times over the 0.05 mms. 1.4-The damper winding breaks down.The damper winding of synchro motor rotor is provided for synchro motor starting to use and wipe - out run - time at the same time amid spark because of loading to change of out of step osc.Start the damper winding in the process to incise the magnetic field of stator revolution but induced very big starting current in the synchro motor, so the big current by all means will result in damping hair thermal expansion,under the normal condition because of starting time short, the damper winding starting is behind soon will cool off, but block up revolution in the motor, lack phase, start the super - in time to lengthways wait a condition down, if don't shut down in time, will result in the damping take off soldering to split etc. condition.The damper winding is weaker link in the synchro motor parts, the damper winding familiar fault has:The damping takes off soldering and split, the damping ring discharges wildfire, damping ring the strain is serious.These faults will effect the starting of synchro motor.The damping takes off soldering and chooses silver actinium welding rod and adopts oxyacetylene welding to weld, the dynamo after taking out the core heats into rotor 200 Celsius degrees set rotor vertical in the oven, after taking out and adopt 750 Celsius degrees to or soly weld temperature, damping and the blind side of of damping ring complete solderings are full, clear a soldering dirt again, ;For split of the damping , after dismantling original damping, choose the material of material homology and adopt the above-mentioned method to weld after packing good damping.Damping ring the wildfire is mainly what damping ring indirectly touches bad orget in touch with area isn't enough to result in.Damping ring the strain seriously is mainly a damping to fix anticoincidence in the slot, the damping plugs into damping ring while welding hole falsely, appear additional stress after welding, at plus damping ring intensity not enough to, treatment is loose open all connectivity bolts of damping rings, vs strain anti big of damping ring, after oxyacetylene welding heating adjust with the exclusive use fixture even, vs strain serious replace a new damping of ring.2 - The solid instance is analyticalSolid instance 1 a synchro motor adopt nonsynchronous starting law, invest Li magnetoelectricity streaming post - but hard lead long into synchronization.Aim at the above-mentioned condition, halt after, check first whether power supply voltage is normal, then make use of multimeter and oscillograph vs the Li magnetic belt device scrutiny, the Li magnetoelectricity presses, whether current is normal, end is doubt a short-circuit of the winding of Li magnetic belt to, .Press the preceding paragraphs the method for giving, can open into low - tension in the rotor derivation on - line(about 30 Vs),put on the magnetic poles surface with a hand work steel saw, pursue an inspection magnetic poles, discover the vibrating of saw blade micro or don't flap and explain the magnetic poles' short circuit.After unloading the magnetic poles, use to shake a table inspection, recognize the magnetic poles winding's short circuit.Is further to check, discover depend outside layer of the 2 F wire full circle insulated failure, put coil in the oven to heat into 150 Celsius degrees, make wire full circle the insulated anneals and lightly start to pry short-circuit section actinium row, use after the 0.03 mms the ring oxidizing glass cloth board packing sheet to go into, again brush 1 F 1032 paint after, put at the oven near roast dry,finally brush the 1 F 183# insulated lacquer, install magnetic poles.The dynamo after assembling the starting leads long into synchronization smoothly.Solid instance 2 some plant when a synchro motor start choked to death because of the machinery, start the super - in time to grow, don't park the car in time, again starting, the damping ring discharges.滨州学院专科毕业设计(外文翻译)Aim at the above-mentioned condition, open a dynamo port box, check damping ring to become a "S" shape, damping and damping ring having take off soldering.The reason is analytical:The dynamo divides six most solid magnetic poleses and starts because of the multifarious heavy load and once appeared damping to take off soldering and split before, the damping ring transforms serious fault, adopted to repair soldering, damping replaced to split, replaced measures like damping ring,etc.If this adopts same transaction measure, the fault cans not get thoroughly removal.In consideration of the damping's ring is whole type structure, the big current expanded severity because of heat rum while flowing, but solid magnetic poles again start only surface of magnetic belt Xue have fever and expand smaller, with of damping ring because of expand the degree is different, spark two of displacement with opposite creation and thermal stress, cause damping ring serious and take off faults like soldering,etc, .For overcoming this kind of bug, this carries on a remould to the damping's ring and cut into damping ring all 6-like in shape rings, in each ring both ends drilling one more a link a composition segment type damping ring, can wipe - out the internal stress and thermal stress that whole damping ring generates like this.3 – ConclusionWhen the synchro motor appears fault, cautiously analytical possible reason, gradually expel, look into related data when it's necessary, absorb experience, propose corrective actions.Analytical the dynamo fault not only need to have firm theory knowledge and experience of prolific maintenance repairs, but also need to aim at concrete fault, deep consideration, brave creative, the dynamo after ensuring to break down removal can stabilize run - time over a long period of time.永磁同步电动机直接转矩控制系统0 - 引言同步电动机由于具有功率因数高,运行效率高,稳定性好,转速恒定等优点,被广泛应用于工业生产中。