第4章 参数估计思考与练习参考答案
参数估计习题参考答案
参数估计习题参考答案班级: __________ 姓名: ______________学号: __________ 得分 ___________、单项选择题:1、关于样本平均数和总体平均数的说法,下列正确的是(A )增加 (B )减小 (C )不变 (D )无法确定4.某班级学生的年龄是右偏的,均值为 20岁,标准差为4.45.如果采用重复抽样的方法从该班抽取容量 为100的样本,那么样本均值的分布为(A )(A )均值为20,标准差为0.445的正态分布(B )均值为20,标准差为4.45的正态分布 (C )均值为20,标准差为0.445的右偏分布(D )均值为20,标准差为4.45的右偏分布5. 区间估计表明的是一个(B )(A )绝对可靠的范围(B )可能的范围 (C )绝对不可靠的范围(D )不可能的范围 6. 在其他条件不变的情形下,未知参数的 1-a 置信区间,(A )C. a 越小长度越小D. a 与长度没有关系7.甲乙是两个无偏估计量,如果甲估计量的方差小于乙估计量的方差,则称(D )(A )甲是充分估计量(B )甲乙一样有效(C )乙比甲有效 (D )甲比乙有效8.设总体服从正态分布,方差未知,在样本容量和置信度保持不变的情形下,根据不同的样本值得到总 体均值的置信区间长度将(D )(A )增加 (B )不变(C )减少 (D )以上都对9 •在其他条件不变的前提下,若要求误差范围缩小 1 / 3,则样本容量(C )(A )增加9倍 (B )增加8倍 (C )为原来的2.25倍 (D )增加2.25倍10设容量为16人的简单随机样本,平均完成工作时间13分钟,总体服从正态分布且标准差为若想对完成工作所需时间构造一个90%置信区间,则 (A)A.应用标准止态概率表查出 z 值B.应用 t-分布表查出t 值C.应用一项分布表查出 p 值D.应用泊松分布表查出 入值11. 100(1- a % 是(C)A.置信限B.置信区间C.置信度D.可靠因素12. 参数估计的类型有(D(A )点估计和无偏估计(B )无偏估计和区间估计 (C )点估计和有效估计(D )点估计和区间估计13、抽样方案中关于样本大小的因素,下列说法错误的是 (C )A 、总体方差大,样本容量也要大B 、要求的可靠程度高,所需样本容量越大(A )前者是一个确定值,后者是随机变量 (B )前者是随机变量,后者是一个确定值 (C )两者都是随机变量(D )两者都是确定值2、通常所说的大样本是指样本容量(A )大于等于30 ( B )小于30(C )大于等于103、从服从正态分布的无限总体中分别抽取容量为4,16, 36标准差将(A )(D )小于10的样本,当样本容量增大时,样本均值的(B )A. a 越大长度越小B. a 越大长度越大 3分钟。
参数估计习题解答
参数估计习题与习题解答6.11.从一批电子元件中抽取8个进行寿命测试,得到如下数据(单位:h ):1 050, 1 100, 1 130, 1 040, 1 250, 1 300, 1 200, 1 080试对这批元件的平均寿命以及分布的标准差给出矩估计。
解:样本均值 75.11438108011301101050=++++=x样本标准差 ∑=-=812)(71i i x x s []22)75.11431080()75.11431050(71-++-=0562.96= 因此,元件的平均寿命和寿命分布的标准差的矩估计分别为1143。
75和96.05622. 设总体),0(~θU X ,现从该总体中抽取容量为10的样本,样本值为0。
5,1.3,0。
6,1.7,2.2,1.2,0。
8,1。
5,2.0,1.6试对参数θ给出矩估计.解:由于E(X )=2θ,即θ=2E(X ),而样本均值106.13.15.0+++=x =1.34,故θ的矩估计为68.22ˆ==x θ3. 设总体分布列如下,n x x ,1是样本,试求未知参数的矩估计.10,,3,2,)1()1()()2(,1,,2,1,0,1)()1(22<<=--==-===-θθθ k k k X P N N k Nk X P k ;(正整数)是未知参数 解:(1) 总体均值E (X )=21110-=-+++N N N ,解之可得N =2E (X )+1故N 的矩估计量12ˆ+=x N,其中x 为样本均值,若x 2不是整数,可取大于x 2的最小整数代替.2x(2) 总体均值E (X )==---+∞=∑222)1()1(k k k k θθ∑+∞=---222)1)(1(k k k k θθ,由于3222)1)(1(θθ=--∑+∞=-k k k k ,故有E(X )θθθ2232=⨯=,即θ)(2X E =,从而参数的 θ 矩估计为.2ˆx=θ 4.设总体密度函数如下,n x x ,,1 是样本,试求未知参数的矩估计.0,,1),;()4(;0,10,);()3(;0,10,)1();()2(;0,0),(2);()1(12>>=><<=><<+=><<-=---θμθμθθθθθθθθθθθθθμθθx ex p x x x p x x x p x x x p x解:(1) 总体均值E (X )==-⎰dx x x )(22θθθθθθθ31)(222=-⎰dx x x ,即即)(3X E =θ,故参数θ的矩估计为.3ˆx =θ(2)总体均值E(X )=dx x x ⎰+1)1(θθ=21++θθ,所以1E(X)E(X)21--=θ,从而参数θ的矩估计.121ˆ--=x xθ (3)由E (X )=dx x x 11-⎰θθ=1+θθ可得2)(1)(⎪⎪⎭⎫ ⎝⎛-=X E X E θ,由此,参数θ的矩估计.1ˆ2⎪⎭⎫⎝⎛-=x x θ(4)先计算总体均值与方差E (X )=dx ex x θμμθ--∞+⎰1=dt e t tθθ-∞+⎰01+dt e tθμθ-∞+⎰1=μθ+)(2X E =dx ex x θμμθ--∞+⎰12=dt e t tθθμ-∞+⎰+1)(02=dt e ttθθ-∞+⎰12+dt e t tθθμ-∞+⎰012+dt e tθθμ-∞+⎰12=.2222μμθθ++V a r(X )=22))(()(X E X E -=2θ由此可以推出)()(,)(X Var X E X Var -==μθ,从而参数μθ,的矩估计为.ˆ,ˆs x s -==μθ 5.设总体为)1,(μN ,先对该总体观测n 次,发现有k 次观测为正,使用频率替换方法求μ的矩估计。
