人教版九年级上册数学学案:24.1.2垂直于弦的直径(1)

合集下载

人教版数学九年级上册24.1.2《垂直于弦的直径》教学设计

人教版数学九年级上册24.1.2《垂直于弦的直径》教学设计

人教版数学九年级上册24.1.2《垂直于弦的直径》教学设计一. 教材分析人教版数学九年级上册24.1.2《垂直于弦的直径》是圆的一部分性质的教学内容。

本节课主要让学生了解并掌握垂直于弦的直径的性质,能灵活运用这一性质解决相关问题。

教材通过实例引导学生探究,培养学生的观察、思考和动手能力,为后续圆的弦和圆弧的学习打下基础。

二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和定理有一定的理解。

但垂直于弦的直径这一性质较为抽象,学生可能难以理解。

因此,在教学过程中,要注重引导学生通过观察、操作、思考、讨论等方式,逐步掌握性质,提高学生的空间想象和逻辑思维能力。

三. 教学目标1.了解垂直于弦的直径的性质,能证明并运用这一性质解决相关问题。

2.培养学生的观察、思考、动手和合作能力。

3.提高学生对圆的一部分性质的兴趣,为后续圆的学习打下基础。

四. 教学重难点1.垂直于弦的直径的性质及其证明。

2.灵活运用垂直于弦的直径的性质解决实际问题。

五. 教学方法1.情境教学法:通过实例引导学生观察、思考,激发学生的学习兴趣。

2.问题驱动法:提出问题,引导学生探究,培养学生的解决问题能力。

3.合作学习法:分组讨论,共同完成任务,提高学生的团队协作能力。

4.实践操作法:让学生动手操作,加深对性质的理解。

六. 教学准备1.教学课件:制作课件,展示实例和动画,辅助教学。

2.教学素材:准备相关的几何图形,便于学生观察和操作。

3.教学设备:投影仪、计算机、黑板、粉笔等。

七. 教学过程1.导入(5分钟)利用实例引入课题,展示垂直于弦的直径的性质,激发学生的兴趣。

2.呈现(10分钟)展示垂直于弦的直径的性质,引导学生观察、思考,并提出问题。

3.操练(10分钟)分组讨论,让学生动手操作,证明垂直于弦的直径的性质。

4.巩固(10分钟)出示练习题,让学生独立解答,巩固所学知识。

5.拓展(10分钟)出示一些实际问题,让学生运用垂直于弦的直径的性质解决,提高学生的应用能力。

人教版数学九年级上册《24.1.2垂直于弦的直径》教学设计1

人教版数学九年级上册《24.1.2垂直于弦的直径》教学设计1

人教版数学九年级上册《24.1.2垂直于弦的直径》教学设计1一. 教材分析《24.1.2垂直于弦的直径》是人教版数学九年级上册的一节重要内容。

本节内容主要介绍了垂径定理及其应用。

教材通过实例引导学生探究圆中垂直于弦的直径的性质,并运用这一性质解决一些实际问题。

本节内容既是前面所学知识的延续,也为后续学习圆的性质和圆的方程打下基础。

二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和变换有一定的了解。

但是,他们对圆的性质和应用的理解还不够深入。

因此,在教学过程中,教师需要从学生的实际出发,逐步引导学生理解和掌握垂径定理,并能够运用这一定理解决实际问题。

三. 教学目标1.让学生理解垂径定理的内容,并能够运用垂径定理解决一些实际问题。

2.培养学生的逻辑思维能力和解决问题的能力。

3.激发学生对数学的兴趣,提高他们的数学素养。

四. 教学重难点1.重难点:垂径定理的理解和运用。

2.难点:如何引导学生从实际问题中发现垂径定理的规律,并能够一般性地表述这一规律。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、思考、讨论、总结等方式发现和理解垂径定理。

2.运用多媒体辅助教学,通过动画演示和实例分析,帮助学生直观地理解垂径定理。

3.采用分组合作学习的方式,让学生在合作中发现问题、解决问题,培养他们的团队协作能力。

六. 教学准备1.准备相关的教学多媒体课件和教学素材。

2.准备一些实际问题,用于引导学生运用垂径定理解决实际问题。

3.准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考圆中垂直于弦的直径的性质。

例如,在一个圆形水池中,有一根绳子绕着水面漂浮,绳子的两端分别固定在圆形水池的两侧,求绳子的中点与水池中心的距离。

2.呈现(10分钟)通过多媒体展示垂径定理的证明过程,让学生直观地理解垂径定理。

同时,引导学生观察和思考垂径定理的适用范围和条件。

人教版数学九年级上册《24.1.2垂直于弦的直径》教学设计

人教版数学九年级上册《24.1.2垂直于弦的直径》教学设计

人教版数学九年级上册《24.1.2垂直于弦的直径》教学设计一. 教材分析《24.1.2垂直于弦的直径》是人教版数学九年级上册第24章《圆》的第二个知识点。

本节课主要学习了圆中一条特殊的直径——垂直于弦的直径,并探究了它的性质。

教材通过实例引导学生发现垂直于弦的直径的性质,并运用这一性质解决一些与圆有关的问题。

二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念、圆的周长和面积计算、圆的性质等知识。

他们具备了一定的观察、分析和解决问题的能力。

但对于垂直于弦的直径的性质及其应用,可能还比较陌生。

因此,在教学过程中,需要注重引导学生发现和总结垂直于弦的直径的性质,并通过实例让学生体会其在解决实际问题中的应用。

三. 教学目标1.理解垂直于弦的直径的性质。

2.学会运用垂直于弦的直径的性质解决与圆有关的问题。

3.培养学生的观察能力、分析能力和解决问题的能力。

四. 教学重难点1.垂直于弦的直径的性质。

2.运用垂直于弦的直径的性质解决实际问题。

五. 教学方法1.引导发现法:通过实例引导学生发现垂直于弦的直径的性质。

2.实践操作法:让学生动手画图,加深对垂直于弦的直径性质的理解。

3.问题驱动法:设置问题,引导学生运用垂直于弦的直径的性质解决问题。

六. 教学准备1.课件:制作课件,展示相关实例和问题。

2.练习题:准备一些与垂直于弦的直径性质有关的练习题。

3.圆规、直尺等画图工具:为学生提供画图所需的工具。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题:在一个圆形池塘中,怎样找到一个点,使得从该点到池塘边缘的距离最远?引导学生思考,并提出解决问题的方法。

