人教版数学九年级 上册:第21章 《一元二次方程》专题练习

合集下载

人教版九年级上册数学第二十一章《一元二次方程》练习题(附答案)

人教版九年级上册数学第二十一章《一元二次方程》练习题(附答案)

2×3
6
∴x1=
5+ 13 6
,x2=
5− 13 6
.
34.【答案】 (1)解:方程整理得: 2 2 + 4 − 3 = 0 ,
∵a=2,b=4,c=-3,
∴△=16+24=40>0,

=
−4± 4
40
=
−2± 2
10


1
=
−2+ 2
10

2
=
−2− 2
10

(2)解:方程变形得:2(x-3)²-(x+3)(x-3)=0, 因式分解得:(x-3)(2x-6-x-3)=0, ∴x-3=0 或 2x-6-x-3=0, ∴ 1=3 , 2=9 ;
49.已知:关于 x 的方程 2 + ( 等的实数根.
− 2)
+
1 2
− 3 = 0 .求证:无论 m 取什么实数,这个方程总有两个不相
50.求下列各式中 x 的值. (1)x2=5 (2)x2﹣5=4
9
(3)(x﹣2)2=125 (4)(y+3)3+64=0.
答案解析部分
一、单选题
1.【答案】 A 2.【答案】 A 3.【答案】 C 4.【答案】 C 5.【答案】 D 6.【答案】 B 7.【答案】 B 8.【答案】 B 9.【答案】 A 10.【答案】 D 11.【答案】 C 12.【答案】 D 13.【答案】 C 14.【答案】 D 15.【答案】 B 二、填空题
(4)12 2 − 3 + 2 = 0
35. (1)解方程: 2 2 − 5 = 1
(2)计算: 24 ÷ 3 − 6 × 2 3 + |1 − 2| .

九年级数学上册《第二十一章 一元二次方程》单元测试卷带答案(人教版)

九年级数学上册《第二十一章 一元二次方程》单元测试卷带答案(人教版)

九年级数学上册《第二十一章一元二次方程》单元测试卷带答案(人教版)班级姓名学号一、单选题1.方程x2-2(3x-2)+(x+1)=0的一般形式是( )A.x2-5x+5=0 B.x2+5x+5=0 C.x2+5x-5=0 D.x2+5=02.一元二次方程x2-6x-5=0配方后可变形为()A.(x-3)2=14 B.(x-3)2=4 C.(x+3)2=14 D.(x+3)2=43.已知a、c互为相反数,则关于x的方程ax2+5x+c=0(a≠0)根的情况()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.有一根为54.已知a是方程x2−2021x+1=0的一个根,则a2−2020a+2021a2+1的值为()A.2018 B.2019 C.2020 D.20215.方程3x(x﹣3)=5(x﹣3)的根是()A.53B.3 C.53和3 D.53和﹣36.已知2x2+4x−3=0的两根分别是x1和x2则x1+x2的值是()A.2 B.-2 C.−23D.−327.关于x的一元二次方程x2−2x+k=0有两个相等的实数根,则k的值为()A.1B.−1C.2D.−28.李明去参加聚会,每两人都互相赠送礼物,他发现共送礼物20件,若设有n人参加聚会,根据题意可列出方程为()A.n(n+1)2=20 B.n(n﹣1)=20C.n(n−1)2=20 D.n(n+1)=20二、填空题9.若方程(a+1)x2﹣3x+1=0是关于x的一元二次方程,则a需满足.10.用配方法解一元二次方程x2+6x+1=0时,配方后方程可化为:.11.若关于x的方程x(kx-4)-x2+6=0没有实数根,则k的最小整数值为.12.已知方程x2+4x−3=0的两根分别为x1和x2,则x1+x2+x1x2=.13.学校秋季运动会上,九年级准备队列表演,一开始排成8行12列,后来又有84名同学积极参加,使得队列增加的行数比增加的列数多1.现在队列表演时的列数是.三、解答题14.求下列各式中的x .(1)2x2−18=0(2)(x−1)3=6415.若关于x的一元二次方程kx2﹣6x+1=0有两个实数根(1)求k的取值范围?(2)当k=8时,求一元二次方程的解16.已知关于x的方程x2−3ax−3a−6=0(1)求证:方程恒有两不等实根;(2)若x1,x2是该方程的两个实数根,且(x1−1)(x2−1)=1,求a的值.17.应用题:(本题第一问要求列方程作答)某市要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排15场比赛.(1)应该邀请多少支球队参加比赛?(2)若某支球队参加3场后,因故不参与以后的比赛,问实际共比赛多少场?18.已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分别为△ABC三边的长(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.19.为倡导积极健康的生活方式、丰富居民生活,区推出系列文化活动,其中的乒乓球比赛采用单循环赛制(即每两名参赛者之间都要进行一场比赛)经统计,此次乒乓球比赛男子组共要进行28场单打. (1)参加此次乒乓球男子单打比赛的选手有多少名?(2)在系列文化活动中,社区与某旅行社合作组织“丰收节”采摘活动收费标准是:如果人数不超过20人,每人收费200元;如果超过20人,每增加1人,每人费用都减少5元经统计,社区共支付“采摘活动”费用4500元求参加此次“丰收节”采摘的人数.参考答案1.A2.A3.A4.C5.C6.B7.A8.B9.a≠﹣110.(x+3)2=811.212.−713.1514.(1)解:2x2-18=0∴2x2=18∴x2=9∴x=±3(2)解:由题意得:x-1=4∴x=515.(1)解:∵关于x的一元二次方程kx2﹣6x+1=0有两个实数根∴△=b2﹣4ac≥0,即(﹣6)2﹣4×k×1≥0解这个不等式得:k≤9又∵k是二次项系数∴k≠0则k的取值范围是k≤9且k≠0.(2)解:x1=12x2=1416.(1)证明:∵Δ=b2−4ac=(−3a)2−4×1×(−3a−6)=9a2+12a+24=(3a+2)2+20>0∴该方程恒有二不等实根;(2)解:由根与系数的关系x1+x2=3a x1x2=−3a−6∵(x1−1)(x2−1)=1∴x1x2−(x1+x2)+1=1∴−3a−6−3a+1=1解得a=−1.17.(1)解:设应该邀请x支球队参加比赛x(x﹣1)=15依题意,得:12解得:x1=6,x2=﹣5(不合题意,舍去).答:应该邀请6支球队参加比赛.× 5×4=13(场).(2)解:3 +12答:实际共比赛13场.18.(1)解:△ABC是等腰三角形.理由:∵x=-1是方程的根∴(a+c)×(-1)2+2b×(-1)+(a-c)=0∴a+c-2b+a-c=0,∴a-b=0a=b,∴△ABC是等腰三角形(2)解:△ABC是直角三角形理由:∵方程有两个相等的实数根∴(2b)2-4(a+c)(a-c)=0,∴4b2-4a2+4c2=0∴a2=b2+c2,∴△ABC是直角三角形.(3)解:∵△ABC是等边三角形∴a=b=c∴一元二次方程化为x2+x=0∴x(x+1)=0∴x1=0,x2=-1.19.(1)解:设参加此次乒乓球男子单打比赛的选手有x名x(x−1)=28 .根据题意,得:12解得:x1=8x2=−7(错误,舍去);∴参加此次乒乓球男子单打比赛的选手有8名. (2)解:设参加此次“丰收节”采摘的人数为y人∵200×20=4000<4500∴y>20;根据题意,得y[200−5(y−20)]=4500 .解得:y1=y2=30 .∴参加此次“丰收节”采摘的人数为30人.。