参数估计习题及答案
参数估计习题及答案参数估计在统计学中是一个重要的概念,它涉及到根据样本数据来估计总体参数的过程。
下面,我将提供一些参数估计的习题以及相应的答案,以帮助学生更好地理解这一概念。
习题一:假设有一个班级的学生数学成绩,我们从这个班级中随机抽取了10名学生的成绩,得到样本均值 \(\bar{x} = 85\),样本标准差 \(s = 10\)。
请估计总体均值 \(\mu\)。
答案:根据样本均值 \(\bar{x}\) 来估计总体均值 \(\mu\),我们可以使用以下公式:\[ \hat{\mu} = \bar{x} \]因此,\(\hat{\mu} = 85\)。
习题二:在习题一中,如果我们想要估计总体方差 \(\sigma^2\),我们应该如何操作?答案:总体方差 \(\sigma^2\) 通常使用样本方差 \(s^2\) 来估计,样本方差的计算公式为:\[ s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \]其中 \(n\) 是样本大小,\(x_i\) 是第 \(i\) 个观测值。
在这个例子中,\(n = 10\),\(\bar{x} = 85\),\(s = 10\)。
因此,我们可以使用以下公式来估计总体方差:\[ \hat{\sigma}^2 = s^2 = \frac{1}{10-1} \times 10^2 = 100 \]习题三:一个工厂生产的产品长度服从正态分布,样本均值为 \(\bar{x} =50\) 厘米,样本标准差为 \(s = 2\) 厘米。
如果我们知道总体均值\(\mu\) 为 \(50\) 厘米,我们如何估计总体标准差 \(\sigma\)?答案:根据已知的样本均值 \(\bar{x}\) 和样本标准差 \(s\),我们可以使用以下公式来估计总体标准差 \(\sigma\):\[ \hat{\sigma} = s \]因此,\(\hat{\sigma} = 2\) 厘米。
应用回归分析,第4章课后习题参考答案
第4章违背基本假设的情况思考与练习参考答案4.1 试举例说明产生异方差的原因。
答:例4.1:截面资料下研究居民家庭的储蓄行为Y i=β0+β1X i+εi其中:Y i表示第i个家庭的储蓄额,X i表示第i个家庭的可支配收入。
由于高收入家庭储蓄额的差异较大,低收入家庭的储蓄额则更有规律性,差异较小,所以εi的方差呈现单调递增型变化。
例4.2:以某一行业的企业为样本建立企业生产函数模型Y i=A iβ1K iβ2L iβ3eεi被解释变量:产出量Y,解释变量:资本K、劳动L、技术A,那么每个企业所处的外部环境对产出量的影响被包含在随机误差项中。
由于每个企业所处的外部环境对产出量的影响程度不同,造成了随机误差项的异方差性。
这时,随机误差项ε的方差并不随某一个解释变量观测值的变化而呈规律性变化,呈现复杂型。
4.2 异方差带来的后果有哪些?答:回归模型一旦出现异方差性,如果仍采用OLS估计模型参数,会产生下列不良后果:1、参数估计量非有效2、变量的显著性检验失去意义3、回归方程的应用效果极不理想总的来说,当模型出现异方差性时,参数OLS估计值的变异程度增大,从而造成对Y的预测误差变大,降低预测精度,预测功能失效。
4.3 简述用加权最小二乘法消除一元线性回归中异方差性的思想与方法。
答:普通最小二乘估计就是寻找参数的估计值使离差平方和达极小。
其中每个平方项的权数相同,是普通最小二乘回归参数估计方法。
在误差项等方差不相关的条件下,普通最小二乘估计是回归参数的最小方差线性无偏估计。
然而在异方差的条件下,平方和中的每一项的地位是不相同的,误差项的方差大的项,在残差平方和中的取值就偏大,作用就大,因而普通最小二乘估计的回归线就被拉向方差大的项,方差大的项的拟合程度就好,而方差小的项的拟合程度就差。
由OLS 求出的仍然是的无偏估计,但不再是最小方差线性无偏估计。
所以就是:对较大的残差平方赋予较小的权数,对较小的残差平方赋予较大的权数。
参数估计习题答案
参数估计习题答案参数估计是指在统计学中,根据样本数据来估计总体参数的过程。
以下是一些参数估计习题的答案示例:1. 简单随机抽样的均值估计:假设我们有一个总体,其均值未知,我们从这个总体中随机抽取了一个样本,样本均值(\(\bar{x}\))可以用来估计总体均值(\(\mu\))。
如果样本量足够大,根据中心极限定理,样本均值的分布接近正态分布。
样本均值的估计值为:\[\hat{\mu} = \bar{x}\]2. 总体比例的点估计:如果我们要估计一个二项分布的总体比例(\(p\)),我们可以使用样本比例(\(\hat{p}\))作为点估计。
样本比例的计算公式为:\[\hat{p} = \frac{\text{样本中具有特定特征的个体数}}{\text{样本总数}}\]3. 总体方差的估计:总体方差(\(\sigma^2\))可以通过样本方差(\(s^2\))来估计。
样本方差的计算公式为:\[s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2\]其中,\(n\) 是样本大小,\(x_i\) 是第 \(i\) 个样本值。
4. 总体标准差的估计:总体标准差(\(\sigma\))可以通过样本标准差(\(s\))来估计。
