人教A版数学必修二:《空间几何体》检测题(含答案)
人教版A版高中数学必修2课后习题解答

第一章空间几何体1.1 空间几何体的结构练习(第7 页)1.(1)圆锥;(2)长方体;(3)圆柱与圆锥组合而成的组合体;(4)由一个六棱柱挖去一个圆柱体而得到的组合体。
2.(1)五棱柱;(2)圆锥3.略习题1.1A组1.(1) C;(2)C;(3)D;(4) C2.(1)不是台体,因为几何体的“侧棱”不相交于一点,不是由平等于“底面”的平面截棱锥得到的。
(2)、(3)也不是台体,因为不是由平行与棱锥和圆锥底面的平面截得的几何体。
3.(1)由圆锥和圆台组合而成的简单组合体;(2)由四棱柱和四棱锥组合而成的简单组合体。
4.两个同心的球面围成的几何体(或在一个球体内部挖去一个同心球得到的简单组合体)。
5.制作过程略。
制作过程说明平面图形可以折叠成立体图形,立体图形可以展开为平面图形。
B组1.剩下的几何体是棱柱,截去的几何体也是棱柱;它们分别是五棱柱和三棱柱。
2.左侧几何体的主要结构特征:圆柱和棱柱组成的简单组何体;中间几何体的主要结构特征:下部和上部都是一个圆柱截去一个圆柱组成的简单组何体;右侧几何体的主要结构特征:下部是一个圆柱体,上部是一个圆柱截去一个圆柱组成的简单组何体。
1.2 空间几何体的三视图和直观图练习(第15 页)1.略2.(1)四棱柱(图略);(2)圆锥与半球组成的简单组合体(图略);(3)四棱柱与球组成的简单组合体(图略);(4)两台圆台组合而成的简单组合体(图略)。
3.(1)五棱柱(三视图略);(2)四个圆柱组成的简单组合体(三视图略);4.三棱柱练习(第19 页)1.略。
2.(1)√(2)×(3)×(4)√3.A4.略5.略习题1.2A组1.略2.(1)三棱柱(2)圆台(3)四棱柱(4)四棱柱与圆柱组合而成的简单组合体3~5.略B组1~2.略3.此题答案不唯一,一种答案是由15个小正方体组合而成的简单组合体,如图。
1.3 空间几何体的表面积与体积。
高中数学必修二测试题及答案人教版

第一章 空间几何体一、选择题1.有一个几何体的三视图如下图所示,这个几何体可能是一个( ).主视图 左视图 俯视图 (第1题) A .棱台 B .棱锥 C .棱柱 D .正八面体2.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ).A .2+2B .221+C .22+2 D .2+13.棱长都是1的三棱锥的表面积为( ).A .3B .23C .33D .434.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ).A .25πB .50πC .125πD .都不对 5.正方体的棱长和外接球的半径之比为( ). A .3∶1 B .3∶2 C .2∶3 D .3∶36.在△ABC 中,AB =2,BC =1.5,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是( ).A .29πB .27πC .25πD .23π7.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ).A .130B .140C .150D .1608.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,EF ∥AB ,EF =23,且EF 与平面ABCD 的距离为2,则该多面体的体积为( ).A .29 B .5 C .6 D .2159.下列关于用斜二测画法画直观图的说法中,错误..的是( ). A .用斜二测画法画出的直观图是在平行投影下画出的空间图形B .几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同C .水平放置的矩形的直观图是平行四边形D .水平放置的圆的直观图是椭圆10.如图是一个物体的三视图,则此物体的直观图是( ).(第8题)(第10题)二、填空题11.一个棱柱至少有______个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱.12.若三个球的表面积之比是1∶2∶3,则它们的体积之比是_____________.13.正方体ABCD-A1B1C1D1 中,O是上底面ABCD的中心,若正方体的棱长为a,则三棱锥O-AB1D1的体积为_____________.14.如图,E,F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是___________.(第14题)15.已知一个长方体共一顶点的三个面的面积分别是2、3、6,则这个长方体的对角线长是___________,它的体积为___________.16.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.三、解答题17.有一个正四棱台形状的油槽,可以装油190 L,假如它的两底面边长分别等于60 cm 和40 cm,求它的深度.18 *.已知半球内有一个内接正方体,求这个半球的体积与正方体的体积之比.[提示:过正方体的对角面作截面]19.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=22,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.(第19题)20.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m,高4 m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?第一章 空间几何体参考答案A 组一、选择题 1.A解析:从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断可能是棱台.2.A解析:原图形为一直角梯形,其面积S =21(1+2+1)×2=2+2.3.A解析:因为四个面是全等的正三角形,则S 表面=4×43=3. 4.B解析:长方体的对角线是球的直径, l =2225+4+3=52,2R =52,R =225,S =4πR 2=50π. 5.C解析:正方体的对角线是外接球的直径. 6.D解析:V =V 大-V 小=31πr 2(1+1.5-1)=23π.7.D解析:设底面边长是a ,底面的两条对角线分别为l 1,l 2,而21l =152-52,22l =92-52,而21l +22l =4a 2,即152-52+92-52=4a 2,a =8,S 侧面=4×8×5=160. 8.D解析:过点E ,F 作底面的垂面,得两个体积相等的四棱锥和一个三棱柱,V =2×31×43×3×2+21×3×2×23=215.9.B解析:斜二测画法的规则中,已知图形中平行于 x 轴的线段,在直观图中保持原长度不变;平行于 y 轴的线段,长度为原来的一半.平行于 z 轴的线段的平行性和长度都不变.10.D解析:从三视图看底面为圆,且为组合体,所以选D. 二、填空题11.参考答案:5,4,3.解析:符合条件的几何体分别是:三棱柱,三棱锥,三棱台.12.参考答案:1∶22∶33.r 1∶r 2∶r 3=1∶2∶3,31r ∶32r ∶33r =13∶(2)3∶(3)3=1∶22∶33.13.参考答案:361a .解析:画出正方体,平面AB 1D 1与对角线A 1C 的交点是对角线的三等分点, 三棱锥O -AB 1D 1的高h =33a ,V =31Sh =31×43×2a 2×33a =61a 3. 另法:三棱锥O -AB 1D 1也可以看成三棱锥A -OB 1D 1,它的高为AO ,等腰三角形OB 1D 1为底面.14.参考答案:平行四边形或线段.15.参考答案:6,6.解析:设ab =2,bc =3,ac =6,则V = abc =6,c =3,a =2,b =1, l =1+2+3=6. 16.参考答案:12.解析:V =Sh =πr 2h =34πR 3,R =32764×=12. 三、解答题 17.参考答案:V =31(S +S S ′+S )h ,h =S S S S V ′+′+3=6001+4002+60030001903×=75.18.参考答案:如图是过正方体对角面作的截面.设半球的半径为R ,正方体的棱长为a ,则CC'=a ,OC =22a ,OC'=R .(第18题)在Rt △C'CO 中,由勾股定理,得CC' 2+OC 2=OC' 2,即 a 2+(22a )2=R 2. ∴R =26a ,∴V 半球=26πa 3,V 正方体=a 3. ∴V 半球 ∶V 正方体=6π∶2. 19.参考答案:S 表面=S 下底面+S 台侧面+S 锥侧面=π×52+π×(2+5)×5+π×2×22 =(60+42)π. V =V 台-V 锥 =31π(21r +r 1r 2+22r )h -31πr 2h 1 =3148π.20.解:(1) 参考答案:如果按方案一,仓库的底面直径变成16 m ,则仓库的体积V 1=31Sh =31×π×(216)2×4=3256π(m 3).如果按方案二,仓库的高变成8 m ,则仓库的体积COAV 2=31Sh =31×π×(212)2×8=3288π(m 3).(2) 参考答案:如果按方案一,仓库的底面直径变成16 m ,半径为8 m . 棱锥的母线长为l =224+8=45, 仓库的表面积S 1=π×8×45=325π(m 2). 如果按方案二,仓库的高变成8 m .棱锥的母线长为l =226+8=10,仓库的表面积S 2=π×6×10=60π(m 2).(3) 参考答案:∵V 2>V 1,S 2<S 1,∴方案二比方案一更加经济些.。
人教A版2017年高中数学必修2单元检测试题含解析答案【共4份】