人教版九年级数学上学期 第21章 一元二次方程 单元练习

人教版九年级数学上学期 第21章 一元二次方程 单元练习
19.某商店经销的某种商品,每件成本为 30 元.经市场调查,当售价为每件 70 元时,可销 售 20 件.假设在一定范围内,售价每降低 2 元,销售量平均增加 4 件.如果降价后商店 销售这批商品获利 1200 元,问这种商品每件售价是多少元?
20.2020 年 3 月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这
3/6
一.选择题 1. C. 2. A. 3. A. 4. B. 5. A. 6. D. 7. C. 8. D. 9. D. 10. A. 二.填空题 11.﹣3、16. 12. 4. 13.6. 14. 18 或 21. 15. x(x﹣1)=21.
参考答案
三.解答题 16.解:(1)∵(x﹣2)2=9,
(6)
=1.
17.已知关于 x 的方程 x2﹣(k+1)x+k﹣1=0. (1)试判断该方程根的情况,说明理由; (2)若该方程与方程 2x2﹣(k﹣3)x+k﹣6=0 有且只有一个公共根,求 k 的值.
18.为深化疫情防控国际合作、共同应对全球公共卫生危机,我国有序开展医疗物资出口工 作.2020 年 3 月,国内某企业口罩出口订单额为 1000 万元,2020 年 5 月该企业口罩出口 订单额为 1440 万元.求该企业 2020 年 3 月到 5 月口罩出口订单额的月平均增长率.
则 x=


即 x1=
,x2=

(4)∵3x(x﹣2)=﹣2(x﹣2), ∴3x(x﹣2)+2(x﹣2)=0, 则(x﹣2)(3x+2)=0,
解得 x1=2,x2=﹣ ;
(5)∵(x﹣1)2﹣5(x﹣1)+4=0, ∴(x﹣1﹣1)(x﹣1﹣4)=0,即(x﹣2)(x﹣5)=0, 则 x﹣2=0 或 x﹣5=0, 解得 x1=2,x2=5; (6)两边都乘以 x﹣2,得:2x+2=x﹣2, 解得 x=﹣4, 检验:当 x=﹣4 时,x﹣2=﹣6≠0, ∴分式方程的解为 x=﹣4. 17.解:(1)方程有两个不相等的实数根,理由如下: △=[﹣(k+1)]2﹣4×1×(k﹣1)=k2﹣2k+5=(k﹣1)2+4. ∵(k﹣1)2≥0, ∴(k﹣1)2+4>0,即△>0, ∴无论 k 取何值,方程总有两个不相等的实数根. (2)设两个方程的一个公共根为 m,

人教版九年级数学上册《第二十一章一元二次方程》单元测试卷-附答案

人教版九年级数学上册《第二十一章一元二次方程》单元测试卷-附答案

人教版九年级数学上册《第二十一章一元二次方程》单元测试卷-附答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列方程中是一元二次方程的是()A.x+y2=2B.x+4=2C.x2+4x=2D.x2+1x=22.如果x=2是一元二次方程x2+bx+2=0的一个根,则b的值是()A.2 B.-2 C.3 D.−33.一元二次方程x2−6x+1=0配方后可变形为()A.(x−3)2=8B.(x−3)2=10C.(x+3)2=8D.(x+3)2=104.一元二次方程x2+2x−1=0的实数根有()A.1个B.2个C.0个D.无数个5.方程x2−49=0的解为()A.x1=7,x2=−7B.x1=1,x2=7C.x1=x2=7D.x1=x2=−76.已知关于x的一元二次方程ax2+2x−1=0有两个实数根,则a的取值范围是()A.a>−1且a≠0B.a≥−1且a≠0C.a≥−1D.a≤−17.2024年元旦开始,梧州市体育训练基地吹响冬季足球训练“集结号”,该基地组织了一次单循环的足球比赛(每两支队伍之间比赛一场),共进行了36场比赛,设有x支队伍参加了比赛,依题意可列方程为()A.x(x+1)=36B.x(x−1)=36C.x(x+1)2=36D.x(x−1)2=368.设x1,x2是一元二次方程x2−2x−1=0的两根,则1x1+1x2=()A.12B.−12C.2 D.−2二、填空题9.若方程(m−1)x m2+1−x−2=0是一元二次方程,则m的值是.10.将一元二次方程x2−8x−5=0化成(x+a)2=b(a,b 为常数)的形式,则ab=.11.关于x的一元二次方程ax2−2(a−1)x+a=0有实数根.则a的取值范围.12.已知三角形的两边长为1和2,第三边的长是方程x2−5x+6=0的一个根,则这个三角形的周长是.13.若 m,n 是一元二次方程x2−2x−5=0的两个根,则m2n+mn2=.三、计算题14.解方程:(1)x2+1=7x;(2)x2+4x−5=0.四、解答题15.关于x的一元二次方程−x2+2x−k=0.(1)若方程有两个实根,求k的取值范围.(2)若方程的一根为−1,求k的值及另一根.16.已知关于x的方程x2﹣3ax﹣3a﹣6=0(1)求证:方程恒有两不等实根;(2)若x1,x2是该方程的两个实数根,且(x1﹣1)(x2﹣1)=1,求a的值.17.如图,某小区矩形绿地的长宽分别为35m,15m.现计划对其进行扩充,将绿地的长、宽增加相同的长度后,得到一个新的矩形绿地.(1)若扩充后的矩形绿地面积为800m2,求新的矩形绿地的长与宽;(2)扩充后,实地测量发现新的矩形绿地的长宽之比为5:3.求新的矩形绿地面积.18.第31届世界大学生夏季运动会在成都举办,吉祥物“蓉宝”深受大家的喜爱.某商场从厂家购进了成都大运会吉祥物蓉宝毛绒公仔和3D钥匙扣两种商品,每个毛绒公仔的进价比每个3D钥匙扣的进价多30元.若购进毛绒公仔4个,3D钥匙扣5个,共需要570元.(1)求毛绒公仔、3D钥匙扣两种商品的每个进价分别是多少元?(2)该商场从厂家购进成都大运会吉祥物蓉宝毛绒公仔和3D钥匙扣两种商品共60个,所用资金恰好为4200元.在销售时,每个毛绒公仔的售价为100元,要使得这60个商品卖出后获利25%,则每个3D钥匙扣的售价应定为多少元?参考答案1.【答案】C2.【答案】D3.【答案】A4.【答案】B5.【答案】A6.【答案】B7.【答案】D8.【答案】D9.【答案】-110.【答案】-111.【答案】a≤12且a≠012.【答案】513.【答案】514.【答案】(1)解:原方程可化为x2−7x+1=0b2−4ac=(−7)2−4×1×1=45>0x=7±√452=7±3√52x1=7+3√52(2)解:∵x2+4x−5=0∴(x+5)(x−1)=0∴x+5=0或x−1=0∴x1=−515.【答案】(1)解:∵方程有两个实根∴Δ=22−4×(−1)×(−k)≥0解得k≤1∴k的取值范围为k≤1.(2)解:设方程的另一根为x 2,依题意得{−1+x 2=2−x 2=k解得{x 2=3k =−3∴k 的值为−3,另一根为316.【答案】(1)证明:∵Δ=b 2−4ac =(−3a)2−4×1×(−3a −6)=9a 2+12a +24=(3a +2)2+20>0∴该方程恒有两个不等实根;(2)解:由根与系数的关系x 1+x 2=3a,x 1x 2=−3a −6∵(x 1−1)(x 2−1)=1∴x 1x 2−(x 1+x 2)+1=1∴−3a −6−3a +1=1解得a =−117.【答案】(1)解:(1)设将绿地的长、宽增加xm ,则新的矩形绿地的长为(35+x)m ,宽为(15+x)m 根据题意得:(35+x)(15+x)=800整理得:x 2+50x −275=0解得:x 1=5,x 2=−55(不符合题意,舍去)∴35+x =35+5=40,15+x =15+5=20答:新的矩形绿地的长为40m ,宽为20m(2)设将绿地的长、宽增加ym ,则新的矩形绿地的长为(35+y)m ,宽为(15+y)m 根据题意得:(35+y):(15+y)=5:3即3(35+y)=5(15+y)解得:y =15∴(35+y)(15+y)=(35+15)×(15+15)=1500答:新的矩形绿地面积为1500m 218.【答案】(1)解:设毛绒公仔、3D 钥匙扣两种商品的每个进价分别是(30+x)和x 元,由题意得: 4(30+x)+5x =570,解得x =50答:毛绒公仔、3D 钥匙扣两种商品的每个进价分别是80和50元;(2)解:设毛绒公仔买了x 个,由题意可得:80x +50(60−x)=4200解得x=40设3D钥匙扣的每个售价为y元,由题意得:20x40+20(y−50)=4200×25%解得y=62.5答:每个3D钥匙扣的售价为62.5元。