2.呈现(10分钟)展示几个与垂直于弦的直径性质相关的实例,引导学生观察和分析这些实例,发现垂直于弦的直径的性质。

3.操练(10分钟)让学生动手画图,验证垂直于弦的直径的性质。

在这个过程中,引导学生运用圆规、直尺等画图工具,提高他们的动手能力。

人教版数学九年级上册24.1.2 垂直于弦的直径 教案

人教版数学九年级上册24.1.2 垂直于弦的直径  教案

24.1.2垂直于弦的直径●情景导入课件出示关于赵州桥的引例引例:你知道赵州桥吗?它是我国隋代建造的石拱桥,是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧形,它的跨度(弧所对的弦长)为37 m,拱高(弧的中点到弦的距离)为7.23 m,现在有个人想要知道它主桥拱的半径是多少.同学们,你们能帮他求出来吗?学完了本节课的内容,我们一起来解决这个问题.【教学与建议】教学:通过赵州桥引例,导入圆的轴对称性及垂径定理.建议:学生提前收集有关圆的对称图形.●归纳导入(1)操作1:拿出准备的圆,沿着圆的直径折叠圆,你有什么发现?【归纳】圆是__轴对称__图形,__任何一条直径所在直线__都是圆的对称轴.(2)操作2:将这个圆二等分、四等分、八等分.(3)操作3:按下面的步骤做一做:第一步,在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两部分重合;第二步,展开,得到一条折痕CD;第三步,在⊙O上任取一点A,过点A作折痕CD的垂线,沿垂线将纸片折叠;第四步,将纸打开,得到新的折痕,其中点M是两条折痕的交点,即垂足,新的折痕与圆交于另一点B,如图.在上述的操作过程中,你发现了哪些相等的线段和相等的弧?【归纳】垂直于弦的直径平分弦,并且平分弦所对的两条弧.【教学与建议】教学:通过对剪圆和折叠圆的操作,活跃课堂气氛.建议:在学生操作、分析、归纳的基础上,引导学生归纳垂直于弦的直径的性质.命题角度1垂径定理及推论的辨析根据圆的轴对称性得到垂直于弦的直径所具有的性质.【例1】(1)如图,⊙O的弦AB垂直于半径OC,垂足为D,则下列结论中错误的是(C)A.∠AOD=∠BOD B.AD=BDC.OD=DC D.AC=BC(2)下列命题中错误的命题有__②③④__.(填序号)①弦的垂直平分线经过圆心;②平分弦的直径垂直于弦;③梯形的对角线互相平分;④圆的对称轴是直径.命题角度2直接利用垂径定理进行计算构造以半径、弦长的一半、弦心距为三边长的直角三角形,利用勾股定理求解.【例2】(1)如图,⊙O的半径OA=4,以点A为圆心,OA为半径的弧交⊙O于点B,C,则BC的长为(A) A.43B.52C.23D.32[第(1)题图][第(2)题图](2)已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).若大圆的半径R=10,小圆的半径r=8,且圆心O到直线AB的距离为6,则AC的长是__8-27__.命题角度3垂径定理的实际应用圆弧形拱桥等问题,常通过作辅助线,使之符合垂径定理的直角三角形,运用勾股定理求解.【例3】好山好水好绍兴,石拱桥在绍兴处处可见,小明要帮忙船夫计算一艘货船是否能够安全通过一座圆弧形的拱桥,现测得桥下水面AB 宽度16 m 时,拱顶高出水平面4 m ,货船宽12 m ,船舱顶部为矩形并高出水面3 m.(1)请你帮助小明求此圆弧形拱桥的半径;(2)小明在解决这个问题时遇到困难,请你判断一下,此货船能顺利通过这座拱桥吗?说说你的理由.解:(1)连接OB .∵OC ⊥AB ,∴D 为AB 中点.∵AB =16 m ,∴BD =12AB =8 m .又∵CD =4 m ,设OB =OC =r ,则OD =(r -4)m.在Rt △BOD 中,根据勾股定理,得r 2=(r -4)2+82,解得r =10.答:此圆弧形拱桥的半径为10 m ;(2)连接ON .∵CD =4 m ,船舱顶部为矩形并高出水面3 m ,∴CE =4-3=1(m),∴OE =r -CE =10-1=9(m).在Rt △OEN 中,EN 2=ON 2-OE 2=102-92=19,∴EN =19 (m),∴MN =2EN =219 m <12 m ,∴此货船B 不能顺利通过这座拱桥.魔术蛋魔术蛋是九块板,这九块板合起来是一个椭圆,形如鸟蛋,用它可以拼出各种鸟形,因而又名“百鸟拼板”.要制作一个魔术蛋,先绘制一个椭圆形鸟蛋:上部为半圆,下部为椭圆.(1)作一个圆,圆心为O ,并通过圆心,作直径AB 的垂线MN ;(2)连接AN .并适当延长,再以A 为圆心,AB 的长为半径作圆弧交AN 的延长线于点C ;(3)连接BN .并适当延长,再以B 为圆心,BA 的长为半径作圆弧交BN 的延长线于点D ;(4)以N 为圆心,NC 为半径,作圆弧CD ,于是下部成为椭圆;(5)在OM 上作线段MF 等于NC ,以F 为圆心,MF 为半径作圆弧,交AB 于点G ,H ,连接FG ,FH ,这样魔术蛋便制好了.高效课堂 教学设计1.探索并了解圆的对称性和垂径定理.2.能运用垂径定理解决几何证明、计算问题,并会解决一些实际问题. ▲重点垂径定理、推论及其应用. ▲难点发现并证明垂径定理.◆活动1 新课导入1.请同学们把手中的圆对折,你会发现圆是一个什么样的图形? 答:圆是轴对称图形,每一条直径所在的直线都是圆的对称轴.2.请同学们再把手中的圆沿直径向上折,折痕是圆的一条什么呢?通过观察,你能发现直径与这条折痕的关系吗?答:折痕是圆的一条弦,直径平分这条弦,并且平分弦所对的两条弧. ◆活动2 探究新知 1.教材P 81 探究. 提出问题:(1)通过上面的折纸,圆是轴对称图形吗?有几条对称轴?(2)“圆的任意一条直径都是它的对称轴”这种说法对吗?若不对,应该怎样说? 学生完成并交流展示.2.教材P 82 例2以上内容. 提出问题:(1)证明了圆是轴对称图形后,观察图24.1-6,对应线段、对应弧之间有什么关系?由此可得到什么结论?(2)若把P 81的条件“直径CD ⊥AA ′于点M ”改为“直径CD 平分弦AA ′(不是直径)于点M ”,还能证明出图形是轴对称图形吗?此时对应线段、对应弧之间有什么关系?(3)当第(2)问中的弦AA ′为直径时,相关结论还成立吗?为什么? 学生完成并交流展示. ◆活动3 知识归纳1.圆是__轴__对称图形,任何一条__直径所在的直线__都是它的对称轴,它也是中心对称图形,对称中心为__圆心__.2.垂直于弦的直径__平分__弦,并且__平分__弦所对的两条弧,即一条直线如果满足:①__AB 经过圆心O 且与圆交于A ,B 两点__;②__AB ⊥CD 交CD 于点E __;那么可以推出:③__CE =DE __;④CB =DB ;⑤CA =DA .3.__平分弦(不是直径)__ 的直径垂直于弦,并且__平分__弦所对的两条弧.提出问题:“推论”里的被平分的弦为什么不能是直径? 学生完成并交流展示. ◆活动4 例题与练习 例1 教材P 82 例2.例2 如图,D ,E 分别为AB ,AC 的中点,DE 交AB ,AC 于点M ,N .求证:AM =AN .证明:连接OD ,OE 分别交AB ,AC 于点F ,G .∵D ,E 分别为AB ,AC 的中点,∴∠DFM =∠EGN =90°.∵OD =OE ,∴∠D =∠E ,∴∠DMB =∠ENC .∵∠DMB =∠AMN ,∠ENC =∠ANM ,∴∠AMN =∠ANM ,∴AM =AN .练习1.教材P 83 练习第1,2题.2.已知弓形的弦长为6 cm ,弓形的高为2 cm ,则这个弓形所在的圆的半径为__134__cm__.3.如图,AB 为⊙O 的直径,E 是BC 的中点,OE 交BC 于点D ,BD =3,AB =10,则AC =__8__. 4.如图,⊙O 中弦CD 交半径OE 于点A ,交半径OF 于点B ,若OA =OB ,求证:AC =BD .证明:过点O 作OG ⊥CD 于点G . ∵OG 过圆心,∴CG =DG . ∵OA =OB .∴AG =BG ,∴CG -AG =DG -BG ,∴AC =BD . ◆活动5 课堂小结 垂径定理及其推论,以及常用的辅助线(作垂径)和解题思路(构造由半径、半弦、弦心距组成的直角三角形).1.作业布置(1)教材P 90 习题24.1第8,11题; (2)对应课时练习. 2.教学反思。