第一章《空间几何体》单元检测(时间:120分钟,满分:150分)一、选择题(本大题共12个小题,每小题5分,共计60分)1.过棱柱不相邻两条侧棱的截面是().A .矩形B .正方形C .梯形D .平行四边形2.下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正视图、俯视图如右图;②存在四棱柱,其正视图、俯视图如右图;③存在圆柱,其正视图、俯视图如右图.其中真命题的个数是().A .3B .2C .1D .03.若某空间几何体的三视图如图所示,则该几何体的体积是().A.13B.23C .1D .24.已知水平放置的△ABC 是按“斜二测画法”得到如右图所示的直观图,其中1B O C O ''=''=,32A O ''=,那么原△ABC 是一个().A .等边三角形B .直角三角形C .三边中有两边相等的等腰三角形D .三边互不相等的三角形5.轴截面为正方形的圆柱的侧面积与全面积的比是().A .1∶2B .2∶3C .1∶3D .1∶46.下列几何体各自的三视图中,有且仅有两个视图相同的是().A .①②B .①③C .①④D .②④7.一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是().A.1003πcm 3B.2083πcm 3C.5003πcm 3D.416133cm 38.一圆台上底面半径为5cm ,下底面半径为10cm ,母线AB 长为20cm ,其中A 在上底面上,B 在下底面上,从AB 中点M ,拉一条绳子,绕圆台的侧面一周转到B 点,则这条绳子最短长为().A .30cmB .40cmC .50cmD .60cm9.圆台的母线长扩大到原来的n 倍,两底面半径都缩小为原来的1n,那么它的侧面积为原来的__________倍.().A .1B .nC .n 2D.1n10.设下图是某几何体的三视图,则该几何体的体积为().A .9π+42B .36π+18C.9122π+ D.9182π+11.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,右图是一个正方体的表面展开图,若图中“2”在正方体的上面,则这个正方体的下面是().A .0B .9C .快D .乐12.如图,在一个盛满水的圆柱形容器内的水面下有一个用细绳吊着的薄壁小球,小球下方有一个小孔,当慢慢地、匀速地将小球从水下面往上拉动时,圆柱形容器内水面的高度h 与时间t 的函数关系图象大致为().二、填空题(本大题共4小题,每小题4分,共16分)13.若球O1、O2表面积之比124SS=,则它们的半径之比12RR=__________.14.一个正四棱柱的各个顶点都在一个直径为2cm的球面上.如果正四棱柱的底面边长为1cm,那么该棱柱的表面积为__________cm2.15.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是__________cm3.16.一个无盖的正方体盒子展开后的平面图,如图所示,A、B、C是展开图上的三点,则在正方体盒子中∠ABC=__________.三、解答题(本题共6小题,满分74分)17.(12分)画出如图所示几何体的三视图.18.(12分)一个直角梯形的两底长为2和5,高为4,将其绕较长的底旋转一周,求所得旋转体的侧面积.19.(12分)一个正三棱柱的三视图如图,求这个正三棱柱的表面积.20.(12分)如图所示是一个正方体,H 、G 、F 分别是棱AB 、AD 、AA 1的中点.现在沿△GFH 所在平面锯掉正方体的一个角,问锯掉部分的体积是原正方体体积的几分之几?21.(12分)已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8,高为4的等腰三角形,侧视图是一个底边长为6,高为4的等腰三角形.求:(1)该几何体的体积V ;(2)该几何体的侧面面积S .22.(14分)如图是从上下底面处在水平状态下的棱长为a 的正方体ABCD A 1B 1C 1D 1中分离出来的.(1)∠DC 1D 1在图中的度数和它表示的角的真实度数都是45°,对吗?(2)∠A 1C 1D 的真实度数是60°,对吗?(3)设BC =1,如果用图示中这样一个装置来盛水,那么最多能盛多少体积的水?答案与解析1.答案:D解析:侧棱平行且相等.2.答案:A解析:①正确,一直三棱柱,其中四边形BCC 1B 1与四边形BAA 1B 1是全等的矩形,且面BCC 1B 1⊥面BAA 1B 1,即满足要求.②正确,如图一正四棱柱ABCD A 1B 1C 1D 1,即满足要求.③正确.横卧的圆柱即可.如图.3.答案:C解析:根据三视图可以推测出该物体应该为一个三棱柱,底面是直角三角形,因此1(21)212V Sh ==⨯=,选C.4.答案:A解析:依据斜二测画法的原则可得,2BC B C ''==,3232OA =⨯=∴AB =AC =2,故△ABC 是等边三角形.5.答案:B解析:设圆柱的底面半径为r ,母线长为l ,依题意得l =2r ,而S 侧=2πrl ,S 全=2πr 2+2πrl ,∴S 侧∶S 全=2πrl ∶(2πr 2+2πrl )=2∶3,故选B.6.答案:D解析:正方体的三视图都是正方形,所以①不符合题意,排除A 、B 、C.7.答案:C解析:根据球的截面性质,截面小圆的圆心与球心的连线与截面垂直,因此球心到截面的距离、小圆半径与球的半径构成直角三角形.由勾股定理得球的半径为5cm ,故球的体积为34500533ππ⨯=cm 3.8.答案:C解析:画出圆台的侧面展开图,并还原成圆锥展开的扇形,则扇形圆心角为90°,且圆锥的母线长为40cm 50=(cm).9.答案:A解析:设改变之前圆台的母线长为l ,上底半径为r ,下底半径为R ,则侧面积为π(r +R )l ,改变后圆台的母线长为nl ,上底半径为r n ,下底半径为R n,则侧面积为(()r Rnl r R l nππ+=+,故它的侧面积为原来的1倍.10.答案:D解析:由三视图可知,该几何体是一个球体和一个长方体的组合体.其中,3439()322V ππ=⋅=球,V 长方体=2×3×3=18.所以9+182V π=总11.答案:B解析:本题考查了正方体的表面展开图,选B.12.答案:C解析:由球顶到球中心被拉出时,小球的体积越露越大,水面高度下降得快,所以曲线向上弯;当球从中心开始到整个球被拉出水面时,球的体积变化越来越小,水面高度下降得慢,所以曲线向下弯.在整个过程中,函数关系图象大致为C.13.答案:2解析:由S =4πR 2易知.14.答案:2+解析:设正四棱柱的高为a ,由长方体与球相接的性质知4=1+1+a 2,则a =,∴正四棱柱的表面积为S =1×1×2+(2=+cm 2.15.答案:144解析:由几何体的三视图知该几何体是正四棱台与长方体的组合体,所以几何体的体积为V =13×(4×4++64)×3+4×4×2=144.16.答案:90°解析:如下图所示,折成正方体,很明显,点A 、B 、C 是上底面正方形的三个顶点,则∠ABC =90°.17.解:该几何体的上面是一个圆柱,下面是一个四棱柱,其三视图如图所示.18.解:如图所示,梯形ABCD 中,AD =2,AB =4,BC =5.作DM ⊥BC ,垂足为点M ,则DM =4,MC =5-2=3,在Rt △CMD 中,由勾股定理得22345CD =+=在旋转生成的旋转体中,AB 形成一个圆面,AD 形成一个圆柱的侧面,CD 形成一个圆锥的侧面,设圆柱与圆锥的侧面积分别为S 1,S 2,则S 1=2π×4×2=16π,S 2=π×4×5=20π,故此旋转体的表面积为S =S 1+S 2=36π.19.解:由题意可知正三棱柱的高为2,底面三角形的高为23为a ,则332a =,∴a =4,∴22334344S a ===底.正三棱柱侧面积S 侧=3×2×4=24.∴正三棱柱表面积S 表=S 侧+2S 底=24+83.20.解:设正方体的棱长为a ,则正方体的体积为a 3.三棱锥的底面是Rt △AGF ,即∠FAG 为90°,G 、F 又分别为AD 、AA 1的中点,所以AF =AG =12a .所以△AGF 的面积为211112228a a a ⨯⨯=.又因AH 是三棱锥的高,H 又是AB 的中点,所以12AH a =.所以锯掉的部分的体积为23111132848a a a ⨯⨯=.又因33114848a a ÷=,所以锯掉的那块的体积是原正方体体积的148.21.解:由已知知该几何体是一个四棱锥,记P ABCD .如图所示,由已知,知AB =8,BC =6,高h =4.由俯视图知:底面ABCD 是矩形,连接AC ,BD 交于点O ,连接PO ,则PO =4,即为棱锥的高.作OM ⊥AB 于M ,ON ⊥BC 于N ,连接PM ,PN ,因为PA =PB =PC ,M 、N 为AB 、BC 的中点,则PM ⊥AB ,PN ⊥BC .故2222435PM PO OM =++=,2222442PN PO ON =+=+(1)V =3Sh =3×(8×6)×4=64.(2)S 侧=2S △P AB +2S △PBC=AB ·PM +BC ·PN=8×5+6×42222.解:(1)对.因为四边形DD 1C 1C 是正方形,且是正对的后面,即恰好是正投影.所以∠DC 1D 1在图中的度数和它表示的角的真实度数都是45°.(2)对.事实上,连接DA 1以后,△DA 1C 1的三条边都是正方体的面对角线,2a ,所以△DA 1C 1是等边三角形,所以∠A 1C 1D =60°.(3)如果用图示中的装置来盛水,那么最多能盛水的体积等于三棱锥C 1CB 1D 1的体积,111111111·36C CB D B C D V S CC == ,所以最多能盛水的体积为16.第二章《点、直线、平面之间的位置关系》单元检测(时间:120分钟,满分:150分)一、选择题(本大题共12个小题,每小题5分,共计60分)1.在空间内,可以确定一个平面的条件是().A .两条直线B .三条直线,其中的一条与另外两条直线相交C .三个点D .三条直线,它们两两相交,但不交于同一点2.下列命题中,正确的是().A .平面α内的一条直线和平面β内的无数条直线垂直,则平面α⊥平面βB .过平面α外一点P 有且只有一个平面β和平面α垂直C .直线l ∥平面α,直线l ⊥平面β,则α⊥βD .垂直于同一个平面的两个平面平行3.设P 是△ABC 所在平面α外一点,H 是P 在α内的射影,且PA 、PB 、PC 与α所成的角相等,则H 是△ABC 的().A .内心B .外心C .垂心D .重心4.已知二面角αl β的大小为60°,m 、n 为异面直线,且m ⊥α,n ⊥β,则m 、n 所成的角为().A .30°B .60°C .90°D .120°5.如图所示,点S 在平面ABC 外,SB ⊥AC ,SB =AC =2,E 、F 分别是SC 和AB 的中点,则EF 的长是().A .1C.2 D.126.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是().A .若l ⊥m ,m ⊂α,则l ⊥αB .若l ⊥α,l ∥m ,则m ⊥αC .若l ∥α,m ⊂α,则l ∥mD .若l ∥α,m ∥α,则l ∥m7.若正四棱柱ABCD A 1B 1C 1D 1的底面边长为1,AB 1与底面ABCD 成60°角,则A 1C 1到底面ABCD 的距离为().A.3B .18.如图,在斜三棱柱ABC A 1B 1C 1中,∠BAC =90°,BC 1⊥AC ,则C 1在底面ABC 上的射影H 必在().A .直线AB 上B .直线BC 上C .直线AC 上D .△ABC 内部9.已知二面角αAB β的平面角是锐角θ,面α内有一点C 到β的距离为3,点C 到棱AB的距离为4,那么tan θ=().A.34B.35 C.7D.710.下列命题中错误..的是().A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC .如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l ,那么l ⊥平面γD .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β11.如图所示,在正三角形ABC 中,D ,E ,F 分别为各边的中点,G ,H ,I ,J 分别为AF ,AD ,BE ,DE 的中点.将△ABC 沿DE ,EF ,DF 折成三棱锥以后,GH 与IJ 所成角的度数为().A .90°B .60°C .45°D .0°12.如图,若Ω是长方体ABCD —A 1B 1C 1D 1被平面EFGH 截去几何体EFGHB 1C 1后得到的几何体,其中E 为线段A 1B 1上异于B 1的点,F 为线段BB 1上异于B 1的点,且EH ∥A 1D 1,则下列结论中不正确...的是().A .EH ∥FG B .四边形EFGH 是矩形C .Ω是棱柱D .Ω是棱台二、填空题(本大题共4个小题,每小题4分,共16分)13.如图所示,A ,B ,C ,D 为不共面的四点,E ,F ,G ,H 分别在线段AB ,BC ,CD ,DA 上.(1)如果EH ∩FG =P ,那么点P 在直线__________上;(2)如果EF ∩GH =Q ,那么点Q 在直线__________上.14.已知平面α∥平面β,P 是α、β外一点,过P 点的两条直线AC 、BD 分别交α于A 、B ,交β于C 、D ,且PA =6,AC =9,AB =8,则CD 的长为__________.15.已知菱形ABCD 中,AB =2,∠A =120°,沿对角线BD 将△ABD 折起使二面角A BD C 为120°,则点A 到△BCD 所在平面的距离为__________.16.已知m 、n 是直线,α、β、γ是平面,给出下列说法:①若α⊥β,α∩β=m ,n ⊥m ,则n ⊥α或n ⊥β;②若α∥β,α∩γ=m ,β∩γ=n ,则m ∥n ;③若m 不垂直于α,则m 不可能垂直于α内的无数条直线;④若α∩β=m ,n ∥m 且n α⊄,n β⊄,则n ∥α且n ∥β.其中正确的说法序号是__________.(注:把你认为正确的说法的序号都填上)三、解答题(本大题共6个小题,共计74分)17.(12分)如图所示,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)若四边形EFGH 是矩形,求证:AC ⊥BD .18.(12分)如下图,在三棱锥P ABC 中,已知△ABC 是等腰直角三角形,∠ABC =90°,△PAC 是直角三角形,∠PAC =90°,∠ACP =30°,平面PAC ⊥平面ABC .(1)求证:平面PAB ⊥平面PBC ;(2)若PC =2,求△PBC 的面积.19.(12分)如图是一个棱长为1的正方体的表面展开图,MN 和PQ 是两条面对角线,请在图(2)的正方体中将MN 、PQ 画出来,并解答下列问题:(1)MN 和PQ 所成角的大小;(2)四面体M NPQ 的体积.20.(12分)如图,在四棱锥P PD ⊥平面ABCD ,AD ⊥CD ,且DB 平分∠ADC ,E 为PC 的中点,AD =CD =1,22DB =(1)证明:PA ∥平面BDE ;(2)证明:AC ⊥平面PBD ;(3)求直线BC 与平面PBD 所成的角的正切值.21.(12分)如图,四棱锥P ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,点E 在线段AD 上,且CE ∥AB .(1)求证:CE ⊥平面PAD ;(2)若PA =AB =1,AD =3,2CD =,∠CDA =45°,求四棱锥P ABCD 的体积.22.(14分)如图所示,在正方体—A 1B 1C 1D 1中,E 是棱DD 1的中点.(1)求直线BE 和平面ABB 1A 1所成的角的正弦值;(2)在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?证明你的结论.答案与解析1.答案:D解析:A 错,因为两条直线可能为异面直线,B 与A 相同也不正确,C 错,三点若在同一条直线上不行.2.答案:C解析:A :若α∩β=l ,且α与β不垂直时,在α内有一条直线α⊥l ,则a 也垂直于β内所有与l 平行的直线,故A 错误;B :一本书竖直立在桌面上,过书脊上一点有很多平面与桌面垂直;D :教室内相邻两面墙都与地面垂直,而这两个平面相交,故选C.3.答案:B解析:由题意知Rt △PHA ≌Rt △PHB ≌Rt △PHC ,得HA =HB =HC ,所以H 是△ABC 的外接圆圆心.4.答案:B解析:本题考查二面角的概念,易知m 、n 所成的角与二面角的大小相等,故选B.5.答案:B解析:取SA 的中点H ,连接EH 、FH .因为SB ⊥AC ,则EH ⊥FH ,在△EFH 中,应用勾股定理得2EF =6.答案:B解析:对于A :若l ⊥m ,m ⊂α,则l ⊂α可能成立,l ⊥α不一定成立,A 错误,对于B :若l ⊥α,l ∥m ,则m ⊥α,正确.同理对于C 、D 可判定错误.7.答案:D解析:如图,AB =1,∠B 1AB =60°,B 1B =A 1A 3,直线A 1C 1与底面ABCD 的距离即为13A A = D.8.答案:A解析:∵BA ⊥AC ,BC 1⊥AC ,BA ∩BC 1=B ,∴AC ⊥平面ABC 1.∵AC ⊂平面ABC ,∴平面ABC ⊥平面ABC 1,且交线是AB .故平面ABC 1上一点C 1在底面ABC 上的射影H 必在交线AB 上.9.答案:D解析:如图,过C 作CE ⊥β,垂足为E ,作CF ⊥AB ,垂足为F ,连接EF ,则∠CFE =θ为二面角αAB β的平面角,且CE =3,CF =4.∴2277743tan CEEFθ===-=.10.答案:D解析:A 选项正确,只需α内的直线平行于α与β的交线即平行于β;B 正确,根据面面垂直的判定定理,若α内存在直线垂直于β,则α⊥β;C 正确,设α内a ⊥r ,β内b ⊥r ,α∩β=l ,则a ∥b ,所以a ∥β,根据线面平行的性质定理,所以a ∥l ,所以l ⊥r .D 错误,平面α内可以存在直线平行于交线而不垂直于平面β.11.答案:B解析:将三角形折成三棱锥如图所示,HG 与IJ 为一对异面直线,过点D 分别作HG 与IJ 的平行线,即DF 与AD ,所以∠ADF 即为所求.因此,HG 与IJ 所成角为60°.12.答案:D解析:∵EH ∥A 1D 1,A 1D 1∥B 1C 1,∴EH ∥B 1C 1.∴EH ∥平面BCGF .∵FG ⊂平面BCGF ,∴EH ∥FG ,故A 对.∵B 1C 1⊥平面A 1B 1BA ,EF ⊂平面A 1B 1BA ,∴B 1C 1⊥EF .则EH ⊥EF .由上面的分析知,四边形EFGH 为平行四边形,故它也是矩形,故B 对.由EH ∥B 1C 1∥FG ,故Ω是棱柱,故C 对,选D.13.答案:(1)BD (2)AC 解析:(1)若EH ∩FG =P ,那么点P ∈平面ABD ,P ∈平面BCD ,而平面ABD ∩平面BCD =BD ,∴P ∈BD .(2)若EF ∩GH =Q ,则Q ∈平面ABC ,Q ∈平面ACD ,而平面ABC ∩平面ACD =AC ,∴Q ∈AC .14.答案:20或4解析:若P 在α、β的同侧,由于平面α∥平面β,故AB ∥CD ,则PA ABPC CD,可求得CD =20;若P β之间,可求得CD =4.15.答案:2解析:设AC ∩BD =O ,则翻折后AO ⊥BD ,CO ⊥BD ,∴∠AOC 即为二面角的平面角,则∠AOC =120°,且AO =1,所以d =1×sin 60°=2.16.答案:②④解析:①中n 可能只与α、β中的一个相交,但不垂直;③m 只要是斜线就有可能.17.证明:(1)如图所示,连接EF ,FG ,GH ,HE ,在△ABD 中,∵E ,H 分别是AB ,AD 的中点.∴EH ∥BD ,同理FG ∥BD ,∴EH ∥FG ,∴E ,F ,G ,H 四点共面.(2)由(1)知EH ∥BD ,同理GH ∥AC .又∵四边形EFGH 是矩形,∴EH ⊥GH ,∴AC ⊥BD .18.(1)证明:∵平面PAC ⊥平面ABC ,且其交线为AC ,PA ⊥AC ,PA ⊂平面PAC ,∴PA ⊥平面ABC ,∵BC ⊂平面ABC ,∴PA ⊥BC .又∵AB ⊥BC ,AB ∩PA =A ,AB ⊂平面PAB ,PA ⊂平面PAB .∴BC ⊥平面PAB .而BC ⊂平面PBC ,∴平面PAB ⊥平面PBC .(2)解:由(1)得,BC ⊥平面PAB ,∴BC ⊥PB ,即∠PBC =90°,由已知PC =2,得AC 222BC AC ⨯==.在Rt △PBC 中,2PB ==.∴Rt △PBC 的面积1122224S PB BC ⨯⨯⨯===.19.解:如图:(1)如图,连接MC 、NC 、MN ,可得PQ ∥NC ,则∠MNC (或其补角)就是异面直线MN和PQ 所成的角,因为△MNC 是等边三角形,所以∠MNC =60°,即异面直线MN 和PQ 所成的角等于60°.(2)因为正方体的棱长为1,所以V 正方体=1,所以·1136M NPQ Q PMN MNP V V S MQ ===.20.(1)证明:连接AC ,设AC ∩BD =H ,连接EH ,在△ADC 中,∵AD =CD ,且DB 平分∠ADC ,∴H 为AC 的中点.又E 为PC 的中点,∴EH ∥PA ,又HE ⊂平面BDE ,PA BDE ⊄平面,∴PA ∥平面BDE .(2)证明:∵PD ⊥平面ABCD ,AC ⊂平面ABCD ,∴PD ⊥AC ,由(1)知,BD ⊥AC ,PD ∩BD =D ,∴AC ⊥平面PBD .(3)解:由AC ⊥平面PBD 可知,BH 为BC 在平面PBD 内的射影,∴∠CBH 为直线BC 与平面PBD 所成的角.由AD ⊥CD ,AD =CD =1,DB =,可知DH =CH =2,2BH =.在Rt △BHC 中,t 13an C CBH H BH ∠==.即直线BC 与平面PBD 所成的角的正切值为13.21.(1)证明:因为PA ⊥平面ABCD ,CE ⊂平面ABCD ,所以PA ⊥CE .因为AB ⊥AD ,CE ∥AB ,所以CE ⊥AD .又PA ∩AD =A ,所以CE ⊥平面PAD .(2)解:由(1)可知CE ⊥AD .在Rt △ECD 中,DE =CD ·cos45°=1,CE =CD ·sin45°=1.又因为AB =CE =1,AB ∥CE ,所以四边形ABCE 为矩形.所以·11522·21121ECD ABCD ABCE S S S AB AE CE DE ⨯⨯⨯ 四边形矩形=+=+=+=.又PA ⊥平面ABCD ,PA =1,所以1151336·52P ABCD ABCD V S PA ⨯⨯=四棱锥四边形==.22.解:(1)如图(a)所示,取AA 1的中点M ,连接EM ,BM .因为E 是DD 1的中点,四边形ADD 1A 1为正方形,所以EM ∥AD .又在正方体ABCD —A 1B 1C 1D 1中,AD ⊥平面ABB 1A 1,所以EM ⊥平面ABB 1A 1,从而BM 为直线BE 在平面ABB 1A 1上的射影,∠EBM 为BE和平面ABB 1A 1所成的角.设正方体的棱长为2,则EM =AD =2,3BE =.于是,在Rt △BEM 中,s 23in E EBM M BE ∠==,即直线BE 和平面ABB 1A 1所成的角的正弦值为23.(a)(b)(2)在棱C 1D 1上存在点F ,使B 1F ∥平面A 1BE .事实上,如图(b)所示,分别取C 1D 1和CD 的中点F ,G ,连接EG ,BG ,CD 1,FG .因A 1D 1∥B 1C 1∥BC ,且A 1D 1=BC ,所以四边形A 1BCD 1是平行四边形,因此D 1C ∥A 1B .又E ,G 分别为D 1D ,CD 的中点,所以EG ∥D 1C ,从而EG ∥A 1B .这说明A 1,B ,G ,E 共面.所以BG ⊂平面A 1BE .因四边形C 1CDD 1与B 1BCC 1皆为正方形,F ,G 分别为C 1D 1和CD 的中点,所以FG ∥C 1C ∥B 1B ,且FG =C 1C =B 1B .因此四边形B 1BGF 是平行四边形.所以B 1F ∥BG .而11B F A BE ⊄平面,BG ⊂平面A 1BE ,故B 1F ∥平面A 1BE .第三章《直线与方程》单元检测(时间:120分钟,满分:150分)一、选择题(本题共12个小题,每小题5分,共60分)1.若直线mx +ny +3=0在y 轴上的截距为-3y -=的倾斜角的2倍,则().A .m n =1B .m n =-3C .m n =-3D .m n =12.直线ax +by +c =0(ab ≠0)在两坐标轴上的截距相等,则a ,b ,c 满足().A .a =b B .|a |=|b |且c ≠0C .a =b 且c ≠0D .a =b 或c =03.已知直线l 1:(k -3)x +(4-k )y +1=0与l 2:2(k -3)x -2y +3=0平行,则k 的值是().A .1或3B .1或5C .3或5D .1或24.点P (1,-3)到直线132x y+=的距离为().A. B. C. D.5.点M (a ,b )与N (b -1,a +1)关于下列哪种图形对称().A .直线x -y +1=0B .直线x -y -1=0C .点11(,22-D .直线x +y -a -b =06.直线y =mx +(2m +1)恒过一定点,则此定点是().A .(1,2)B .(2,1)C .(1,-2)D .(-2,1)7.已知点A (3,2),B (-2,a ),C (8,12)在同一条直线上,则a 的值是().A .0B .-4C .-8D .48.已知直线l 的方程是y =2x +3,则l 关于y =-x 对称的直线方程是().A .x -2y +3=0B .x -2y =0C .x -2y -3=0D .2x -y =09.等腰直角三角形ABC 的直角顶点为C (3,3),若点A (0,4),则点B 的坐标可能是().A .(2,0)或(4,6)B .(2,0)或(6,4)C .(4,6)D .(0,2)10.已知直线l 1的方程是ax -y +b =0,l 2的方程是bx -y -a =0(ab ≠0,a ≠b ),则下列各示意图形中,正确的是().11.直线l 过点P (1,3),且与x ,y 轴正半轴围成的三角形的面积等于6的直线方程是().A .3x +y -6=0B .x +3y -10=0C .3x -y =0D .x -3y +8=012.直线l 1,l 2分别过点M (-1,4),N (3,1),它们分别绕点M 和N 旋转,但必须保持平行,那么它们之间的距离d 的取值范围是().A .(0,5]B .(0,+∞)C .(5,+∞)D .[5,+∞)二、填空题(本题共4小题,每小题4分,共16分)13.直线l 与两直线y =1、x -y -7=0分别交于A 、B 两点,若直线AB 的中点是M (1,-1),则直线l 的斜率为__________.14.若直线x -2y +5=0与直线2x +my -6=0互相垂直,则实数m =________.15.若直线(2t -3)x +y +6=0不经过第一象限,则t 的取值范围为__________.16.已知a ,b ,c 为某一直角三角形的三边长,c 为斜边,若点(m ,n )在直线ax +by +2c =0上,则m 2+n 2的最小值为__________.三、解答题(本题共6小题,共计74分)17.(12分)在平面直角坐标系xOy 中,过坐标原点的一条直线与函数()2f x x=的图象交于P ,Q 两点,则线段PQ 长的最小值是多少?18.(12分)已知△ABC 的三个顶点坐标为A (-3,1),B (3,-3),C (1,7).(1)求BC 边上的中线AM 的长;(2)证明:△ABC 为等腰直角三角形.19.(12分)正方形中心在C (-1,0),一条边方程为:x +3y -5=0,求其余三边所在的直线方程.20.(12分)(1)求与点P (3,5)关于直线l :x -3y +2=0对称的点P ′的坐标.(2)求直线y =-4x +1关于点M (2,3)的对称直线的方程.21.(12分)如图所示,已知A (-2,0),B (2,-2),C (0,5),过点M (-4,2)且平行于AB 的直线l 将△ABC 分成两部分,求此两部分面积的比.22.(14分)为了绿化城市,要在矩形区域ABCD 内建一个矩形草坪,如右图所示,另外,△AEF 内部有一文物保护区不能占用,经测量AB =100m ,BC =80m ,AE =30m ,AF =20m ,应如何设计才能使草坪面积最大?答案与解析1.答案:D解析:依题意得33n -=-,tan 120mn-=︒∴m ,n =1.2.答案:D解析:分截距是否等于零讨论.当截距都不为零时,a =b ;当截距都为零时,此时直线过原点,c =0.故选D.3.答案:C解析:∵l 1∥l 2,∴-2(k -3)-2(k -3)(4-k )=0,即(k -3)(5-k )=0.∴k =3或5.4.答案:A解析:直线方程可化为2x +3y -6=0,由点到直线的距离公式得所求距离为=5.答案:A解析:由题意,所求直线应与MN垂直,且MN的中点在所求直线上,又11MNab ak b+---==-1,MN的中点为11(,)22a b a b+-++,所以选A.6.答案:D解析:y=mx+(2m+1)=m(x+2)+1,∴当x=-2时,不论m取何值,y恒等于1.∴恒过点(-2,1).7.答案:C解析:根据题意可知k AC=k AB,即12228323a--=---,解得a=-8.8.答案:A解析:将x=-y,y=-x代入方程y=2x+3中,得所求对称的直线为-x=-2y+3,即x-2y+3=0.9.答案:A解析:设B点坐标为(x,y),根据题意知·1||||AC BCk kBC AC=-⎧⎨=⎩∴3431303yx--⎧⨯=-⎪--=解之,得2xy=⎧⎨=⎩或46.xy=⎧⎨=⎩10.答案:D解析:若a>0,b>0,则l2的斜率大于0,截距小于0,故A项不对;若a>0,b<0,则l2的斜率小于0,截距小于0,故B项不对;若a<0,b>0,则l2的斜率大于0,截距大于0,故C项不对.11.答案:A解析:设直线方程为1x ya b+=(a>0,b>0),由题意有12131aba b=⎧⎪⎨+=⎪⎩∴26.ab=⎧⎨=⎩∴126x y+=.化为一般式为3x+y-6=0.12.答案:A解析:当两直线l1,l2与直线MN重合时,d最小且为0;当两直线l1,l2与直线MN垂直时,d 最大,且为5MN==.故d的取值范围是0<d≤5.13.答案:23-解析:设A (x,1)、B (y +7,y ),因为AB 中点是M (1,-1),所以x =-2,y =-3.所以112213AB k -(-)=---=.14.答案:1解析:∵直线x -2y +5=0与直线2x +my -6=0互相垂直,∴1×2+(-2)·m =0,即m =1.15.答案:[32,+∞)解析:方程可化为y =(3-2t )x -6,恒过(0,-6).故3-2t ≤0时即可,∴32t ≥.16.答案:4解析:点(m ,n )在直线ax +by +2c =0上,且m 2+n 2为直线上的点到原点的距离的平方.当两直线垂直时,距离最小.故22c cd ===所以m +n 17.解:设过原点的直线方程为y =kx (k >0).联立2y kx y x =⎧⎪⎨=⎪⎩得(Pk,(,Q k-.∴4PQ .当且仅当8k k=,即k =1时取等号.即PQ 长的最小值是4.18.(1)解:设点M 的坐标为(x ,y ),因为点M 为BC 的中点,所以3122x +==,3722y -+==,即点M 的坐标为(2,2).由两点间的距离公式得AM ==,所以BC 边上的中线AM .(2)AB =,BC =AC ==所以|AB |=|AC |,且|AB |2+|AC |2=|BC |2.所以△ABC 为等腰直角三角形.19.解:设x +3y -5=0为l ,l 的对边为l 1,l 的两邻边为l 2、l 3,设l 1的方程为x +3y +m =0,∵C 点到l 的距离等于C 点到l 1的距离;=∴m =7或-5(舍).∴l 1的方程为x +3y +7=0,∴l 的斜率是1.3-又∵l 2⊥l ,l 3⊥l ,∴l 2,l 3的斜率为3.设l 2,l 3的方程为y =3x +b ,即3x -y +b =0.∵C 到l 2、l 3的距离等于C 到l 的距离,=⇒b =9或-3.∴l 2的方程为3x -y +9=0,l 3的方程为3x -y -3=0.20.解:(1)设P ′(x 0,y 0),则0053PP y k x '--=.PP ′中点为0035()22x y M ++,.根据对称关系x 0,y 0满足000051·133353·20.22y x x y -⎧=-⎪-⎪⎨++⎪-+=⎪⎩解得0051.x y =⎧⎨=-⎩故点P 坐标为(5,-1).(2)方法一:设(x ,y )是对称直线上任一点,则(x ,y )关于M (2,3)的对称点为(4-x,6-y ),根据对称关系,则(4-x,6-y )在直线y =-4x +1上.代入整理有y +4x -21=0,即为所求直线方程.方法二:在直线y =-4x +1上任取两点(0,1),(1,-3),关于M 的对称点坐标分别为(4,5),(3,9).两点连线的直线方程为y +4x -21=0即为所求直线方程.21.解:由已知可得12AB k =-,过点M (-4,2)且平行于AB 的直线l 的方程为x +2y =0.直线AC 的方程为5x -2y +10=0,由方程组2052100x y x y +=⎧⎨-+=⎩得直线l 与AC 的交点坐标为55(36P -,,所以||||5||||6P A CP x CA x ==.所以两部分的面积之比为2225256511=-.22.解:由已知得E (30,0),F (0,20),则直线EF 的方程是13020x y +=(0≤x ≤30).如右图所示,在EF 上取点P (m ,n ),作PQ ⊥BC 于Q ,PR ⊥CD 于R ,设矩形PQCR 的面积为S ,则S =|PR |·|PQ |=(100-m )·(80-n ).∵13020m n +=,∴n =20(1-30m ).∴S =(100-m )(80-20+23m )2(5)21805033m =--+(0≤m ≤30).∴当m =5时,S 有最大值.第四章《圆与方程》单元检测(时间:120分钟,满分:150分)一、选择题(本题共12小题,每小题5分,共60分)1.直线y =x +10与曲线x 2+y 2=1的位置关系是().A .相交B .相离C .相切D .不能确定2.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为().A .x 2+(y -2)2=1B .x 2+(y +2)2=1C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=13.点P (x ,y ,z )满足2=,则点P 在().A .以点(1,1,-1)为半径的圆上B .以点(1,1,-1)为棱长的正方体内C .以点(1,1,-1)D .无法确定4.圆x 2+y 2=4与圆x 2+y 2+4x -4y +4=0关于直线l 对称,则l 的方程是().A .x +y =0B .x +y -2=0C .x -y -2=0D .x -y +2=05.圆C 1:x 2+y 2+2x +2y -2=0与C 2:x 2+y 2-4x -2y +1=0的公切线有且只有().A .1条B .2条C .3条D .4条6.把圆x 2+y 2+2x -4y -a 2-2=0的半径减小一个单位则正好与直线3x -4y -4=0相切,则实数a 的值为().A .-3B .3C .-3或3D .以上都不对7.过点P (2,3)向圆x 2+y 2=1作两条切线PA 、PB ,则弦AB 所在直线的方程为().A .2x -3y -1=0B .2x +3y -1=0C .3x +2y -1=0D .3x -2y -1=08.与圆x 2+y 2-ax -2y +1=0关于直线x -y -1=0对称的圆的方程为x 2+y 2-4x +3=0,则a 等于().A .0B .1C .2D .39.圆x 2+(y +1)2=3绕直线kx -y -1=0旋转一周所得的几何体的表面积为().A .36πB .12πC .D .4π10.动圆x 2+y 2-(4m +2)x -2my +4m 2+4m +1=0的圆心的轨迹方程是().A .2x -y -1=0B .2x -y -1=0(x ≠1)C .x -2y -1=0(x ≠1)D .x -2y -1=011.若过定点M (-1,0)且斜率为k 的直线与圆x 2+4x +y 2-5=0在第一象限内的部分有交点,则k 的取值范围是().A .0k <<B .0k <<C .0k <<D .0<k <512.直线y =kx +3与圆(x -3)2+(y -2)2=4相交于M ,N 两点,若MN ≥k的取值范围是().A .3[,0] 4-B .(-∞,34-]∪[0,+∞)C .[]33-D .2[,0]3-二、填空题(本题共4小题,,每小题4分,共16分)13.过直线l :y =2x 上一点P 作圆C :(x -8)2+(y -1)2=2的切线l 1,l 2,若l 1,l 2关于直线l 对称,则点P 到圆心C 的距离为__________.14.点P为圆x2+y2=1上的动点,则点P到直线3x-4y-10=0的距离的最小值为__________.15.已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则C的方程为________.16.已知圆C过点(1,0),且圆心在x轴的正半轴上,直线l:y=x-1被圆C所截得的弦长为l垂直的直线的方程为________.三、解答题(本题共6小题,共74分)17.(12分)一圆和直线l:x+2y-3=0切于点P(1,1),且半径为518.(12分)求平行于直线3x+3y+5=0且被圆x2+y2=20截得长为的弦所在的直线方程.19.(12分)点A(0,2)是圆x2+y2=16内的定点,B,C是这个圆上的两个动点,若BA⊥CA,求BC中点M的轨迹方程,并说明它的轨迹是什么曲线.20.(12分)圆x2+y2-2x-5=0与圆x2+y2+2x-4y-4=0的交点为A、B.(1)求线段AB的垂直平分线的方程;(2)求线段AB的长.21.(12分)已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R).(1)证明:不论m为何值时,直线和圆恒相交于两点;(2)求直线l被圆C截得的弦长最小时的方程.22.(14分)在平面直角坐标系xOy中,曲线y=x2-6x+1与坐标轴的交点都在圆C上.(1)求圆C的方程;(2)若圆C与直线x-y+a=0交于A,B两点,且OA⊥OB,求a的值.答案与解析1.答案:B解析:1=>.2.答案:A解析:方法一(直接法):设圆心坐标为(0,b),1=,解得b=2,故圆的方程为x2+(y-2)2=1.方法二(数形结合法):由作图根据点(1,2)到圆心的距离为1易知圆心为(0,2),故圆的方程为x2+(y-2)2=1.方法三(验证法):将点(1,2)代入四个选择支,排除B,D,又由于圆心在y轴上,排除C.3.答案:C解析:根据两点间距离公式的几何意义,动点(x,y,z)满足到定点(1,1,-1)的距离恒等于2.4.答案:D解析:∵两圆圆心分别为(0,0)和(-2,2),∴中点为(-1,1),两圆圆心连线斜率为-1.∴l的斜率为1,且过点(-1,1).∴l的方程为y-1=x+1,即x-y+2=0.5.答案:B解析:⊙C11)2+(y+1)2=4,⊙C2:(x-2)2+(y-1)2=4,124C C=<=,∴只有2条公切线.∴应选B.6.答案:C解析:圆的方程可变为(x+1)2+(y-2)2=a2+7,圆心为(-1,2),1=-,解得a=±3.7.答案:B解析:圆x2+y2=1的圆心为坐标原点O,以OP为直径的圆的方程为2231324(1)()x y-+-=.显然这两个圆是相交的,由22221313124x yx y⎧+=⎪⎨(-)+(-)=⎪⎩得2x+3y-1=0,这就是弦AB所在直线的方程.8.答案:C解析:两圆的圆心分别为(,1)2aA,B(2,0),则AB的中点1(1,)42a+在直线x-y-1=0上,即111042a+--=,解得a=2,故选择C.9.答案:B解析:由题意,圆心为(0,-1),又直线kx-y-1=0恒过点(0,-1),所以旋转一周所得的几何体为球,球心即为圆心,球的半径即是圆的半径,所以S=)2=12π.10.答案:C解析:圆心为(2m+1,m),r=|m|(m≠0).不妨设圆心坐标为(x,y),则x=2m+1,y=m,所以x-2y-1=0.又因为m≠0,所以x≠1.因此选择C.11.答案:A解析:圆x2+4x+y2-5=0可变形为(x+2)2+y2=9,如图所示.当x=0时,y±=,结合图形可得A,∵1AMk==∴(0k∈.12.答案:A解析:圆心(3,2)到直线y=kx+3的距离d,MN≥=∴304k-≤≤.13.答案:解析:圆心C的坐标为(8,1),由题意,得PC⊥l,∴PC的长是圆心C到直线l的距离.即PC=14.答案:1解析:∵圆心到直线的距离为1025d==,∴点P到直线3x-4y-10=0的距离的最小值为d-r=2-1=1.15.答案:(x-2)2+y2=10解析:由题意,线段AB中点M(3,2),12ABk=-12ABk=-,∴线段AB中垂线所在直线方程为y-2=2(x-3).由223y xy-=(-)⎧⎨=⎩得圆心(2,0).则圆C的半径r=故圆C的方程为(x-2)2+y2=10.16.答案:x+y-3=0解析:设圆心(a,0),∴222|1|a+=-,∴a=3.∴圆心(3,0).∴所求直线方程为x+y-3=0.17.解:设圆心坐标为C(a,b),圆的方程即为(x-a)2+(y-b)2=25.∵点P(1,1)在圆上,则(1-a)2+(1-b)2=25.①又l为圆C的切线,则CP⊥l,∴121ba-=-.②联立①②解得11ab⎧=+⎪⎨=+⎪⎩112ab⎧=-⎪⎨=-⎪⎩即所求圆的方程为(x-1-)2+(y-1-)2=25或(x-1+)2+(y-1+)2=25.18.解:设弦所在的直线方程为x+y+c=0.①则圆心(0,0)到此直线的距离为||2d c=.因为圆的半弦长、半径、弦心距恰好构成直角三角形,所以2220+=.由此解得c=±2,代入①得弦的方程为x+y+2=0或x-y-2=0.19.解:设点M(x,y),因为M是弦BC的中点,故OM⊥BC.又∵∠BAC=90°,∴|MA|=12|BC|=|MB|.∵|MB|2=|OB|2-|OM|2,∴|OB|2=|MO|2+|MA|2,即42=(x2+y2)+[(x-0)2+(y-2)2],化简为x2+y2-2y-6=0,。
高中数学 人教A版 必修2 第一章 空间几何体 高考复习习题(选择题201-300)含答案解析

A. B. C.50πD.200π
14.在菱形 中, ,将 沿 折起到 的位置,若二面角 的大小为 ,则三棱锥 的外接球的体积为()
A. B. C. D.
15.已知球的直径 , 是该球球面上的两点, , ,则棱锥 的体积为()
高中数学人教A版必修2第一章空间几何体高考复习习题(选择题201-300)含答案解析
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()
A. +1B. +3
11.在三棱锥 中,底面 是边长为2的正三角形,顶点 在底面 上的射影为 的中心,若 为 的中点,且直线 与底面 所成角的正切值为 ,则三棱锥 外接球的表面积为()
A. B. C. D.
12.已知三棱锥 的每个顶点都在球 的表面上, 底面 ,且二面角 的正切值为4,则球 的表面积为
A. B. C. D.
A. B. C. D.
5.中国古代名词“刍童”原来是草堆的意思,古代用它作为长方体棱台(上、下底面均为矩形额棱台)的专用术语,关于“刍童”体积计算的描述,《九章算术》注曰:“倍上表,下表从之,亦倍小表,上表从之,各以其广乘之,并,以高若深乘之,皆六面一.”其计算方法是:将上底面的长乘二,与下底面的长相加,再与上底面的宽相乘;将下底面的长乘二,与上底面的长相加,再与下底面的宽相乘;把这两个数值相加,与高相乘,再取其六分之一,以此算法,现有上下底面为相似矩形的棱台,相似比为 ,高为3,且上底面的周长为6,则该棱台的体积的最大值是()
人教版高中数学必修2第一章-空间几何体练习题及答案(全)