九年级数学上册《第二十一章一元二次方程》练习题及答案-人教版

九年级数学上册《第二十一章一元二次方程》练习题及答案-人教版

九年级数学上册《第二十一章一元二次方程》练习题及答案-人教版一、选择题:1.用直接开平方法解方程()2234x -=时,可以将其转化为232x -=或232x -=-,其依据的数学知识是( )A .完全平方公式B .平方根的意义C .等式的性质D .一元二次方程的求根公式2.下列说法不正确的是( ) A .方程 2x x = 有一根为0B .方程 210x -= 的两根互为相反数C .方程 ()2110x --= 的两根互为相反数 D .方程 220x x -+= 无实数根3.根据福建省统计局数据,福建省2020年的地区生产总值为43903.89亿元,2022年的地区生产总值为53109.85亿元.设这两年福建省地区生产总值的年平均增长率为x ,根据题意可列方程( ) A .()43903.89153109.85x += B .243903.89(1)53109.85x += C .243903.8953109.85x =D .()243903.89153109.85x+=4.已知关于x 的一元二次方程(k ﹣1)x 2﹣14=0有实数根,则k 的取值范围是( ) A .k 为任意实数 B .k ≠1 C .k ≥0 D .k ≥0且k ≠1 5.设a 、b 是一元二次方程x 2﹣2x ﹣1=0的两个根,则a 2+a+3b 的值为( ) A .5 B .6 C .7 D .8 6.若关于x 的不等式x ﹣ 2a<1的解集为x <1,则关于x 的一元二次方程x 2+ax+1=0根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .无实数根D .无法确定7.已知一个直角三角形的两边长是方程29200x x -+=的两个根,则这个直角三角形的斜边长为( )A .3BC .3D .58.若m ,n 是方程2210x x +-=的两根,如图,表示2222mn mnm n m n---的值所对应的点落在( )A .第①段B .第②段C .第③段D .第④段二、填空题: 9.方程(x-3)(x+6)=10的根是 . 10.已知一个一元二次方程的二次项系数是2,常数项是-14,它的一个根是-7,则这个方程为 .11.若a 2-2a-5=0,b 2-2b-5=0(a ≠ b),则ab+a+b=12.已知关于x 的方程x 2-(a +b)x +ab -1=0,x 1,x 2是此方程的两个实数根,现给出三个结论:①x 1≠x 2;②x 1x 2<ab ;③2212x x + <a 2+b 2.则正确结论的序号是 (填序号).13.已知关于x 的一元二次方程()222210x m x m +++-=.两实数根分别为12x x 、,且满足221258x x +=则实数m 的值为 . 三、解答题:14.若关于x 的一元二次方程x 2+4x +2k =0有实数根,求k 的取值范围及k 的非负整数值.15.已知关于x 的方程220x nx m ++=.(1)求证:当3n m =+时,方程总有两个不相等实数根;(2)若方程两个相等的实数根都是整数,写出一组满足条件的m ,n 的值,并求此时方程的根.16.关于x 的一元二次方程(a+c )x 2+2bx+(a ﹣c )=0,其中a 、b 、c 分别为△ABC 三边的长. (1)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由; (2)如果△ABC 是等边三角形,试求这个一元二次方程的根.17.某校生物小组有一块长32m ,宽20m 的矩形试验田,为了管理方便,准备沿平行于两边的方向纵、横各开辟一条等宽的小道.要使种植面积为540m 2,小道的宽应是多少?18.随着全球疫情的爆发,医疗物资需求猛增,某企业及时引进一条口罩生产线生产口罩,开工第一天生产口罩5000盒,第三天生产口罩7200盒,若每天增长的百分率相同.(1)求每天增长的百分率.(2)经调查发现,1条生产线的最大产能是15000盒/天,但是每增加1条生产线,每条生产线的产能将减少500盒/天,现该厂要保证每天生产口罩65000盒,在增加产能的同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?参考答案:1.B 2.C 3.B 4.D 5.C 6.C 7.D 8.B 9.x 1=4,x 2=-7. 10.2212140x x +-=11.-3 12.①② 13.214.解:∵方程有两个实数根,∴42-4×1×(2k)≥0,解得k ≤2.所以k 的取值范围为k ≤2,满足条件的k 的非负整数值有三个:0,1,2 15.(1)证明:∵3n m =+ ∴()22224123829(1)8n m m m m m m ∆=-⨯⨯=+-=-+=-+ ∵()210m -≥∴()2180m -+>,即Δ0>∴方程总有两个实数根(2)解:由题意可知 2241280n m n m ∆=-⨯⨯=-= 即:28n m =-. 以下答案不唯一,如:当4n =,2m =-时,方程为2210x x -+=. 解得121x x ==.16.(1)解:∵方程有两个相等的实数根 ∴(2b )2﹣4(a+c )(a ﹣c )=0 ∴4b 2﹣4a 2+4c 2=0 ∴a 2=b 2+c 2∴△ABC 是直角三角形(2)解:∵当△ABC 是等边三角形,∴a=b=c ,∵(a+c )x 2+2bx+(a ﹣c )=0 ∴2ax 2+2ax=0 ∴x 1=0,x 2=﹣1.17.解:设道路的宽为xm ,依题意有 (32﹣x )(20﹣x )=540 整理,得x 2﹣52x+100=0. ∴(x ﹣50)(x ﹣2)=0∴x 1=2,x 2=50(不合题意,舍去) 答:小道的宽应是2m . 18.(1)解:设每天增长的百分率为x.25000(1+)7200x =120.2=2.2x x =,(舍去)所以每天增长的百分率为20% (2)解:设增加y 条生产线,(1+y)(15000500)65000y -= 124=25y y =,(舍去)所以增加4条生产线。