《24.1.2垂直于弦的直径》学历案-初中数学人教版12九年级上册

《24.1.2垂直于弦的直径》学历案-初中数学人教版12九年级上册

《垂直于弦的直径》学历案(第一课时)一、学习主题本课学习主题为“垂直于弦的直径”,是初中数学中关于圆的基础知识之一。

通过本课的学习,学生将掌握垂直于弦的直径的定理及其应用,为后续学习圆的性质、计算以及解决实际问题打下基础。

二、学习目标1. 理解垂直于弦的直径的定理,并能够运用该定理解决简单的几何问题。

2. 掌握通过作图、计算等方式,验证垂直于弦的直径定理的正确性。

3. 培养学生的空间想象能力和几何直观能力,提高学生的数学思维能力。

三、评价任务1. 评价学生对垂直于弦的直径定理的理解程度,通过课堂提问和互动进行观察和记录。

2. 评价学生运用定理解决问题的能力,通过布置相关练习题,观察学生的完成情况和正确率。

3. 评价学生的作图和计算能力,通过学生的作图和计算过程及结果进行评价。

四、学习过程1. 导入新课:通过回顾之前学习的圆的相关知识,引出本课的学习主题——垂直于弦的直径。

2. 新课讲解:(1)讲解垂直于弦的直径的定理,包括定理的内容和定理的应用。

(2)通过作图、计算等方式,验证定理的正确性。

(3)举例说明定理在解决实际问题中的应用。

3. 学生活动:学生分组进行作图、计算等实践活动,加深对定理的理解和掌握。

4. 课堂小结:总结本课学习的重点和难点,强调垂直于弦的直径定理的重要性和应用价值。

五、检测与作业1. 检测:通过布置相关的练习题,检测学生对垂直于弦的直径定理的理解和运用能力。

2. 作业:布置适量的练习题和作业,包括作图、计算和应用等方面,要求学生认真完成并加以复习。

六、学后反思1. 本课的教学重点和难点是否把握得当?是否需要根据学生的实际情况进行调整?2. 学生在学习过程中是否存在困惑或疑问?如何帮助学生解决这些问题?3. 本课的教学方法和手段是否有效?是否需要采用更多的互动式教学或实践式教学方式?4. 学生在作图、计算和应用等方面是否存在不足?如何加强这方面的训练和提高?通过本课的反思,教师可以更好地了解学生的学习情况和自己的教学效果,从而调整教学策略,提高教学质量。

24.1.2垂直于弦的直径 教案 人教版数学九年级上册

24.1.2垂直于弦的直径  教案 人教版数学九年级上册

人教版数学九年级上册24.1.2 垂直于弦的直径教学目标:1.知识与技能:(1)通过观察以及动手操作,理解圆的轴对称性。

(2)掌握垂径定理的内容及几何语言。

(3)会用垂径定理解决有关的证明与计算问题。

2.过程与方法:(1)通过探索圆的对称性及相关性质,培养学生动手操作能力及观察、分析、逻辑推理和归纳概括能力。

(2)经历探究垂径定理的过程,体会和理解研究几何图形的多种方法。

3.情感态度与价值观:(1)通过探究垂径定理的活动, 并引入实际问题,使学生知道数学在实际生活中的用处,激发学生探究、发现数学问题的兴趣。

(2)培养学生观察能力,激发学生的好奇心和求知欲,并从数学学习活动中获得成功的体验。

教学重难点:【重点】垂径定理及其应用【难点】探索并证明垂径定理,利用垂径定理解决一些实际问题。

教学准备:多媒体课件、自制圆形纸片、导学案、作图工具一、情境引入我校总务处的李师傅遇到一件麻烦事,因我校一处圆形下水道破裂,他准备更换新管道,但只知道污水面宽60cm,水面至管道顶部10cm ,你能帮李师傅计算一下他应准备内径多大的管道吗?二、实践探究1.活动1: 我们在学轴对称的时候已经学过圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴。

将你手中的圆形纸片沿着它的任意一条直径对折,重复做几次,验证圆的这一特性。

课本中有证明圆是轴对称图形的方法,课前已经让大家预习过了,现在大家再来看一下,进行巩固。

2.活动2: 在圆形纸片上操作:①找出圆心,记作O②作出一条直径,与⊙O交于C、D③在⊙O上的任意找一点A,过点A作一条弦AB使AB⊥CD, 交⊙O于点B,垂足为E。

沿着直径CD对折,你发现了什么?有哪些相等的线段和弧?观察发现:点A与重合,AE与重合,弧AC与重合,弧AD与重合。

相等的线段: ,相等的弧: .思考:如果AB是⊙O的一条直径呢?以上结论还会成立吗?【证明定理】动手操作之后,我们现在来进行理论证明。

学生用自己的方法证明,之后同学之间分享方法。

人教版九年级数学上册:24.1.2垂直于弦的直径(教案)

人教版九年级数学上册:24.1.2垂直于弦的直径(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解垂直于弦的直径的基本概念。垂直于弦的直径是圆内一条特殊的直径,它能够将弦平分,并且平分弦所对的两条弧。这个性质在解决与圆有关的问题时非常重要。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何运用垂直于弦的直径来解决实际问题,比如求圆中某条线段的长度。
人教版九年级数学上册:24.1.2垂直于弦的直径(教案)
一、教学内容
人教版九年级数学上册:24.1.2垂直于弦的直径。本节课我们将学习以下内容:
1.垂径定理及其推论:掌握垂直于弦的直径的性质,即垂径定理,了解其推论及应用。
2.弦、弧、直径之间的关系:探讨弦与直径之间的数量关系,以及如何运用这些关系解决实际问题。
-理解直径与弦的关系:学生需明白直径是圆内特殊的弦,以及直径与普通弦在性质上的区别。
-解决实际问题时,能够正确识别和应用垂径定理:在实际问题中,学生需要能够识别哪些信息是关键,如何将垂径定理应用到问题解决中。
-掌握垂径定理推论的应用:学生需要理解并能够灵活运用推论,如弦的中点在直径上、直径垂直于弦等。
1.针对学生的个体差异,制定更具针对性的教学计划。
2.在几何证明部分,用更多的时间和精力引导学生理解证明过程,强调逻辑推理的重要性。
3.多给予学生鼓励和支持,提高他们在课堂上的自信心。
4.加强对学生实验操作的指导,帮助他们掌握操作要领。
3.增强学生的数学应用意识:将垂径定理应用于解决实际问题,培养学生的数学应用意识,提高解决实际问题的能力。
4.培养学生的合作交流能力:在小组讨论与合作学习中,培养学生主动参与、积极探讨、倾听他人意见的良好习惯,提高合作交流能力。
三、教学难点与重点
1.教学重点

人教版(2012)九年级数学上册 24.1.2垂直于弦的直径 教案

人教版(2012)九年级数学上册 24.1.2垂直于弦的直径 教案

24.1.2 垂直于弦的直径③你能用一句话概括这些结论吗?垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

④你能用几何方法证明这些结论吗?⑤你能用符号语言表达这个结论吗?3.火眼金睛:判断下列图形,能否使用垂径定理。

归纳:定理中的径可以是直径、半径、弦心距等过圆心的直线或线段。

练习:如图,在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径。

3.垂径定理推论①把条件和结论中的CD⊥AB,AE=BE互换,结论成立吗?平分弦(非直径)的直径垂直于弦并且平分弦所对的两条弧;②你能证明这个推论吗?③条件中的非直径可以去掉吗?能不能举个例子说明④你能用符号语言表达这个结论吗?4.“知二推三”并进行练习。

(1)若CD⊥A B, CD是直径,________,_________._______(2)若 CD是直径,AE=BE,则________,_________._______(3)若CD⊥AB,AE=BE,则________,_________._______(4)若CD是直径,弧AC=弧BC,则________,_________._______灵活应用提高能力简单应用例1:如图,在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径.反思:从此题的解决过程中,你得到什么启示?归纳:1、两条辅助线:连半径、作弦心距2、一个Rt△:半径、半弦、弦心距3、两个定理:垂径定理、勾股定理此题由学生独立思考,并讲解思路,教师可让学生自己进行评判.并让学生板演。