人教版高中数学必修2第一章-空间几何体练习题及答案(全)第一章空间几何体1.1 空间几何体的结构一、选择题1、下列各组几何体中是多面体的一组是()A 三棱柱四棱台球圆锥B 三棱柱四棱台正方体圆台C 三棱柱四棱台正方体六棱锥D 圆锥圆台球半球2、下列说法正确的是()A 有一个面是多边形,其余各面是三角形的多面体是棱锥B 有两个面互相平行,其余各面均为梯形的多面体是棱台C 有两个面互相平行,其余各面均为平行四边形的多面体是棱柱D 棱柱的两个底面互相平行,侧面均为平行四边形3、下面多面体是五面体的是()A 三棱锥B 三棱柱C 四棱柱D 五棱锥4、下列说法错误的是()A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成B 一个圆台可以由两个圆台拼合而成C 一个圆锥可以由两个圆锥拼合而成D 一个四棱台可以由两个四棱台拼合而成5、下面多面体中有12条棱的是()A 四棱柱B 四棱锥C 五棱锥D 五棱柱6、在三棱锥的四个面中,直角三角形最多可有几个()A 1 个B 2 个C 3个D 4个二、填空题7、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点,有—————————个棱。
8、一个棱柱有10个顶点,所有侧棱长的和为60,则每条侧棱长为————————————9、把等腰三角形绕底边上的高旋转1800,所得的几何体是——————10、水平放置的正方体分别用“前面、后面、上面、下面、左面、右面”表示。
图中是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面。
则“祝”“你”“前”分别表示正方体的—————祝你前程似锦一、选择题1、两条相交直线的平行投影是()A 两条相交直线B 一条直线C 一条折线D 两条相交直线或一条直线2、如图中甲、乙、丙所示,下面是三个几何体的三视图,相应的标号是()①长方体②圆锥③三棱锥④圆柱A ②①③B ①②③C ③②④D ④③②。
【三维设计】人教版高中数学必修2练习:第一章 空间几何体(含答案解析)

1.1空间几何体的结构第一课时棱柱、棱锥、棱台的结构特征空间几何体与多面体[导入新知]1.空间几何体1.对于多面体概念的理解,注意以下两个方面:(1)多面体是由平面多边形围成的,围成一个多面体至少要4个面.一个多面体由几个面围成,就称为几面体.(2)多面体是一个“封闭”的几何体,包括其内部的部分. 2.棱柱具有以下结构特征和特点:(1)侧棱互相平行且相等,侧面都是平行四边形.(2)两个底面与平行于底面的截面是全等的多边形,如图a 所示.(3)过不相邻的两条侧棱的截面是平行四边形,如图b 所示.(4)有两个面平行,其余各面都是平行四边形的几何体不一定是棱柱,如图c 所示.3.对于棱锥要注意有一个面是多边形,其余各面都是三角形的几何体不一定是棱锥,必须强调其余各面是共顶点的三角形,如图d 所示.4.棱台中各侧棱延长后必相交于一点,否则不是棱台.棱柱的结构特征[例1]下列关于棱柱的说法:(1)所有的面都是平行四边形;(2)每一个面都不会是三角形;(3)两底面平行,并且各侧棱也平行;(4)被平面截成的两部分可以都是棱柱.其中正确说法的序号是________.[答案](3)(4)[类题通法]有关棱柱的结构特征问题的解题策略(1)紧扣棱柱的结构特征进行有关概念辨析.①两个面互相平行;②其余各面是四边形;③相邻两个四边形的公共边互相平行.求解时,首先看是否有两个平行的面作为底面,再看是否满足其他特征.(2)多注意观察一些实物模型和图片便于反例排除.[活学活用]下列说法正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.各个侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面均为平行四边形答案:D棱锥、棱台的结构特征[例2]下列关于棱锥、棱台的说法:(1)用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;(2)棱台的侧面一定不会是平行四边形;(3)棱锥的侧面只能是三角形;(4)由4个面围成的封闭图形只能是三棱锥;(5)棱锥被平面截成的两部分不可能都是棱锥.其中说法正确的序号是________.[答案](2)(3)(4)[类题通法]判断棱锥、棱台形状的两个方法(1)举反例法:结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法:下列说法正确的有()①由5个面围成的多面体只能是四棱锥;②仅有两个面互相平行的五面体是棱台;③两个底面平行且相似,其余各面都是梯形的多面体是棱台;④有两个面互相平行,其余4个面都是等腰梯形的六面体是棱台.A.0个B.1个C.2个D.3个答案:A多面体的平面展开图[例3]如下图是三个几何体的侧面展开图,请问各是什么几何体?[解]由几何体的侧面展开图的特点,结合棱柱,棱锥,棱台的定义,可把侧面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.[类题通法]1.解答此类问题要结合多面体的结构特征发挥空间想象能力和动手能力.2.若给出多面体画其展开图时,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面.3.若是给出表面展开图,则可把上述程序逆推.[活学活用]水平放置的正方体的6个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图(图中数字写在正方体的外表面上),若图中“0”上方的“2”在正方体的上面,则这个正方体的下面是()A.1B.5C.快D.乐答案:B1.柱、锥、台结构特征判断中的误区[典例]如下图所示,下列关于这个几何体的正确说法的序号为________.①这是一个六面体;②这是一个四棱台;③这是一个四棱柱;④此几何体可由三棱柱截去一个三棱柱得到;⑤此几何体可由四棱柱截去一个三棱柱得到.[解析]①正确,因为有6个面,属于六面体的范围;②错误,因为侧棱的延长线不能交于一点,所以不正确;③正确,如果把几何体放倒就会发现是一个四棱柱;④⑤都正确,如下图所示.[答案]①③④⑤[易错防范]1.解答过程中易忽视侧棱的延长线不能交于一点,直观感觉是棱台,而不注意逻辑推理.2.解答空间几何体概念的判断题时,要注意紧扣定义,切忌只凭图形主观臆断.[成功破障]如右图所示,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定答案:A一、选择题1.下列图形中,不是三棱柱的展开图的是()答案:C2.如右图所示,在三棱台ABC-A′B′C′中,截去三棱锥A′-ABC,则剩余部分是()A.三棱锥B.四棱锥C.三棱柱D.组合体答案:B3.下列说法正确的是()①棱锥的各个侧面都是三角形;②三棱柱的侧面为三角形;③四面体的任何一个面都可以作为棱锥的底面;④棱锥的各侧棱长都相等.A.①②B.①③C.②③D.②④答案:B4.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有()A.20 B.15C.12 D.10答案:D5.下列命题正确的是()A.用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台B.棱柱中两个互相平行的面一定是棱柱的底面C.棱台的底面是两个相似的正方形D.棱台的侧棱延长后必交于一点答案:D二、填空题6.面数最少的棱柱为________棱柱,共有________个面围成.答案:三 57.如右图所示,M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,沿正方体表面从点A到点M的最短路程是________ cm.答案:138.侧棱垂直于底面的棱柱叫做直棱柱.侧棱不垂直于底面的棱柱叫做斜棱柱.底面是正多边形的直棱柱叫做正棱柱.底面是平行四边形的四棱柱叫做平行六面体.侧棱与底面垂直的平行六面体叫做直平行六面体.底面是矩形的直平行六面体叫做长方体.棱长都相等的长方体叫做正方体.请根据上述定义,回答下面的问题:(1)直四棱柱________是长方体;(2)正四棱柱________是正方体.(填“一定”“不一定”或“一定不”)答案:(1)不一定(2)不一定三、解答题9.如右图所示,长方体ABCD -A1B1C1D1.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCNM把这个长方体分成两部分,各部分形成的几何体还是棱柱吗?如果是,是几棱柱,并用符号表示;如果不是,请说明理由.解:(1)是棱柱,并且是四棱柱,因为长方体相对的两个面是互相平行的四边形(作底面),其余各面都是矩形(作侧面),且相邻侧面的公共边互相平行,符合棱柱的定义.(2)截面BCNM的上方部分是三棱柱BB1M-CC1N,下方部分是四棱柱ABMA1-DCND1.10.给出两块正三角形纸片(如图所示),要求将其中一块剪拼成一个底面为正三角形的三棱锥模型,另一块剪拼成一个底面是正三角形的三棱柱模型,请设计一种剪拼方案,分别用虚线标示在图中,并作简要说明.解:如图①所示,沿正三角形三边中点连线折起,可拼得一个底面为正三角形的三棱锥.如图②所示,正三角形三个角上剪出三个相同的四边形,其较长的一组邻边边长为三角形边长的14,有一组对角为直角,余下部分按虚线折成,可成为一个缺上底的底面为正三角形的三棱柱,而剪出的三个相同的四边形恰好拼成这个底面为正三角形的棱柱的上底.第二课时 圆柱、圆锥、圆台、球的结构特征 简单组合体的结构特征旋转体 [导入新知]1.以直角三角形斜边所在的直线为旋转轴,其余两边旋转成的曲面围成的旋转体不是圆锥.2.球与球面是完全不同的两个概念,球是指球面所围成的空间,而球面只指球的表面部分.3.圆台也可以看作是等腰梯形以其底边的垂直平分线为轴,各边旋转半周形成的曲面所围成的几何体.简单组合体[导入新知]1.简单组合体的概念由简单几何体组合而成的几何体叫做简单组合体.2.简单组合体的构成形式有两种基本形式:一种是由简单几何体拼接而成的;另一种是由简单几何体截去或挖去一部分而成的.[化解疑难]简单组合体识别的要求(1)准确理解简单几何体(柱、锥、台、球)的结构特征.(2)正确掌握简单组合体构成的两种基本形式.(3)若用分割的方法,则需要根据几何体的结构特征恰当地作出辅助线(或面).旋转体的结构特征[例1]给出下列说法:(1)以直角三角形的一条边所在直线为轴,其余两边旋转形成的曲面围成的几何体是圆锥;(2)以等腰三角形底边上的中线所在直线为轴,将三角形旋转形成的曲面围成的几何体是圆锥;(3)经过圆锥任意两条母线的截面是等腰三角形;(4)圆锥侧面的母线长有可能大于圆锥底面圆直径.其中说法正确的序号是________.[答案](2)(3)(4)[类题通法]1.判断简单旋转体结构特征的方法(1)明确由哪种平面图形旋转而成.(2)明确旋转轴是哪条直线.2.简单旋转体的轴截面及其应用(1)简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量.(2)在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.[活学活用]给出下列说法:(1)圆柱的底面是圆面;(2)经过圆柱任意两条母线的截面是一个矩形面;(3)圆台的任意两条母线的延长线可能相交,也可能不相交;(4)夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.答案:(1)(2)简单组合体[例2]观察下列几何体的结构特点,完成以下问题:(1)题图①所示几何体是由哪些简单几何体构成的?试画出几何图形,可旋转该图形180°后得到几何体①.(2)题图②所示几何体的结构特点是什么?试画出几何图形,可旋转该图形360°得到几何体②.(3)题图③所示几何体是由哪些简单几何体构成的?请说明该几何体的面数、棱数、顶点数.[解](1)图①是由圆锥和圆台组合而成.可旋转如下图形180°得到几何体①.(2)图②是由一个圆台,从上而下挖去一个圆锥,且圆锥的顶点恰为圆台底面圆的圆心.可旋转如下图形360°得到几何体②.(3)图③是由一个四棱锥与一个四棱柱组合而成,且四棱锥的底面与四棱柱底面相同.共有9个面,9个顶点,16条棱.[类题通法]1.明确组合体的结构特征,主要弄清它是由哪些简单几何体组成的,必要时也可以指出棱数、面数和顶点数,如题图③所示的组合体有9个面,9个顶点,16条棱.2.会识别较复杂的图形是学好立体几何的第一步,因此我们应注意观察周围的物体,然后将它们“分拆”成几个简单的几何体,进而培养我们的空间想象能力和识图能力.[活学活用]指出图①~图③的3个几何体分别是由哪些简单几何体组成的.解:图①几何体由一个圆锥、一个圆柱和一个圆台拼接而成;图②几何体由一个六棱柱和一个圆柱拼接而成;图③几何体由一个六棱柱挖去一个圆柱而成.1.旋转体的生成过程[典例]如右图所示,四边形ABCD为直角梯形,试作出绕其各条边所在的直线旋转所得到的几何体.[解题流程][规范解答]以边AD所在直线为旋转轴旋转,形成的几何体是圆台,如图①所示.以边AB所在直线为旋转轴旋转,形成的几何体是一个圆锥和一个圆柱拼接而成的几何体,如图②所示.以边CD所在直线为旋转轴旋转,形成的几何体是一个圆柱挖掉一个圆锥构成的几何体,如图③所示.以边BC所在直线为旋转轴旋转,形成的几何体是由一个圆台挖掉一个圆锥构成的几何体和一个圆锥拼接而成,如图④所示.[活学活用]一个有30°角的直角三角板绕其各条边所在直线旋转一周所得几何体是圆锥吗?如果以斜边上的高所在的直线为轴旋转180°得到什么几何体?旋转360°又得到什么几何体?解:如图①和图②所示,绕其直角边所在直线旋转一周围成的几何体是圆锥.如图③所示,绕其斜边所在直线旋转一周所得几何体是两个同底相对的圆锥.如图④所示,绕其斜边上的高所在的直线为轴旋转180°围成的几何体是两个半圆锥,旋转360°围成的几何体是一个圆锥.一、选择题1.下列说法正确的是()A.平行于圆锥某一母线的截面是等腰三角形B.平行于圆台某一母线的截面是等腰梯形C.过圆锥顶点的截面是等腰三角形D.过圆台上底面中心的截面是等腰梯形答案:C2.将一个等腰梯形绕它的较长的底边所在的直线旋转一周,所得的几何体包括() A.一个圆台、两个圆锥B.两个圆台、一个圆柱C.两个圆柱、一个圆台D.一个圆柱、两个圆锥答案:D3.以钝角三角形的较小边所在的直线为轴,其他两边旋转一周所得到的几何体是() A.两个圆锥拼接而成的组合体B.一个圆台C.一个圆锥D.一个圆锥挖去一个同底的小圆锥答案:D4.下列叙述中正确的个数是()①以直角三角形的一边所在直线为轴旋转所得的旋转体是圆锥;②以直角梯形的一腰所在直线为轴旋转所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆面;④用一个平面去截圆锥,得到一个圆锥和一个圆台.A.0 B.1C.2 D.3答案:B5.如右图所示的几何体,关于其结构特征,下列说法不正确的是()A.该几何体是由两个同底的四棱锥组成的几何体B.该几何体有12条棱、6个顶点C.该几何体有8个面,并且各面均为三角形D.该几何体有9个面,其中一个面是四边形,其余均为三角形答案:D二、填空题6.有下列说法:①在圆柱的上、下底面的圆周上各取一点,则这两点连线是圆柱的母线;②圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在直线是互相平行的.其中正确的是________(把所有正确说法的序号都填上).答案:②④7.下面这个几何体的结构特征是_____________________________________.答案:由一个四棱锥、一个四棱柱拼接,又在四棱柱中挖去了一个圆柱而成8.如图是一个几何体的表面展成的平面图形,则这个几何体是________.答案:圆柱三、解答题9.指出如图①、图②、图③所示的图形分别是由哪些简单几何体构成的.解:分割原图,使它的每一部分都是简单几何体.图①是由一个三棱柱和一个四棱柱拼接而成的简单组合体;图②是由一个圆锥和一个四棱柱拼接而成的简单组合体;图③是由一个半球、一个圆柱和一个圆台拼接而成的简单组合体.10.如右图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的半径分别为2 cm和5 cm,圆台的母线长是12 cm,求圆锥SO的母线长.解:如右图所示,过圆台的轴作截面,截面为等腰梯形ABCD ,由已知可得上底半径O 1A =2 cm ,下底半径OB =5 cm ,且腰长AB =12 cm.设截得此圆台的圆锥的母线长为l ,则由△SAO 1∽△SBO ,可得l -12l =25,所以l =20 cm ,即截得此圆台的圆锥的母线长为20 cm.1.2空间几何体的三视图和直观图1.2.1 & 1.2.2 中心投影与平行投影 空间几何体的三视图中心投影与平行投影 [导入新知] 1.投影的定义由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中,把光线叫做投影线,把留下物体影子的屏幕叫做投影面.2.中心投影与平行投影平行投影和中心投影都是空间图形的一种画法,但二者又有区别 (1)中心投影的投影线交于一点,平行投影的投影线互相平行.(2)平行投影下,与投影面平行的平面图形留下的影子,与这个平面图形的形状和大小完全相同;而中心投影则不同.三 视 图 [导入新知]1.每个视图都反映物体两个方向上的尺寸.正视图反映物体的上下和左右尺寸,俯视图反映物体的前后和左右尺寸,侧视图反映物体的前后和上下尺寸.2.画几何体的三视图时,能看见的轮廓线和棱用实线表示,看不见的轮廓线和棱用虚线表示.中心投影与平行投影 [例1] 下列说法中:①平行投影的投影线互相平行,中心投影的投影线相交于一点;②空间图形经过中心投影后,直线变成直线,但平行线可能变成了相交的直线; ③两条相交直线的平行投影是两条相交直线. 其中正确的个数为( ) A .0 B .1 C .2 D .3[答案] B [类题通法]1.判定几何体投影形状的方法.(1)判断一个几何体的投影是什么图形,先分清楚是平行投影还是中心投影,投影面的位置如何,再根据平行投影或中心投影的性质来判断.(2)对于平行投影,当图形中的直线或线段不平行于投影线时,平行投影具有以下性质: ①直线或线段的投影仍是直线或线段; ②平行直线的投影平行或重合;③平行于投影面的线段,它的投影与这条线段平行且等长;④与投影面平行的平面图形,它的投影与这个图形全等;⑤在同一直线或平行直线上,两条线段平行投影的比等于这两条线段的比.2.画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点、端点等,方法是先画出这些关键点的投影,再依次连接各投影点即可得此图形在该平面上的投影.[活学活用]如右图所示,在正方体ABCD -A′B′C′D′中,E,F分别是A′A,C′C的中点,则下列判断正确的序号是________.①四边形BFD′E在底面ABCD内的投影是正方形;②四边形BFD′E在平面A′D′DA内的投影是菱形;③四边形BFD′E在平面A′D′DA内的投影与在平面ABB′A内的投影是全等的平行四边形.答案:①③画空间几何体的三视图[例2]画出如右图所示的四棱锥的三视图.[解]几何体的三视图如下:[类题通法]画三视图的注意事项(1)务必做到长对正,宽相等,高平齐.(2)三视图的安排方法是正视图与侧视图在同一水平位置,且正视图在左,侧视图在右,俯视图在正视图的正下方.(3)若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.[活学活用]沿一个正方体三个面的对角线截得的几何体如下图所示,则该几何体的侧视图为()答案:B由三视图还原空间几何体[例3]如下图所示的三视图表示的几何体是什么?画出物体的形状.(1)(2)(3)[解](1)该三视图表示的是一个四棱台,如右图.(2)由俯视图可知该几何体是多面体,结合正视图、侧视图可知该几何体是正六棱锥.如下图.(3)由于俯视图有一个圆和一个四边形,则该几何体是由旋转体和多面体拼接成的组合体,结合侧视图和正视图,可知该几何体上面是一个圆柱,下面是一个四棱柱,所以该几何体的形状如右图所示.[类题通法]由三视图还原几何体时,一般先由俯视图确定底面,由正视图与侧视图确定几何体的高及位置,同时想象视图中每一部分对应实物部分的形状.[活学活用]如图①、图②、图③、图④为4个几何体的三视图,根据三视图可以判断这四个几何体依次分别为()A.三棱台、三棱柱、圆锥、圆台B.三棱台、三棱锥、圆锥、圆台C.三棱柱、正四棱锥、圆锥、圆台D.三棱柱、三棱台、圆锥、圆台答案:C2.画几何体的三视图常见误区[典例]某几何体及其俯视图如下图所示,下列关于该几何体正视图和侧视图的画法正确的是()[解析]该几何体是由圆柱切割而得,由俯视图可知正视方向和侧视方向,进一步可画出正视图和侧视图(如图所示),故选A.[答案] A[易错防范]1.易忽视该组合体的结构特征是由圆柱切割而得到,对正视方向与侧视方向的判断不正确而出错.2.三种视图中,可见的轮廓线都画成实线,存在但不可见的轮廓线一定要画出,但要画成虚线.画三视图时,一定要分清可见轮廓线与不可见轮廓线,避免出现错误.[成功破障]沿圆柱体上底面直径截去一部分后的物体如右图所示,它的俯视图是()答案:D一、选择题1.4个直立在地面上的字母广告牌在不同情况下,在地面上的投影(阴影部分)效果如图,则在字母L,K,C的投影中,与字母N属同一种投影的有()答案:A2.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为()答案:D3.若某几何体的三视图如下图所示,则这个几何体的直观图可以是()答案:B4.某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()答案:C5.将正方体(如图①所示)截去两个三棱锥,得到图②所示的几何体,则该几何体的侧视图为()答案:B二、填空题6.已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于________.答案: 27.如图甲所示,在正方体ABCD -A1B1C1D1中,E,F分别是AA1,C1D1的中点,G是正方形BCC1B1的中心,则四边形AGFE在该正方体的各个面上的投影可能是图乙中的________.答案:(1)(2)(3)8.两条平行线在一个平面内的正投影可能是________.①两条平行线;②两个点;③两条相交直线;④一条直线和直线外的一点;⑤一条直线.答案:①②⑤三、解答题9.如下图所示,画出下列组合体的三视图.解:三视图如图①、图②所示.10.某组合体的三视图如下图所示,试画图说明此组合体的结构特征.解:该三视图表示的是组合体,如右图所示,是7个小正方体拼接而成的组合体.1.2.3空间几何体的直观图斜二测画法[导入新知]1.用斜二测画法画平面图形的步骤(1)在已知图形中取互相垂直的x轴和y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴和y′轴,两轴相交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.(2)已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴或y′轴的线段.(3)已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度变为原来的一半.2.用斜二测画法画空间几何体的直观图的步骤(1)画底面,这时使用平面图形的斜二测画法即可.(2)画z′轴,z′轴过点O′,且与x′轴的夹角为90°,并画出高线(与原图高线相等,画正棱柱时只需要画侧棱即可),连线成图.(3)擦去辅助线,被遮线用虚线表示.[化解疑难]1.画水平放置的平面图形的直观图,关键是确定多边形顶点的位置,借助于平面直角坐标系确定顶点后,只需把这些顶点顺次连接即可.2.用斜二测画法画直观图要掌握水平长不变,垂线长减半,直角画45°(或135°).水平放置的平面图形的直观图[例1]按右图所示的建系方法,画水平放置的正五边形ABCDE的直观图.[解]画法:(1)在图①中作AG⊥x轴于G,作DH⊥x轴于H.(2)在图②中画相应的x′轴与y′轴,两轴相交于点O′,使∠x′O′y′=45°.。
人教A高中数学必修二课时分层训练:第一章 空间几何体 2 含解析