人教版九年级数学上第21章一元二次方程章末专题训练(含答案).docx

人教版九年级数学上第21章一元二次方程章末专题训练(含答案).docx

第二十一章章末专题训练利用方程及根的概念求字母的取值专题解读:⑴根据一元二次方程的概念求字母的取值关键是分析两点:①未知数的最高次数为厶②二次项系数不为o;⑵根据根的概念求字母的取值的方法是将根直接代入方程,解方程即可.【例1】如果2是一元二次方程的根,那么常数c等于______________ .分析:因为2是一元二次方程x2=c的一个根,由根的定义,把2代入中,得c=4.答案:4.1.关于兀的一元二次方程(a—l),+_r+/—i= 0的一个根是0,则Q的值为( )B1A. 1B. 一1C. 1 或一1D. 一2【分析】一元二次方程cuc+bx+c=0有一个根为0,则其常数项c=0.由题设知d—1工0,且a2-1=0, 解得a=-\.故选B.【点拨】在二次方程a^+bx+c=0的定义中,要特别注意殍0的条件,在含有字母的一元二次方程的试题中,往往在0定0设下陷阱.2.方程(m2-l)x2+(w+l)x-l=0,当__________________ 时,方稈为关于x的一元二次方程;当___________ 时,方程为关于x的一元一次方程.加#fcl,加=1【分析】方程ax2+bx+c=0中,d工0时一元二次方程;当。

=()且伤旳时是一元一次方程.由加2—1工0, 得加徉1,所以当加丰1时,方程为一元二次方程.当m2— 1 = 0且加+1=0,得加=1,所以当加=1时,方程为一元一次方程.3.判断关于兀的方程jC-nvc(2x~m+\)=x是不是一元二次方稈,如果是,指出二次项系数、一次项系数及常数项.【分析】把方程化为一般形式ax2+bx+c=0,当°工0是一元二次方程.【解】原方程可化为(1—2/77)x2+(/772—1) x=0»当1— 2加=0,即m=时,原方程为一■|•x=0,是—元一次方程;当1 —2加工0,即唏丄时,原方程是一元二次方程.2此吋,二次项系数为1—2加,一次项系数为〃,一加_i,常数项为0.【点拨】此题中常数项为0,不能说不存在;同理像方程2/—3=0, —次项系数b=0.4.已知方程5x2+H—6=0的一个根是2,求它的另一个根及R的值.【分析】己知方程的一个根是2,把兀=2代入原方程,得5x22+2jt-6=0,则可求的值,然后再代入£的值,从而可求出方程的另一根.【解】把x=2代入方程5/+&—6=0得5X 22+2Z :-6=0,解得k=~l.3 3把k=~l 代入方程5x 2+kx~6=0得5,—7乳一6=0,解得七=2,疋=一一・所以另一个根为一一,鸟的 5 5值为一7.解-元二次方程专题解读:在解一元二次方程时,要观察方程的结构特点,在没给出解法要求时,可选取最简单的解法, 耍先看是否能用直接开平方法或因式分解法,否则就用公式法,一般不用配方法.【例2】方程血+1) = 3(兀+1)的解是( ).A.兀=—1B.兀=3C.兀i = —1,兀2=3D.以上答案都不对分析:方程变形为Xx+1)-3(%+1)=0,因式分解,得(x-3)(x+l)=0,所以x —3=0或x+l=0,得兀=3, x= — \.答案:C.5. 请用适当的方法解下列方程:(1) (3兀一4)2=(3—4 x)2; (2)/=x ; (3)5(兀+6)(兀一l)+4x(x —1)=3兀(兀+6);(4)(2014-甘肃兰州中考・21 (2)题・5分)/一3兀一 1=0; (5)<+5<—6=0・【解】⑴3x —4=±(3—4x) » 即 3兀一4 = 3—4x 或 3兀一4=—(3—4x), .*.X]= 1,兀2= — 1 • (2) 兀2—兀=(),即 x(x —1) , /.Xi=0, %2=1.⑶原方程化为 2x 2+x —10=0, Z?2—4f7C= l 2—4x2x(—10) = 81 >0,・•」=〔±=〔 ±9 ,即 Xj = ——,4 4 2无2 = 2・⑸设则x 4=/,原方程为『+5),—6 = 0,解这个方程,得刃=一6,力=1・当y=~6吋,X 2=-6,此方程无解;当y=l 时,x 2=l,解得X] = l,疋=一1・・・・原方程的解为兀1 = 1,兀2= — 1・列方程解应用题专题解读:列一元二次方程解决实际问题中常见的等量关系有:①增长率问题:增长量=原有量x 增长率; ②商品利润:利润=售价一成本(或进价),利润率=利润+成本X100%;③打折销售:售价=标价x(折扣三10); ④行程问题:路程=速度X 时问.【例3】在一块正方形的钢板上截去一块丸加宽的长方形钢板,剩下部分的而积是54cnz 2,则原钢板的而 积是 ____________ cnr.(4) V«=l, b=—3C=-1, Ab 2-4ac=(-3)2-4xlx(-l)=13>0, 3 + V13分析:设原来正方形钢板的边长为牝加,根据题意,得X2-3X=54,解得兀尸一6(舍去),疋=9,所以原正方形钢板的面积是81 cm2.答案:81.6.某商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.【解】设这两个月的平均增长率为兀,依题意,得200x(1-20%)(1+X)2=193.6.即(1 +x)2= 1.21,解得兀=—1±1.1・即Xi=0.1, x2=—2.1(不合题意,舍去).答:这两个月的平均增长率为10% .7.(2013-山东泰安屮考・27题分)某商店购进600个旅游纪念品,进价为6元/个,第一周以10元/个的价格售出200个;但商店为了适当增加销售,决定降价销售(根据市场调查,单价每降1元,可多销售处50 个,但售价不得低于进价),单价降低兀元销售一周后,商店对剩余旅游纪念品清仓处理,以4元/个的价格全部售出,如果这批旅游纪念品共获利1 250元,问:第二周每个旅游纪念品的销售价格为多少元?【分析】根据纪念品的进价和售价以及销量分别表示出纪念品的总利润,进而得出等式求解即可.【解】由题意,得200x(10-6)+(10—兀—6)(200+50兀)+(4—6) [600-200-(200+50x)1 =1 250.即800+(4—朗(200+50x)-2(200-50%)= 1 250.整理,得2兀+1=0,解得无]=兀2=1.A 10-1=9.答:第二周旅游纪念品的销售价格为9元/个.8.随着人们生活水平的不断提高,某市私家车拥有量逐年增加,据统计,某小区2011年底拥有家庭轿车64辆,2013年底家庭轿车的拥有量达到100辆.⑴若该小车2011年底家庭轿车拥有量的年平均增长率相同,按照这个增长速度,求该小区到2014年底家庭轿车拥有量将达到多少辆.⑵为了缓解停车矛盾,该小车决定投资15万元再建若干个停车位.据测算,建造费用分别为室内车位5 000 元/个,露天车位1 000元/个,考虑到实际因素,计划建造露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.【解】⑴设家庭轿车拥有量的年平均增长率为兀,则64(1+x)2= 100, 解得尤=25%或x=—225%(不合题意,舍去).・•・ 100x(1+25%)= 125(辆).答:该小区到2014年底家庭轿车拥有暈将达到125辆.⑵设该小区建室内车位d个,建鋁天车位b个,]0.5d + 0・lb = 15① 则有{—由①得b= 150—5/代入②得20<a< —.7Va 正整数,.*.a=20或a=2\.当a=20时,方=50;当°=21 时,6=45.・••方案一:建室内车位20个,建露天车位50个;方案二:建室内车位21个,建露天车位45个.根的判别式、根与系数之间的关系专题解读:若一元二次方程a^+bx+c=0的两个根分别为兀】,疋,则根与系数之间的关系为x x+x2=-~, aX\-X2=—•a【例4】已知兀I,兀2是一元二次方程X2-6X-5 =0的两个根,求⑴兀|2+疋2;⑵丄+丄的值.解:由题意知七+兀2 = 6, 兀2=—5.⑴兀]2+尤2?=(占+兀2)2 —2七兀2 = 36+ 10 = 46.⑵ 1 + 1 = 丙兀2x +x9 6 6 x t x2-559.(2013-山东威海中考・6题・3分)已知关于兀的一元二次方程(兀+1) 2—"—0有两个实数根,则m的取值范围是()B3A. tri>——B. /77>OC. m>\D. nt>24- - -【分析】(x+l)2—加=0, (x+l)2=w, V —元二次方程(x+ I)2—m=0有两个实数根,・••陀0.故选B.10.(2013-山东滨州中考10题・3分)对于任意实数匕关于兀的方程x2-2(k+ \)x-^+2k-1 =0的根的情况为()CA.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法确定【分析】Va=l, 2伙+1), c=-^+2k-l,:.b2-4ac= [一2伙+1)] —4xlx(—F+2£—l) = 8 + 8F>0,・•・此方程有两个不相等的实数根.故选C.11.已知也,几是方程X2+2>/2X+1= 0的两根,则代数式+ 3/72/2的值为( )CA. 9B. ±3C. 3D. 5【分析1 V/n,"是方程x2+2y/2 x+l= 0 的两根,/.m+n=—2>/2 , mn = 1,•I+料2 +3"祝=J(m + 刃)2 + nrn = J(一2逅$ +1 =蔚=3.故选C.12.关于兀的一元二次方程kx2+(2k+\)x+伙一1)=0有实数根,则R的取值范围是____________ .空一丄且8 舜0【分析】*:a=k , b=~ (2£+1), C=k-1, :. A = (2)t+ l)2-4xjtx(jt- l)=8il+1>0,解得空一一,'・•原8方程是且一元二次方程,:・蚌0,:・k的取值范围是k>~—且舜0.13.已知关于x的方程X2—2 (m+1)兀+加2=0 .⑴当加取什么值时,原方程没有实数根;⑵对加的值选取一个合适的非零整数,使原方程有两个实数根,并求出这两个实数根的平方和.【解】⑴若方程没有实数根,则4伽+1)2—4加2<(),解得m<-~.即当m<-丄时原方程没有实数根.2 2⑵由⑴知只要选取陀一丄的非零整数即可,不妨取m=l,原方稈变为X2-4X+1=0,解得%,=2+73,2x2=2-y/3 , /.Xi2+x22=(2+ >/3)2+(2->/3)2= 14.。