此题属于基本应用,让学生了解弦心距、半弦、半径组成的直角三角形是圆中常用的直角三角形,更深入的研究在下节课中研究。

本节课的应用是基础应用,在下节课中再进行灵活运用和深入应用。

小结升华与达标训练 小结升华(1)本节课你学到了哪些数学知识?(2)在利用垂径定理解决问题时,你掌握了哪些数学方法?(3)这些方法中你又用到了哪些数学思想?达标测试:1、如图,AB是⊙O的直径,CD为弦,CD⊙AB于E,则下列结论中不成立的是()A、⊙COE=⊙DOEB、CE=DEC、OE=AED、弧BD=弧BC第1题第2题2、如图,OE⊙AB于E,若⊙O的半径为10cm,OE=6cm,则AB=_____cm。

人教版数学九年级上册教学设计24.1.2《垂直于弦的直径》

人教版数学九年级上册教学设计24.1.2《垂直于弦的直径》

人教版数学九年级上册教学设计24.1.2《垂直于弦的直径》一. 教材分析《垂直于弦的直径》是人教版数学九年级上册第24章《圆》的一部分。

本节课主要内容是让学生掌握垂径定理,理解并证明圆中的一些特殊性质。

通过学习,学生能够运用垂径定理解决实际问题,提高解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念、圆的性质、圆的周长和面积等知识。

但部分学生对圆的性质理解不够深入,对圆中特殊位置关系的判断和证明能力较弱。

因此,在教学过程中,要注重引导学生发现圆中的垂直关系,培养学生动手操作和解决问题的能力。

三. 教学目标1.知识与技能:让学生掌握垂径定理,学会运用垂径定理解决圆中的问题。

2.过程与方法:培养学生观察、分析、归纳、推理的能力,提高动手操作和解决问题的能力。

3.情感态度与价值观:激发学生学习圆的性质的兴趣,培养学生团队协作和积极参与的精神。

四. 教学重难点1.重点:垂径定理的理解和运用。

2.难点:圆中特殊位置关系的判断和证明。

五. 教学方法1.情境教学法:通过实物演示、图形展示等手段,引导学生发现圆中的垂直关系。

2.问题驱动法:设计一系列问题,引导学生思考和探究,激发学生的学习兴趣。

3.合作学习法:学生进行小组讨论和探究,培养学生的团队协作能力。

4.讲授法:教师讲解垂径定理及相关性质,引导学生理解和掌握。

六. 教学准备1.准备相关图形和实物,如圆、弦、直径等。

2.准备多媒体教学设备,如投影仪、电脑等。

3.准备练习题和测试题,用于巩固和检验学生的学习效果。

七. 教学过程1.导入(5分钟)利用实物或图形,展示圆中的垂直关系,引导学生关注垂直于弦的直径。

提问:你们发现了吗?垂直于弦的直径有什么特殊的性质吗?2.呈现(10分钟)介绍垂径定理的内容,并用多媒体展示垂径定理的证明过程。

让学生理解并掌握垂径定理。

3.操练(10分钟)设计一系列练习题,让学生运用垂径定理解决问题。

教师引导学生思考和探究,解答学生的疑问。

人教版九年级数学上册(教案)24.1.2 垂直于弦的直径

人教版九年级数学上册(教案)24.1.2 垂直于弦的直径

24.1.2垂直于弦的直径教学目标1.探索并了解圆的对称性和垂径定理.2.能运用垂径定理解决几何证明、计算和作图问题,并会解决一些实际问题.教学重点垂径定理及推论.教学难点发现并证明垂径定理.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景明确目标问题:你知道赵州桥吗?它是1300多年前我国隋代建造的石拱桥,是我国古代人民勤劳与智慧的结晶.它的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点到弦的距离)为7.2m,你能求出赵州桥主桥拱的半径吗?二、自主学习指向目标1.自读教材第81至83页.2.学习至此:请完成学生用书“课前预习”部分.三、合作探究达成目标探究点一垂径定理及其推论.活动一:出示教材第81页“探究”,实践操作,问1:我们知道,圆是轴对称图形,那么圆的对称轴有多少条?圆的任何一条直径都是它的对称轴,这种说法正确吗?问2:如何证明圆是轴对称图形?【展示点评】圆有无数条对称轴,直径所在的直线是它的对称轴;因为对称轴是直线,而直径是线段,所以不能说“直径是圆的对称轴”.问3:如图,当CD⊥直径AB时,你还可以得到什么结论?【展示点评】符号语言:∵AB为⊙O的直径,AB⊥CD,∴__CE__=__ED__,__AC=__AD,__CB=__BD.(2)垂径定理的推论:__平分__弦(不是直径)的直径垂直于弦,并且__平分__弦所对的两条孤.符号语言:如图,在⊙O中,AB是直径,非直径的弦CD与AB相交于点E,且CE=DE.∵AB是直径,CE=DE,∴__AB⊥CD__,__AC=AD,__CB=BD.【小组讨论】为什么要在垂径定理的推论中,加上“(不是直径)”这一限制条件?【反思小结】学习垂径定理要注意:(1)条件中的“弦”可以是直径.(2)结论中的“平分弧”指平分弦所对的劣弧、优弧.学习垂径定理的推论时,一定要注意“弦不是直径”这一条件.这是因为圆的任意两条直径互相平分,但是它们不一定是互相垂直的.【针对训练】见学生用书“当堂练习”知识点一探究点二垂径定理的应用活动三:出示教材第82页例2.思考:从数学的角度分析已知什么几何图形?画出图形,分析已知哪些量?要求什么量?为了解决问题,教材添加了什么辅助线?它有何作用?【小组讨论】在解决此类问题中,常作辅助线的方法是什么?【反思小结】在圆中解决有关弦的问题时,常常需要作“垂直于弦的直径”作为辅助线.实际上,往往只需从圆心作一条与弦垂直的线段即可.这样,把垂径定理和勾股定理结合起来,容易得到圆的半径R,圆心到弦的距离d,弦长a之间的关系式__R__2=__d__2+__(a,2)__2.【针对训练】见学生用书“当堂练习”知识点二四、总结梳理内化目标1.垂直于弦的直径圆的轴对称:________垂径定理:________垂径定理的推论:________利用垂径定理解决问题2.一种辅助线和一种数学思想方法.五、达标检测反思目标1.如图,AB是⊙O的直径,BC是弦,OD⊥BC,垂足为D,已知OD=5,则弦AC =__10__.2.若圆的半径为2 cm,圆中一条弦长为23 cm,则此弦中点到此弦所对劣弧中点的距离是__1__cm.第1题图第3题图3.如图,⊙O的半径为5,弦AB=8,M是弦AB上的动点,则OM不可能为( A ) A.2 B.3 C.4 D.54.在半径为5 cm的圆中,弦AB∥CD,AB=6 cm,CD=8 cm,则AB和CD的距离是( D )A.7 cm B.1 cm C.7 cm或4 cm D.7 cm或1 cm六、布置作业巩固目标1.上交作业教材第89页习题24.1第2,8题.2.课后作业见学生用书的“课后作业”部分.教学反思__。

人教版九年级上册数学学案:24.1.2 垂直于弦的直径

人教版九年级上册数学学案:24.1.2 垂直于弦的直径

一、基础知识垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

二者可合并为:一条直线①过圆心②垂直于一条弦③平分这条弦④平分弦所对的劣弧⑤平分弦所对的优弧,这五个条件只需知道两个,即可得出另外三个(平分弦时,直径除外)二、重难点分析本课教学重点:垂径定理及其推论的发现、记忆与证明。