第一章1.3空间几何体的表面积与体积1.3.2球的体积和表面积课时分层训练‖层级一‖……………………|学业水平达标|1.用与球心距离为1的平面去截球,所得截面圆的面积为π,则球的表面积为()A.8π3 B.32π3C.8π D.82π3解析:选C设球的半径为R,则截面圆的半径为R2-1,∴截面圆的面积为S=π(R2-1)2=(R2-1)π=π,∴R2=2,∴球的表面积S=4πR2=8π.2.已知各顶点都在一个球面上的正四棱锥的高为3,体积为6,则这个球的表面积为()A.16π B.20πC.24π D.32π解析:选A设正四棱锥的高为h,底面边长为a,由V=13a2h=a2=6,得a= 6.由题意,知球心在正四棱锥的高上,设球的半径为r,则(3-r)2+(3)2=r2,解得r=2,则S球=4πr2=16π.故选A.3.某几何体的三视图如图所示,它的体积为()A.72π B.48πC.30π D.24π解析:选C 由三视图可知几何体由一个半球和倒立的圆锥组成的组合体.V =13π×32×4+12×43π×33=30π.4.等体积的球和正方体的表面积S 球与S 正方体的大小关系是( )A .S 正方体>S 球B .S 正方体<S 球C .S 正方体=S 球D .无法确定解析:选A 设正方体的棱长为a ,球的半径为R ,由题意,得V =43πR 3=a 3,∴a =3V ,R =33V 4π,∴S 正方体=6a 2=63V 2=3216V 2,S 球=4πR 2=336πV 2 < 3216V 2.5.球的表面积S 1与它的内接正方体的表面积S 2的比值是( )A.π3B.π4C.π2 D .π解析:选C 设球的内接正方体的棱长为a ,球的半径为R ,则3a 2=4R 2,所以a 2=43R 2,球的表面积S 1=4πR 2,正方体的表面积S 2=6a 2=6×43R 2=8R 2,所以S 1S 2=π2. 6.已知正方体的棱长为2,则与正方体的各棱都相切的球的表面积是________.解析:过正方体的对角面作截面如图.故球的半径r =2,∴其表面积S =4π×(2)2=8π.答案:8π7.球内切于正方体的六个面,正方体的棱长为a ,则球的表面积为________. 解析:正方体的内切球球心是正方体的中心,切点是六个面(正方形)的中心,经过四个切点及球心作截面,如图,所以有2r 1=a ,r 1=a 2,所以球的表面积S 1=4πr 21=πa 2.答案:πa 28.圆柱形容器的内壁底半径是10 cm ,有一个实心铁球浸没于容器的水中,若取出这个铁球,测得容器的水面下降了53cm ,则这个铁球的表面积为________cm 2. 解析:设该铁球的半径为r ,则由题意得43πr 3=π×102×53,解得r 3=53,∴r=5,∴这个铁球的表面积S =4π×52=100π(cm 2).答案:100π9.若三个球的表面积之比为1∶4∶9,求这三个球的体积之比.解:设三个球的半径分别为R 1,R 2,R 3,∵三个球的表面积之比为1∶4∶9,∴4πR 21∶4πR 22∶4πR 23=1∶4∶9,即R 21∶R 22∶R 23=1∶4∶9,∴R 1∶R 2∶R 3=1∶2∶3,得R 31∶R 32∶R 33=1∶8∶27,∴V 1∶V 2∶V 3=43πR 31∶43πR 32∶43πR 33=R 31∶R 32∶R 33=1∶8∶27.10.某组合体的直观图如图所示,它的中间为圆柱形,左右两端均为半球形,若图中r =1,l =3,试求该组合体的表面积和体积.解:该组合体的表面积S =4πr 2+2πrl =4π×12+2π×1×3=10π,该组合体的体积V =43πr 3+πr 2l =43π×13+π×12×3=13π3.‖层级二‖………………|应试能力达标|1.(2019·吉林白城四中二模)如图是一个空间几何体的三视图,则该几何体的外接球的表面积是( )A.24π B.36πC.48π D.60π解析:选C由三视图可知:该几何体为直三棱柱,并且为棱长是4的正方体的一半.可得该几何体的外接球的半径r=23,其外接球的表面积S=4π×()232=48π,故选C.2.一平面截一球得到直径是6 cm的圆面,球心到这个圆面的距离是4 cm,则该球的体积是()A.100π3cm3 B.208π3cm3C.500π3cm3 D.41613π3cm3解析:选C根据球的截面的性质,得球的半径R=32+42=5(cm),所以V球=43πR3=500π3(cm3).3.一个几何体的三视图如图所示,则此几何体的表面积S=()A.32+π B.32+2πC.28+2π D.28+π解析:选A由三视图可知此几何体的上半部分为半个球,下半部分是一个长方体,故其表面积S=4π×12+4×2×3+2×2+2×2-π=32+π.4.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =()A.1 B.2C.4 D.8解析:选B如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r,圆柱的底面半径为r,高为2r,则表面积S=12×4πr2+πr2+4r2+πr·2r=(5π+4)r2.又S=16+20π,∴(5π+4)r2=16+20π,∴r2=4,r=2,故选B.5.已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是________.解析:依题意得,该几何体是球的一个内接正方体,且该正方体的棱长为2.设该球的直径为2R,则2R=22+22+22=23,所以该几何体的表面积为4πR2=4π(3)2=12π.答案:12π6.已知一个球与一个正三棱柱的三个侧面和两个底面都相切,且这个球的体积是323π,那么这个三棱柱的体积是________. 解析:设球的半径为r ,则43πr 3=323π,得r =2,三棱柱的高为2r =4.又正三棱柱的底面三角形的内切圆半径与球的半径相等,所以底面正三角形的边长为43,所以正三棱柱的体积V =34×(43)2×4=48 3.答案:48 37.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是________ cm.解析:设球的半径为r ,则圆柱形容器的高为6r ,容积为πr 2×6r=6πr 3,高度为8 cm 的水的体积为8πr 2,3个球的体积和为3×43πr 3=4πr 3,由题意得6πr 3-8πr 2=4πr 3,解得r =4(cm).答案:48.轴截面是正三角形的圆锥内有一个内切球,若圆锥的底面半径为1 cm ,求球的体积.解:如图所示,作出轴截面,O 是球心,与边BC ,AC相切于点D ,E .连接AD ,OE ,∵△ABC 是正三角形,∴CD=12AC .∵Rt △AOE ∽Rt △ACD ,∴OE AO =CD AC .∵CD =1 cm ,∴AC =2 cm ,AD = 3 cm ,设OE =r ,则AO =(3-r ),∴r 3-r=12,∴r =33 cm ,V球=43π⎝⎛⎭⎪⎫333=4327π(cm3),即球的体积等于4327π cm3.。
2020年高中数学人教A版必修二巩固提升训练(一) 空间几何体 Word版含解析

阶段质量检测(一) 空间几何体(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.斜四棱柱的侧面是矩形的面最多有( ) A .0个 B .1个 C .2个D.3个解析:选C 本题考查四棱柱的结构特征,画出示意图即可.2.用斜二测画法画水平放置的△ABC 的直观图,得到如图所示的等腰直角三角形A ′B ′C ′.已知点O ′是斜边B ′C ′ 的中点,且A ′O ′=1,则△ABC 的边BC 上的高为( )A .1B .2 C. 2D.2 2解析:选D ∵△ABC 的直观图是等腰直角三角形A ′B ′C ′,∠B ′A ′C ′=90°,A ′O ′=1,∴A ′C ′= 2.根据直观图平行于y 轴的长度变为原来的一半,∴△ABC 的高为AC =2A ′C ′=2 2.故选D.3.如图,已知平面A 1B 1C 1与平面ABC 平行,则能推断这个几何体可能是三棱台的是( )A .A 1B 1=2,AB =3,B 1C 1=3,BC =4B .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =3 C .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =4D .AB =A 1B 1,BC =B 1C 1,CA =C 1A 1解析:选C 根据棱台是由棱锥截成的进行判断.选项A 中A 1B 1AB ≠B 1C 1BC ,故A 不正确;选项B 中B 1C 1BC ≠A 1C 1AC ,故B 不正确;选项C 中A 1B 1AB =B 1C 1BC =A 1C 1AC ,故C 正确;选项D 中满足这个条件的可能是一个三棱柱,不是三棱台.故选C.4.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图,图中四边形是为体现其直观性所作的辅助线.其实际直观图中四边形不存在,当其正视图和侧视图完全相同时,它的正视图和俯视图分别可能是( )A .a ,bB .a ,cC .c ,bD.b ,d解析:选A 正视图和侧视图完全相同时,牟合方盖相对的两个曲面正对前方,正视图为一个圆,而俯视图为一个正方形,且有两条实线的对角线.故选A.5.已知某个几何体的三视图如图(正视图的弧线是半圆),根据图中标出的尺寸(单位:cm),可得这个几何体的表面积是( )A .(368π+65)cm 2B .(368+56π)cm 2C .(386+56π)cm 2D.(386+65π)cm 2解析:选B 从该几何体的三视图可知,这个几何体是由两部分构成的,下部分是长方体,上部分是半个圆柱.且长方体的三边长分别为8 cm,10 cm,8 cm ,半个圆柱的底面半径为4 cm ,高为10 cm.所以其表面积为(368+56π) cm 2.6.已知圆锥的表面积是其底面面积的3倍,则该圆锥的侧面展开图的圆心角为( ) A .120° B .150° C .180°D.240°解析:选C 设圆锥的底面半径为R ,母线长为L .由题意,πR 2+πRL =3πR 2,∴L =2R ,圆锥的底面圆周长l =2πR .展开成扇形后,设扇形圆心角为n ,则扇形的弧长l =n πL 180°=n π×2R 180°,∴2πR =2n πR180°,∴n =180°,即展开后扇形的圆心角为180°.7.现在国际乒乓球赛的用球已由“小球”改为“大球”.“小球”的直径为38 mm ,“大球”的直径为40 mm ,则“小球”的表面积与“大球”的表面积之比为( )A.19∶20 B .19∶20 C .192∶202D.193∶203解析:选C 因为S 小球=4π·192,S 大球=4π·202,所以S 小球∶S 大球=(4π·192)∶(4π·202)=192∶202.8.若圆台两底面周长的比是1∶4,过高的中点作平行于底面的平面,则圆台被分成两部分的体积比是( )A.12B.14 C .1D.39129解析:选D 设上,下底半径分别为r 1,r 2,过高中点的圆面半径为r 0,由题意得r 2=4r 1,r 0=52r 1,所以V 上V下=r 21+r 1r 0+r 20r 22+r 2r 0+r 20=39129. 9.如图,将一个正方体沿相邻三个面的对角线截出一个棱锥,则棱锥的体积与原正方体的体积之比为( )A .1∶3B .1∶4C .1∶5D.1∶6解析:选D 设正方体的棱长为a ,则棱锥的体积V 1=13×12×a ×a ×a =a 36,又正方体的体积V 2=a 3,所以V 1∶V 2=1∶6.10.已知一个底面是菱形的直棱柱的侧棱长为5,菱形的对角线的长分别是9和15,则这个棱柱的侧面积是( )A .3034B .6034C .3034+135 D.135解析:选A 由菱形的对角线长分别是9和15,得菱形的边长为 ⎝⎛⎭⎫922+⎝⎛⎭⎫1522=3234,则这个直棱柱的侧面积为4×3234×5=3034. 11.已知正三角形ABC 三个顶点都在半径为2的球面上,球心O 到平面ABC的距离为1,点E 是线段AB 的中点,过点E 作球O 的截面,则截面面积的最小值是( )A.7π4 B .2π C.9π4D.3π解析:选C 由题意知,正三角形ABC 的外接圆半径为22-12=3,则AB =3,过点E 的截面面积最小时,截面是以AB 为直径的圆,截面面积S =π×⎝⎛⎭⎫322=9π4.12.(2019·全国卷Ⅰ)已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .86πB .46πC .26πD.6π解析:选D 设PA =PB =PC =2a ,则EF =a , 又FC =3,∴EC 2=3-a 2.在△PEC 中,cos ∠PEC =a 2+3-a 2-(2a )22a 3-a 2.在△AEC 中,cos ∠AEC =a 2+3-a 2-42a 3-a 2.∵∠PEC 与∠AEC 互补, ∴3-4a 2=1,解得a =22, 故PA =PB =PC = 2.又∵AB =BC =AC =2,∴PA ⊥PB ⊥PC , ∴外接球的直径2R =(2)2+(2)2+(2)2=6, ∴R =62,∴V =43πR 3=43π×⎝⎛⎭⎫623=6π.二、填空题(本大题共4小题,每小题5分,共20分) 13.底面直径和高都是4 cm 的圆柱的侧面积为________cm 2.解析:圆柱的底面半径为r =12×4=2(cm),∴S 侧=2π×2×4=16π(cm 2).答案:16π14.我国南北朝时期的数学家、天文学家祖暅提出了著名的祖暅原理:“幂势既同,则积不容异”.“势”即是高,“幂”即是面积,意思是:如果两等高的几何体在同高处截得两几何体的截面面积相等,那么这两个几何体的体积相等.如图所示,扇形的半径为3,圆心角为90°,若扇形AOB 绕直线OB 旋转一周,图中阴影部分旋转后所得几何体与某不规则几何体满足:“幂势同”,则该不规则几何体的体积为________.解析:扇形AOB 绕直线OB 旋转一周,阴影部分旋转后所得几何体的体积为半个球的体积减去一个圆锥的体积.因为球的半径为3,圆锥的底面半径为3,高为3.所以所求体积为12×43×π×33-13×π×32×3=18π-9π=9π.答案:9π15.(2019·全国卷Ⅱ)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为________.解析:先求面数,有如下两种方法.法一:由“半正多面体”的结构特征及棱数为48可知,其上部分有9个面,中间部分有8个面,下部分有9个面,共有2×9+8=26(个)面.法二:一般地,对于凸多面体,顶点数(V )+面数(F )-棱数(E )=2(欧拉公式). 由图形知,棱数为48的半正多面体的顶点数为24, 故由V +F -E =2,得面数F =2+E -V =2+48-24=26.再求棱长.作中间部分的横截面,由题意知该截面为各顶点都在边长为1的正方形上的正八边形ABCDEFGH ,如图,设其边长为x ,则正八边形的边长即为半正多面体的棱长.连接AF ,过H ,G 分别作HM ⊥AF ,GN ⊥AF ,垂足分别为M ,N ,则AM =MH =NG =NF =22x .又AM +MN +NF =1,即22x +x +22x =1. 解得x =2-1,即半正多面体的棱长为2-1. 答案:262-116.已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 的体积的最大值为92,则球O 的表面积为________.解析:如图所示,当点C 位于垂直于平面AOB 的直径的端点时,三棱锥O -ABC 的体积最大.设球O 的半径为R ,∴V O -ABC =V C -AOB =13×12×R 2×R =R 36=92,解得R =3,则球O 的表面积S =4πR 2=36π. 答案:36π三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)如图,在四边形ABCD 中,∠DAB =90°,∠ADC =135°,AB =5,CD =22,AD =2,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.解:由已知得:CE =2,DE =2,CB =5, S 表面=S 圆台侧+S 圆台下底+S 圆锥侧=π(2+5)×5+π×25+π×2×22=(60+42)π,V =V 圆台-V 圆锥=13(π·22+π·52+22·52π2)×4-13π×22×2=148π3.18.(本小题满分12分)如图所示,已知正方体ABCD -A1B 1C 1D 1的棱长为a ,E ,F 分别是A 1A ,CC 1的中点,求四棱锥C 1-B 1EDF 的体积.解:连接EF ,B 1D 1.设B 1到平面C 1EF 的距离为h 1,D 到平面C 1EF 的距离为h 2. ∵正方体ABCD -A 1B 1C 1D 1的棱长为a ,E ,F 分 别是A 1A ,CC 1的中点,∴h 1+h 2=B 1D 1=2a .又S △C 1EF =12C 1F ·EF =12×a 2×2a =24a 2,∴VC 1-B 1EDF =VB 1-C 1EF +VD -C 1EF =13·S △C 1EF ·(h 1+h 2)=13×24a 2×2a =16a 3.19.(本小题满分12分)已知圆柱OO 1的底面半径为2,高为4.(1)求从下底面出发环绕圆柱侧面一周到达上底面的最短路径长;(2)若平行于轴OO 1的截面ABCD 将底面圆周截去四分之一,求截面面积; (3)在(2)的条件下,设截面将圆柱分成的两部分中较小部分为Ⅰ,较大部分为Ⅱ,求V Ⅰ∶V Ⅱ(体积之比).解:(1)将侧面沿某条母线剪开铺平得到一个矩形,邻边长分别是4π和4,则从下底面出发环绕侧面一周到达上底面的最短路径长即为此矩形的对角线长41+π2.(2)连接OA ,OB ,∵截面ABCD 将底面圆周截去14,∴∠AOB =90°,∵OA =OB =2,∴AB =22, 而截面ABCD 是矩形且AD =4, ∴S 截面ABCD =22×4=8 2. (3)依题知V 圆柱=Sh =16π, 三棱柱AOB -DO 1C 的体积是8, 则V Ⅰ+8=14V 圆柱=4π,∴V Ⅰ=4π-8,而V Ⅱ=V 圆柱-V Ⅰ=12π+8, 于是V Ⅰ∶V Ⅱ=π-23π+2.20.(本小题满分12分)如图,正方体ABCD -A ′B ′C ′D ′的棱长为a ,连接A ′C ′,A ′D ,A ′B ,BD ,BC ′,C ′D ,得到一个三棱锥.求:(1)三棱锥A ′-BC ′D 的表面积与正方体表面积的比值; (2)三棱锥A ′-BC ′D 的体积.解:(1)∵ABCD -A ′B ′C ′D ′是正方体,∴A ′C ′=A ′B =A ′D =BC ′=BD =C ′D =2a ,∴S 三棱锥=4×34×(2a )2=23a 2,S 正方体=6a 2, ∴S 三棱锥S 正方体=33. (2)显然,三棱锥A ′-ABD 、C ′-BCD 、D -A ′D ′C ′、 B -A ′B ′C ′是完全一样的,∴V 三棱锥A ′-BC ′D =V 正方体-4V 三棱锥A ′-ABD =a 3-4×13×12a 2×a=a 33. 21.(本小题满分12分)已知某几何体的俯视图是一个长为8,宽为6的矩形,正视图(或称主视图)是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6,高为4的等腰三角形.(1)求该几何体的体积V ; (2)求该几何体的侧面积S .解:由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为8和6的矩形,正侧面及其相对侧面均为底边长为8、高为h 1的等腰三角形,左、右侧面均为底边长为6、高为h 2的等腰三角形,如图.(1)几何体的体积V =13·S 矩形·h =13×6×8×4=64.(2)正侧面及相对侧面底边上的高h 1=42+32=5.左、右侧面的底边上的高h 2=42+42=4 2.故几何体的侧面积S =2×⎝⎛⎭⎫12×8×5+12×6×42=40+24 2. 22.(本小题满分12分)直三棱柱的高为6 cm ,底面三角形的边长分别为3 cm,4 cm,5 cm ,将棱柱削成圆柱,求削去部分体积的最小值.解:如图所示,只有当圆柱的底面圆为直三棱柱的底面三角形的内切圆时,圆柱的体积最大,削去部分体积才能最小,设此时圆柱的底面半径为R ,圆柱的高即为直三棱柱的高6 cm.因为在△ABC 中,AB =3 cm ,BC =4 cm ,AC =5 cm ,所以△ABC为直角三角形.根据直角三角形内切圆的性质可得7-2R=5,所以R=1 cm,所以V圆柱=πR2·h=6π (cm3).而三棱柱的体积为V三棱柱=13),2×3×4×6=36(cm所以削去部分的体积为36-6π=6(6-π)(cm3).。
2019_2020学年高中数学第一章空间几何体章末质量检测(含解析)新人教A版必修2

章末质量检测(一) 空间几何体一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列结论正确的是( )A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:A错误.如图1所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.B错误.如图2,若△ABC不是直角三角形或是直角三角形,但旋转轴不是直角边所在直线,所得的几何体都不是圆锥.C错误.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.D正确.答案:D2.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱共有对角线( )A.20条 B.15条C.12条 D.10条解析:由题意五棱柱对角线一定为上底面的一个顶点和下底面的一个顶点的连线,因为不同在任何侧面内,故从一个顶点出发的对角线有2条,五棱柱共有对角线2×5=10条.答案:D3.关于直观图画法的说法中,不正确的是( )A.原图形中平行于x轴的线段,其对应线段仍平行于x′轴,其长度不变B.原图形中平行于y轴的线段,其对应线段仍平行于y′轴,其长度不变C.画与坐标系xOy对应的坐标系x′O′y′时,∠x′O′y′可画成135°D.作直观图时,由于选轴不同,所画直观图可能不同解析:根据斜二测画法的规则可知B不正确.答案:B4.若圆柱的轴截面是一个正方形,其面积为4S,则它的一个底面面积是( ) A.4S B.4πSC.πS D.2πS解析:由题意知圆柱的母线长为底面圆的直径2R,则2R·2R=4S,得R2=S.所以底面面积为πR2=πS.答案:C5.如果一个正四面体(各个面都是正三角形)的体积为9 cm3,则其表面积为( ) A.18 3 cm2 B.18 cm2C.12 3 cm2 D.12 cm2解析:设正四面体的棱长为a cm,则底面积为34a2 cm2,易求得高为63a cm,则体积为13×34a2×63a=212a3=9,解得a=32,所以其表面积为4×34a2=183(cm2).答案:A6.一个四面体共一个顶点的三条棱两两互相垂直,其长分别为1,6,3,其四面体的四个顶点在一个球面上,则这个球的表面积为( )A.16πB.32π C.36πD.64π解析:将四面体可补形为长方体,此长方体的对角线即为球的直径,而长方体的对角线长为12+62+32=4,即球的半径为2,故这个球的表面积为4πr2=16π.答案:A7.用斜二测画法得到的一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( )解析:直观图中的多边形为正方形,对角线的长为2,所以原图形为平行四边形,位于y轴上的对角线的长为2 2.答案:A8.球O 的截面把垂直于截面的直径分成1:3两部分,若截面圆半径为3,则球O 的体积为( )A .16π B.16π3C.32π3D .43π 解析:设直径被分成的两部分分别为r 、3r ,易知(3)2=r ·3r ,得r =1,则球O 的半径R =2,故V =43π·R 3=323π.答案:C9.[2019·湖北省黄冈中学检测]已知某几何体的直观图如图所示,则该几何体的体积是( )A.233+π B.233+2π C .23+π D.23+2π解析:由直观图可知该几何体由一个半圆柱和一个三棱柱组成,故其体积V =12π×12×2+12×2×3×2=π+2 3. 答案:C 10.如图,在棱长为4的正方体ABCD -A 1B 1C 1D 1中,P 是A 1B 1上一点,且PB 1=14A 1B 1,则多面体P -BCC 1B 1的体积为( )A.83B.163 C .4 D .5解析:V多面体P-BCC1B1=13S正方形BCC1B1·PB1=13×42×1=163.答案:B11.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥的侧面分成的三部分的面积之比为( )A.1:2:3 B.1:3:5C.1:2:4 D.1:3:9解析:如图,由题意知O1A1O2A2OA=1:2:3,以O1A1,O2A2,OA为半径的圆锥的侧面积之比为1:4:9.故圆锥被截面分成的三部分侧面的面积之比为1:(4-1):(9-4)=1:3:5.答案:B12.已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A.122π B.12πC.82π D.10π解析:过直线O1O2的截面为圆柱的轴截面,设底面半径为r,母线长为l,因为轴截面是面积为8的正方形,所以2r=l=22,所以r=2,所以圆柱的表面积为2πrl+2πr2=8π+4π=12π.答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.正方形ABCD绕对角线AC所在直线旋转一周所得组合体的结构特征是________.解析:由圆锥的定义知是两个同底的圆锥形成的组合体.答案:两个同底的圆锥组合体14.[2019·甘肃省兰州市校级检测]若某空间几何体的直观图如图所示,则该几何体的表面积是________.解析:根据直观图可知该几何体是横着放的直三棱柱,所以S 侧=(1+2+3)×2=2+2+6, S 底=12×1×2=22, 故S 表=2+2+6+2×22=2+22+ 6. 答案:2+22+ 6 15.如图所示,已知正三棱柱ABC -A 1B 1C 1的底面边长为2,高为5,一质点自A 点出发,沿着三棱柱的侧面绕行两周到达A 1点的最短路线的长为________.解析:如图所示,将三棱柱沿AA 1剪开,可得一矩形,其长为6,宽为5,其最短路线为两相等线段之和,其长度等于2⎝ ⎛⎭⎪⎫522+62=13.答案:1316.若圆锥的内切球与外接球的球心重合,且内切球的半径为1,则圆锥的体积为________.解析:过圆锥的旋转轴作轴截面,得△ABC 及其内切圆⊙O 1和外切圆⊙O 2,且两圆同圆心,即△ABC 的内心与外心重合,易得△ABC 为正三角形,由题意知⊙O 1的半径为r =1,△ABC 的边长为23,于是知圆锥的底面半径为3,高为3.故所求体积为V =13×π×3×3=3π.答案:3π三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如图所示是一个长方体截去一个角得到的几何体的直观图(单位:cm).按照给出的数据,求该几何体的体积.解:该几何体的体积V =V 长方体-V 三棱锥=4×4×6-13×⎝ ⎛⎭⎪⎫12×2×2×2=2843(cm 3).18.(12分)如图是由正方形ABCE 和正三角形CDE 所组成的平面图形,试画出其水平放置的直观图.解:(1)以AB 所在的直线为x 轴,AB 的中垂线为y 轴建立直角坐标系,如图(1),再建立坐标系x ′O ′y ′,使两轴的夹角为45°,如图(2).(2)以O ′为中点,在x ′轴上截取A ′B ′=AB ,分别过A ′,B ′作y ′轴的平行线,截取A ′E ′=12AE ,B ′C ′=12BC .在y ′轴上截取O ′D ′=12OD .(3)连接E ′D ′,E ′C ′,C ′D ′,并擦去作为辅助线的坐标轴,就得到所求的直观图,如图(3).19.(12分)如图所示,在多面体FE ABCD 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,求该多面体的体积V .解析:如图所示,分别过A ,B 作EF 的垂线AG ,BH ,垂足分别为G ,H .连接DG ,CH ,容易求得EG =HF =12.所以AG =GD =BH =HC =32, S △AGD =S △BHC =12×22×1=24, V =V E ADG +V F BHC +V AGD BHC=⎝ ⎛⎭⎪⎫13×12×24×2+24×1=23. 20.(12分)用一张相邻边长分别为4 cm,8 cm 的矩形硬纸片卷成圆柱的侧面(接缝处忽略不计),求该圆柱的表面积.解析:有两种不同的卷法,分别如下:(1)如图①所示,以矩形8 cm 长的边为母线,把矩形硬纸片卷成圆柱侧面,此时底面圆的周长为2π·OA =4,则OA =r 1=2π cm ,∴两底面面积之和为8π cm 2,∴S 表=⎝ ⎛⎭⎪⎫32+8π cm 2,即该圆柱的表面积为⎝⎛⎭⎪⎫32+8πcm 2.(2)如图②所示,以矩形4 cm 长的边为母线,把矩形硬纸片卷成圆柱侧面,此时底面圆的周长为2π·OB =8,则OB =r 2=4π cm ,∴两底面面积之和为32π cm 2,∴S 表=⎝ ⎛⎭⎪⎫32+32πcm 2,即该圆柱的表面积为⎝⎛⎭⎪⎫32+32πcm 2.21.(12分)如图,正方体ABCD -A ′B ′C ′D ′的棱长为a ,连接A ′C ′,A ′D ,A ′B ,BD ,BC ′,C ′D ,得到一个三棱锥.求:(1)三棱锥A ′-BC ′D 的表面积与正方体表面积的比值; (2)三棱锥A ′-BC ′D 的体积.解析:(1)∵ABCD -A ′B ′C ′D ′是正方体, ∴A ′B =A ′C ′=A ′D =BC ′=BD =C ′D =2a ,∴三棱锥A ′-BC ′D 的表面积为4×12×2a ×32×2a =23a 2.而正方体的表面积为6a 2,故三棱锥A ′-BC ′D 的表面积与正方体表面积的比值为23a26a2=33. (2)三棱锥A ′-ABD ,C ′-BCD ,D -A ′D ′C ′,B -A ′B ′C ′是完全一样的. 故V 三棱锥A ′-BC ′D =V 正方体-4V 三棱锥A ′-ABD =a 3-4×13×12a 2×a =a33.22.(12分)若圆锥与球的体积相等,且圆锥底面半径与球的直径相等,求圆锥侧面积与球的表面积之比.解析:设圆锥的底面半径为r ,高为h ,母线长为l ,球的半径为R , 则由题意得⎩⎪⎨⎪⎧13πr 2·h =43πR 3r =2R∴13π(2R )2·h =43πR 3,∴R =h ,r =2h , ∴l =r 2+h 2=5h ,∴S 圆锥侧=πrl =π×2h ×5h =25πh 2,S 球=4πR 2=4πh 2,∴S 圆锥侧S 球=25πh 24πh 2=52.。
高中数学必修2(人教A版)第一章几何空间体1.1知识点总结含同步练习及答案