人教版九年级数学上册《21.1一元二次方程》同步练习题-附答案

人教版九年级数学上册《21.1一元二次方程》同步练习题-附答案

人教版九年级数学上册《21.1一元二次方程》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列关于x 的方程是一元二次方程的是( )A .20ax bx c ++=B .240x x-= C .()()1110x x +-+= D .()22125x x x -= 2.一元二次方程221x x -=的一次项系数和常数项依次是( )A .1-和1B .1-和1-C .2和1-D .1-和33.将一元二次方程()()()21235x x x x +-=+-化为一般形式为( )A .2510x x -+=B .290x x +-=C .2430x x -+=D .210x x -+=4.一元二次方程x 2+px ﹣2=0的一个根为2,则p 的值为( )A .1B .2C .﹣1D .﹣25.若a 是方程2230x x --=的一个解,则263a a -的值为() A .3B .3-C .9D .9-二、填空题 6.只含有 个未知数,并且未知数的 次数是2的方程,叫做一元二次方程,它的一般形式为 .7.一元二次方程()521x x x -=+的一次项系数是 .8.若关于x 的一元二次方程20x a -=的一个根是2,则=a .9.若方程()2190a x x -+-=是关于x 的一元二次方程,则a 的取值范围是__________.10.已知m 是方程210x x --=的一个根,则代数式2552021m m -+的值是 .三、解答题11.判断下列各式哪些是一元二次方程.①21x x ++;②2960x x -=;③ 2102y =;④ 215402x x-+=; ⑤ 2230x xy y +-=;⑥ 232y =;⑦ 2(1)(1)x x x +-=.12.已知13,都是方程230==-x x+-=的根,求a、b的值和这个一元二次方程的一般形式.ax bx13.已知m是方程2250x x+-=的一个根,求32+--的值.259m m m14.根据题意列出方程,化为一般式,不解方程.(1)一个大正方形的边长比一个小正方形边长的3倍多1,若两正方形面积和为53,求这两正方形的边长.(2)某班同学之间为了相互鼓励,每两人之间进行一次击掌,共击掌595次.求本班有多少名同学(设本班有x名同学).参考答案1.C2.B3.A4.C5.C6.一最高20(0)++=≠ax bx c a7.7-8.49.1a ≠10.202611.②③⑥.12.1a = 2b = 2 230x x +-= 13.9-14.(1)10x 2+6x-52=0;(2)211900x x --=。