本课教学难点:垂径定理及其性质的应用。

理解垂径定理的关键是:圆的轴对称性。

三、典例精析:例1:(2013•徐州)如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=8,OP=3,则⊙O的半径为()A.10 B.8 C.5 D.3例2.如图,以AB为直径的半圆O上有两点D、E,ED与BA的延长线交于点C,且有DC=OE,若∠C=20°,则∠EOB的度数是。

四、感悟中考1、(2014·泸州)如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a )(a>3),半径为4,则a的值是()3,函数y=x的图象被⊙P截得的弦AB的长为2A . 4B .23+C .23D .33+2、已知A ,B ,C ,D 是⊙O 上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD ,求证:AC ⊥BD ;(2)如图2,若AC ⊥BD ,垂足为E ,AB=2,DC=4,求⊙O 的半径.五、专项训练。

(一)基础练习1、绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD 为8m ,桥拱半径OC 为5m ,则水面宽AB 为( )A .4mB .5mC .6mD .8m2、(2013•嘉兴)如图,⊙O 的半径OD⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB=8,CD=2,则EC 的长为( )A .2B .8C .2D .23、(如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O的半径为()A.4B.5 C.4 D.3。

九年级数学上册24.1.2垂直于弦的直径教案2新人教版(1)

九年级数学上册24.1.2垂直于弦的直径教案2新人教版(1)

24.1.2 垂直于弦的直径教学目标1、知识目标:(1)充分认识圆的轴对称性。

(2)利用轴对称探索垂直于弦的直径的有关性质,掌握垂径定理。

(3)运用垂径定理进行简单的证明、计算和作图。

2、能力目标:让学生经历“实验—观察—猜想-验证—归纳”的研究过程,培养学生动手实践、观察分析、归纳问题和解决问题的能力。

让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。

3、情感目标:通过实验操作探索数学规律,激发学生的好奇心和求知欲,同时培养学生勇于探索的精神。

教学重点垂直于弦的直径的性质及其应用。

教学难点1、垂径定理的证明。

2、垂径定理的题设与结论的区分。

教学辅助多媒体、可折叠的圆形纸板。

教学方法本节课采用的教学方法是“主体探究式”。

整堂课充分发挥教师的主导作用和学生的主体作用,注重学生探究能力的培养,鼓励学生认真观察、大胆猜想、小心求证。

令学生参与到“实验—-观察—-猜想--验证-—归纳”的活动中,与教师共同探究新知识最后得出定理.学生不再是知识的接受者,而是知识的发现者,是学习的主人。

教学过程教师活动学生活动教学环节设计目的情景创设情景创设情景问题:赵州桥主桥拱的跨度(弧所对的弦的长)为37。

4m, 拱高(弧的中点到弦的距离)为7.2m,你能求出赵州桥主桥拱的半径吗?把一些实际问题转化为数学问题思考:若用直角三角形解决,那么E是否为AB中点?从实际出发,充分发现问题的存在,再带着问题去思考它们之间的关系,有助于定理的得出。

回顾旧识回顾旧识我们已经学习过对称的有关概念,下面复习两道问题1)什么是轴对称图形?2)我们学习过的轴对称图形有哪些?(电脑上直观的动画演示,运用几何画板演示沿上述图形对称轴对折图形的动画)学生观察一些图形:如果一个图形沿一条直线对折,直线两旁的部分能够互相重合,那么这个图形叫轴对称图形。

如线段、角、等腰三角形、矩形、菱形、等腰梯形、正方形。

通过复习,强化学生本节课所需要的相关知识,为学生自主探索垂径定理做奠基。

人教版九年级上册数学学案:24.1.2垂直于弦的直径

人教版九年级上册数学学案:24.1.2垂直于弦的直径

《24.1.2垂直于弦的直径》导学案一、自主学习1、用纸剪一个圆,沿着圆的任意一条直径对折,重复做几次,你发现了什么?(想一想)由此你能得到什么结论?圆是______图形,任何一条________________都是圆的对称轴,圆有______条对称轴。

圆的直径是圆的对称轴吗?它也是____对称图形,对称中心为____.2、阅读教材,总结垂径定理及其推论。

(1)垂径定理:垂直于弦的直径_______弦,并且平分_________________。

如图,①AB 经过圆心O 且与圆交于A ,B 两点;①AB①CD 交CD 于E ,那么可以推出: ①CE =DE ;①CB ︵=DB ︵;①CA ︵=DA ︵.(2)推论:平分弦(不是直径)的直径______于弦,并且______弦所对的两条弧。

为什么这里的“弦不是直径”?3、拓展:若一条直线满足下列五个条件中的任意两个,一定能得出其他三个吗? ①经过圆心,②垂直于弦(非直径),③平分弦,④平分弦所对的优弧⑤平分弦所对的劣弧(请与同学交流你的体会)。

4、下列命题正确的是______ A 、弦的垂线平分弦所对的弧 B 、平分弦的直径垂直于这条弦C 、过弦的中点的直线必过圆心D 、垂直于弦的直径平分这条弦5.(1)在①O 中,直径为10 cm ,圆心O 到AB 的距离为3 cm ,则弦AB 的长为 _____.(2)在①O 中,直径为10 cm ,弦AB 的长为8 cm ,则圆心O 到AB 的距离为______.(3)①O 的半径OA =5 cm ,弦AB =8 cm ,点C 是AB 的中点,则OC 的长为____.点拨精讲:圆中已知半径、弦长、弦心距三者中的任何两个,即可求出另一个.通常连接半径构造直角三角形6、如上图1,AB 为⊙O 的直径,弦CD ⊥AB ,垂足为E ,则下列结论不一定成立的是_______A 、∠EOC= ∠EODB 、CE=DEC 、OE=BED 、BC BD7、某公园的一石拱桥是圆弧形(劣弧?),其跨度为24米,拱的半径为13米,则拱高为多少米?(连接半径,由半径、半弦、弦心距构造直角三角形.)8.如图,线段AB 与①O 交于C ,D 两点,且OA =OB.求证:AC =BD.E D 图 2O C B A 证明:作OE①AB 于E.则____=DE.∵OA =OB ,OE①AB ,∴AE =_____,∴AE -____=_____-DE.即AC =BD. 点拨:过圆心作垂线是圆中常用辅助线.9.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C ,D 两点.求证:AC =BD.证明:过点O 作OE①AB 于点E.则_____=BE ,CE =____.∴____-CE =BE -_____.即AC =BD. 点拨:过圆心作垂径.10.已知①O 的直径是50 cm ,⊙O 的两条平行弦AB =40 cm ,CD =48 cm ,求弦AB 与CD 之间的距离.解:过点O 作直线OE①AB 于点E ,直线OE 与CD 交于点F. 由AB①CD ,则OF①CD.(1)当AB ,CD 在点O 两侧时,如图①.连接AO ,CO ,则AO=CO=___cm ,AE=______=____ cm.,CF=______=____ cm 由勾股定理知OE=_____=____ cm ,OF =_________=____ cm∴EF=OE +OF=___cm).即AB 与CD 之间距离为___ cm.(2)当AB ,CD 在点O 同侧时,如图①,连接AO ,CO.则AO =CO =25 cm ,AE =20 cm ,CF =24 cm.由勾股定理知OE =15 cm ,OF =7 cm.∴EF =____-____=_____(cm).即AB 与CD 之间距离为______cm.由(1)(2)知AB 与CD 之间的距离为____ cm 或______cm.二、合作探究1、点P 是⊙O 内一点,OP=3cm ,⊙O 的半径为5cm ,则经过点P 的最短弦长 ______,最长弦长_______2.⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的动点,则线段OM 的长的最小值为____,最大值为____.3.弓形的弦长为6 cm ,弓形的高为2 cm ,则这个弓形所在的圆的半径为____cm.4、如图2的①O 中,弦AB①AC 于A ,OD①AB 于D ,OE①AC 于E ,AB=8cm ,AC=6cm 。