描述:例题:描述:高中数学必修2(人教A版)知识点总结含同步练习题及答案第一章 空间几何体 1.1 空间几何体的结构一、学习任务认识柱、锥、台、球及其简单组合体的结构特征,能运用这些结构特征描述现实生活中简单物体的结构.二、知识清单典型空间几何体空间几何体的结构特征 组合体展开图 截面分析三、知识讲解1.典型空间几何体空间几何体的概念只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.2.空间几何体的结构特征多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点;连接不在同一个面上的两个顶点的线段叫做多面体的对角线.按多面体的面数可把多面体分为四面体、五面体、六面体.其中,四个面均为全等的正三角形的四面体叫做正四面体.旋转体由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.棱柱的结构特征一般地,有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱(prism).棱柱中,两个互相平行的面叫做底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的用一个平行于棱锥底面的平面去截棱锥,得到两个几何体,一个是______,另一个是______.解:棱锥;棱台.⋯⋯余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的顶点.底面是三角形、四边形、五边形的棱柱分别叫做三棱柱、四棱柱、五棱柱,可以用表示底面各顶点的字母或一条对角线端点的字母表示棱柱,如下图的六棱柱可以表示为棱柱或棱柱 .侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱;底面是平行四边形的棱柱叫做平行六面体;侧棱与底面垂直的平行六面体叫做直平行六面体.棱锥的结构特征一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.底面是三角形、四边形、五边形的棱锥分别叫做三棱锥、四棱锥、五棱锥其中三棱锥又叫四面体.棱锥也用表示顶点和底面各顶点的字母或者用表示顶点和底面一条对角线端点的字母来表示,如下图的四棱锥表示为棱锥 或者棱锥 .棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,这个棱锥叫做正棱锥.正棱锥各侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高.⋯⋯⋯⋯ABCDEF−A′B′C′D′E′F′DA′⋯⋯⋯⋯S−ABCD S−AC棱台的结构特征用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面;其他各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;两底面的距离叫做棱台的高.由正棱锥截得的棱台叫做正棱台,正棱台的各个侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高.圆柱的结构特征以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱(circular cylinder).旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.圆锥的结构特征以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥(circular cone).圆台的结构特征例题:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台(frustum of a cone).棱台与圆台统称为台体.球的结构特征以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球(solid sphere).半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.球常用表示球心的字母 表示.O下列命题中,正确的是( )A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱长相等,侧面是平行四边形解:D如图(1),满足 A 选项条件,但不是棱柱;对于 B 选项,如图(2),构造四棱柱,令四边形 是梯形,可知 ,但这两个面不能作为棱柱的底面;C选项中,若棱柱是平行六面体,则它的底面是平行四边形.ABCD−A1B1C1D1ABCD面AB∥面DCB1A1C1D1若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是( )A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥解:D如下图,正六边形 中,,那么正六棱锥中,,即侧棱长大于底面边长.ABCDEF OA=OB=⋯=AB S−ABCDEF SA>OA=AB描述:3.组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.如图所示的几何体中,是台体的是( )A.①② B.①③ C.③ D.②③解:C利用棱台的定义求解.①中各侧棱的延长线不能交于一点;②中的截面不平行于底面;③中各侧棱的延长线能交于一点且截面与底面平行.有下列四种说法:①圆柱是将矩形旋转一周所得的几何体;②以直角三角形的一直角边为旋转轴,旋转所得几何体是圆锥;③圆台的任意两条母线的延长线,可能相交也可能不相交;④半圆绕其直径所在直线旋转一周形成球.其中错误的有( )A.个 B. 个 C. 个 D. 个解:D圆柱是矩形绕其一条边所在直线旋转形成的几何体,故①错;以直角三角形的一条直角边所在直线为轴,旋转一周,才能构成圆锥,②错;圆台是由圆锥截得,故其任意两条母线延长后一定交于一点,③错;半圆绕其直径所在直线旋转一周形成的是球面,故④错误.1234例题:描述:4.展开图空间形体的表面在平面上摊平后得到的图形,是画法几何研究的一项内容.描述图中几何体的结构特征.解:图(1)所示的几何体是由两个圆台拼接而成的组合体;图(2)所示的几何体是由一个圆台挖去一个圆锥得到的组合体;图(3)所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.下图中的几何体是由哪个平面图形旋转得到的( )解:D)不在同一平面内的有______对.3内.解:C描述:例题:5.截面分析截面用平面截立体图形所得的封闭平面几何图形称为截面.平行截面、中截面与立体图形底面平行的截面称为平行截面,等分立体图形的高的平行截面称为中截面.轴截面包含立体图形的轴线的截面称为轴截面.球截面球的截面称为球截面.球的任意截面都是圆,其中通过球心的截面称为球的大圆,不过球心的截面称为球的小圆.球心与球的截面的圆心连线垂直于截面,并且有 ,其中 为球的半径, 为截面圆的半径, 为球心到截面的距离.+=r 2d 2R 2R r d 下面几何体的截面一定是圆面的是( )A.圆台 B.球 C.圆柱 D.棱柱解:B如图所示,是一个三棱台 ,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.解:如图,过 ,, 三点作一个平面,再过 ,, 作一个平面,就把三棱台分成三部分,形成的三个三棱锥分别是 ,,.ABC −A ′B ′C ′A ′B C A ′B C ′ABC −A ′B ′C ′−ABC A ′−B B ′A ′C ′−BC A ′C ′如图,正方体 中,,, 分别是 ,, 的中点,那么正方体中过点 ,, 的截面形状是( )A.三角形 B.四边形 C.五边形 D.六边形ABCD −A 1B 1C 1D 1P Q R AB AD B 1C 1P QR作截面图如图所示,可知是六边形.ii)若两平行截面在球心的两侧,如图(2)所示,则 解:四、课后作业 (查看更多本章节同步练习题,请到快乐学)答案:1.如图,能推断这个几何体可能是三棱台的是 .A .B .C .D .C ()=2,AB =3,=3,BC =4A 1B 1B 1C 1=1,AB =2,=1.5,BC =3,=2,AC =3A 1B 1B 1C 1A 1C 1=1,AB =2,=1.5,BC =3,=2,AC =4A 1B 1B 1C 1A 1C 1AB =,BC =,CA =A 1B 1B 1C 1C 1A 1答案:2. 纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标" "的面的方位是 .A .南B .北C .西D .下B △()3. 向高为 的水瓶中注水,注满为止,如果注水量 与水深 的函数关系的图象如图所示,那么水瓶的形状是.A .H V h ()高考不提分,赔付1万元,关注快乐学了解详情。
人教A版高中数学必修第二册强化练习题-第八章-立体几何初步(含答案)

人教A版高中数学必修第二册第八章 立体几何初步全卷满分150分 考试用时120分钟一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法中正确的是( )2.23.已知圆锥侧面展开图的圆心角为60°,底面圆的半径为8,4.5.6.如图,在直三棱柱ABC-A1B1C1中,点D,E分别在棱AA1,CC1上,AB=AC=AD=2A1D=CE=2C1E=2,点F满足BF=λBD(0<λ<1),若B1E∥平面ACF,则λ的值为( )A.23B.12C.13D.147.8.,,EF=12 D.642π每小题6分,共18分.在每小题给出的选项中部分选对的得部分分,有选错的得9.10.如图,正方体ABCD-A 1B 1C 1D 1的棱长为1,则下列四个命题中正确的是( )A.直线BC 与平面ABC 1D 1所成的角为π4B.点C到平面ABC1D1的距离为22C.异面直线D1C和BC1所成的角为π4D.二面角C-BC1-D的余弦值为-3311.如图1,在等腰梯形ABCD中,AB∥CD,EF⊥AB,CF=EF=2DF=2,AE=3,EB=4,将四边形AEFD沿EF进行折叠,使AD到达A'D'的位置,且平面A'D'FE⊥平面BCFE,连接A'B,D'C,如图2,则( )A.BE⊥A'D'B.平面A'EB∥平面D'FCC.多面体A'EBCD'F为三棱台D.直线A'D'与平面BCFE所成的角为π4三、填空题(本题共3小题,每小题5分,共15分)12.正四棱锥P-ABCD的底面边长为2,高为3,则点A到不经过点A的侧面的距离为 .13.在△ABC中,∠ACB=90°,AC=2,BC=5,P为AB上一点,沿CP将△ACP折起形成直二面角A'-CP-B,当A'B最短时,A'P= .BP14.农历五月初五是端午节,民间有吃粽子的习惯,一般情况下粽子的形状是四面体.如图1,已知底边和腰长分别为8 cm和12 cm的等腰三角形纸片,将它沿虚线(中位线)折起来,可以得到如图2所示粽子形状的四面体,若该四面体内包一蛋黄(近似于球),则蛋黄的半径的最大值为 cm(用最简根式表示);当该四面体的棱所在的直线是异面直线时,其所成的角中最小的角的余弦值为 .四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15.(13分)现需要设计一个仓库,由上下两部分组成,如图所示,上部分是正四棱锥P-A1B1C1D1,下部分是正四棱柱ABCD-A1B1C1D1,正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1)若AB=6 m,PO1=2 m,求仓库的容积(含上下两部分);(2)若上部分正四棱锥的侧棱长为6 m,当PO1为多少时,下部分正四棱柱的侧面积最大?最大面积是多少?16.(15分)如图,在四棱锥P-ABCD中,底面ABCD为菱形,E为PD的中点,EA=12 PD,EF⊥AC,垂足为F,且AC=4AF.证明:(1)PB∥平面ACE;(2)PA⊥平面ABCD.17.(15分)如图所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1;(3)求异面直线AC1与B1C所成角的余弦值.18.(17分)如图,在四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=2AB=4,E,F分别在BC,AD上,EF∥AB,现将四边形ABEF沿EF折起,使BE⊥EC.(1)若BE=3,在折叠后的线段AD上是否存在一点P,使得CP∥平面ABEF?若存在,求出AP的PD 值;若不存在,请说明理由;(2)求三棱锥A-CDF的体积的最大值,并求出此时点F到平面ACD的距离.,平面ABB1A1⊥平面BCC1B1,△ABC 19.(17分)如图,已知三棱台ABC-A1B1C1的体积为7312是以B为直角顶点的等腰直角三角形,且AB=2AA1=2A1B1=2BB1.(1)证明:BC⊥平面ABB1A1;(2)求点B到平面ACC1A1的距离;?若存在,求出CF的长;若不(3)在线段CC1上是否存在点F,使得二面角F-AB-C的大小为π6存在,请说明理由.答案全解全析1.D 对于A,长方体是四棱柱,底面不是长方形的直四棱柱不是长方体,A 错误;对于B,棱台侧棱的延长线必须相交于一点,B 错误;对于C,各侧面都是正方形,底面不是正方形(如菱形)的四棱柱不是正方体,C 错误;对于D,棱柱的侧棱相等,侧面都是平行四边形,D 正确. 2.3.母线长为l,则r=8,πrl=8×48π=384π.4.由扇环的圆心角为180°,又C=2π×10,所以SA=20,同理SB=40,则AB=SB-SA=20,圆台的高h=AB 2-(20-10)2=103,表面积S=π(10+20)×20+100π+400π=1 100π,体积V=13π×103×(102+10×20+202)=700033π.故选C.5.A 取BD 的中点E,连接ED 1,AE,易得PD 1∥BE 且PD 1=BE,所以四边形BED 1P 为平行四边形,所以PB ∥D 1E,故∠AD 1E(或其补角)为直线PB 与AD 1所成的角.设AB=AD=AA 1=2,因为∠ABD=45°,所以∠DAB=90°,因为E 为BD 的中点,所以AE=DE=22AB=2.易得AD 1=AD 2+D D 21=22,D 1E=DE 2+D D 21=6,因为A D 21=AE 2+D 1E 2,所以AE ⊥D 1E.故cos ∠AD 1E=D 1EAD 1=622=32,又0°<∠AD 1E<180°,所以∠AD 1E=30°.故选A.6.C 在BB 1上取一点G,使得B 1G=2BG,连接CG,AG,如图所示.∵CE=2C 1E=2,∴CC 1=BB 1=3,∴在直三棱柱ABC-A 1B 1C 1中,B 1G ∥CE,且B 1G=CE=2,∴四边形B 1GCE 为平行四边形,∴B 1E ∥CG,∵B 1E ⊄平面ACG,CG ⊂平面ACG,∴B 1E ∥平面ACG,若B 1E ∥平面ACF,则F 在平面ACG 内,又F 为BD 上一点,∴F 为BD 与AG 的交点.易知△BFG ∽△DFA,∴BF DF =BG DA =12,∴BF =13BD ,即λ的值为13.故选C.7.D 取AD 的中点M,AB 的中点N,连接PD,MD 1,MN,NB 1,B 1D 1,A 1C 1,AC.易知M,N,B1,D1四点共面,D1M⊥PD,D1M⊥CD,∵PD∩CD=D,PD,CD⊂平面PCD,∴D1M⊥平面2,AB∥MN,点O是MN的中点AE2-A N2=22,同理FM=2EN2-MN-EF22=7,当点O1在线段O2O的延长线(含点O)上时,视OO1为非负数;当点O1在线段O2O(不含点O)上时,视OO1为负数,即O2O1=O2O+OO1=7+OO1,所以(22)2+O O21=1+(7+O O1)2,解得OO1=0,因此刍甍的外接球球心在点O处,半径为OA=22,所以刍甍的外接球的体积为4π3×(22)3=642π3.故选A.9.AC 对于A,因为圆锥的底面半径为3,所以圆锥的底面周长为2π×3=6π,又因为圆锥的母线长为4,所以圆锥的侧面展开图的圆心角为6π4=3π2,故A选项正确.对于B,因为圆锥的底面半径为3,母线长为4,所以圆锥的高h=42-32=7,故圆锥的体积V=13×π×32×7=37π,故B选项不正确.对于C,设圆锥的两条母线的夹角为θ,则过这两条母线所作截面的面积为12×4×4×sin θ=8sinθ,易知过圆锥母线的截面中,轴截面三角形对应的θ最大,此时cos θ=42+42-622×4×4=-18,所以θ最大是钝角,所以当θ=π2时,截面的面积最大,为8sin π2=8,故C选项正确.对于D,易知圆锥的轴截面的面积为12×6×7=37,故D选项不正确.故选AC.10.AB 如图,取BC1的中点H,连接CH,易证CH⊥平面ABC1D1,所以∠C1BC是直线BC与平面ABC1D1所成的角,为π4,故A正确.点C到平面ABC1D1的距离即为CH的长,为22,故B正确.易证BC1∥AD1,所以异面直线D1C和BC1所成的角为∠AD1C(或其补角),连接AC,易知△ACD1为等边三角形,所以∠AD1C=π3,所以异面直线D1C和BC1所成的角为π3,故C错误.连接DH,易知BD=DC1,所以DH⊥BC1,又CH⊥BC1,所以∠CHD为二面角C-BC1-D的平面角,易求得DH=62,又CD=1,CH=22,所以由余弦定理的推论可得cos∠CHD=DH2+C H2-C D22DH·CH =33,故D错误.故选AB.11.ABD 对于A,因为平面A'D'FE⊥平面BCFE,平面A'D'FE∩平面BCFE=EF,BE⊂平面BCFE,BE⊥EF,所以BE⊥平面A'D'FE,又因为A'D'⊂平面A'D'FE,所以BE⊥A'D',故A正确.对于B,因为A'E ∥D'F,A'E ⊄平面D'FC,D'F ⊂平面D'FC,所以A'E ∥平面D'FC,因为BE ∥CF,BE ⊄平面D'FC,CF ⊂平面D'FC,所以BE ∥平面D'FC,又因为A'E∩BE=E,A'E,BE ⊂平面A'EB,所以平面A'EB ∥平面D'FC,故B 正确.对于C,因为D 'F A 'E =13,FC EB =24=12,则D 'F A 'E ≠FCEB ,所以多面体A'EBCD'F 不是三棱台,故C 错误.对于D,延长A'D',EF,相交于点G,A'D'FE∩平面BCFE=EF,A'E 为直线A'D'与平面GF+2,则32+12=10,到侧面PBC 的距离相等易知S △PDC =S △PBC =12×2×10=10,正四棱锥P-ABCD 的体积V=13S 四边形ABCD ·PO=13×2×2×3=4,设点A 到侧面PBC 的距离为d,则V=V A-PDC +V A-PBC =13S △PDC ·d+13S △PBC ·d=13d×210=4,解得d=3105.故答案为3105.13.答案 25解析 过点A 作AD ⊥CP 于点D,连接BD,设∠ACP=α0<α<则∠PCB=π2-α,所以A'D=2sin α,CD=2cos α,在△BCD 中,由余弦定理可得BD 2=CD 2+BC 2α=4cos 2α+25-10sin 2α,因为A'-CP-B 为直二面角,所以A'D ⊥平面BCP,所以A'D ⊥BD,则A'B 2=A'D 2+BD 2=4sin 2α+4cos 2α+25-10sin 2α=29-10sin 2α,当A'B 2最小时,A'B 最短,2α=π2,所以α=π4,此时CP 平分∠ACB,由角平分线定理可得AP BP =AC BC =25,即A 'P BP =25.14.答案 144;59解析 对题图1中各点进行标记,同时将题图2置于长方体中如下,其中A,B,C 三点重合.设EP=x cm,ER=y cm,SE=z cm,则x 2+y 2=36,x 2+z 2=36,y 2+z 2=16,解得x =27,y =z =22,∴四面体ADEF 的体积为13V 长方体=13xyz=1673(cm 3),四面体ADEF 的表面积S=4S △DEF =4×12×4×42=322(cm 2).当蛋黄与四面体各个面相切时,蛋黄的半径最大,设此时蛋黄(近似于球)的半径为r cm,则V 长方体=13Sr,∴r=3V 长方体S =167322=144.设SQ∩DF=O,取DQ 的中点M,连接OM,则OQ=3 cm,MQ=2 cm,在Rt △OMQ 中,sin ∠QOM=MQ OQ =23,∴cos ∠DOQ=cos(2∠QOM)=1-2sin 2∠QOM=1-49=59,∴∴则∴∵∴又则AE=OE,又AE=12PD,OE=12PB,所以PB=PD,连接OP,则PO ⊥BD,(9分)因为四边形ABCD 为菱形,所以AC ⊥BD,又PO∩AC=O,PO,AC ⊂平面PAC,所以BD ⊥平面PAC,又PA ⊂平面PAC,所以BD ⊥PA.(11分)因为AE=12PD,E 为PD 的中点,所以∠PAD=90°,即PA ⊥AD,(13分)又AD∩BD=D,AD,BD ⊂平面ABCD,所以PA ⊥平面ABCD.(15分)17.解析 (1)证明:∵AC 2+BC 2=AB 2,∴AC ⊥BC.又∵C 1C ⊥AC,C 1C∩BC=C,∴AC ⊥平面BCC 1B 1.(3分)∵BC 1⊂平面BCC 1B 1,∴AC ⊥BC 1.(5分)(2)证明:设CB 1与C 1B 的交点为E,则E 是BC 1的中点,连接DE,∵D 是AB 的中点,∴DE ∥AC 1.(8分)∵DE ⊂平面CDB 1,AC 1⊄平面CDB 1,∴AC 1∥平面CDB 1.(10分)(3)∵DE ∥AC 1,∴∠CED(或其补角)为AC 1与B 1C 所成的角.在Rt △AA 1C 1中,AC 1=AA 21+A 1C 21=5,∴ED=12AC 1=52,易得CD=12AB=52,CE=12CB 1=22,(13分)∴cos ∠CED=252=225.∴异面直线AC 1与B 1C 所成角的余弦值为225.(15分)18.解析 (1)假设存在满足条件的点P.如图,过点P 作PM ∥FD,交AF 于点M,连接ME,∵CE ∥FD,∴MP ∥EC,∴M,P,C,E 四点共面.(2分)∵CP∥平面ABEF,CP⊂平面CEMP,平面ABEF∩平面CEMP=ME,∴CP∥ME,∴四边形CEMP为平行四边形,(4分)∴MP=CE=4-BE=1,易得FD=6-3=3,由MP∥FD可得APAD =MPFD=13,∴APPD=12.(7分)此时AP=1.(8∴又故∴∴在∴∴设由在三棱台ABC-A1B1C1中,AB∥A1B1,∵AB=2AA1=2A1B1=2BB1,∴四边形ABB1A1为等腰梯形且∠ABB1=∠BAA1=60°,(1分)设AB=2x,则BB1=x.由余弦定理得A B21=AB2+B B21-2AB·BB1cos 60°=3x2,∴AB2=A B21+B B21,∴AB1⊥BB1,(2分)∵平面ABB 1A 1⊥平面BCC 1B 1,平面ABB 1A 1∩平面BCC 1B 1=BB 1,AB 1⊂平面ABB 1A 1,∴AB 1⊥平面BCC 1B 1,(3分)又BC ⊂平面BCC 1B 1,∴AB 1⊥BC.∵△ABC 是以B 为直角顶点的等腰直角三角形,∴BC ⊥AB,∵AB∩AB 1=A,AB,AB 1⊂平面ABB 1A 1,∴BC ⊥平面ABB 1A 1.(4分)(2)延长AA 1,BB 1,CC 1交于一点P,∵A 1B 1=12AB,∴S △ABC =4S △A 1B 1C 1,∴V P-ABC =8V P -A 1B 1C 1,∴V P-ABC =87V ABC -A 1B 1C 1=87×7312=233,(5分)∵BC ⊥平面ABB 1A 1即BC ⊥平面PAB,∴BC 的长即为点C 到平面PAB 的距离.(6分)由(1)知AB=BC=2x,∠PAB=∠PBA=60°,∴△PAB 为等边三角形,∴PA=PB=AB=2x,∴V P-ABC =13S △PAB ·BC=13×12×(2x)2×32·2x=233x 3=233,∴x=1,∴AB=BC=PA=PB=2,∴AC=PC=22,∴S △PAC =12×2×(22)2-12=7,(8分)设点B 到平面ACC 1A 1的距离为d,即点B 到平面PAC 的距离为d,∵V B-PAC =V P-ABC ,∴13S △PAC ·d=73d=233,解得d=2217.即点B 到平面ACC 1A 1的距离为2217.(10分)(3)假设存在满足条件的点F.∵BC ⊥平面PAB,BC ⊂平面ABC,∴平面ABC ⊥平面PAB,取AB 的中点N,连接PN,NC,则PN ⊥AB,∵平面ABC∩平面PAB=AB,PN ⊂平面PAB,∴PN ⊥平面ABC,(12分)作FE ∥PN,交CN 于点E,则FE ⊥平面ABC,作ED⊥AB于D,连接FD,则ED即为FD在平面ABC上的射影,∵FE⊥平面ABC,AB⊂平面ABC,∴AB⊥FE,∵∵V由设则∴∴。
高中数学人教A版必修二 第一章 空间几何体 学业分层测评2 Word版含答案