人教版九年级数学上册第21章《一元二次方程》专题练习

人教版九年级数学上册第21章《一元二次方程》专题练习

第21章 一元二次方程一、一元二次方程的定义1、下列方程是一元二次方程的有(1)y 2+y=12 (2)x 3+x 2=3 (3)x+2y=12(4)0212=-xx (5)x+1=0 (6)632=x(7)22)32(14+=-x x (8)062)(2=--x x (9)21503x x -=(10)2134x x x +=(11)2110x x--= (12)2111x x =+-(13)3(x +1)2=2(x +1)(14)ax 2+bx +c =02、一元二次方程的一般形式的有(1)ax 2+bx +c =0(2)ax 2+bx +c (a ≠0)(3) ax 2+bx +c =0(a ≠0) (4)ax 2+bx +c =0(b ≠0)(5)ax 2=0(a ≠0) (6)ax 2+bx =0(a ≠0)(7) ax 2+c =0(a ≠0)3、若(m 2-4)x 2+3x -5=0是关于x 的一元二次方程,则 ( )A. m ≠2B. m ≠-2C. m ≠-2,或m ≠2D. m ≠-2,且m ≠24、 若关于x 的方程kx 2+2x -1=0是一元二次方程,则k .5、方程(m -1)x 2-(2m -1)x +m =0当m 时,方程是关于x 的一元二次方程.6、已知关于x 的方程()()021122=-++-x k x k(1)当k 为何值时,此方程为一元一次方程?(2)当k 为何值时,此方程为一元二次方程?并写出二次项系数、一次项系数、常数项7、已知关于x 的方程(m -n )x 2+mx+n=0,你认为: (1)当m 和n 满足什么关系时,该方程是一元二次方程? (2)当m 和n 满足什么关系时,该方程是一元一次方程?二、一元二次方程的项1、一元二次方程02=-x x 的常数项为 2、方程3x 2-3x+3=0的二次项系数与一次项系数及常数项之积为( ) A .3B .-3C .3D .-93、关于x 的一元二次方程()0235122=+-++-m m x x m 的常数项为0,则m =4、将下列方程先化为一般形式,写出二次项、二次项系数、一次项、一次项系数、常数项 (1)3x (x +1)=1 (2)(1-x )(1+x )=2(3)4x (x +1)=16 (4)2x (x +3)=x (2-x )三、 一元二次方程的根(1)已知1是关于x 的方程(m +2)x 2-x +4=0的根,则m = . (2)已知-1是关于x 的方程3x 2-x +a =0的根则a = .(3)已知方程x 2+mx -8=0的一个根是x=-3,求m = .另一个根是 (4)若x=1是一元二次方程ax 2+bx -2=0的根,则a+b= .(5)已知m 是方程x 2-x -2=0的根,则m m -2= . (6)若方程()321=---x m m是关于x 的一元二次方程,则m =四、 根的判别式(1)已知方程x 2+2x -b=0有两个不相同的实数根,求b 的取值范围 (2)已知方程x 2+4x+a=0有两个相同的实数根,求a 的取值范围 (3)已知方程3 x (x+1) +m=0无实数根,求m 的取值范围 (4)关于x 的方程kx 2+3x -2=0有实数根,则k 的取值范围(5)若关于x 的一元二次方程x 2-2x +k =0有两个不相等的实数根,则k 的取值范围 (6)关于x 的一元二次方程2x 2-3x +k =0有两个不相等的实数根,则k 的取值范围(7)关于x的方程x2-kx+k-2=0的根的情况(8)关于x的一元二次方程(m-1)x2-2mx+m=0有两个实数根,m的取值范围(9)关于x的方程x2-(2k-1)x+k2=0有两个不相等的实数根,则k的最大整数值是()A.-2B.-1C. 0D. 1(10)关于x的方程mx2-(m+2)x+2=0(m≠0).求证:方程总有两个实数根(11)关于x的方程x2-6x+(4m+1)=0有实数根,求:m的取值范围五、求方程的两根和与积(1)若方程x2-x-1=0的两根为x1、x2,则x1+x2= , x1x2= 。

人教版初中九年级数学上册第二十一章《一元二次方程》经典习题(含答案解析)

人教版初中九年级数学上册第二十一章《一元二次方程》经典习题(含答案解析)

一、选择题1.一面足够长的墙,用总长为30米的木栅栏(图中的虚线)围一个矩形场地ABCD ,中间用栅栏隔成同样三块,若要围成的矩形面积为54平方米,设垂直于墙的边长为x 米,则x 的值为( )A .3B .4C .3或5D .3或4.52.方程22(1)110m x m x -++-=是关于x 的一元二次方程,则m 的取值范围是( ) A .m≠±l B .m≥-l 且m≠1 C .m≥-lD .m >-1且m≠13.如图,若将上图正方形剪成四块,恰能拼成下图的矩形,设1a =,则b =( )A 51- B 51+ C 53+ D 214.关于x 的一元二次方程()25410a x x ---=有实数根,则a 满足( ). A .5a ≠B .1a ≥且5a ≠C .1a ≥D .1a <且5a ≠ 5.一元二次方程2610x x +-=配方后可变形为( ) A .()2310x +=B .()238x +=C .()2310x -=D .()238x -=6.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是( ) A .1k >-B .1k ≥-C .0k ≠D .1k >-且0k ≠7.小刚在解关于x 的方程20(a 0)++=≠ax bx c 时,只抄对了1a =,4b =,解出其中一个根是1x =-.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( )A .不存在实数根B .有两个不相等的实数根C .有一个根是xD .有两个相等的实数根8.方程()55x x x +=+的根为( )A .15=x ,25x =-B .11x =,25x =-C .0x =D .125x x ==-9.若整数a 使得关于x 的一元二次方程()222310a x a x -+++=有两个实数根,并且使得关于y 的分式 方程32133ay yy y -+=--有整数解,则符合条件的整数a 的个数为( ) A .2B .3C .4D .510.如图,在矩形ABCD 中,AB =a (a <2),BC =2.以点D 为圆心,CD 的长为半径画弧,交AD 于点E ,交BD 于点F .下列哪条线段的长度是方程2240x ax +-=的一个根( )A .线段AE 的长B .线段BF 的长C .线段BD 的长D .线段DF 的长11.用配方法解方程23620x x -+=时,方程可变形为( ) A .21(3)3x -= B .21(1)33x -=C .21(1)3-=x D .2(31)1x -=12.若关于x 的一元二次方程260x x c -+=有两个相等的实数根,则常数c 的值为( ) A .3B .6C .8D .913.方程23x x =的根是( ) A .3x =B .0x =C .123,0x x =-=D .123,0x x ==14.已知2x 2+x ﹣1=0的两根为x 1、x 2,则x 1•x 2的值为( ) A .1B .﹣1C .12D .12-15.已知m 是方程2210x x --=的一个根,则代数式2242020m m -+的值为( ) A .2022B .2021C .2020D .2019二、填空题16.一元二次方程(x +2)(x ﹣3)=0的解是:_____. 17.一元二次方程-+=(5)(2)0x x 的解是______________.18.已知关于x 的一元二次方程2230ax x +-=有两个不相等的实数根,则a 的取值范围是______.19.将一元二次方程x 2﹣8x ﹣5=0化成(x +a )2=b (a ,b 为常数)的形式,则b =_____.20.已知x =2是关于x 一元二次方程x 2+kx ﹣6=0的一个根,则另一根是_____. 21.已知x =1是一元二次方程(m -2)x 2+4x -m 2=0的一个根,则m 的值是_____. 22.一件商品原价300元,连续两次降价后,现售价是243元,若每次降价的百分率相同,那么这个百分率为______.23.当m ______时,关于x 的一元二次方程2350mx x -+=有两个不相等的实数根. 24.参加足球联赛的每两队之间都进行两场比赛,共要比赛90场,共有________个队参加比赛.25.已知2x =是关于x 的方程220x x m ++=的一个根,则m =_________.26.为解决民生问题,国家对某药品价格分两次降价,该药品的原价是48元,降价后的价格是30元,若平均每次降价的百分率均为x ,可列方程.为____________.三、解答题27.解方程:2250x x +-=. 28.解方程:(1)26160x x +-=. (2)22430x x --=.29.某水果超市以每千克20元的价格购进一批大枣,规定每千克大枣的售价不低于进价又不高于40元.经市场调查发现:大枣的日销售量y (千克)与每千克售价x (元)之间满足一次函数关系,其部分对应数据如下表所示:(2)该水果超市想要获利1000元的日销售利润,每千克大枣的售价应定为多少元? 30.解方程:(2)4x x x +=-。