样本标准差的计算公式为:\[s = \sqrt{s^2}\]5. 置信区间的计算:如果我们想要得到总体均值的95%置信区间,我们可以使用以下公式:\[\text{置信区间} = \bar{x} \pm z_{\alpha/2} \times\frac{s}{\sqrt{n}}\]其中,\(z_{\alpha/2}\) 是标准正态分布的临界值,对应于置信水平(例如,对于95%置信水平,\(z_{\alpha/2} = 1.96\))。
6. 假设检验:在假设检验中,我们通常使用样本统计量来检验关于总体参数的假设。
例如,如果我们想要检验总体均值是否等于某个特定值(\(\mu_0\)),我们可以使用以下检验统计量:\[t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}\]然后,我们可以根据自由度(\(df = n - 1\))和显著性水平(\(\alpha\))来确定拒绝域,并做出决策。
应用回归分析,第4章课后习题参考答案
第4章违背基本假设的情况思考与练习参考答案试举例说明产生异方差的原因。
答:例:截面资料下研究居民家庭的储蓄行为Y i=?0+?1X i+εi其中:Y i表示第i个家庭的储蓄额,X i表示第i个家庭的可支配收入。
由于高收入家庭储蓄额的差异较大,低收入家庭的储蓄额则更有规律性,差异较小,所以εi的方差呈现单调递增型变化。
例:以某一行业的企业为样本建立企业生产函数模型Y i=A i?1K i?2L i?3eεi被解释变量:产出量Y,解释变量:资本K、劳动L、技术A,那么每个企业所处的外部环境对产出量的影响被包含在随机误差项中。
由于每个企业所处的外部环境对产出量的影响程度不同,造成了随机误差项的异方差性。
这时,随机误差项ε的方差并不随某一个解释变量观测值的变化而呈规律性变化,呈现复杂型。
异方差带来的后果有哪些?答:回归模型一旦出现异方差性,如果仍采用OLS估计模型参数,会产生下列不良后果:1、参数估计量非有效2、变量的显着性检验失去意义3、回归方程的应用效果极不理想总的来说,当模型出现异方差性时,参数OLS估计值的变异程度增大,从而造成对Y的预测误差变大,降低预测精度,预测功能失效。
简述用加权最小二乘法消除一元线性回归中异方差性的思想与方法。
答:普通最小二乘估计就是寻找参数的估计值使离差平方和达极小。
其中每个平方项的权数相同,是普通最小二乘回归参数估计方法。
在误差项等方差不相关的条件下,普通最小二乘估计是回归参数的最小方差线性无偏估计。
然而在异方差的条件下,平方和中的每一项的地位是不相同的,误差项的方差大的项,在残差平方和中的取值就偏大,作用就大,因而普通最小二乘估计的回归线就被拉向方差大的项,方差大的项的拟合程度就好,而方差小的项的拟合程度就差。
由OLS 求出的仍然是的无偏估计,但不再是最小方差线性无偏估计。
所以就是:对较大的残差平方赋予较小的权数,对较小的残差平方赋予较大的权数。
这样对残差所提供信息的重要程度作一番校正,以提高参数估计的精度。
第4章参数估计案例辨析及参考答案[整理]
第4章 参数估计案例辨析及参考答案案例4-1 某研究者测得某地120名正常成人尿铅含量(mg ·L -1)如下:尿铅含量 0~ 4~ 8~ 12~ 16~ 20~ 24~ 28~ 32~ 36~ 合计 例数1422291815106321120试据此资料估计正常成人平均尿铅含量的置信区间及正常成人尿铅含量的参考值范围。
由表中数据得到该例的120n =,10038.S =,67300.S X =,某作者将这些数据代入公式(4-20),即采用X X Z S α+计算得到正常成人平均尿铅含量100(1)α-%置信区间为(-∞,14.068 4);采用公式X Z S α+计算得到正常成人尿铅含量100(1)α-%参考值范围为(-∞,26.030 6)。
请问这样做是否合适?为什么?应当怎么做?案例辨析 该定量资料呈偏峰分布,不适合用正态分布法计算100(1)%α-参考值范围。
正确做法 可以用百分位数法求正常成人尿铅含量100(1)α-%参考值范围的单侧上限。
例如,当α=0.05时,可直接求95P 分位数,(0,95P )就是所求的正常成人尿铅含量的95%正常值范围。
欲求正常成人尿铅含量总体均数的置信区间,当样本含量n 较大(比如说,n 大于30或50)时,样本均数就较好地接近正态分布(根据数理统计上的中心极限定理)。
本例, 因为120n =较大,不必对原始数据作对数变换就可以用X X Z S α+估计总体均数的置信区间。
案例4-2 在BiPAP 呼吸机治疗慢性阻塞性肺病的疗效研究中,某论文作者为了描述试验前的某些因素是否均衡,在教材表4-5中列出了试验前患者血气分析结果。
由于作者觉得自己数据的标准差较大,几乎和均数一样大,将标准差放在文中显得不雅观,于是他采用“均数±标准误”(X X S ±),而不是“均数±标准差”(X S ±)来对数据进行描述。
问在研究论文中以教材表4-5方式报告结果正确吗?为什么?教材表4-5 试验组和对照组治疗前血气分析结果(X X S ±)组别 例数 年龄/岁pHp a (CO 2)/kPap a (O 2)/kPa S a (O 2)/% 试验组 12 63.00±4.33 7.36±0.05 63.00±4.33 9.25±0.5585.12±1.73 对照组1062.50±3.95 7.38±0.06 63.00±4.339.16±0.6286.45±2.25案例辨析 描述数据的基本特征不能采用X X S ±,因为X S 为反映抽样误差大小的指标,只表示样本均数的可靠性,而不能反映个体的离散程度。
参数估计习题及答案
参数估计习题及答案参数估计习题及答案在统计学中,参数估计是一种重要的技术,用于根据样本数据估计总体的未知参数。
参数估计的目标是通过样本数据推断总体参数的取值范围,并得到一个接近真实值的估计。
本文将通过几个习题来探讨参数估计的方法和应用。
习题一:某研究人员想要估计某种新药对病人的治疗效果。
他从一家医院中随机选取了100名患者,并将他们随机分为两组,一组接受新药治疗,另一组接受传统药物治疗。
研究人员希望通过样本数据估计新药的治疗效果是否显著优于传统药物。