学业分层测评一、选择题1.用一个平面去截一个几何体得到的截面是圆面这个几何体不可能是()A.圆锥B.圆柱C.球D.棱柱【解析】用一个平面去截圆锥、圆柱、球均可以得到圆面但截棱柱一定不会产生圆面.【答案】 D2.在日常生活中常用到的螺母可以看成一个组合体其结构特征是()A.一个棱柱中挖去一个棱柱B.一个棱柱中挖去一个圆柱C.一个圆柱中挖去一个棱锥D.一个棱台中挖去一个圆柱【解析】一个六棱柱挖去一个等高的圆柱选B【答案】 B3.一个正方体内接于一个球过球心作一截面如图1-1-21所示则截面可能的图形是()图1-1-21A.①③B.②④C.①②③D.②③④【解析】当截面平行于正方体的一个侧面时得③当截面过正方体的体对角线时得②当截面不平行于任何侧面也不过对角线时得①但无论如何都不能截出④【答案】 C二、填空题6.如图1-1-22是一个几何体的表面展开图形则这个几何体是________【09960010】图1-1-22【解析】一个长方形和两个圆折叠后能围成的几何体是圆柱.【答案】圆柱7.一圆锥的母线长为6底面半径为3用该圆锥截一圆台截得圆台的母线长为4则圆台的另一底面半径为________.【解析】作轴截面如图则r 3=6-46=13∴r=1【答案】 1三、解答题8.指出如图1-1-23(1)(2)所示的图形是由哪些简单几何体构成的.图1-1-23【解】 图(1)是由一个三棱柱和一个四棱柱拼接而成的简单组合体.图(2)是由一个圆锥和一个四棱柱拼接而成的简单组合体. 9.一个圆台的母线长为12 cm 两底面面积分别为4π cm 2和25π cm 2求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.【解】 (1)圆台的轴截面是等腰梯形ABCD (如图所示).由已知可得上底半径O 1A =2(cm) 下底半径OB =5(cm)又因为腰长为12 cm 所以高AM =122-(5-2)2=315(cm).(2)如图所示延长BAOO 1CD 交于点S 设截得此圆台的圆锥的母线长为l 则由△SAO 1∽△SBO 可得l -12l =25解得l =20(cm)即截得此圆台的圆锥的母线长为20 cm[自我挑战]10.已知球的两个平行截面的面积分别为5π和8π它们位于球心的同一侧且距离为1那么这个球的半径是( )A .4B .3C .2D .05【解析】 如图所示∵两个平行截面的面积分别为5π、8π∴两个截面圆的半径分别为r 1=5r 2=2 2∵球心到两个截面的距离d 1=R 2-r 21d 2=R 2-r 22∴d 1-d 2=R 2-5-R 2-8=1∴R 2=9∴R =3 【答案】 B11.一个圆锥的底面半径为2 cm 高为6 cm 在圆锥内部有一个高为x cm 的内接圆柱.(1)用x 表示圆柱的轴截面面积S; 【09960011】 (2)当x 为何值时S 最大?【解】 (1)如图设圆柱的底面半径为r cm 则由r 2=6-x6得r =6-x 3∴S =-23x 2+4x (0<x <6).(2)由S =-23x 2+4x =-23(x -3)2+6 ∴当x =3时S max =6 cm 2。
高中数学必修二第一章《空间几何体》单元测试卷及答案

高中数学必修二第一章《空间几何体》单元测试卷及答案(2套)测试卷一一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.已知某空间几何体的三视图如图所示,则此几何体为( )A .圆台B .四棱锥C .四棱柱D .四棱台2.如图,△O ′A ′B ′是水平放置的△OAB 的直观图,则△OAB 的面积为( )A .6B .32C .62D .123.已知一个底面是菱形的直棱柱的侧棱长为5,菱形的对角线的长分别是9和15,则这个棱柱的侧面积是( ) A .3034B .6034C .3034135+D .1354.半径为R 的半圆卷成一个圆锥,则它的体积为( ) A .3324R π B .338R π C .3525R π D .358R π 5.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V 1和V 2,则V 1:V 2=( ) A .1:3B .1:1C .2:1D .3:16.若一个底面是正三角形的三棱柱的正视图如下图所示,其顶点都在一个球面上,则该球的表面积为( )A .163π B .193π C .1912π D .43π7.一个正方体的体积是8,则这个正方体的内切球的表面积是( ) A .8πB .6πC .4πD .π8.如图是一个空间几何体的三视图,如果直角三角形的直角边长均为1,那么这个几何体的体积为( )A .1B .12 C .13D .169.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有( )A .14斛B .22斛C .36斛D .66斛103cm 的内切球,则此棱柱的体积是( ) A .393B .354cmC .327cmD .318311.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A .1727 B .59C .1027 D .1312.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为( )A .3500cm 3πB .3cm 3866πC .3cm 31372πD .3cm 32048π 二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号).①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.14.用斜二测画法画边长为2的正三角形的直观图时,如果在已知图形中取的x 轴和正三角形的一边平行,则这个正三角形的直观图的面积是__________________.15.棱锥的高为16,底面积为512,平行于底面的截面面积为50,则截得的棱台的高为__________________.16.如图是一个组合几何体的三视图,则该几何体的体积是__________________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1:4,母线长为10cm.求圆锥的母线长.18.(12分)如图是一个几何体的正视图和俯视图.(1)试判断该几何体是什么几何体?(2)画出其侧视图,并求该平面图形的面积;(3)求出该几何体的体积.19.(12分)如下图,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,会溢出杯子吗?请用你的计算数据说明理由.20.(12分)已知某几何体的侧视图与其正视图相同,相关的尺寸如图所示,求这个几何体的体积.21.(12分)如图所示,设计一个四棱锥形冷水塔塔顶,四棱锥的底面是正方形,侧面是全等的等腰三角形,已知底面边长为2m,高为7m,制造这个塔顶需要多少铁板?22.(12分)如图,正方体ABCD-A′B′C′D′的棱长为a,连接A′C′,A′D,A′B,BD,BC′,C′D,得到一个三棱锥.求:(1)三棱锥A′-BC′D的表面积与正方体表面积的比值;(2)三棱锥A′-BC′D的体积.)答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.【答案】D【解析】由几何体的三视图可得,该几何体为四棱台.故选D.【解析】△OAB 是直角三角形,OA =6,OB =4,∠AOB =90°,∴164122OAB S =⨯⨯=△.故选D .3.【答案】A【解析】由菱形的对角线长分别是9和15,得菱形的边长为22915334222⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,则这个菱柱的侧面积为3434530342⨯⨯=.故选A . 4.【答案】A【解析】依题意,得圆锥的底面周长为πR ,母线长为R ,则底面半径为2R,高为32R ,所以圆锥的体积2313332224R R R ⎛⎫⨯π⨯⨯=π ⎪⎝⎭.故选A . 5.【答案】D【解析】()121::3:13V V Sh Sh ⎛⎫== ⎪⎝⎭.故选D .6.【答案】B【解析】设球半径是R ,依题意知,该三棱柱是一个底面边长为2,侧棱长为1的正三棱柱,记上,下底面的中心分别是O 1,O ,易知球心是线段O 1O 的中点,于是222123192312R ⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭,因此所求球的表面积是2191944123R ππ=π⨯=, 故选B . 7.【答案】C【解析】设正方体的棱长为a ,则a 3=8,所以a =2,而此正方体内的球直径为2,所以S 表=4πr 2=4π.故选C . 8.【答案】C【解析】该几何体的直观图为如图所示的四棱锥P -ABCD ,且P A =AB =AD =1,P A ⊥AB ,P A ⊥AD ,四边形ABCD 为正方形,则2111133V =⨯⨯=,故选C .【解析】设圆锥底面半径为r ,则12384r ⨯⨯=,∴163r =,所以米堆的体积为21116320354339⎛⎫⨯⨯⨯⨯= ⎪⎝⎭,故堆放的米约为320 1.62229÷≈,故选B . 10.【答案】B【解析】由题意知棱柱的高为23cm ,底面正三角形的内切圆的半径为3cm , ∴底面正三角形的边长为6cm ,正三棱柱的底面面积为293cm ,∴此三棱柱的体积()3932354cm V =⨯=.故选B .11.【答案】C【解析】由零件的三视图可知,该几何体为两个圆柱组合而成,如图所示.切削掉部分的体积V 1=π×32×6-π×22×4-π×32×2=20π(cm 3), 原来毛坯体积V 2=π×32×6=54π(cm 3).故所求比值为1220105427V V π==π.故选C . 12.【答案】A【解析】设球的半径为R ,则由题知球被正方体上面截得圆的半径为4, 球心到截面圆的距离为R -2,则R 2=(R -2)2+42,解得R =5.∴球的体积为3345500cm 33π⨯π=.故选A .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】①②③⑤【解析】三棱锥的三视图中含有三角形,∴正视图有可能是三角形,满足条件. 四棱锥的三视图中含有三角形,满足条件. 三棱柱的三视图中含有三角形,满足条件. 四棱柱的三视图中都为四边形,不满足条件. 圆锥的三视图中含有三角形,满足条件. 圆柱的三视图中不含有三角形,不满足条件. 故答案为①②③⑤.14.【答案】6415.【答案】11【解析】设棱台的高为x ,则有2165016512x -⎛⎫= ⎪⎝⎭,解之,得x =11. 16.【答案】36+128π【解析】由三视图可知该组合几何体下面是一个圆柱,上面是一个三棱柱,故所求体积为1346168361282V =⨯⨯⨯+π⨯=+π.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】403cm . 【解析】如图,设圆锥母线长为l ,则1014l l -=,所以cm 403l =.18.【答案】(1)正六棱锥;(2)见解析,232a ;(3)332a .【解析】(1)由该几何体的正视图和俯视图可知该几何体是一个正六棱锥. (2)该几何体的侧视图如图.其中AB =AC ,AD ⊥BC ,且BC 的长是俯视图正六边形对边的距离,即3BC a =,AD 是正六棱锥的高,即3AD a =,所以该平面图形的面积为2133322a a a =.(3)设这个正六棱锥的底面积是S ,体积为V ,则223336S =,所以2313333322V a a a =⨯⨯=.19.【答案】不会,见解析.【解析】因为()33314144134cm 2323V R =⨯π=⨯⨯π⨯≈半球,()22311412201cm 33V r h =π=π⨯⨯≈圆锥,134<201,所以V 半球<V 圆锥,所以,冰淇淋融化了,不会溢出杯子. 20.【答案】74V π=. 【解析】由三视图可知,该几何体是大圆柱内挖掉了小圆柱,两个圆柱高均为1,底面是半径为2和32的同心圆,故该几何体的体积为23741124V π⎛⎫=π⨯-π⨯= ⎪⎝⎭.21.【答案】282m .【解析】如图所示,连接AC 和BD 交于O ,连接SO .作SP ⊥AB ,连接OP .在Rt △SOP 中,)7m SO =,()11m 2OP BC ==,所以)22m SP =, 则△SAB 的面积是)2122222m 2⨯⨯=.所以四棱锥的侧面积是)242282m ⨯,即制造这个塔顶需要282m 铁板.22.【答案】(13;(2)33a .【解析】(1)∵ABCD -A ′B ′C ′D ′是正方体, ∴2A B A C A D BC BD C D a ''''''======,∴三棱锥A ′-BC ′D 的表面积为213422232a a a ⨯=.而正方体的表面积为6a 2,故三棱锥A ′-BC ′D 的表面积与正方体表面积的比值为2233a . (2)三棱锥A ′-ABD ,C ′-BCD ,D -A ′D ′C ′,B -A ′B ′C ′是完全一样的.故V三棱锥A′-BC′D=V正方体-4V三棱锥A′-ABD=3 32114323a a a a-⨯⨯⨯=测试卷二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.下图中的图形经过折叠不能围成棱柱的是()2.一个几何体的三视图如图所示,则这个几何体的体积等于()A.4 B.6 C.8 D.123.下列命题中,正确的命题是()A.存在两条异面直线同时平行于同一个平面B.若一个平面内两条直线与另一个平面平行,则这两个平面平行C.底面是矩形的四棱柱是长方体D.棱台的侧面都是等腰梯形4.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图所示,是一个正方体的表面展开图,若图中“2”在正方体的上面,则这个正方体的下面是()A.0 B.9 C.快D.乐5.如图,O A B'''△是水平放置的OAB△的直观图,则AOB△的面积是()。
高中数学人教A版必修二习题《空间几何体的结构》基础训练

《空间几何体的结构》基础训练一、选择题1.[2018江西九江一中高一(上)段考]下列关于棱柱的说法中正确的是()A.棱柱的侧面是平行四边形,但它的底面一定不是平行四边形B.棱柱的一条侧棱的长叫作棱柱的高C.棱柱的两个互相平行的平面一定是棱柱的底面D.棱柱的所有面中,至少有两个面互相平行2.[2017山东德州陵城一中高二(上)月考]若正棱锥底面边长与侧棱长相等,则该棱锥一定不是( )A.三棱锥B.四棱锥C.五棱锥D.六棱锥3.下列几何体是棱台的是()4.[2018山西省实验中学高二(上)月考]下列说法正确的是()A.有一个面是多边形,其余各面都是三角形,由这些面围成的几何体是棱锥B.有两个面平行且相似,其余各面都是梯形的多面体是棱台C.如果一个棱锥的各个侧面都是等边三角形,那么这个棱锥可能为六棱锥D.如果一个棱柱的所有面都是长方形,那么这个棱柱是长方体5.[2017福建厦门一中月考]下列关于圆柱的说法中不正确的是()A.圆柱的所有母线长都相等B.用平行于圆柱底面的平面截圆柱,截面是与底面全等的圆面C.用一个不平行于圆柱底面的平面截圆柱,截面是一个圆面D.—个矩形以其对边中点的连线为旋转轴,旋转180所形成的几何体是圆柱6.下列几何体中轴截面是圆面的是()A.圆柱B.圆锥C.球D.圆台7.[2017辽宁大连二十三中高二(上)期中考试]下列说法中正确的个数是()①用一个平面去截一个圆锥得到一个圆锥和一个圆台;②圆锥、圆台的底面都是圆;③分别以矩形(非正方形)的长和宽所在直线为旋转轴,旋转一周得到的两个几何体是两个不同的圆柱.A.0B.1C.2D.38.下列结论中正确的个数是()①以半圆的直径所在直线为旋转轴,旋转一周形成的曲面叫作球;②空间中到定点的距离等于定长的所有的点构成的曲面是球面;③球面和球是同一个概念.A.1B.2C.3D.09.如图所示的组合体,其结构特征是()A.左边是三棱台,右边是圆柱B.左边是三棱柱,右边是圆柱C.左边是三棱台,右边是长方体D.左边是三棱柱,右边是长方体10.[2017安徽芜湖一中期末考试]已知等腰梯形ABCD,现绕着它的较长底CD所在的直线旋转一周,所得的几何体包括()A.—个圆台、两个圆锥B.—个圆柱、两个圆锥C.两个圆台、一个圆柱D.两个圆柱、一个圆台二、解答题11.[2018重庆八中高二(上)月考]根据下列关于空间几何体的描述,说出几何体的名称:(1)由7个面围成的几何体,其中一个面是六边形,其余6个面都是三角形,且这6个面有一个公共顶点;(2)由6个面围成的几何体,其中上、下两个面是相似四边形,其余4个面都是梯形,并且这些梯形的腰延长后能相交于一点.12.如图,已知一个正三角形和它的内切圆,将阴影部分绕直线l旋转180,请说出所得几何体的结构特征.参考答案一、选择题1.答案:D解析:由棱柱的定义,知A不正确,例如长方体;只有直棱柱才满足选项B,故B不正确;C不正确,例如正六棱柱的相对侧面互相平行;D显然正确.故选D.2.答案:D解析:因为正六边形的中心与相邻两个顶点连接构成等边三角形,那么正六棱锥的侧棱长应大于底面边长,所以当侧棱长与底面边长相等时,一定不是正六棱锥.故选D.3.答案:D解析:A,C都不是由棱锥截成的,不符合棱台的定义,故选项A,C不满足题意;B中的截面不平行于底面,不符合棱台的定义,故选项B不满足题意;D符合棱台的定义,故选D.4.答案:D解析:选项A,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面围成的多面体叫棱锥,即其余各面的三角形必须有公共的顶点,故A错误;选项B,棱台是由棱锥被平行于棱锥底面的平面所截而得,而有两个面平行且相似,其余各面都是梯形的多面体也有可能不是棱台,因为它的侧棱延长后不能交于一点,故B错误;选项C,当棱锥的各个侧面的顶角之和是360时,各侧面构成平面图形,构不成棱锥,由此推导出这个棱锥不可能为六棱锥,故C错误;选项D,若每个侧面都是长方形,则说明侧棱与底面垂直,又底面也是长方形,符合长方体的定义,故D正确.5.答案:C解析:根据圆柱的定义和结构特征,易知选项C不正确.6.答案:C解析:圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形,球的轴截面是圆面,故选C.7.答案:C解析:①中,必须用一个平行于底面的平面去截圆锥,才能得到一个圆锥和一个圆台,故①说法错误;显然②③说法正确.故说法正确的有2个.8.答案:A解析:以半圆的直径所在直线为旋转轴旋转一周形成的曲面叫作球面,球面围成的几何体叫作球,①错误;②正确;球面和球是两个不同的概念,球是几何体,而球面是曲面,③错误.9.答案:D解析:根据三棱柱和长方体的结构特征,可知此组合体左边是三棱柱,右边是长方体.【名师点睛】考查简单组合体的构成,就必须要明白该组合体是由简单几何体拼接、截去还是把去一部分而成的,因此,要仔细观察简单组合体的组成,并充分结合柱、锥、台、球的几何特征进行识别.10.答案;B解析:等腰梯形的底CD较长,绕其所在的直线旋转一周,相当于两个全等的直角三角形分别绕它的一条直角边所在的直线旋转一周,形成两个圆锥,还有一个矩形绕它的一边所在的直线旋转一周,形成一个圆柱,故选B.二、解答题11.答案:见解析解析:()1这是一个六棱锥.()2这是一个四棱台.12.答案:见解析解析:正三角形绕直线l旋转180得到的几何体是圆锥,圆面绕直线l旋转180得到的几何体是球体,所以得到的几何体是圆锥挖去一个与圆锥底面和侧面均相切的球的简单组合体.。
【同步检测】2019-2020学年人教A版数学必修2第一章 空间几何体 测试B卷(提升)

2019-2020学年人教A 版数学必修2第一章 空间几何体测试B 卷(提升)1、以下四个命题:①正棱锥的所有侧棱相等;②直棱柱的侧面都是全等的矩形; ③圆柱的母线垂直于底面;④用经过旋转轴的平面截圆锥,所得的截面一定是全等的等腰三角形. 其中,真命题的个数为( )A.4B.3C.2D.12、用一个平面去截一个几何体,得到的截面是圆面,这个几何体不可能是( ) A .棱锥B .圆柱C .球D .圆锥3、中国古建筑借助榫卯将木构件连接起来,构建的突出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )A. B. C. D.4、如图,在正四棱台1111ABCD A B C D -中,上底面边长为4,下底面边长为8?,高为5,点,M N 分别在棱1111,A B D C 上,且111A M D N ==.若过点,M N 的平面α与此四棱台的下底面相交,则平面α与四棱台的面的交线所围成图形的面积的最大值为( )A. 187B. 302C. 661D. 363 5、已知一个三棱锥的六条棱的长分别为1,1,1,1,2,a ,且长为a 的棱与长为2的棱所在直线是异面直线,则三棱锥的体积的最大值为( )A.212 B. 3C. 26D. 366、如图所示,在棱长为1的正方体1111ABCD A B C D -中,P 是1A B 上一动点,则1AP D P +的最小值为( )A .2B.62+ C .2+2 D.22+7、某三棱锥的三视图如图所示,则该三棱锥的体积为( )A. 16B. 13C.12D. 18、如图,ABC ∆的斜二测直观图为等腰''Rt A B C ∆,其中''2A B =,则原ABC ∆的面积为( )A .2B .4C .22 D .429、在三棱锥P ABC -中,2,2,3AB AC BC PA PB PC =====,若三棱锥P ABC -的顶点均在球O的表面上,则球O 的半径为( )1313232210、如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的外接球表面积为( )A.323π B. 32π C. 36π D. 48π11、一个圆柱和一个圆锥的轴截面分别是边长为a 的正方形和边长为a 的正三角形,则它们的表面积之比为__________.12、已知某几何体的三视图如图所示,则该几何体的表面积为_________体积为_________.13、如图,正方形O ABC '的边长为1cm ,它是水平放置的一个平面图形的直观图,则原图形的周长是__________.14、已知三棱锥P ABC -中,PAB △是面积为43π4ACB ∠=,则当点C 到平面PAB 的距离最大时,三棱锥P ABC -外接球的表面积为_______.15、如图,正方体ABCD A B C D-的棱长为a,连接''''-.求:,,,,,,得到一个三棱锥A BC D''''''''AC A D A B BD BC C D(1)求三棱锥A BC D''-的表面积与正方体表面积的比值;(2)求棱锥A BC D-的体积.''答案以及解析1答案及解析:答案:B解析:由正棱锥的性质可得①正确; ②不正确,如直棱柱的底面是梯形时,侧面不是全等的矩形;由圆柱的母线的定义知,③正确;由圆锥的轴截面是全等的等腰三角形知,④正确.综上,①③④正确,②不正确,故选B.2答案及解析:答案:A解析:用一个平面去截一个棱锥,得到的截面是三角形,不可能是圆,所以A正确;用一个平面去截一个圆柱,截面与底面平行,得到的截面是圆面,所以B 不满足题目要求;用一个平面去截一个球,得到的截面是圆面,所以C 不满足题目要求;用一个平面去截一个圆锥,截面与底面平行,得到的截面是圆面,所以D 不满足题目要求; 故选:A.3答案及解析: 答案:A解析:由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A .故选:A .4答案及解析: 答案:B解析:当平面α经过点,,,B C N M 时与四棱台的面的交线围成的图形的面积最大,此时所围成的图形为等腰梯形,上底4?MN =,下底8BC =. 此时作正四棱台1111ABCD A B C D -俯视图如下.则MN 的中点在底面的投影到BC 的距离为8215--=, 因为正四棱台1111ABCD A B C D -的高为5. 所以截面等腰梯形的高为2255=52+.所以截面面积的最大值为()1S=48523022⨯+⨯=.故选B.5答案及解析: 答案:A解析:如图所示,三棱锥A BCD -中, ,2,1AD a BC AB AC BD CD ======,则该三棱锥为满足题意的三棱锥,将△BCD 看作底面,则当平面ABC ⊥平面BCD 时,该三棱锥的体积有最大值,此时三棱锥的高22h =,△BCD 是等腰直角三角形, 则12BCD A ∆=,综上可得,三棱锥的体积的最大值为112232⨯⨯=.本题选择A 选项.6答案及解析:答案:D解析:把对角面1A C 绕1A B 旋转,使其与1AA B ∆在同一平面上,连接1AD ,则在1AA D ∆中,1AD7答案及解析: 答案:A解析:由已知中的三视图可得:该几何体是一个以俯视图为底面的三棱锥,棱锥的底面面积111122S =⨯⨯=,高为1,故棱锥体积1136V Sh ==.8答案及解析: 答案:D解析:∵'''O A B Rt ∆是一平面图形的直观图,直角边长为''2A B =,222⨯=,因为平面图形与直观图的面积的比为∴原平面图形的面积是2⨯=.9答案及解析: 答案:B 解析:如图,取AB 的中点D ,连接,PD CD ,由2,2AB AC BC PA PB =====,可得,CD AB PD AB ⊥⊥,且3CD PD ==,又3PC =,所以PDC △是正三角形,60PDC ∠=o 易知平面PDC ⊥平面ABC ,所以点O 在平面PDC 内,过点O 作OE CD ⊥于点E ,OF PD ⊥于点F ,则点,E F 分别是,ABC PAB △△外接圆的圆心,且OE OF =,连接OD ,在Rt ODE △中,1330,3ODE DE CD ︒∠===,所以313OE DE ==,连接,OB OE ,在Rt OBE △中,233BE =,因此球O 的半径221121399R OE BE =+=+=.10答案及解析: 答案:D解析:由三视图可知,这个四面体为三棱锥,且三棱锥的每个顶点都在边长为4的正方体上,如下图所示三棱锥底面为直角边长等于4的等腰直角三角形,同时三棱锥的高为4,三条侧棱长分别为22222224442,4442,44443+=+=++=,由图可知四面体的外接球与正方体的外接球为同一个外接球,所以外接球的半径222444R 232++==,故外接球表面积24R 48S ππ==,故选项D 正确.11答案及解析: 答案:2:1解析:由题意,得圆柱的表面积2232π2ππ222a a S a a ⎛⎫=⋅+⋅⋅= ⎪⎝⎭圆柱圆锥的表面积223πππ224a a S a a ⎛⎫=+⋅⋅= ⎪⎝⎭圆锥所以面积比圆柱面积比圆锥面积为2:112答案及解析: 答案:5π2+;3π2解析:由三视图还原该几何体的直观图如图所示.可看作是由一个底面半径为1,高为1的圆柱和一个底面半径为1,高为1的半圆柱组合而成的,故该几何体的表面积为212π12π112π11215π22⨯+⨯⨯+⨯⨯⨯+⨯=+,体积为2213π11π11π22⨯⨯+⨯⨯⨯=13答案及解析:答案:8cm解析:水平放置的平面图形的直观图是用斜二测画法,所以与x 轴平行的保持不变,与y 轴平行的变为原来的一半,所以将直观图还原如图所示的图形, 11OA =,1222OB OB ==,113A B ∴=,所以原图形的周长是()3+12=8cm ⨯.14答案及解析:答案:112π3解析:当平面CAB ⊥平面PAB 时,三棱锥P ABC -的体积达到最大; 记点,D E 分别为,APB ACB △△的外心,并过两个三角形的外心作三角形所在平面的垂线,两垂线交于点O ,则点O 即为三棱锥P ABC -外接球的球心,AO 即为球的半径;因为43PAB S ∆=4AB =;在ACB △中,45ACB ∠=︒,则90AEB =︒∠,由正弦定理可2sin AB AE ACB =∠,故22AE EB EC === 记AB 的中点为F ,则1132333OE DF PF AB ==== 故22283OA OE AE =+=2112π4π3S R ==.故答案为:112π315答案及解析:答案:(1)∵ABCD A B C D ''''-是正方体,∴六个面都是正方形, ∴A C A B A D BC BD C D ''''''=====,∴224)S =三棱锥=,26S a 正方体=,∴S S 正方体三棱锥(2)显然,三棱锥A ABD C BCD D A D C B A B C ''''''''-、-、-、-是完全一样的, ∴32311144323A BC D A ABD V V V a a a a '''⨯⨯⨯=三棱锥-正方体三棱锥-=-=-解析:。
数学试题 人教a版必修2 同步练习第一章小节测试题