人教版初中九年级数学上册第二十一章《一元二次方程》经典练习(含答案解析)

人教版初中九年级数学上册第二十一章《一元二次方程》经典练习(含答案解析)

一、选择题1.一面足够长的墙,用总长为30米的木栅栏(图中的虚线)围一个矩形场地ABCD,中间用栅栏隔成同样三块,若要围成的矩形面积为54平方米,设垂直于墙的边长为x米,则x 的值为()A.3 B.4 C.3或5 D.3或4.5D解析:D【分析】设AD长为x米,四边形ABCD是矩形,根据矩形的性质,即可求得AB的长;根据题意可得方程x(30−4x)=54,解此方程即可求得x的值.【详解】解:设与墙头垂直的边AD长为x米,四边形ABCD是矩形,∴BC=MN=PQ=x米,∴AB=30−AD−MN−PQ−BC=30−4x(米),根据题意得:x(30−4x)=54,解得:x=3或x=4.5,AD的长为3或4.5米.故选:D.【点睛】考查了一元二次方程的应用中的围墙问题,正确列出一元二次方程,并注意解要符合实际意义.2.用配方法解方程x2﹣6x﹣3=0,此方程可变形为()A.(x﹣3)2=3 B.(x﹣3)2=6C.(x+3)2=12 D.(x﹣3)2=12D解析:D【分析】先移项,再把方程两边同时加上一次项系数一半的平方,最后配方即可得新答案.【详解】由原方程移项得:x 2﹣6x =3,方程两边同时加上一次项系数一半的平方得:x 2﹣6x+9=12,配方得;(x ﹣3)2=12.故选:D .【点睛】此题主要考查配方法的运用,配方法的一般步骤为:移项、二次项系数化为1、两边同时加上一次项系数一半的平方、配方完成;熟练掌握配方法的步骤并熟记完全平方公式是解题关键.3.一元二次方程2610x x +-=配方后可变形为( )A .()2310x +=B .()238x +=C .()2310x -=D .()238x -=A 解析:A【分析】方程常数项移到右边,两边加上一次项系数一半的平方即可得到结果.【详解】解:∵x 2+6x-1=0,∴x 2+6x=1,∴x 2+6x+9=10,∴(x+3)²=10,故选:A .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.4.小刚在解关于x 的方程20(a 0)++=≠ax bx c 时,只抄对了1a =,4b =,解出其中一个根是1x =-.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( )A .不存在实数根B .有两个不相等的实数根C .有一个根是xD .有两个相等的实数根A 解析:A【分析】直接把已知数据代入进而得出c 的值,再利用根的判别式求出答案.【详解】∵小刚在解关于x 的方程20ax bx c ++=(0a ≠)时,只抄对了1a =,4b =,解出其中一个根是1x =-,∴()()21410c -+⨯-+=, 解得:3c =,∵核对时发现所抄的c 比原方程的c 值小2,故原方程中5c =,则224441540b ac =-=-⨯⨯=-<,则原方程的根的情况是不存在实数根.故选:A .【点睛】本题主要考查了根的判别式,正确利用方程的解得出c 的值是解题关键.5.在元旦庆祝活动中,参加活动的同学互赠贺卡,共送贺卡42张,则参加活动的同学有( )A .6人B .7人C .8人D .9人B 解析:B【分析】设参加活动的同学有x 人,从而可得每位同学赠送的贺卡张数为(1)x -张,再根据“共送贺卡42张”建立方程,然后解方程即可得.【详解】设参加活动的同学有x 人,由题意得:(1)42x x -=,解得7x =或6x =-(不符题意,舍去),即参加活动的同学有7人,故选:B .【点睛】本题考查了一元二次方程的实际应用,依据题意,正确建立方程是解题关键.6.若关于x 的一元二次方程260x x c -+=有两个相等的实数根,则常数c 的值为( ) A .3B .6C .8D .9D 解析:D【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于c 的一元一次方程,解方程即可得出结论.【详解】解:260x x c -+=有两个相等的实根,2(6)40c ∴∆=--=,解得:9c =故选:D .【点睛】本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于c 的一元一次方程是解题的关键.7.关于x 的一元二次方程(a -1)x²-x +a²-1=0的一个根是0,则a 的值为( ) A .1B .-1C .1或-1D .0B解析:B【分析】把0x =代入,求出a 的值即可.【详解】解:把0x =代入可得210a -=,解得1a =±,∵一元二次方程二次项系数不为0,∴1a ≠,∴1a =-,故选:B .【点睛】本题考查一元二次方程的解,注意二次项系数不为0.8.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A .290x +=B .24410x x -+=C .210x x ++=D .210x x +-=D解析:D【分析】分别求出每个方程的根的判别式即可得到方程的根的情况.【详解】A 选项:2049360∆=-⨯=-<,∴该方程没有实数根,故A 错误;B 选项:()244410∆=--⨯⨯=,∴该方程有两个相等的实数根,故B 错误;C 选项:2141130∆=-⨯⨯=-<,∴该方程没有实数根,故C 错误;D 选项:()2141150∆=-⨯⨯-=>,∴方程有两个不相等的实数根,故D 正确; 故选:D.【点睛】此题考查一元二次方程的根的情况,正确求根的判别式的值,掌握一元二次方程的根的三种情况是解题的关键.9.已知m 是方程2210x x --=的一个根,则代数式2242020m m -+的值为( ) A .2022B .2021C .2020D .2019A解析:A【分析】把x m =代入方程2210x x --=求出221m m -=,把2242020m m -+化成()2222020m m -+,再整体代入求出即可.【详解】∵把x m =代入方程2210x x --=得:2210m m --=,∴221m m -=,∴()222420202220202120202022m m m m -+=-+=⨯+=,故选:A .【点睛】本题考查了一元二次方程的解,采用了整体代入的方法.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.10.如图,BD 为矩形ABCD 的对角线,将△BCD 沿BD 翻折得到BC D '△,BC '与边AD 交于点E .