2024年人教版九年级数学上册教案及教学反思第24章24.1.2 垂直于弦的直径

2024年人教版九年级数学上册教案及教学反思第24章24.1.2 垂直于弦的直径

24.1 圆的有关性质24.1.2 垂直于弦的直径一、教学目标【知识与技能】1.通过观察实验,使学生理解圆的轴对称性.2.掌握垂径定理及其推论.理解其证明,并会用它解决有关的证明与计算问题.【过程与方法】通过探索垂径定理及其推论的过程,进一步体会和理解研究几何图形的各种方法.【情感态度与价值观】1.结合本课特点,向学生进行爱国主义教育和美育渗透.2.激发学生探究、发现数学问题的兴趣和欲望.二、课型新授课三、课时1课时。

四、教学重难点【教学重点】垂径定理及其推论,会运用垂径定理等结论解决一些有关证明,计算和作图问题.【教学难点】垂径定理及其推论.五、课前准备课件、图片、直尺等.六、教学过程(一)导入新课你知道赵州桥吗?它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37m,拱高(弧的中点到弦的距离)为7.23m,你能求出赵州桥主桥拱的半径吗?(出示课件2)(二)探索新知探究一圆的轴对称性教师问:把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?(出示课件4)学生通过自己动手操作,归纳出结论:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.出示课件5:教师问:圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?学生答:圆是轴对称图形,任意一条直径所在直线都是圆的对称轴.思考:如何来证明圆是轴对称图形呢?出示课件6:已知:在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E.教师问:此图是轴对称图形吗?学生答:是轴对称图形.教师问:满足什么条件才能证明圆是轴对称图形呢?师生共同解答如下:(出示课件7)证明:连结OA、OB.则OA=OB.又∵CD⊥AB,∴直径CD所在的直线是AB的垂直平分线.∴对于圆上任意一点,在圆上都有关于直线CD的对称点,即⊙O关于直线CD对称.师生进一步认知:圆是轴对称图形,任何一条直径所在直线都是圆的对称轴.探究二垂径定理及其推论出示课件8:如图,AB是⊙O的一条弦, 直径CD⊥AB, 垂足为E.你能发现图中有哪些相等的线段和劣弧?为什么?学生独立思考后口答:线段:AE=BE弧:AC⌒=BC⌒,AD⌒=BD⌒学生简述理由:把圆沿着直径CD折叠时,CD两侧的两个半圆重合,点A 与点B重合,AE与BE重合,重合.教师总结归纳:(出示课件9)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.推导格式:∵CD是直径,CD⊥AB,∴AE=BE, AC⌒=BC⌒,AD⌒=BD⌒教师强调:垂径定理是圆中一个重要的定理,三种语言要相互转化,形成整体,才能运用自如.想一想:下列图形是否具备垂径定理的条件?如果不是,请说明为什么?(出示课件10)学生独立思考后口答:1图是;2图不是,因为没有垂直;3图是;4图不是,因为CD没有过圆心.教师强调:垂径定理的几个基本图形:(出示课件11)出示课件12:如果把垂径定理(垂直于弦的直径平分弦,并且平分弦所对的两条弧)结论与题设交换一条,命题是真命题吗?①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.上述五个条件中的任何两个条件都可以推出其他三个结论吗?学生思考后教师总结:深化认知:(出示课件13)如图,①CD是直径;②CD⊥AB,垂足为E;③AE=BE;④AC⌒=BC⌒;⑤AD⌒=BD⌒.举例证明其中一种组合方法.学生思考后独立解决,并加以交流,教师加以指导,并举例.(出示课件14)如图,AB是⊙O的一条弦,作直径CD,使AE=BE.(1)CD⊥AB吗?为什么?⑵AC⌒与BC⌒相等吗?AD⌒与BD⌒相等吗?为什么?证明:⑴连接AO,BO,则AO=BO,又AE=BE,OE=OE∴△AOE≌△BOE(SSS),∴∠AEO=∠BEO=90°,∴CD⊥AB.(2)由垂径定理可得AC⌒=BC⌒,AD⌒=BD⌒教师归纳总结:(出示课件15)垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.思考:“不是直径”这个条件能去掉吗?如不能,请举出反例.教师强调:圆的两条直径是互相平分的.出示课件16:例1 如图,OE⊥AB于E,若⊙O的半径为10cm,OE=6cm,则AB=cm.学生思考后师生共同解答:连接OA,∵OE⊥AB,巩固练习:(出示课件17)如图,⊙O的弦AB=8cm,直径CE⊥AB于D,DC=2cm,求半径OC的长.学生自主思考后,独立解答如下:解:连接OA,∵CE⊥AB于D,,∴设OC=xcm,则OD=x-2,根据勾股定理,得x2=42+(x-2)2,∴22221068AE OA OE=-=-=cm.1184(cm)22AD AB==⨯=解得x=5,即半径OC的长为5cm.出示课件18:例2 已知:⊙O中弦AB∥CD,求证:学生思考后师生共同解答.证明:作直径MN⊥AB.∵AB∥CD,∴MN⊥CD.则(垂直于弦的直径平分弦所对的弧)教师强调:平行弦夹的弧相等.师生共同归纳总结:(出示课件19)解决有关弦的问题,经常是过圆心作弦的弦心距(垂线段),或作垂直于弦的直径,连结半径等辅助线,为应用垂径定理创造条件.巩固练习:(出示课件20)如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证: 四边形ADOE是正方形.学生独立解答,一生板演.证明:∵OE⊥AC,OD⊥AB,AB⊥AC,∴∠OEA=∠EAD=∠ODA=90°.∴四边形ADOE为矩形,AE=12AC,AD=12AB.又∵AC=AB,∴AE=AD.∴四边形ADOE为正方形.出示课件21:例3 根据刚刚所学,你能利用垂径定理求出导入中赵州桥主桥拱半径的问题吗?教师引导学生分析题意,先把实际问题转化为数学问题,然后画出图形进行解答.解:如图,用AB表示主桥拱,设AB所在圆的圆心为O,半径为R.经过圆心O作弦AB的垂线OC垂足为D,与弧AB交于点C,则D是AB的中点,C 是弧AB的中点,CD就是拱高.∴AB=37m,CD=7.23m.AB=18.5m,OD=OC-CD=R-7.23.∴AD=12OA2=AD2+OD2,R2=18.52+(R-7.23)2,解得R≈27.3.即主桥拱半径约为27.3m.巩固练习:(出示课件23)如图a、b,一弓形弦长为,弓形所在的圆的半径为7cm,则弓形的高为_______.学生独立思考后解答:如图,分两种情况,弓形的高为5cm或12cm.教师归纳:1.涉及垂径定理时辅助线的添加方法(出示课件24)在圆中有关弦长a,半径r, 弦心距d(圆心到弦的距离),弓形高h的计算题时,常常通过连半径或作弦心距构造直角三角形,利用垂径定理和勾股定理求解.2.弓形中重要数量关系弦a,弦心距d,弓形高h,半径r之间有以下关系:⑴d+h=r;⑵2 222ar d⎛⎫=+ ⎪⎝⎭.(三)课堂练习(出示课件25-29)1.2.已知⊙O中,弦AB=8cm,圆心到AB的距离为3cm,则此圆的半径为.3.⊙O的直径AB=20cm, ∠BAC=30°则弦AC= .4.(分类讨论题)已知⊙O的半径为10cm,弦MN∥EF,且MN=12cm,EF=16cm,则弦MN和EF之间的距离为.5.已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点.你认为AC和BD有什么关系?为什么?6.如图,一条公路的转弯处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600m,E为弧CD上的一点,且OE⊥CD,垂足为F,EF=90m.求这段弯路的半径.参考答案:1.C2.5cm3.4.14cm或2cm5.证明:过O作OE⊥AB,垂足为E,则AE=BE,CE=DE.∴AE-CE=BE-DE.即AC=BD.6.解:连接OC.设这段弯路的半径为Rm,则OF=(R-90)m.,OE CD ⊥11600300(m)22CF CD ∴==⨯=,根据勾股定理,得222,OC CF OF =+ ()22230090.R R =+- 解得R=545.∴这段弯路的半径约为545m.(四)课堂小结通过这节课的学习,你有哪些收获和体会?(五)课前预习预习下节课(24.1.3)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:1.这节课的教学从利用垂径定理来解决赵州桥桥拱半径问题开始,引入课题从实验入手,得到圆的轴对称性,进而推出垂径定理及推论.教学设计中,从具体、简单、特殊到抽象、复杂、一般,层层递进,以利于提高学生的数学思维能力,同时,注意加强对学生的启发和引导,培养学生们大胆猜想,小心求证的科学研究素质.2.本课的教学方法是将垂径定理和勾股定理有机结合,将圆的问题转化为直角三角形,常作的辅助线是半径或垂直于弦的直径.。