解答:在这个问题中,我们需要估计两个总体的治疗效果,即新药组和传统药物组的平均治疗效果。
为了估计这两个总体的差异,我们可以使用两个独立样本的 t检验。
假设新药组的平均治疗效果为μ1,传统药物组的平均治疗效果为μ2。
我们的零假设是H0: μ1 = μ2,备择假设是H1: μ1 > μ2。
通过计算样本均值和标准差,我们可以得到 t 统计量的值,并进行假设检验。
习题二:某公司的销售部门想要估计他们的销售额与广告投入之间的关系。
他们收集了过去一年的数据,包括每个月的广告投入和销售额。
现在他们希望通过样本数据来估计广告投入对销售额的影响程度。
解答:在这个问题中,我们需要估计两个变量之间的关系,即广告投入和销售额之间的线性关系。
为了估计这个关系,我们可以使用简单线性回归模型。
假设广告投入为 x,销售额为 y。
我们的回归模型可以表示为y = β0 + β1x + ε,其中β0 和β1 是回归系数,ε 是误差项。
通过最小二乘法,我们可以估计回归系数的值,并进行假设检验来判断广告投入对销售额的影响是否显著。
习题三:某研究人员想要估计某个城市的人口数量。
他从该城市的不同地区随机选取了若干个样本点,并统计了每个样本点的人口数量。
现在他希望通过样本数据估计整个城市的人口数量。
解答:在这个问题中,我们需要估计一个总体的数量,即整个城市的人口数量。
为了估计这个数量,我们可以使用抽样调查的方法。
应用回归分析第4章课后习题集参考答案
第4章违背基本假设的情况思考与练习参考答案4.1 试举例说明产生异方差的原因。
答:例4.1:截面资料下研究居民家庭的储蓄行为Y i=0+1X i+εi其中:Y i表示第i个家庭的储蓄额,X i表示第i个家庭的可支配收入。
由于高收入家庭储蓄额的差异较大,低收入家庭的储蓄额则更有规律性,差异较小,所以εi的方差呈现单调递增型变化。
例4.2:以某一行业的企业为样本建立企业生产函数模型Y i=A i1K i2L i3eεi被解释变量:产出量Y,解释变量:资本K、劳动L、技术A,那么每个企业所处的外部环境对产出量的影响被包含在随机误差项中。
由于每个企业所处的外部环境对产出量的影响程度不同,造成了随机误差项的异方差性。
这时,随机误差项ε的方差并不随某一个解释变量观测值的变化而呈规律性变化,呈现复杂型。
4.2 异方差带来的后果有哪些?答:回归模型一旦出现异方差性,如果仍采用OLS估计模型参数,会产生下列不良后果:1、参数估计量非有效2、变量的显著性检验失去意义3、回归方程的应用效果极不理想总的来说,当模型出现异方差性时,参数OLS估计值的变异程度增大,从而造成对Y的预测误差变大,降低预测精度,预测功能失效。
4.3 简述用加权最小二乘法消除一元线性回归中异方差性的思想与方法。
答:普通最小二乘估计就是寻找参数的估计值使离差平方和达极小。
其中每个平方项的权数相同,是普通最小二乘回归参数估计方法。
在误差项等方差不相关的条件下,普通最小二乘估计是回归参数的最小方差线性无偏估计。
然而在异方差的条件下,平方和中的每一项的地位是不相同的,误差项的方差大的项,在残差平方和中的取值就偏大,作用就大,因而普通最小二乘估计的回归线就被拉向方差大的项,方差大的项的拟合程度就好,而方差小的项的拟合程度就差。
由OLS 求出的仍然是的无偏估计,但不再是最小方差线性无偏估计。
所以就是:对较大的残差平方赋予较小的权数,对较小的残差平方赋予较大的权数。
应用统计学:参数估计习题及答案
简答题1、矩估计的推断思路如何?有何优劣?2、极大似然估计的推断思路如何?有何优劣?3、什么是抽样误差?抽样误差的大小受哪些因素影响?4、简述点估计和区间估计的区别和特点。
5、确定重复抽样必要样本单位数应考虑哪些因素?计算题1、对于未知参数的泊松分布和正态分布分别使用矩法和极大似然法进行点估计,并考量估计结果符合什么标准2、某学校用不重复随机抽样方法选取100名高中学生,占学生总数的10%,学生平均体重为50公斤,标准差为48.36公斤。
要求在可靠程度为95%(t=1.96)的条件下,推断该校全部高中学生平均体重的范围是多少?3、某县拟对该县20000小麦进行简单随机抽样调查,推断平均亩产量。
根据过去抽样调查经验,平均亩产量的标准差为100公斤,抽样平均误差为40公斤。
现在要求可靠程度为95.45%(t=2)的条件下,这次抽样的亩数应至少为多少?4、某地区对小麦的单位面积产量进行抽样调查,随机抽选25公顷,计算得平均每公顷产量9000公斤,每公顷产量的标准差为1200公斤。
试估计每公顷产量在8520-9480公斤的概率是多少?(P(t=1)=0.6827, P(t=2)=0.9545, P(t=3)=0.9973)5、某厂有甲、乙两车间都生产同种电器产品,为调查该厂电器产品的电流强度情况,按产量等比例类型抽样方法抽取样本,资料如下:样本容量(个)平均电流强度(安培)电流强度标准差(安培)合格率(%)甲车间20 1.5 0.8 90乙车间40 1.6 0.6 95试推断:(1)在95.45%(t=2)的概率保证下推断该厂生产的全部该种电器产品的平均电流强度的可能范围(2)以同样条件推断其合格率的可能范围(3)比较两车间产品质量6、采用简单随机重复和不重复抽样的方法在2000件产品中抽查200件,其中合格品190件,要求:(1)计算样本合格品率及其抽样平均误差(2)以95.45%的概率保证程度对该批产品合格品率和合格品数量进行区间估计。
参数估计思考与练习参考答案
第4章参数估计思考与练习参考答案一、最佳选择题1.关于以0为中心的t分布,错误的是(E)A. t分布的概率密度图是一簇曲线B. t分布的概率密度图是单峰分布C. 当ν→∞时,t分布→Z分布D. t分布的概率密度图以0为中心,左右对称E. ν相同时,值越大,P值越大2.某指标的均数为,标准差为S,由公式计算出来的区间常称为(B)。
A. 99%参考值范围B. 95%参考值范围C. 99%置信区间D. 95%置信区间E. 90%置信区间3.样本频率与总体概率均已知时,计算样本频率p的抽样误差的公式为(C)。