第1课时棱柱、棱锥、棱台的结构特征课时过关·能力提升一、基础巩固1.如图所示的几何体是( )A.五棱锥B.五棱台C.五棱柱D.五面体答案:C2.有两个面平行的多面体不可能是( )A.四棱柱B.三棱锥C.四棱台D.三棱台解析:棱锥的任意两个面都相交,不可能有两个面平行,所以不可能是棱锥,也就不可能是三棱锥.答案:B3.下列说法错误的是( )A.多面体至少有四个面B.六棱柱有6条侧棱、6个侧面,侧面为平行四边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形解析:由棱柱的定义知,选项D不正确.答案:D4.由五个面围成的多面体,其中上、下两个面是相似三角形,其余三个面都是梯形,并且这些梯形的腰延长后能相交于一点,则该多面体是( )A.三棱柱B.三棱台C.三棱锥D.四棱锥解析:该多面体有三个面是梯形,而棱锥最多有一个面是梯形(底面),棱柱最多有两个面是梯形(底面),所以该多面体不是棱柱、棱锥,而是棱台.三个梯形是棱台的侧面,另两个三角形是底面,所以这个棱台是三棱台.答案:B5.一个纸质的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的棱将正方体剪开,外面朝上展平得到右侧的平面图形,则标“△”的面上的方位是( )A.南B.北C.西D.下解析:将所给图形还原为正方体,并将已知面“上”“东”分别指向上面、东面,则标记“△”的面指向北面.答案:B6.在如图所示的几何体中,是棱柱.(只填序号)答案:①③7.若一个平面平行于棱柱的底面,用该平面去截此棱柱时得到的截面为八边形,则该棱柱是棱柱.答案:八8.已知下列说法:①棱柱的侧面可以不是平行四边形;②棱锥的各个侧面都是三角形;③棱台的上、下底面互相平行,且各侧棱的延长线相交于一点;④三棱锥的任何一个面都可以作为棱锥的底面.其中正确的是.(只填序号)答案:②③④9.判断如图所示的几何体是不是棱台,并说明理由.解:(1)(2)(3)都不是棱台.因为(1)和(3)都不是由棱锥截得的,所以(1)(3)都不是棱台.虽然(2)是由棱锥截得的,但截面和底面不平行,故不是棱台.10.(1)五棱柱一共有多少个顶点?多少条棱?(2)六棱柱一共有多少个顶点?多少条棱?(3)设n棱柱的顶点数为V,棱数为E,求证:E(1)解:五棱柱有10个顶点,15条棱.(2)解:六棱柱有12个顶点,18条棱.(3)证明:n棱柱的顶点分别是两个底面多边形的顶点,由棱柱的两个底面是全等的多边形,知V=2n.n棱柱的棱分为两类:一类是侧棱,有n条;另一类是两个底面多边形的边,有2n条,则E=n+2n=3n.因为V=2n,E=3n,所以E二、能力提升1.将平面六边形及内部所有点沿某一方向平移相同的距离形成的空间几何体是( )A.六棱锥B.六棱台C.六棱柱D.非棱柱、棱锥、棱台的一个几何体答案:C2.用一个平面去截棱锥,得到两个几何体,下列说法正确的是( )A.一个几何体是棱锥,另一个几何体是棱台B.一个几何体是棱锥,另一个几何体不一定是棱台C.一个几何体不一定是棱锥,另一个几何体是棱台D.一个几何体不一定是棱锥,另一个几何体也不一定是棱台答案:D★3.如图,将装有水的长方体水槽固定底面一边后倾斜,则倾斜后水槽中的水形成的几何体是( )A.棱柱B.棱台C.棱柱与棱台的组合体D.不确定答案:A4.已知一个棱柱有14个顶点,所有侧棱长的和为63 cm,则每条侧棱长为 cm.解析:n棱柱有2n个顶点,因为棱柱有14个顶点,所以该棱柱为七棱柱.又因为棱柱的侧棱长都相等,7条侧棱长的和为63 cm,所以每条侧棱长为9 cm.答案:9★5.如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面?每个面的三角形有何特点?(3)每个面的面积为多少?解:(1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF为等腰三角形,△PEF为等腰直角三角形,△DPE和△DPF均为直角三角形.(3)S△PEF△DPF=S△DPES△DEF=S正方形ABCD-S△PEF-S△DPF-S△DPE=(2a)2第2课时圆柱、圆锥、圆台、球的结构特征课时过关·能力提升一、基础巩固1.在下列几何体中,旋转体有( )①圆柱;②六棱锥;③正方体;④球;⑤四面体.A.①⑤B.①②C.③④D.①④答案:D2.将正方形绕其一条对角线所在直线旋转一周,所得的几何体是( )A.圆柱B.圆锥C.圆台D.两个圆锥答案:D3.若用一个平面去截一个几何体,得到的截面是圆面,则这个几何体不可能是( )A.圆锥B.圆柱C.球D.棱柱解析:棱柱的任何截面都不可能是圆面.答案:D4.如图,已知OA为球O的半径,且OA=2,过OA的中点M且垂直于OA的平面截球面得到圆M,则圆M的面积为 ( )A.πB.2πC.3πD.4π解析:因为OA=2,所以OM=1.所以圆M的半径r故圆M的面积S=πr2=3π.答案:C5.在如图所示的四个几何体中,圆柱有;圆锥有.(只填序号)答案:③②6.将长为8 cm、宽为6 cm的矩形绕其一边旋转而成的圆柱的底面面积为cm2.解析:若圆柱是矩形绕其宽旋转而成的,则其底面半径为8 cm,底面面积为64π cm2;若圆柱是矩形绕其长旋转而成的,则其底面半径为6 cm,底面面积为36π cm2.答案:64π或36π7.若圆锥的高与底面半径相等,母线长为解析:如图,设圆锥SO的高为h,底面半径为r,母线长为l,则h=r,l=l2=h2+r2,则l2=2r2,即(r=5.答案:58.写出下列7种几何体的名称.解:(1)是圆柱,(2)是圆锥,(3)是球,(4)(5)是棱柱,(6)是圆台,(7)是棱锥.9.判断下列几何体是不是圆台,并说明理由.解:(1)是圆台,因为上、下两个底面平行,侧面是由直角梯形的一腰绕垂直于底边的腰所在的直线旋转一周形成的.(2)不是圆台,因为上、下两个底面不平行.(3)不是圆台,因为它是由两个圆台组合而成的,不符合圆台的结构特征.10.已知一个圆台的母线长为12 cm,两个底面面积分别为4π cm2和25π cm2.求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.解:(1)如图,圆台的轴截面为等腰梯形ABCD,由已知可得上底面半径O1A=2 cm,下底面半径OB=5 cm,且腰长AB=12 cm.过点A作AM⊥BO于点M,所以AM cm.(2)设截得此圆台的圆锥的母线长为l cm,延长BA,CD,OO1且它们交于一点S,则由△SAO1∽△SBO,可所以l=20.故截得此圆台的圆锥的母线长为20 cm.二、能力提升1.下列说法正确的是( )A.圆锥的母线长等于底面圆的直径B.圆柱的母线与轴垂直C.圆台的母线与轴平行D.球的直径必过球心解析:圆锥的母线长与底面圆的直径的大小关系不确定,则A项不正确;圆柱的母线与轴平行,则B项不正确;圆台的母线延长后与轴相交,则C项不正确;很明显D项正确.答案:D★2.下列命题:①圆柱的轴截面是过母线的截面中面积最大的一个;②用任意一个平面去截球体得到的截面一定是一个圆;③用任意一个平面去截圆锥得到的截面一定是一个圆.其中正确的个数是( )A.0B.1C.2D.3答案:C3.已知一个圆锥的母线长为20 cm,母线与轴的夹角为30°,则圆锥的高为( )A.1C.20 cmD.10 cm解析:如图,在Rt△ABO中,AB=20 cm,∠BAO=30°,所以AO=ABcos 30°=20答案:A4.下列说法:①半圆以其直径为轴旋转一周所形成的几何体叫做球;②夹在圆柱的两个平行截面间的几何体还是圆柱;③截面是圆的几何体,不是圆柱,就是圆锥;④圆柱的轴是过圆柱上、下底面圆的圆心的直线.其中错误的是.(只填序号)解析:易知①④正确;②当两个平行截面不平行于上、下底面时,截面间的几何体不是圆柱,故②错误;③截面是圆的几何体还可以是球或圆台,故③错误.答案:②③5.已知球的半径为10 cm,若它的一个截面圆的面积为36 π cm2,则球心与截面圆圆心的距离是cm.解析:设截面圆的半径为r cm,则πr2=36π,所以r=6.所以球心与截面圆圆心的距离d答案:86.将一个半径为2的半圆围成一个圆锥,所得圆锥的轴截面面积等于.解析:所得圆锥的母线长为2,底面周长为2π,故底面半径为1,则该圆锥的轴截面为一个边长为2的正三角形,其面积答案:★7.已知圆台的上底周长是下底周长解:设圆台上、下底面半径分别为r,R,母线长为l,高为h.由题意,得2πr·2πR,即R=3r. ①·h=392,即(R+r)h=392. ②又母线与底面的夹角为45°,则h=R-r联立①②③,得R=21,r=7,h=14,l=11.1.2 简单组合体的结构特征课时过关·能力提升一、基础巩固1.下列几何体是组合体的是( )解析:A选项中的几何体是圆锥,B选项中的几何体是圆柱,C选项中的几何体是球,D选项中的几何体是在一个圆台中挖去一个圆锥而形成的,是组合体.答案:D2.将日常生活中我们常用到的螺母看成一个组合体,其结构特征是( )A.一个棱柱中挖去一个棱柱B.一个棱柱中挖去一个圆柱C.一个圆柱中挖去一个棱锥D.一个棱台中挖去一个圆柱解析:如图,螺母的结构特征是一个棱柱中挖去一个圆柱.答案:B3.在下列各选项的平面图形中,通过围绕定直线l旋转一周可得到如图所示几何体的是( )解析:因为该几何体是由两个圆锥与一个圆柱组合成的组合体,所以结合选项可知,该几何体可由选项B中的梯形绕定直线l旋转一周得到.答案:B4.如图所示的组合体,其结构特征是( )A.一个圆柱内挖去一个圆柱B.一个圆锥内挖去一个圆锥C.一个圆台内挖去一个圆锥D.一个圆台内挖去一个球解析:该组合体是在一个圆台内挖去一个圆锥形成的.答案:C5.如图所示的几何体,关于其结构特征,下列说法不正确的是( )A.该几何体是由两个同底的四棱锥组成的B.该几何体有12条棱、6个顶点C.该几何体有8个面,并且各面均为三角形D.该几何体有9个面,其中一个面是四边形,其余各面均为三角形答案:D6.如图所示的组合体的结构特征是.答案:上面是一个圆柱,下面是一个长方体7. 将如图所示的四边形绕直线l旋转一周,所得旋转体的结构特征是.解析:过点C作CE⊥AD于点E(图略),则CE∥AB,且AB>CE.故所得旋转体是由一个圆锥和一个圆台拼接成的组合体.答案:上面是一个圆锥,下面是一个圆台8.如图所示的组合体的结构特征为.答案:左边是一个四棱锥,右边是一个三棱柱9.指出如图①②所示的几何体是由哪些简单几何体构成的.图①图②解:分割几何体,使分割后的每一部分都是简单几何体.图①是由一个三棱柱和一个四棱柱拼接而成的组合体.图②是在一个圆柱中间挖去一个三棱柱后得到的组合体.10. 将如图所示的平面图形绕轴l旋转180°后形成一个几何体,请描述该几何体的结构特征.解:将题中平面图形绕l旋转180°后形成一个组合体,并且该组合体自上而下可分解为一个倒圆锥、一个球、一个半球、一个圆柱、一个圆台.二、能力提升1.把如图所示的平面图形中的阴影部分绕定直线l旋转一周,形成的旋转体的结构特征为( )A.一个球B.一个球中挖去一个圆柱C.一个圆柱D.一个球中挖去一个棱柱解析:如题图,圆面绕轴旋转一周得球,矩形绕轴旋转一周得圆柱,则该旋转体是一个球中挖去一个圆柱. 答案:B2.以钝角三角形较短的边所在的直线为轴,其他两边旋转一周所得到的几何体是( )A.两个圆锥拼接而成的组合体B.一个圆台C.一个圆锥D.一个圆锥挖去一个同底的小圆锥后形成的组合体解析:如图,过点A作AD垂直BC于点D,则△ADC与△ADB分别为直角三角形,所以旋转一周形成的几何体是一个圆锥挖去一个同底的小圆锥后形成的组合体.答案:D3.已知一个正方体内接于一个球,过球心作一截面,在如图所示的图形中,可能是截面图形的是( )A.①③B.②④C.①②③D.②③④解析:当截面平行于正方体的一个侧面或底面时得③,当截面过正方体的对角线时得②,当截面不平行于任何侧面或底面也不过正方体的对角线时得①,但无论如何都不能截出④.答案:C★4.如图所示的几何体是由一个圆柱挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的组合体,现用一个竖直的平面去截这个组合体,则截面图形可能是( )A.①②B.①③C.①④D.①⑤答案:D5. 如图,AB为圆弧BC所在圆的直径,∠BAC=45°.将这个平面图形绕直线AB旋转一周得到一个组合体,则该组合体的结构特征是.答案:上面是一个圆锥,下面是一个半球6.关于如图所示的组合体的结构特征,有以下几种说法:①由一个长方体挖去一个四棱柱所构成的;②由一个长方体与两个四棱柱组合而成的;③由一个长方体挖去一个四棱台所构成的;④由一个长方体与两个四棱台组合而成的.其中说法正确的序号是.解析:如图,该组合体可由一个长方体挖去一个四棱柱所构成,也可以由一个长方体与两个四棱柱组合而成.故说法①②正确.答案:①②7.已知三棱锥的侧棱长和底面边长均相等,试用三个这样的三棱锥组合成一个三棱柱,并画出来.解:所求三棱柱如图所示.三棱柱ABC-A1B1C1是由三棱锥A-A1B1C1,三棱锥A-BB1C,三棱锥A-CB1C1组合成的.★8.已知一个圆锥的底面半径为r,高为h,在此圆锥内有一个内接正方体,这个内接正方体的顶点在圆锥的底面和侧面上,求此正方体的棱长.解:作出圆锥的一个过顶点的纵截面如图所示.其中AB,AC为母线,BC为底面直径,DG,EF是正方体的棱,DE,GF是正方体的上、下底面的对角线.设正方体的棱长为x,则DG=EF=x,DE=GF,得△ABC∽△ADE,所以x故此正方体的棱长1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图课时过关·能力提升一、基础巩固1.下列视图不属于三视图的是( )A.正视图B.侧视图C.后视图D.俯视图答案:C2.如果一个空间几何体的正视图与侧视图均为全等的等腰三角形,俯视图为一个圆及其圆心,那么这个几何体是( )A.棱锥B.棱柱C.圆锥D.圆柱答案:C3.下列命题正确的是( )A.矩形的平行投影一定是矩形B.梯形的平行投影一定是梯形C.两条相交直线的投影可能平行D.一条线段中点的平行投影仍是这条线段投影的中点解析:因为当平面图形与投影线平行时,所得投影是线段,故A,B错.又因为点的平行投影仍是点,所以相交直线的投影不可能平行,故C错.由排除法可知,选项D正确.答案:D4.在下列几何体各自的三视图中,有且仅有两个视图相同的是( )A.①②B.①③C.①④D.②④解析:①正方体,三个视图均相同;②圆锥,正视图和侧视图相同;③三棱台,三个视图各不相同;④四棱锥,正视图和侧视图相同.答案:D5.若一个几何体的三视图如图所示,则该几何体是( )A.棱柱B.棱台C.圆柱D.圆台答案:D6.若一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的. (填入所有可能的几何体前的编号)①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.答案:①②③⑤7.若某几何体的三视图如图所示,则该几何体是由(简单几何体)与组成的.答案:长方体四棱台8.若线段AB平行于投影面,O是线段AB上一点,解析:由题意知AB∥A'B',OO'∥AA',OO'∥BB',则答案:9.画出如图所示的几何体的三视图.解:该几何体的三视图如图所示.10.如图是一个几何体的三视图,想象该几何体的结构特征,画出该几何体的形状.解:由于俯视图中有一个圆和一个四边形,则该几何体是由旋转体和多面体拼接成的组合体;结合侧视图和正视图,可知该几何体的上面是一个圆柱,下面是一个长方体.该几何体的形状如图所示.二、能力提升1.如图,在正方体ABCD-A1B1C1D1中,M,N分别是BB1,BC的中点,则图中阴影部分在平面ADD1A1上的投影为( )解析:阴影部分是△MND及其内部,点D在平面ADD1A1上的投影是其本身;点M,N在平面ADD1A1上的投影分别是AA1和DA的中点,故选项A正确.答案:A2.将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧视图为( )解析:由题意知该长方体沿相邻三个面的对角线截去一个棱锥,如右图所示.易知其侧视图为B项中图.故选B.答案:B3.某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是( )解析:若为D选项,则正视图为:故俯视图不可能是D选项中所示的图形.答案:D4.如图,该几何体的正视图和侧视图可能正确的是( )答案:A5.如图为长方体积木堆成的几何体的三视图,该几何体一共由块长方体积木堆成.解析:由俯视图知最下一层为3块,由正视图、侧视图知第二层有1块,所以该几何体一共由4块积木堆成. 答案:4★6.已知一个几何体的三视图如图所示,其中正视图和侧视图是腰长为4的两个全等的等腰直角三角形,则用个这样的几何体可以拼成一个棱长为4的正方体.解析:该几何体是四棱锥,其底面是边长为4的正方形,高AA1等于4,即为如图①所示的四棱锥A-A1B1C1D1.图①图②如图②,三个相同的四棱锥A-A1B1C1D1,A-BB1C1C,A-DD1C1C可以拼成一个棱长为4的正方体.答案:37.某几何体的三视图如图所示,说出该几何体的结构特征,并画出该几何体.解:从题中的三视图可以看出,该几何体的上半部分是六棱柱,下半部分是圆柱.这个几何体如图所示.★8.把边长为1的正方形ABCD沿对角线BD折起形成的三棱锥C-ABD的正视图与俯视图如图所示,求侧视图的面积.解:形成的三棱锥C-ABD如图①所示,根据正视图和俯视图可知,其侧视图为等腰直角三角形,如图②所示. 故所求侧视图的面积1.2.3 空间几何体的直观图课时过关·能力提升一、基础巩固1.关于斜二测画法,下列说法不正确的是( )A.原图形中平行于x轴的线段,在直观图中与其对应的线段平行于x'轴,且长度不变B.原图形中平行于y轴的线段,在直观图中与其对应的线段平行于y'轴,长度为原来C.画与平面直角坐标系xOy对应的坐标系x'O'y'时,∠x'O'y'必须是45°D.在画直观图时,由于坐标轴选取位置的不同,所得的直观图可能不同解析:画与平面直角坐标系对应的坐标系x'O'y'时,∠x'O'y'可以是45°也可以为135°.答案:C2.已知AB=2CD,AB∥x轴,CD∥y轴.若在直观图中,A'B'与AB对应,C'D'与CD对应,则( )A.A'B'=2C'D'B.A'B'=C'D'C.A'B'=4C'D'D.A'B'解析:∵AB∥x轴,CD∥y轴,∴AB=A'B',CD=2C'D',∴A'B'=AB=2CD=2(2C'D')=4C'D'.答案:C3.已知两个圆锥的底面相同且重合在一起,其中一个圆锥的顶点到底面的距离为2 cm,另一个圆锥的顶点到底面的距离为3 cm,则在直观图中这两个顶点之间的距离为( )A.2 cmB.3 cmC.2.5 cmD.5 cm解析:因为这两个顶点的连线与子轴平行或重合,现在距离为5 cm,而在直观图中根据平行于z轴的线段长度不变,仍为5 cm.答案:D4.水平放置的△ABC的直观图如图所示,若B'O'=C'O'=1,A'O'△ABC是一个( )A.等边三角形B.直角三角形C.三边中只有两边相等的等腰三角形D.三边互不相等的三角形解析:由题图知,在△ABC中,AO⊥BC.∵A'O'△ABC为等边三角形.故选A.答案:A5.如图为一个平面图形的直观图,则此平面图形可能是下面选项中的( )答案:C6.如图,△A'O'B'是△AOB用斜二测画法画出的直观图,则△AOB的面积是.解析:由题图可知在△AOB中,底边OB=4.因为底边OB上的高为8,所以面积S答案:167.如图,平行四边形O'P'Q'R'是四边形OPQR的直观图,若O'P'=3,O'R'=1,则原四边形OPQR的周长为.解析:由四边形OPQR的直观图可知该四边形是矩形,且OP=3,OR=2,所以四边形OPQR的周长为2×(3+2)=10.答案:108.如图,水平放置的△ABC的斜二测直观图是图中的△A'B'C',已知A'C'=6,B'C'=4,则AB边的实际长度是.解析:由斜二测画法,可知△ABC是直角三角形,且∠BCA=90°,AC=6,BC=4×2=8,则AB答案:109.如图,画出水平放置的等腰梯形ABCD的直观图.画法:(1)如图①,在已知等腰梯形中以底边AB所在直线为x轴、线段AB的中垂线为y轴建立平面直角坐标系.如图②,画x'轴和y'轴,使∠x'O'y'=45°.(2)设DC与y轴的交点为E,在x'轴上取A'B'=AB,且使O'为A'B'的中点,在y'轴上取O'E'E'作x'轴的平行线l,在l上取点D',C',使得E'C'=EC,D'E'=DE.如图③.(3)连接A'D',B'C',擦去辅助线,得到等腰梯形ABCD的直观图,如图④.10.已知一个棱柱的底面是边长为3 cm的正方形,各侧面都是矩形,且侧棱长为4 cm,试用斜二测画法画出此棱柱的直观图.解:(1)画轴.画出x轴、y轴、z轴,三轴相交于点O,使∠xOy=45°,∠xOz=90°.(2)画底面.以点O为中点,在x轴上画MN=3 cm,在y轴上画PQ cm,分别过点M,N作y轴的平行线,过点P,Q作x轴的平行线,设它们的交点分别为A,B,C,D,则四边形ABCD就是该棱柱的一个底面.(3)画侧棱.过点A,B,C,D分别作z轴的平行线,并在这些平行线上分别截取4 cm长的线段AA',BB',CC',DD',如图①所示.(4)成图.连接A'B',B'C',C'D',D'A',并加以整理(去掉辅助线,将被遮挡的部分改为虚线),就得到该棱柱的直观图,如图②所示.图①图②二、能力提升1. 如图,已知等腰三角形ABC,则下面的四个图形可能是△ABC的直观图的是( )A.①②B.②③C.②④D.③④解析:若以BC所在直线为x轴,则当∠x'O'y'=45°时,直观图为④;当∠x'O'y'=135°时,直观图为③,故选D.答案:D2.如图,矩形O'A'B'C'是水平放置的一个平面图形的直观图.若O'A'=6,O'C'=2,则原图形是( )A.正方形B.矩形C.菱形D.梯形解析:由题图可知C'D'=O'C'=2,O'D'=由直观图可得原图形OABC为平行四边形,如图所示.∵CD=2,OD=∴OC=6,∴OA=OC=6.∴四边形OABC为菱形.答案:C3.已知一个建筑物的上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面尺寸一样.已知长方体的长、宽、高分别为20 m,5 m,10 m,四棱锥的高为8 m.若按1∶500的比例画出它的直观图,则在直观图中,长方体的长、宽、高和四棱锥的高应分别为( )A.4 cm,1 cm,2 cm,1.6 cmB.4 cm,0.5 cm,2 cm,0.8 cmC.4 cm,0.5 cm,2 cm,1.6 cmD.2 cm,0.5 cm,1 cm,0.8 cm解析:由比例尺可知长方体的长、宽、高和四棱锥的高分别为4 cm,1 cm,2 cm和1.6 cm,再结合斜二测画法,可知直观图的相应尺寸应分别为4 cm,0.5 cm,2 cm,1.6 cm.答案:C4.用斜二测法画水平放置的△ABC的直观图,得到如图所示的等腰直角三角形A'B'C'.已知点O'是斜边B'C'的中点,且A'O'=1,则△ABC中BC边上的高为( )A.1B.2C解析:∵直观图是等腰直角三角形A'B'C',∠B'A'C'=90°,A'O'=1,∴∠A'C'B'=45°,A'C'A'C'∥y'轴.根据直观图中平行于y轴的线段的长度变为原来的一半,得△ABC中BC边上的高为AC=2A'C'=答案:D★5.如图,已知用斜二测画法画出的△ABC的直观图△A'B'C'是边长为a的等边三角形,则△ABC的面积为.答案:6.如图,四边形OABC是上底长为2,下底长为6,底角为45°的等腰梯形.用斜二测画法画出这个梯形的直观图O'A'B'C',则在直观图中,梯形的高为。
【同步课堂】2019-2020学年人教A版数学必修2第一章 空间几何体 测试B卷(提升)