人教版九年级数学上册24.1.2垂直于弦的直径教学设计

人教版九年级数学上册24.1.2垂直于弦的直径教学设计
2.重点:运用垂径定理解决实际问题。
难点:学生在解决具体问题时,能够将垂径定理与所学知识综合运用,形成系统的解题思路。
3.重点:培养学生的几何直观和空间想象能力。
难点:如何设计教学活动,使学生在探索圆的性质过程中,提升几何直观和空间想象能力。
(二)教学设想
1.创设情境,导入新课
在教学开始时,通过展示生活中的圆形物体,如硬币、圆桌等,引导学生观察并思考其中所包含的几何性质。在此基础上,提出本节课要探讨的问题:垂直于弦的直径有哪些性质?
3.注重培养学生的几何直观和空间想象能力,帮助他们将几何知识与实际图形相结合,更好地理解和运用垂径定理。
4.鼓励学生积极参与课堂讨论,分享解题思路和经验,提高他们的合作能力和交流能力。
三、教学重难点和教学设想
(一)教学重难点
1.重点:垂直于弦的直径的性质及其应用。
难点:如何引导学生发现并理解垂直于弦的直径平分弦且平分弦所对的两条弧这一性质,并能灵活运用该性质解决相关问题。
4.布置课后作业,要求学生运用垂径定理解决实际问题,巩固课堂所学。
5.教师对本节课的教学进行反思,为下一节课做好准备。
五、作业布置
为了巩固本节课所学的垂径定理及其应用,特此布置以下作业:
1.请同学们完成课本第24.1.2节后的习题1、2、3,并尝试用垂径定理解决实际问题。
2.设计一道关于垂径定理的应用题,要求包含弦长、圆心角等元素,并尝试自己解答。
3.结合生活中的圆形物体,观察并思考其中可能涉及的垂径定理问题,将观察到的现象和问题记录下来,下节课与同学们分享。
4.针对本节课的学习内容,撰写一篇学习心得,内容包括:你对垂径定理的理解、学习过程中的困难与收获、对今后学习的期望等。
5.预习下一节课的内容,提前了解圆中其他相关性质,为课堂学习做好准备。

人教版九年级数学上册24.1.2:垂直于弦的直径 教学设计

人教版九年级数学上册24.1.2:垂直于弦的直径 教学设计

24.1.2垂直于弦的直径(第一课时)教学设计【教学目标】1、知识目标:(1)通过实验观察,让学生理解圆的轴对称性;(2)掌握垂径定理,理解其探索和证明过程;(3)能初步运用垂径定理解决有关的计算和证明问题。

2、能力目标:(1)在研究过程中,进一步体验“实验、归纳、猜想、证明”的方法;(2)在解题过程中,注重发散思维的培养。

3、情感目标:通过圆的对称性,培养学生对数学的审美观,并激发学生对数学的热爱。

【教学重点】探索并证明垂径定理。

【教学难点】利用垂径定理解决有关计算、证明问题.【教学方法】引导发现法、直观演示法【教学用具】圆形纸片,圆规,三角尺,PPT 课件,实物展台【教学过程】一、创设问题情境,激发学习兴趣:1.出示赵州桥图片:我国隋代工匠李春建造的赵州桥,距今已有1400多年历史,它的结构是当时世界桥梁界的首创,这充分显示了我国古代劳动人民的勤劳与智慧。

2.创设问题情境:赵州桥的桥拱呈圆弧形的(如图1),它的跨度(弧所对的弦长)为37米,拱高(弧的中点到弦AB 的距离,也叫弓高)为7.23米。

请问:桥拱的半径(即AB 所在圆的半径)是多少?通过本节课的探究和学习,老师相信大家一定能够解决这一问题。

(图1)3. 出示学习目标:( 1 ) 通过动手操作,使学生发现圆的轴对称性.(2)探索垂径定理,并会用它解决有关的证明与计算问题。

二、尝试操作,发现定理:(一)活动一: 实践探究把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?(二)活动二:操作思考1、如图,AB 是⊙O 的一条弦,做直径CD ,使CD ⊥AB ,垂足为E .(1)这个图形是轴对称图形吗?如果是,它的对称轴是什么?(2)你能发现图中有哪些相等的线段和弧?为什么?我们可以发现:(1)上图是轴对称图形,其对称轴是直径CD 所在的直线.(2)相等的线段:AE=BE ,相等的弧:A ⌒C=B ⌒C,A ⌒D=B ⌒D 。

人教版数学九年级上册《24.1.2 垂直于弦的直径》学案

人教版数学九年级上册《24.1.2 垂直于弦的直径》学案

学习方法制作: 班级 姓名 九级数学方法 总结学习内容课前阅读心中有数 为自学指明方向课下及时复习动手操作、探究规律利用圆的轴对称性,探索垂径定理记忆定理24.1.2垂直于弦的直径学案(1)学习目标 1.理解圆的轴对称性;2.了解拱高、弦心距等概念;3.使学生掌握垂径定理,并能应用它解决有关弦的计算和证明问题。

一复习与提问⒈叙述:请同学叙述圆的集合定义?⒉连结圆上任意两点的线段叫圆的________,圆上两点间的部分叫做_____________,在同圆或等圆中,能够互相重合的弧叫做________。

二、动手实践,发现新知⒈同学们能不能找到下面这个圆的圆心?动手试一试。

⒉问题:①在找圆心的过程中,把圆纸片折叠时,两个半圆 _______②刚才的实验说明圆是____________,对称轴是经过圆心的每一条_________。

三、创设情境,探索垂径定理⒈在找圆心的过程中,折叠的两条相交直径可以是哪样一些位置关系呢?垂直是特殊情况,你能得出哪些等量关系?⒉若把AB 向下平移到任意位置,变成非直径的弦,观察一下,还有与刚才相类似的结论吗?⒊在圆纸片上画出图形,并沿CD 折叠,实验后提出猜想。

⒋猜想结论是否正确,要加以理论证明。

写出已知,求证。

已知: 求证:5.学生阅读课本P81证明,并回答下列问题:①书中证明利用了圆的什么性质? ②若只证AE=BE ,还有什么方法?6垂径定理:学习 方法 制作: 班级 姓名 九年级数学方法 总结学习内容掌握定理的推理格式加深对定理的认识辅助线添加的理由通过这两个题加深对辅助线的认识分析:给出定理的推理格式6.辨析题:下列各图,能否得到AE=BE 的结论?为什么?四、定理的应用例1. 如图所示,已知AB 是⊙O 的弦,OC ⊥AB 于C ,且AB=8,OC=3,求⊙O 的半径。