A. B. C.D. E.4.在已知均数为, 标准差为的正态总体中随机抽样,(B)的概率为5%。
A. B. C.D. E.5. (C)小,表示用样本均数估计总体均数的精确度高。
A. CVB. SC.D. RE. 四分位数间距6.95%置信区间的含义为(C):A. 此区间包含总体参数的概率是95%B. 此区间包含总体参数的可能性是95%C. “此区间包含总体参数”这句话可信的程度是95%D. 此区间包含样本统计量的概率是95%E. 此区间包含样本统计量的可能性是95%二、思考题1. 简述标准误与标准差的区别。
答: 区别在于:(1)标准差反映个体值散布的程度,即反映个体值彼此之间的差异;标准误反映精确知道总体参数(如总体均数)的程度。
(2)标准误小于标准差。
(3)样本含量越大,标准误越小,其样本均数更有可能接近于总体均数,但标准差不随样本含量的改变而有明显方向性改变,随着样本含量的增大,标准差有可能增大,也有可能减小。
2. 什么叫抽样分布的中心极限定理?答: 样本含量n越大,样本均数所对应的标准差越小,其分布也逐渐逼近正态分布,这种现象统计学上称为中心极限定理(central limit theorem)。
当有足够的样本含量(如)时,从任何总体中抽取随机样本的样本均数近似地服从正态分布。
样本含量越大,抽样分布越接近于正态分布。
应用回归分析第4章课后习题参考答案
应用回归分析第4章课后习题参考答案第4章违背基本假设的情况思考与练习参考答案试举例说明产生异方差的原因。
答:例:截面资料下研究居民家庭的储蓄行为Y i=0+1X i+εi其中:Y i表示第i个家庭的储蓄额,X i表示第i个家庭的可支配收入。
由于高收入家庭储蓄额的差异较大,低收入家庭的储蓄额则更有规律性,差异较小,所以εi的方差呈现单调递增型变化。
例:以某一行业的企业为样本建立企业生产函数模型Y i=A i1K i2L i3eεi被解释变量:产出量Y,解释变量:资本K、劳动L、技术A,那么每个企业所处的外部环境对产出量的影响被包含在随机误差项中。
由于每个企业所处的外部环境对产出量的影响程度不同,造成了随机误差项的异方差性。
这时,随机误差项ε的方差并不随某一个解释变量观测值的变化而呈规律性变化,呈现复杂型。
异方差带来的后果有哪些答:回归模型一旦出现异方差性,如果仍采用OLS估计模型参数,会产生下列不良后果:1、参数估计量非有效2、变量的显著性检验失去意义3、回归方程的应用效果极不理想总的来说,当模型出现异方差性时,参数OLS估计值的变异程度增大,从而造成对Y的预测误差变大,降低预测精度,预测功能失效。
简述用加权最小二乘法消除一元线性回归中异方差性的思想与方法。
答:普通最小二乘估计就是寻找参数的估计值使离差平方和达极小。
其中每个平方项的权数相同,是普通最小二乘回归参数估计方法。
在误差项等方差不相关的条件下,普通最小二乘估计是回归参数的最小方差线性无偏估计。
然而在异方差的条件下,平方和中的每一项的地位是不相同的,误差项的方差大的项,在残差平方和中的取值就偏大,作用就大,因而普通最小二乘估计的回归线就被拉向方差大的项,方差大的项的拟合程度就好,而方差小的项的拟合程度就差。
由OLS 求出的仍然是的无偏估计,但不再是最小方差线性无偏估计。
所以就是:对较大的残差平方赋予较小的权数,对较小的残差平方赋予较大的权数。
最新第4章-参数估计思考与练习参考答案
第4章 参数估计 思考与练习参考答案一、最佳选择题1.关于以0为中心的t 分布,错误的是( E )A. t 分布的概率密度图是一簇曲线B. t 分布的概率密度图是单峰分布C. 当ν→∞时,t 分布→Z 分布D. t 分布的概率密度图以0为中心,左右对称E. ν相同时,t 值越大,P 值越大2.某指标的均数为X ,标准差为S ,由公式()1.96, 1.96X S X S -+计算出来的区间常称为( B )。
A. 99%参考值范围B. 95%参考值范围C. 99%置信区间D. 95%置信区间E. 90%置信区间3.样本频率p 与总体概率π均已知时,计算样本频率p 的抽样误差的公式为( C )。
4.在已知均数为μ, 标准差为 σ 的正态总体中随机抽样, X μ->( B )的概率为5%。
A.1.96σB.1.96X σC.0.05/2,t S νD.0.05/2,X t S νE.0.05/2,X t νσ5. ( C )小,表示用样本均数估计总体均数的精确度高。
A. CVB. SC. X σD. RE. 四分位数间距 6. 95%置信区间的含义为( C ):A. 此区间包含总体参数的概率是95%B. 此区间包含总体参数的可能性是95%C. “此区间包含总体参数”这句话可信的程度是95%D. 此区间包含样本统计量的概率是95%E. 此区间包含样本统计量的可能性是95%二、思考题1. 简述标准误与标准差的区别。
答: 区别在于:(1)标准差反映个体值散布的程度,即反映个体值彼此之间的差异;标准误反映精确知道总体参数(如总体均数)的程度。
(2)标准误小于标准差。
(3)样本含量越大,标准误越小,其样本均数更有可能接近于总体均数,但标准差不随样本含量的改变而有明显方向性改变,随着样本含量的增大,标准差有可能增大,也有可能减小。
2. 什么叫抽样分布的中心极限定理?答: 样本含量n越大,样本均数所对应的标准差越小,其分布也逐渐逼近正态分布,这种现象统计学上称为中心极限定理(central limit theorem)。
概率论与数理统计》课后习题答案第四章
习题4.11.设10个零件中有3个不合格. 现任取一个使用,若取到不合格品,则丢弃重新抽取一个,试求取到合格品之前取出的不合格品数X 的数学期望.解 可得X 的概率分布为0123~77711030120120X ⎡⎤⎢⎥⎢⎥⎣⎦于是X 的数学期望为7771()012310301201204531208E X =⨯+⨯+⨯+⨯==2..某人有n 把外形相似的钥匙,其中只有1把能打开房门,但他不知道是哪一把,只好逐把试开.求此人直至将门打开所需的试开次数X 的数学期望.解 可得X 的概率分布为12~111n X nn n ⎡⎤⎢⎥⎢⎥⎣⎦于是X 的数学期望为111()121(1)122E X n n n nn n n n =⨯+⨯++⨯++==3.设5次重复独立试验中每次试验的成功率为0.9,若记失败次数为X ,求X 的数学期望。