2019-2020学年人教A 版数学必修2第一章 空间几何体测试B 卷(提升)1、以下四个命题:①正棱锥的所有侧棱相等;②直棱柱的侧面都是全等的矩形; ③圆柱的母线垂直于底面;④用经过旋转轴的平面截圆锥,所得的截面一定是全等的等腰三角形. 其中,真命题的个数为( )A.4B.3C.2D.12、用一个平面去截一个几何体,得到的截面是圆面,这个几何体不可能是( ) A .棱锥B .圆柱C .球D .圆锥3、中国古建筑借助榫卯将木构件连接起来,构建的突出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )A. B. C. D.4、如图,在正四棱台1111ABCD A B C D -中,上底面边长为4,下底面边长为8?,高为5,点,M N 分别在棱1111,A B D C 上,且111A M D N ==.若过点,M N 的平面α与此四棱台的下底面相交,则平面α与四棱台的面的交线所围成图形的面积的最大值为( )A. 187B. 302C. 661D. 363 5、已知一个三棱锥的六条棱的长分别为1,1,1,1,2,a ,且长为a 的棱与长为2的棱所在直线是异面直线,则三棱锥的体积的最大值为( )A.212 B. 3C. 26D. 366、如图所示,在棱长为1的正方体1111ABCD A B C D -中,P 是1A B 上一动点,则1AP D P +的最小值为( )A .2B.62+ C .2+2 D.22+7、某三棱锥的三视图如图所示,则该三棱锥的体积为( )A. 16B. 13C.12D. 18、如图,ABC ∆的斜二测直观图为等腰''Rt A B C ∆,其中''2A B =,则原ABC ∆的面积为( )A .2B .4C .22 D .429、在三棱锥P ABC -中,2,2,3AB AC BC PA PB PC =====,若三棱锥P ABC -的顶点均在球O的表面上,则球O 的半径为( )1313232210、如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的外接球表面积为( )A.323π B. 32π C. 36π D. 48π11、一个圆柱和一个圆锥的轴截面分别是边长为a 的正方形和边长为a 的正三角形,则它们的表面积之比为__________.12、已知某几何体的三视图如图所示,则该几何体的表面积为_________体积为_________.13、如图,正方形O ABC '的边长为1cm ,它是水平放置的一个平面图形的直观图,则原图形的周长是__________.14、已知三棱锥P ABC -中,PAB △是面积为43π4ACB ∠=,则当点C 到平面PAB 的距离最大时,三棱锥P ABC -外接球的表面积为_______.15、如图,正方体ABCD A B C D-的棱长为a,连接''''-.求:,,,,,,得到一个三棱锥A BC D''''''''AC A D A B BD BC C D(1)求三棱锥A BC D''-的表面积与正方体表面积的比值;(2)求棱锥A BC D-的体积.''答案以及解析1答案及解析:答案:B解析:由正棱锥的性质可得①正确; ②不正确,如直棱柱的底面是梯形时,侧面不是全等的矩形;由圆柱的母线的定义知,③正确;由圆锥的轴截面是全等的等腰三角形知,④正确.综上,①③④正确,②不正确,故选B.2答案及解析:答案:A解析:用一个平面去截一个棱锥,得到的截面是三角形,不可能是圆,所以A正确;用一个平面去截一个圆柱,截面与底面平行,得到的截面是圆面,所以B 不满足题目要求;用一个平面去截一个球,得到的截面是圆面,所以C 不满足题目要求;用一个平面去截一个圆锥,截面与底面平行,得到的截面是圆面,所以D 不满足题目要求; 故选:A.3答案及解析: 答案:A解析:由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A .故选:A .4答案及解析: 答案:B解析:当平面α经过点,,,B C N M 时与四棱台的面的交线围成的图形的面积最大,此时所围成的图形为等腰梯形,上底4?MN =,下底8BC =. 此时作正四棱台1111ABCD A B C D -俯视图如下.则MN 的中点在底面的投影到BC 的距离为8215--=, 因为正四棱台1111ABCD A B C D -的高为5. 所以截面等腰梯形的高为2255=52+.所以截面面积的最大值为()1S=48523022⨯+⨯=.故选B.5答案及解析: 答案:A解析:如图所示,三棱锥A BCD -中, ,2,1AD a BC AB AC BD CD ======,则该三棱锥为满足题意的三棱锥,将△BCD 看作底面,则当平面ABC ⊥平面BCD 时,该三棱锥的体积有最大值,此时三棱锥的高22h =,△BCD 是等腰直角三角形, 则12BCD A ∆=,综上可得,三棱锥的体积的最大值为112232⨯⨯=.本题选择A 选项.6答案及解析:答案:D解析:把对角面1A C 绕1A B 旋转,使其与1AA B ∆在同一平面上,连接1AD ,则在1AA D ∆中,1AD7答案及解析: 答案:A解析:由已知中的三视图可得:该几何体是一个以俯视图为底面的三棱锥,棱锥的底面面积111122S =⨯⨯=,高为1,故棱锥体积1136V Sh ==.8答案及解析: 答案:D解析:∵'''O A B Rt ∆是一平面图形的直观图,直角边长为''2A B =,222⨯=,因为平面图形与直观图的面积的比为∴原平面图形的面积是2⨯=.9答案及解析: 答案:B 解析:如图,取AB 的中点D ,连接,PD CD ,由2,2AB AC BC PA PB =====,可得,CD AB PD AB ⊥⊥,且3CD PD ==,又3PC =,所以PDC △是正三角形,60PDC ∠=o 易知平面PDC ⊥平面ABC ,所以点O 在平面PDC 内,过点O 作OE CD ⊥于点E ,OF PD ⊥于点F ,则点,E F 分别是,ABC PAB △△外接圆的圆心,且OE OF =,连接OD ,在Rt ODE △中,1330,3ODE DE CD ︒∠===,所以313OE DE ==,连接,OB OE ,在Rt OBE △中,233BE =,因此球O 的半径221121399R OE BE =+=+=.10答案及解析: 答案:D解析:由三视图可知,这个四面体为三棱锥,且三棱锥的每个顶点都在边长为4的正方体上,如下图所示三棱锥底面为直角边长等于4的等腰直角三角形,同时三棱锥的高为4,三条侧棱长分别为22222224442,4442,44443+=+=++=,由图可知四面体的外接球与正方体的外接球为同一个外接球,所以外接球的半径222444R 232++==,故外接球表面积24R 48S ππ==,故选项D 正确.11答案及解析: 答案:2:1解析:由题意,得圆柱的表面积2232π2ππ222a a S a a ⎛⎫=⋅+⋅⋅= ⎪⎝⎭圆柱圆锥的表面积223πππ224a a S a a ⎛⎫=+⋅⋅= ⎪⎝⎭圆锥所以面积比圆柱面积比圆锥面积为2:112答案及解析: 答案:5π2+;3π2解析:由三视图还原该几何体的直观图如图所示.可看作是由一个底面半径为1,高为1的圆柱和一个底面半径为1,高为1的半圆柱组合而成的,故该几何体的表面积为212π12π112π11215π22⨯+⨯⨯+⨯⨯⨯+⨯=+,体积为2213π11π11π22⨯⨯+⨯⨯⨯=13答案及解析:答案:8cm解析:水平放置的平面图形的直观图是用斜二测画法,所以与x 轴平行的保持不变,与y 轴平行的变为原来的一半,所以将直观图还原如图所示的图形, 11OA =,1222OB OB ==,113A B ∴=,所以原图形的周长是()3+12=8cm ⨯.14答案及解析:答案:112π3 解析:当平面CAB ⊥平面PAB 时,三棱锥P ABC -的体积达到最大; 记点,D E 分别为,APB ACB △△的外心,并过两个三角形的外心作三角形所在平面的垂线,两垂线交于点O ,则点O 即为三棱锥P ABC -外接球的球心,AO 即为球的半径; 因为43PAB S ∆=4AB =;在ACB △中,45ACB ∠=︒,则90AEB =︒∠, 由正弦定理可2sin AB AE ACB =∠,故22AE EB EC === 记AB 的中点为F ,则1132333OE DF PF AB ==== 故22283OA OE AE =+=2112π4π3S R ==.故答案为:112π315答案及解析:答案:(1)∵ABCD A B C D ''''-是正方体,∴六个面都是正方形, ∴A C A B A D BC BD C D ''''''=====,∴224)S =三棱锥=,26S a 正方体=,∴S S 正方体三棱锥(2)显然,三棱锥A ABD C BCD D A D C B A B C ''''''''-、-、-、-是完全一样的, ∴32311144323A BC D A ABD V V V a a a a '''⨯⨯⨯=三棱锥-正方体三棱锥-=-=-解析:。
人教版高中数学必修2A版_第1章空间几何体单元同步测试题(二)【精品2套】

必修2A版_第1章空间几何体_本章小结_试题资源:单元测试题(三)(时间:120分钟,满分:150分)第Ⅰ卷(选择题共50分)一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下面几何体的轴截面一定是圆面的是A.圆柱 B.圆锥 C.球 D.圆台2.下列说法正确的是A.有两个面平行,其余各面都是四边形的几何体叫棱柱.B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱.C.有一个面是多边形,其余各面都是三角形的几何体叫棱锥.D.棱台各侧棱的延长线交于一点.3.一个几何体的某一方向的视图是圆,则它不可能是A.球体 B.圆锥 C.长方体 D.圆柱4.利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③A.3个 B.2个 C.1个 D.0个5.下列四个命题中,正确的命题是A.矩形的平行投影一定是矩形B.梯形的平行投影一定是梯形C.两条相交直线的投影可能平行D.如果一个三角形的平行投影仍是三角形,那么它的中位线的平行投影一定是这个三角形的平行投影的对应的中位线6.下面的四个图中不能围成正方体的是A. B. C. D.7.长方体的三个面的面积分别是2,3,6,则长方体的体积是A.6 B.12 C.24 D.368.如果圆锥的轴截面是正三角形(此圆锥也称等边圆锥),则这圆锥的侧面积与全面积的比是A.1:2 B.2:3 C..9.一个三角形用斜二测画法画出来是一个正三角形,边长为2,则原三角形的面积为A...10.若球的半径为1,则这个球的内接正方体的全面积为A.8 B.9 C.10 D.12第Ⅱ卷(非选择题共100分)二.填空题:本大题共7小题,每小题4分,共28分。
11.以等腰直角梯形的直角腰所在的直线为轴,其余三边旋转形成的面所围成的旋转体是_____.12.三视图都为圆的几何体是__________13.两个半径为1的铁球,熔化后铸成一个球,这个大球的半径为 .14.矩形长6,宽4,以其为圆柱侧面卷成圆柱,则圆柱体积为 ________15.圆台上,下底半径分别为r,R,侧面面积等于两底面积之和,圆台的母线长为________.16.圆柱的底面直径与高都等于球的直径,则球的表面积______圆柱的侧面积.(填>,<,=)17.平行于锥体底面的截面截得锥体的体积与原锥体的体积之比为8:27,则它们的侧面积之比为_______.三.解答题:本大题共5小题,共72分。
解析版-2018-2019学年人教版高二数学必修2第1章空间几何体章末测试

绝密★启用前2018-2019学年人教版高二数学必修2第1章空间几何体章末测试考试时间:100分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________分卷I一、选择题(共12小题,每小题5.0分,共60分)1.如图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是()A.B.C.D.【答案】B【解析】A.正方体的正视图为正方形,侧视图为正方形,俯视图也为正方形,不满足条件.B.圆柱的正视图和侧视图为相同的矩形,俯视图为圆,满足条件.C.圆锥的正视图为三角形,侧视图为三角形,俯视图为圆,不满足条件.D.球的正视图,侧视图和俯视图为相同的圆,不满足条件.故选B.2.设正四面体A-BCD中,E、F分别为AC、AD的中点,则△BEF在该四面体的面ADC上的射影可能是()A.B.C.D.【答案】A【解析】由于几何体是正四面体,所以B在面ADC上的射影是它的中心,可得到三角形BEF在面ADC上的射影,因为F在AD上,E在AC上,所以观察选项,只有A正确.故选A.3.如图,△ABC的斜二测直观图为等腰Rt△A′B′C′,其中A′B′=2,则△ABC的面积为()A. 2B. 4C. 2D. 4【答案】D【解析】∵Rt△A′B′C′是一平面图形的直观图,直角边长为A′B′=2,∴直角三角形的面积是×2×2=2,∵平面图形与直观图的面积的比为2,∴原平面图形的面积是2×2=4.故选D.4.如图所示的几何体的平面展开图是四选项中的()A.B.C.D.【答案】D【解析】选项A、C中折叠后带图案的三个面不能相交于同一个点,与原立方体不符;选项B中折叠后三角形和圆的位置不符,所以正确的是D.故选D.5.已知正△ABC的边长为2,那么用斜二测画法得到的△ABC的直观图△A′B′C′的面积为()A.B.C.D.【答案】D【解析】∵正△ABC的边长为2,故正△ABC的面积S=·22=,设△ABC的直观图△A′B′C′的面积为S′,则S′=S=·=.故选D.6.如图,一只蚂蚁从点A沿圆柱表面爬到点B,圆柱的高为8 cm,圆柱的底面半径为cm,那么最短的路线长是()A. 6 cmB. 8 cmC. 10 cmD.10π cm【答案】C【解析】连接AB,∵圆柱的底面半径为cm,∴AC=×2×π×=6(cm),在Rt△ACB中,AB2=AC2+CB2=36+64=100,即AB=10 cm,故选C.7.如图所示的几何体是由六个小正方体组合而成的,它的侧视图是()A.B.C.D.【答案】C【解析】从左边看得到的图形有两列,第一列有两个正方形,第二列有一个正方形,故选C.8.如图所示的一个几何体,哪一个是该几何体的俯视图()A.B.C.D.【答案】C【解析】几何体是一个组合体,组合体上面的几何体有一个侧面是三角形,从正上方能看到这个三角形的三条边,所以俯视图中应该有一个三角形,只有选项C符合.9.下列几何体不能展开成平面图形的是()A.圆锥B.球C.圆台D.正方体【答案】B【解析】圆锥可以展开成一个扇形和一个圆,球不能展开成平面图形,圆台可以展开成两个圆和一个梯形,正方体可以展开成一个长方形和两个小正方形,故选B.10.如图所示,△A′B′C′是水平放置的△ABC的斜二测直观图,其中O′C′=O′A′=2O′B′,则以下说法正确的是()A.△ABC是钝角三角形B.△ABC是等腰三角形,但不是直角三角形C.△ABC是等腰直角三角形D.△ABC是等边三角形【答案】C11.三棱柱的平面展开图是()A.B.C.D.【答案】B【解析】两个全等的三角形在侧面三个长方形的两侧,这样的图形围成的是三棱柱.故选B.12.某几何体的直观图如图所示,下列给出的四个俯视图中正确的是()【答案】B【解析】几何体的俯视图,轮廓是矩形,几何体的上部的棱都是可以看见的线段,所以C,D不正确;几何体的上部中间的棱与正视图方向垂直,所以A不正确.故选B.分卷II二、填空题(共4小题,每小题5.0分,共20分)13.已知某多面体的平面展开图如图所示,其中是三棱柱的有________个.【答案】1【解析】第一个是三棱锥,第二个是三棱柱,第三个是四棱锥,第四个不是棱柱.14.已知三棱锥O-ABC,侧棱OA,OB,OC两两互相垂直,且OA=OB=OC=2,则以O为球心,1为半径的球与三棱锥O-ABC重叠部分的体积是__________.【答案】【解析】由已知条件可用等体积转换求得点O到平面ABC的距离为>1,所以重叠部分是以O为球心且1为半径的球的,即V=×=××13=.15.将半径为5的圆分割成面积之比为1∶2∶3的三个扇形作为三个圆锥的侧面,设这三个圆锥的底面半径依次为r1,r2,r3,则r1+r2+r3=________.【答案】5【解析】由题意得,扇形的弧长为对应圆锥的底面周长,因此2π(r1+r2+r3)=2π×5⇒r1+r2+r3=5.16.如图所示,已知三棱柱ABC-A1B1C1的所有棱长均为1,且AA1⊥底面ABC,则三棱锥B1-ABC1的体积为________.【答案】【解析】三棱锥B1-ABC1的体积等于三棱锥A-B1BC1的体积,三棱锥A-B1BC1的高为,底面积为,故其体积为××=.三、解答题(共7小题,每小题10.0分,共70分)17.已知正三棱台(上、下底是正三角形,上底面的中心在下底面的投影是下底面的中心)的上、下底面边长分别是2 cm与4 cm,侧棱长是cm,试求该三棱台的表面积与体积.【答案】如图,O′,O是上、下底面的中心,连接OO′,O′B′,OB,在平面BCC′B′内过B′作B′D⊥BC于D,在平面BOO′B′内作B′E⊥OB于E.∵△A′B′C′是边长为2的等边三角形,O′是中心,∴O′B′=×2×=,同理OB=,则BE=OB-O′B′=.在Rt△B′EB中,BB′=,BE=,∴B′E=,即棱台高为cm.∴三棱台的体积为V棱台=×(×16+×4+=cm3.由于棱台的侧面是等腰梯形,∴BD=×(4-2)=1 cm.在Rt△B′DB中,BB′=,BD=1,∴B′D=,即梯形的高为cm,∴棱台的表面积S=S上底+S下底+S侧=×4+×16+3××(2+4)×=(5+9)cm2.∴棱台的表面积是(5+9)cm2,体积是cm3.18.求球与它的外切等边圆锥(轴截面是正三角形的圆锥叫等边圆锥)的体积之比.【答案】如图等边△ABC为圆锥的轴截面,截球面得圆O.设球的半径OE=R,OA==2OE=2R,∴AD=OA+OD=2R+R=3R,BD=AD·tan 30°=R,∴V=πR3,V圆锥=π·BD2×AD=π(R)2×3R=3πR3,球则V球∶V圆锥=4∶9.19.三个图中,左面的是一个长方体截去一个角所得多面体的直观图,右面是它的正视图和侧视图.(单位:cm)(1)画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积.【答案】(1)作出俯视图如下.(2)所求多面体的体积V=V长方体-V正三棱锥=4×4×6-×(×2×2)×2=(cm3).20.一个球内有相距9 cm的两个平行截面,它们的面积分别为49π cm2和400πcm2.求球的表面积.【答案】(1)当截面在球心的同侧时.如图所示为球的轴截面.由球的截面性质知,AO1∥BO2,且O1,O2分别为两截面圆的圆心,则OO1⊥AO1,OO2⊥BO2.设球的半径为R,因为圆O2的面积为49π,即π·O2B2=49π,所以O2B=7(cm).同理,因为π·O1A2=400π,所以O1A=20(cm).设OO1=x,则OO2=(x+9).在Rt△OO1A中,R2=x2+202,在Rt△OO2B中,R2=(x+9)2+72,所以x2+202=(x+9)2+72,解得x=15(cm).即R2=x2+202=252.故S球=4πR2=2 500π(cm2).所以球的表面积为2 500π cm2.(2)当截面位于球心O的两侧时,如图所示为球的轴截面.由球的截面性质知,O1A∥O2B,且O1,O2分别为两截面圆的圆心,则OO1⊥AO1,OO2⊥O2B.设球的半径为R,因为圆O2的面积为49π,即π·O2B2=49π,所以O2B=7(cm).同理,因为π·O1A2=400π,所以O1A=20(cm).设O1O=x,则OO2=(9-x).在Rt△OO1A中,R2=x2+202,在Rt△OO2B中,R2=(9-x)2+72.所以x2+400=(9-x)2+49,解得x=-15(cm),不合题意,舍去.综上所述,球的表面积为2 500π cm2.21.如图(单位:cm),求图中阴影部分绕AB旋转一周所形成的几何体的表面积和体积.【答案】由题意知,所求旋转体的表面积由三部分组成:圆台下底面、侧面和一半球面,S半球=8π,S圆台侧=35π,S圆台底=25π.故所求几何体的表面积为68π,由V圆台=××4=52π,V半球=×23×=,所以旋转体的体积为V圆台-V半球=52π-=(cm3).22.如图所示的图形绕虚线旋转一周后形成的立体图形分别是由哪些简单几何体组成的?【答案】解旋转后的图形草图分别如图①、②所示.其中图①是由一个圆柱O1O2和两个圆台O2O3,O3O4组成的;图②是由一个圆锥O5O4、一个圆柱O3O4及一个圆台O1O3中挖去一个圆锥O2O1组成的.23.如图所示,图(2)是图(1)中实物的正视图和俯视图,你认为正确吗?如果不正确,请找出错误并改正,然后画出它的侧视图.【答案】解图(1)是由两个长方体组合而成的,正视图正确,俯视图错误.俯视图应该画出不可见轮廓(用虚线表示),侧视图轮廓是一个矩形,有一条可视的交线(用实线表示),正确画法如下图所示.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学必修2《空间几何体》检测题
一、选择题(每题5分) 1.下列说法错误的是( )
A. 若棱柱的底面边长相等,则它的各个侧面的面积相等
B. 九棱柱有9条侧棱,9个侧面,侧面为平行四边形
C. 多面体至少有四个面
D. 三棱柱的侧面为三角形
2.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为( ) A.1:2:3 B.1:3:5 C.1:2:4 D.1:3:9
3.棱长都是1的三棱锥的表面积为( )
A. 3
B. 23
C. 33
D. 43 4. 正方体的内切球与其外接球的体积之比为 A.1:
3 B. 1:3 C. 1:33
D. 1∶9 5. 如右图为一个几何体的三视图,
其中府视图为正三角形,A 1B 1=2,AA 1=4, 则该几何体的表面积为 ( ) A.36+ B.324+ C.24+23 D.32
6.如右图所示的直观图,其平面图形的面积为( )
A . 3
B .
2
2
3 C . 6 D .. 32 7.一空间几何体的三视图如图所示,则该几何体的体积为( ).
A.
C. 23π+
D. 43
π+
8. 圆锥的底面半径为r ,高为h ,在此圆锥内有一个内接正方体,则此正方体的棱长为( ). A. rh r h + B. 2rh
r h
+ C. D.
9.如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为1
2。
则该集合体的俯视图可以是( )
A B 1
C 正视图
侧视图
府视图
侧视图
正视图
二、填空题(每题5
分)
10.已知圆锥的表面积为2
acm ,且它的侧面展开图是圆心角为900的扇形,则这个圆锥的底面直径为_________.
11.一个半球的全面积为Q ,一个圆柱与此半球等底等体积,则这个圆柱的全面积是 _____.
12.一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是_________.
13.如图,已知正三棱柱111ABC A B C -的底面边长为1,高为8,一质点自A 点出发,沿着三棱柱的侧面绕行两周到达A 1点的最短路线的长为 。
第13题图 第14题图 第15题图 14.如图,一个空间几何体的正视图、侧视图是周长为4,一个内角为60︒的菱形,俯视图是圆及其圆心,那么这个几何体的表面积为________.
15.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3
cm . 16.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积最大值是 . 三、解答题
17. (本题12分)画出下列水平放置的平面图形的直观图
俯视图 侧视图
正视图
A
B
C
D
正视图 侧视图
18. (本题12分) 如图,在四边形ABCD 中,
,,,,
AD=2,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.
19. (本题10分)某高速公路收费站入口处的安全标识墩如图所示,墩的上半部分是正四棱锥P -EFGH,下半部分是长方体ABCD -EFGH.图5、图6分别是该标识墩的正(主)视图和俯视图. (1)请画出该安全标识墩的侧(左)视图; (2)求该安全标识墩的体积
20. (本题12分)用上口直径为34cm 、底面直径为24cm 、深为35cm 的水桶盛得的雨水正好为桶深的1
5
,
问此次降雨量为多少?(精确到0.1mm )(注:降雨量指单位面积的水平面上降下雨水的深度)
21. (本题12分)如图,在正三棱111ABC A B C -中,3AB =,14AA =,M 为1AA 的中点, P 是BC 上一点,且由P 沿棱柱侧面经过棱1CC 到点M
设这条最短路线与1CC 的交点为N ,求: (1)求该棱柱的侧面展开图的对角线长; (2)PC 和NC 的长.
22. (本题12分)由8个面围成的几何体,每个面都是正三角形,并且有四个顶点A 、B 、C 、D 在同一平面内,ABCD 是边长为30cm 的正方形。
(1)想象几何体的结构,并画出它的三视图和直观图; (2)求此几何体的表面积和体积;
M
B
A
1
A C N
1
B 1
C P
答案
一、选择题:D ,B ,A ,C ,C ,C ,C ,D ,C
二、填空题:
10. 11.109Q 12.2:1 13.10
14.π 15.18 16.2
94R π
三、
18. S=60π+4π2; V=52π-38π=3148π
.
19. 64000cm 3
20. 37.9mm
21.
PC=2 NC=4
5
22. ,。