五、自我评价1.如图⊙O 的半径为8,OC ⊥弦AB 于C ,且OC=6,求弦长AB 。

【人教版】九年级上册数学教案:-24.1.2 垂直于弦的直径(1)

【人教版】九年级上册数学教案:-24.1.2  垂直于弦的直径(1)

24.1.2 垂直于弦的直径1.进一步认识圆是轴对称图形.2.能利用圆的轴对称性,通过探索、归纳、验证得出垂直于弦的直径的性质和推论,并能应用它解决一些简单的计算、证明和作图问题.3.认识垂径定理及推论在实际中的应用,会用添加辅助线的方法解决问题.一、情境导入你知道赵州桥吗?它又名“安济桥”,位于河北省赵县,是我国现存的著名的古代石拱桥,距今已有1400多年了,是隋代开皇大业年间(605~618)由著名将师李春建造的,是我国古代人民勤劳和智慧的结晶.它的主桥拱是圆弧形,全长50.82米,桥宽约10米,跨度37.4米,拱高7.2米,是当今世界上跨径最大、建造最早的单孔敞肩石拱桥.你知道主桥拱的圆弧所在圆的半径吗?二、合作探究探究点一:垂径定理【类型一】垂径定理的理解如图所示,⊙O的直径AB垂直弦CD于点P,且P是半径OB的中点,CD=6cm,则直径AB的长是( )A.23cm B.32cmC.42cm D.43cm解析:∵直径AB⊥DC,CD=6,∴DP=3.连接OD,∵P是OB的中点,设OP为x,则OD 为2x,在Rt△DOP中,根据勾股定理列方程32+x2=(2x)2,解得x= 3.∴OD=23,∴AB =4 3.故选D.方法总结:我们常常连接半径,利用半径、弦、垂直于弦的直径造出直角三角形,然后应用勾股定理解决问题.【类型二】垂径定理的实际应用如图,一条公路的转弯处是一段圆弧(图中的AB ︵),点O 是这段弧的圆心,C 是AB ︵上一点,OC ⊥AB ,垂足为D ,AB =300m ,CD =50m ,则这段弯路的半径是________m.解析:本题考查垂径定理,∵OC ⊥AB ,AB =300m ,∴AD =150m.设半径为R ,根据勾股定理可列方程R 2=(R -50)2+1502,解得R =250.故答案为250.方法总结:将实际问题转化为数学问题,再利用我们学过的垂径定理、勾股定理等知识进行解答.探究点二:垂径定理的推论【类型一】利用垂径定理的推论求角如图所示,⊙O 的弦AB 、AC 的夹角为50°,M 、N 分别是AB ︵、AC ︵的中点,则∠MON的度数是( )A .100°B .110°C .120°D .130°解析:已知M 、N 分别是AB ︵、AC ︵的中点,由“平分弧的直径垂直平分弧所对的弦”得OM ⊥AB 、ON ⊥AC ,所以∠AEO =∠AFO =90°,而∠BAC =50°,由四边形内角和定理得∠MON =360°-∠AEO -∠AFO -∠BAC =360°-90°-90°-50°=130°.故选D.【类型二】利用垂径定理的推论求边如图,点A 、B 是⊙O 上两点,AB =10cm ,点P 是⊙O 上的动点(与A 、B 不重合),连接AP 、BP ,过点O 分别作OE ⊥AP 于E ,OF ⊥PB 于F ,求EF 的长.解析:运用垂径定理先证出EF 是△ABP 的中位线,然后运用三角形中位线性质把要求的EF 与AB 建立关系,从而解决问题.解:在⊙O 中,∵OE ⊥AP ,OF ⊥PB ,∴AE =PE ,BF =PF ,∴EF 是△ABP 的中位线,∴EF=12AB =12×10=5cm. 方法总结:垂径定理虽是圆的知识,但也不是孤立的,它常和三角形等知识综合来解决问题,我们一定要把知识融会贯通,在解决问题时才能得心应手.【类型三】动点问题如图,⊙O 的直径为10cm ,弦AB =8cm ,P 是弦AB 上的一个动点,求OP 的长度范围.解析:当点P 处于弦AB 的端点时,OP 最长,此时OP 为半径的长;当OP ⊥AB 时,OP 最短,利用垂径定理及勾股定理可求得此时OP 的长.解:作直径MN ⊥弦AB ,交AB 于点D ,由垂径定理,得AD =DB =12AB =4cm.又∵⊙O 的直径为10cm ,连接OA ,∴OA =5cm.在Rt △AOD 中,由勾股定理,得OD =OA 2-AD 2=3cm.∵垂线段最短,半径最长,∴OP 的长度范围是3≤OP ≤5(单位:cm).方法总结:解题的关键是明确OP 最长、最短时的情况,灵活利用垂径定理求解.容易出错的地方是不能确定最值时的情况.三、板书设计教学过程中,强调垂径定理的得出跟圆的轴对称密切相关.在圆中求有关线段长时,可考虑垂径定理的应用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

24.1.2 垂直于弦的直径(1)
【学习目标】
理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题.
【重点难点】重点:垂径定理及其运用.难点:探索垂径定理及利用垂径定理解决问题.
【学习过程】
【问题探究】
请同学按下面要求完成下题:
如图,AB 是⊙O 的一条弦,作直径CD ,使CD ⊥AB ,垂足为M .
(1)如图是轴对称图形吗?如果是,其对称轴是什么? 圆是 对称图形,其对称轴是任意一条过 的直线.
(2)你能发现图中有哪些相等的线段和弧?为什么?
相等的线段:
相等的弧:
2、探究结果:垂径定理
几何表述:∵ , ∴______________ ;_____________;_____________ 文字表述:垂直于 的直径平分弦,并且平分弦所对的两条 .
3、判断下列3个图是否是表示垂径定理的图形。

4、总结:对垂径定理条件的理解是: , 。

【例题讲解】
例1 如图,已知在⊙O 中,弦AB 的长为16,⊙O 的半径是10,求圆心O 到AB 的距离。

O A B P
B A O M 图5 图6 B (第16题)A
C
D
E O D B A C 图4 A 图3 B A C O M 例2 如图2,AB 是两个以O 为圆心的同心圆中大圆的弦径,
AB 交小圆交于C 、D 两点,求证:AC=BD
【练习巩固】如图3,如果弦HL=6,则HK=__________KL=__________
变式1: 如图4,已知CD=8,则圆心O 到CD 的距离是3,则弦长AB 是 。

变式2: 如图5,已知⊙O 的半径为5,圆心O 到AB 的距离是3,则弦长AB 是 。

变式3: 如图6,某公园的一座石拱桥是圆弧形(劣弧)其跨度为AB=24米,
拱的半径为13米,则拱高CD 为 ;
【归纳反思】
1、运用垂径定理求弦长、半径、弦心距时构造的关键图形是
由 、 、 构成是直角三角形。

2、关键三角形:圆的半径用R 表示,弦心距用d 表示,弦长用a 表示,
这三者之间有怎样的关系式?
【作业布置】1、⊙O 的半径为5,弦AB 的长为6,则AB 的弦心距长为 .
2、已知⊙O•中,•弦AB•的长是8cm ,•圆心O•到AB•的距离为3cm ,•则⊙O•的直径是_____cm .
3、⊙O 的半径是5,P 是圆内一点,且OP =3,过点P 最短弦的长为________、最长弦
的长为 .
4、如图,在⊙O 中,CD 是直径,AB 是弦,AB ⊥CD 于M ,OM=3,DM=2,求弦AB
的长.
【选做】⊙O的直径是50cm,弦AB∥CD,且AB=40cm,CD=48cm,则AB•与CD•之间的距离。

五、教学反思:。

相关文档
最新文档