解 由题意~(5,0.1)X B ,则X 的数学期望为()50.10.5E X =⨯=4.设某地每年因交通事故死亡的人数服从泊松分布.据统计,在一年中因交通事故死亡一人的概率是死亡两人的概率的21,求该地每年因交通事故死亡的平均人数。
解 设该地每年因交通事故死亡的人数为X ,由题意X 服从泊松分布() (0)P λλ>.因1{1}{2}2P X P X === 即121 41!22!ee λλλλλ--=⇒= 于是X 的数学期望为()4E X λ==所以地每年因交通事故死亡的平均人数为4人。
5.设随机变量X 在区间(1,7)上服从均匀分布,求2{()}P X E X <. 解 因X 在区间(1,7)上服从均匀分布,故X 的数学期望为17()42E X +== 于是22{()}{4}1 {22}6P X E X P X P X <=<=<-<<=6.设连续型随机变量X 的概率密度为01() (,0)0 b ax x p x a b ⎧<<=>⎨⎩其它又知()0.75E X =,求,a b 的值解 由密度函数的性质可得()1p x dx +∞-∞=⎰即1111b aax dx b =⇒=+⎰又由()0.75E X =,可得1()0.75b xp x dx x ax dx +∞-∞=⋅=⎰⎰即0.752ab =+ 求解110.752a b a b ⎧=⎪⎪+⎨⎪=⎪+⎩ 可得 3,2a b ==.7.设随机变量X 的概率密度为0<1()2 120 x x p x x x <⎧⎪=-≤<⎨⎪⎩其它求数学期望()E X解12013312201()() (2) ()133E X xp x dxx xdx x x dx x x x +∞-∞==⋅+⋅-=+-=⎰⎰⎰8.设随机变量X 的概率分布为 X -2 -1 0 1 P 0.2 0.3 0.1 0.4 求(1)(21)E X -;(2)2()E X .解 (1) (21)2()1E X E X -=- 其中()20.210.3010.40.3E X =-⨯-⨯++⨯=-则(21)2()12(0.3)1 1.6E X E X -=-=⨯--=-(2)22222()0.2(2)0.3(1)0.100.41 1.5E X =⨯-+⨯-+⨯+⨯=9.假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作。
(完整word版)参数估计习题参考答案
参数估计习题参考答案班级:姓名:学号:得分一、单项选择题:1、关于样本平均数和总体平均数的说法,下列正确的是( B )(A)前者是一个确定值,后者是随机变量(B)前者是随机变量,后者是一个确定值(C)两者都是随机变量(D)两者都是确定值2、通常所说的大样本是指样本容量( A )(A)大于等于30 (B)小于30 (C)大于等于10 (D)小于103、从服从正态分布的无限总体中分别抽取容量为4,16,36的样本,当样本容量增大时,样本均值的标准差将( B )(A)增加(B)减小(C)不变(D)无法确定4、某班级学生的年龄是右偏的,均值为20岁,标准差为4.45.如果采用重复抽样的方法从该班抽取容量为100的样本,那么样本均值的分布为(A )(A)均值为20,标准差为0.445的正态分布(B)均值为20,标准差为4.45的正态分布(C)均值为20,标准差为0.445的右偏分布(D)均值为20,标准差为4.45的右偏分布5. 区间估计表明的是一个( B )(A)绝对可靠的范围(B)可能的范围(C)绝对不可靠的范围(D)不可能的范围6. 在其他条件不变的情形下,未知参数的1-α置信区间,(A )A. α越大长度越小B. α越大长度越大C. α越小长度越小D. α与长度没有关系7. 甲乙是两个无偏估计量,如果甲估计量的方差小于乙估计量的方差,则称( D )(A)甲是充分估计量(B)甲乙一样有效(C)乙比甲有效(D)甲比乙有效8. 设总体服从正态分布,方差未知,在样本容量和置信度保持不变的情形下,根据不同的样本值得到总体均值的置信区间长度将( D )(A)增加(B)不变(C)减少(D)以上都对9.在其他条件不变的前提下,若要求误差范围缩小1/3,则样本容量( C )(A)增加9倍(B)增加8倍(C)为原来的2.25倍(D)增加2.25倍10设容量为16人的简单随机样本,平均完成工作时间13分钟,总体服从正态分布且标准差为3分钟。
第四章思考题及练习题
第四章思考题及练习题(一)填空题1.1。
抽样推断是按照,从总体中抽取样本,然后以样本的观察结果来估计总体的数量特征。
2. 2.抽样调查可以是抽样,也可以是抽样,但作为抽样推断基础的必须是抽样。
3.3。
抽样调查的目的在于认识总体的。
4. 4.抽样推断运用的方法对总体的数量特征进行估计。
5. 5.抽样推断的主要内容有和两个方面。
6.6。
在组织抽样时,以清单、名册、图表等形式来界定总体的范围,称为。
7.7.在抽样推断中,不论是总体参数还是样本统计量,常用的指标有、和方差.8.8.样本成数的方差是。
9.9.根据取样方式不同,抽样方法有和两种。
10.10。
重复抽样有个可能的样本,而不重复抽样则有个可能的样本。
11.11。
抽样调查中误差的来源有和两类。
12.12.抽样误差是由于抽样的而产生的误差,这种误差不可避免,但可以。
13.13.在其他条件不变的情况下,抽样误差与成正比,与成反比。
14.14.样本平均数的平均数等于。
15.15。
在重复抽样下,抽样平均误差等于总体标准差的。
16.16。
抽样误差与抽样平均误差之比称为。
17.17.总体参数估计的方法有和两种。
18.18。
优良估计的三个标准是、和。
19.19。
总体参数的区间估计必须同时具备、和三个要素.20.20.在实际的抽样推断中,常用的抽样组织形式有、、、和等。
21.21。
抽样方案的检查主要有和两个方面。
(二) 单项选择题1、1、抽样推断是建立在()基础上的。
A、有意抽样B、随意抽样C、随机抽样D、任意抽样2、2、抽样推断的目的是()A、以样本指标推断总体指标B、取得样本指标C、以总体指标估计样本指标D、以样本的某一指标推断另一指标3、3、抽样推断运用()的方法对总体的数量特征进行估计。
A、数学分析法B、比例推断算法C、概率估计法D、回归估计法4、4、在抽样推断中,可以计算和控制的误差是( )A 、抽样实际误差B 、抽样标准误差C 、非随机误差D 、系统性误差 5、 5、 从总体的N 个单位中抽取n 个单位构成样本,共有( )可能的样本。
《过程控制与自动化仪表(第3版)》第4章思考题与习题
《过程控制与⾃动化仪表(第3版)》第4章思考题与习题第4章思考题与习题1.基本练习题(1)什么是被控过程的特性?什么是被控过程的数学模型?为什么要研究过程的数学模型?⽬前研究过程数学模型的主要⽅法有哪⼏种?答:1)过程控制特性指被控过程输⼊量发⽣变化时,过程输出量的变化规律。
2)被控过程的数学模型是描述被控过程在输⼊(控制输⼊与扰动输⼊)作⽤下,其状态和输出(被控参数)变化的数学表达式。
3)⽬的:○1设计过程控制系统及整定控制参数;○2指导⽣产⼯艺及其设备的设计与操作;○3对被控过程进⾏仿真研究;○4培训运⾏操作⼈员;○5⼯业过程的故障检测与诊断。
4)机理演绎法和实验辨识法。
(2)响应曲线法辨识过程数学模型时,⼀般应注意哪些问题?答:1)合理地选择阶跃输⼊信号的幅度,幅值不能过⼤以免对⽣产的正常进⾏产⽣不利影响。
但也不能太⼩,以防其他⼲扰影响的⽐重相对较⼤⽽影响试验结果。
⼀般取正常输⼊信号最⼤幅值的10%;2)试验时被控过程应处于相对稳定的⼯况;3)在相同条件下进⾏多次测试,消除⾮线性;4)分别做正、反⽅向的阶跃输⼊信号试验,并将两次结果进⾏⽐较,以衡量过程的⾮线性程度;5)每完成⼀次试验后,应将被控过程恢复到原来的⼯况并稳定⼀段时间再做第⼆次试验。
(3)怎样⽤最⼩⼆乘法估计模型参数,最⼩⼆乘的⼀次完成算法与递推算法有何区别?答:1)最⼩⼆乘法可以将待辨识过程看作“⿊箱”。
利⽤输⼊输出数据来确定多项式的系数利⽤)hke=θ来确定模型参数。
k T+)((y k()2)区别:⼀次完成要知道所有的输⼊输出数据才能辨识参数,即只能离线辨识。
递推算法可以只知道⼀部分数据即进⾏辨识,可⽤于在线辨识。
(4)图4-1所⽰液位过程的输⼊量为1q ,流出量为2q 、3q ,液位为h 被控参数,C 为容量系数,并设1R 、2R 、3R 均为线性液阻。
要求:1)列写过程的微分⽅程组; 2)画出过程的⽅框图;3)求过程的传递函数01()()/()G s H s Q s =。
生物医学研究的统计学方法-课后习题答案
思考与练习参考答案第1章绪论一、选择题1. 研究中的基本单位是指( D)。
A.样本 B. 全部对象C.影响因素D. 个体E. 总体2. 从总体中抽取样本的目的是( B )。
A.研究样本统计量 B. 由样本统计量推断总体参数C.研究典型案例 D. 研究总体统计量E. 计算统计指标3. 参数是指( B )。
A.参与个体数 B. 描述总体特征的统计指标C.描述样本特征的统计指标 D. 样本的总和 E. 参与变量数4. 下列资料属名义变量的是(E)。
A.白细胞计数B.住院天数C.门急诊就诊人数D.患者的病情分级 E. ABO血型5.关于随机误差下列不正确的是(C)。
A.受测量精密度限制B.无方向性 C. 也称为偏倚D.不可避免 E. 增加样本含量可降低其大小二、名称解释(答案略)1. 变量与随机变量2. 同质与变异3. 总体与样本4. 参数与统计量5. 误差6. 随机事件7. 频率与概率三、思考题1. 生物统计学与其他统计学有什么区别和联系?答:统计学可细分为数理统计学、经济统计学、生物统计学、卫生统计学、医学统计学等,都是关于数据的学问,是从数据中提取信息、知识的一门科学与艺术。
而生物统计学是统计学原理与方法应用于生物学、医学的一门科学,与医学统计学和卫生统计学很相似,其不同之处在于医学统计学侧重于介绍医学研究中的统计学原理与方法,而卫生统计学更侧重于介绍社会、人群健康研究中的统计学原理与方法。
2. 某年级甲班、乙班各有男生50人。
从两个班各抽取10人测量身高,并求其平均身高。
如果甲班的平均身高大于乙班,能否推论甲班所有同学的平均身高大于乙班?为什么?答:不能。
因为,从甲、乙两班分别抽取的10人,测量其身高,得到的分别是甲、乙两班的一个样本。
样本的平均身高只是甲、乙两班所有同学平均身高的一个点估计值。
即使是按随机化原则进行抽样,由于存在抽样误差,样本均数与总体均数一般很难恰好相等。
因此,不能仅凭两个样本均数高低就作出两总体均数熟高熟低的判断,而应通过统计分析,进行统计推断,才能作出判断。
STA-4——精选推荐
第四章 思考与练习思考题1.简述评价估计量好坏的标准。
1)无偏性:是指估计量抽样分布的数学期望等于被估计的总体参数。
2)有效性:一个无偏的估计量并不意味着它非常接近被估计的参数,它还必须与总体参数的离散程度比较小。
对同一总体参数的两个无偏点估计量,标准差越小的估计量越有效。
3)一致性:是指随着样本容量的增大,点估计量的值越来越接近被估总体的参数。
2.n z /2/σα的含义是什么?在给定的置信水平下可以接受的允许误差,也称为估计误差或误差范围。
3.说明区间估计的基本原理。
区间估计是参数估计的一种,它通常是由样本统计量加减抽样误差而得到的,区间估计的理论依据是抽样分布理论。
它是指对于给定的置信度1-α,总体参数θ的取值在某一区间内的概率是1-α。
用公式表示就是:P{θ1<θ<θ2}=1-α,其中θ1、θ2是两个统计量。
(θ1,θ2)就是置信区间,显然因为是来自于样本,而抽样带有随机性,所以它是一个随机区间。
4.解释置信水平的含义。
置信水平是指总体参数值落在样本统计值某一正负区间内的概率。
即置信区间中包含总体参数真值的次数所占的比率。
5.解释置信水平为95%的置信区间。
指在相同条件下多次抽样,在所有构造的置信区间里总体参数真值的次数所占的比率为95%6.简述样本容量与置信水平、总体方差、允许误差的关系。
样本总量与置信水平成正比,在其他条件不变的情况下,置信水平越大,所需的样本容量就越大;样本容量与总体方差成正比,总体的差异就越大,所需的样本容量也越大;样本容量与允许误差成反比,可以接受的允许误差也越大,所需的样本容量就越小。
练习题1.从一个标准差为5的总体中抽出一个容量为40的样本,样本均值为25(1)样本均值的抽样标准差等于多少?(2)在95%的置信水平下,允许误差是多少?解:1)由题可得:总体标准差σ=5,样本容量n =40,因此为大样本,791.0,625.0402522====x x n σσσ 2)1-α=95%,z α/2=1.965495.140596.12/=×=n z σα2.某快餐店想要估计每位顾客午餐的平均花费金额,在为期3周的时间里选取49名顾客组成了一个简单随机样本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4章 参数估计
思考与练习参考答案
一、最佳选择题
1.关于以0为中心的t 分布,错误的是( E )
A. t 分布的概率密度图是一簇曲线
B. t 分布的概率密度图是单峰分布
C. 当ν→∞时,t 分布→Z 分布
D. t 分布的概率密度图以0为中心,左右对称
E. ν相同时,t 值越大,P 值越大
2.某指标的均数为X ,标准差为S ,由公式()
1.96, 1.96X S X S -+计算出来的区间常称为( B )。
A. 99%参考值范围
B. 95%参考值范围
C. 99%置信区间
D. 95%置信区间
E. 90%置信区间
3.样本频率p 与总体概率π均已知时,计算样本频率p 的抽样误差的公式为( C )。
4.在已知均数为μ, 标准差为 σ 的正态总体中随机抽样, X μ->( B )的概率为5%。
A.1.96σ
B.1.96X σ
C.0.05/2,t S ν
D.0.05/2,X t S ν
E.0.05/2,X t νσ
5. ( C )小,表示用样本均数估计总体均数的精确度高。
A. CV
B. S
C. X σ
D. R
E. 四分位数间距
6. 95%置信区间的含义为( C ):
A. 此区间包含总体参数的概率是95%
B. 此区间包含总体参数的可能性是95%
C. “此区间包含总体参数”这句话可信的程度是95%
D. 此区间包含样本统计量的概率是95%
E. 此区间包含样本统计量的可能性是95%
二、思考题
1. 简述标准误与标准差的区别。
答: 区别在于:
(1)标准差反映个体值散布的程度,即反映个体值彼此之间的差异;标准误反映精确知道总体参数(如总体均数)的程度。
(2)标准误小于标准差。
(3)样本含量越大,标准误越小,其样本均数更有可能接近于总体均数,但标准差不
随样本含量的改变而有明显方向性改变,随着样本含量的增大,标准差有可能增大,也有可能减小。
2. 什么叫抽样分布的中心极限定理?
答: 样本含量n越大,样本均数所对应的标准差越小,其分布也逐渐逼近正态分布,这种现象统计学上称为中心极限定理(central limit theorem)。
当有足够的样本含量(如30
n≥)时,从任何总体中抽取随机样本的样本均数近似地服从正态分布。
样本含量越大,X抽样分布越接近于正态分布。
正态分布的近似程度与总体自身的概率分布和样本含量有关。
如果总体原本就是正态分布,那么对于所有n值,抽样分布均为正态分布。
如果总体为非正态分布,X仅在n值较大情况下近似服从正态分布。
一般说,30
n≥时的X抽样分布近似为正态分布;但是,如
果总体分布极度非正态(如双峰分布、极度偏峰分布),即使有足够大的n值,抽样分布也将为非正态。
3. 简述置信区间与医学参考值范围的区别。
答: 置信区问与医学参考值范围的区别见练习表4-1。
练习表4-1 置信区间与医学参考值范围的区别
区别置信区间参考值范围
含义
用途计算公式总体参数的波动范围,即按事先给定的概
率100(1-α)%所确定的包含未知总体参
数的一个波动范围
估计未知总体均数所在范围
σ未知:
/2,X
X t S
αν
±
σ已知或σ未知但n≥30,有
/2X
X Z
α
σ
±或
/2X
X Z S
α
±
个体值的波动范围,即按事先给定的
范围100(1-α)%所确定的“正常人”
的解剖、生理、生化指标的波动范
围
供判断观察个体某项指标是否“正常”
时参考(辅助诊断)
正态分布:
/2
X Z S
α
±
偏峰分布:P X~P100-X
4. 何谓置信区间准确度与精确度?如何协调两者间的关系。
答:置信区间有准确度(accuracy )与精密度(precision )两个要素。
准确度由置信度 (1-α) 的大小确定,即由置信区间包含总体参数的可能性大小来反映。
从准确度的角度看,置信度愈接近于1愈好,如置信度99%比95%好。
精密度是置信区间宽度的一半(即2,X t S αν、2,p Z S αν),意指置信区间的两端点值离样本统计量(如X 、p )的距离。
从精密度的角度看,置信区间宽度愈窄愈好。
在抽样误差确定的情况下,两者是相互矛盾的。
为了同时兼顾置信区间的准确度与精密度,可适当增加样本含量。
三、计算题
1.随机抽取了100名一年级大学生,测得空腹血糖均数为4.5 mmol/L ,标准差为0.61 mmol/L 。
试估计一年级大学生空腹血糖总体均数及方差的95%置信区间。
答:总体均数95%置信区间为(4.379,4.621),方差的95%置信区间为(0.286 9, 0.502 1)。
2.调查某地蛲虫感染情况,随机抽样调查了260人,感染人数为100。
试估计该地蛲虫感染率的95%置信区间。
答:该地蛲虫感染率的95%置信区间为(32.55%,44.38%)。