若AB =x 1,BC =2x 2,DE =3,其中x 1、x 2是关于x 的方程x 2﹣4x+m =0的两个实根,则m 的值是( )A .165B .125C .3D .2A解析:A【分析】利用根与系数的关系得到x 1+x 2=4,x 1x 2=m ,AB +12BC =4,m =AB×12BC ,再利用折叠的性质和平行线的性质得到∠EBD =∠EDB ,则EB =ED =3,所以AE =AD−DE =5−2AB ,利用勾股定理得到AB 2+(5−2AB )2=32,解得AB 1025-或AB 1025+(舍去),则BC 2045+,然后计算m 的值. 【详解】 ∵x 1、x 2是关于x 的方程x 2−4x +m =0的两个实根,∴x 1+x 2=4,x 1x 2=m ,即AB +12BC =4,m =AB×12BC , ∵△BCD 沿BD 翻折得到△BC′D ,BC′与边AD 交于点E ,∴∠CBD =∠EBD ,∵AD ∥BC ,∴∠CBD =∠EDB ,∴∠EBD =∠EDB ,∴EB =ED =3,在Rt △ABE 中,AE =AD−DE =BC−3=8−2AB−3=5−2AB ,∴AB 2+(5−2AB )2=32,解得AB 1025-或AB 1025+(舍去), ∴BC =8−2AB =2055+, ∴m =121025-2045+=165.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a≠0)的两根时,x 1+x 2=−b a ,x 1x 2=c a.也考查了矩形的性质和折叠的性质. 二、填空题11.若关于x 的一元二次方程240x x k ++=有两个相等的实数根,则k =______.4【分析】根据一元二次方程根的判别式可直接进行求解【详解】解:∵关于的一元二次方程有两个相等的实数根∴解得:;故答案为:4【点睛】本题主要考查一元二次方程根的判别式熟练掌握一元二次方程根的判别式是解解析:4【分析】根据一元二次方程根的判别式可直接进行求解.【详解】解:∵关于x 的一元二次方程240x x k ++=有两个相等的实数根,∴224440b ac k ∆=-=-=,解得:4k =;故答案为:4.【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.12.设a ,b 是方程220190x x +-=的两个实数根,则11a b+=_____.【分析】根据根与系数关系即可得出a+b 和ab 的值再对代数式变形整体代入即可【详解】解:∵ab 是方程的两个实数根∴∴故答案为:【点睛】本题考查根与系数关系熟记根与系数关系的公式是解题关键 解析:22019【分析】根据根与系数关系即可得出a+b 和ab 的值,再对代数式11a b+变形整体代入即可. 【详解】解:∵a ,b 是方程2220190+-=x x 的两个实数根,∴2a b +=-,2019ab =-, ∴112220192019a b a b ab +-+===-. 故答案为:22019.本题考查根与系数关系.熟记根与系数关系的公式是解题关键.13.关于x 的方程222(1)0x m x m m +-+-=有两个实数根α,β,且2212αβ+=,那么m 的值为________.-1【分析】根据方程的根的判别式得出m 的取值范围然后根据根与系数的关系可得α+β=-2(m-1)α•β=m2-m 结合α2+β2=12即可得出关于m 的一元二次方程解之即可得出结论【详解】解:∵关于x 的解析:-1【分析】根据方程的根的判别式,得出m 的取值范围,然后根据根与系数的关系可得α+β=-2(m-1),α•β=m 2-m ,结合α2+β2=12即可得出关于m 的一元二次方程,解之即可得出结论.【详解】解:∵关于x 的方程x 2+2(m-1)x+m 2-m=0有两个实数根,∴△=[2(m-1)]2-4×1×(m 2-m )=-4m+4≥0,解得:m≤1.∵关于x 的方程x 2+2(m-1)x+m 2-m=0有两个实数根α,β,∴α+β=-2(m-1),α•β=m 2-m ,∴α2+β2=(α+β)2-2α•β=[-2(m-1)]2-2(m 2-m )=12,即m 2-3m-4=0,解得:m=-1或m=4(舍去).故答案为:-1.【点睛】本题考查了根与系数的关系、根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系得出关于m 的一元二次方程.14.一元二次方程x 2-10x+25=2(x ﹣5)的解为____________.x1=5x2=7【分析】移项后分解因式即可得出两个一元一次方程求出方程的解即可;【详解】解:∵(x ﹣5)2﹣2(x ﹣5)=0∴(x ﹣5)(x ﹣7)=0则x ﹣5=0或x ﹣7=0解得x1=5x2=7故答解析:x 1=5,x 2=7【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;【详解】解:∵(x ﹣5)2﹣2(x ﹣5)=0,∴(x ﹣5)(x ﹣7)=0,则x ﹣5=0或x ﹣7=0,解得x 1=5,x 2=7,故答案为:x 1=5,x 2=7.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.15.已知a 为方程210x x -+=的一个根,则代数式2233a a -+的值为_____【分析】把代入已知方程求得然后将其整体代入所求的代数式求值【详解】由题意得:则所以故答案为:【点睛】本题考查了一元二次方程的解的定义解题时注意整体代入数学思想的应用解析:5【分析】把x a =代入已知方程,求得21a a =-,然后将其整体代入所求的代数式求值.【详解】由题意,得:210a a -+=,则21a a =-,所以,()2233231323335a a a a a a -+=--+=-++=. 故答案为:5.【点睛】本题考查了一元二次方程的解的定义.解题时,注意“整体代入”数学思想的应用. 16.如图,将一张矩形纸片ABCD 折叠,使两个顶点A C 、重合,折痕为FG ,若4,8AB BC ==,则线段BF 的长为_________.3【分析】根据折叠性质可得AF=FC 设AF=x则BF=8-x 则根据勾股定理可以得到关于x 的方程解方程得到x 的值后即可得到8-x 即BF 的值【详解】∵将一矩形纸片折叠使两个顶点重合折痕为∴是的垂直平分线解析:3【分析】根据折叠性质可得AF=FC ,设AF=x ,则BF=8-x ,则根据勾股定理可以得到关于x 的方程,解方程得到x 的值后即可得到8-x 即BF 的值 .【详解】∵将一矩形纸片ABCD 折叠,使两个顶点,A C 重合,折痕为FG ,∴FG 是AC 的垂直平分线,∴AF CF =,设AF FC x ==,在Rt ABF ∆中,由勾股定理得:222AB BF AF +=,即()22248x x +-=解得:5x =,即5,853CF BF ==-=,故答案为:3.【点睛】本题考查矩形与折叠的综合运用,综合运用折叠性质、方程思想和勾股定理求解是解题关键.17.若a 是方程210x x ++=的根,则代数式22020a a --的值是________.2021【分析】把x=a 代入已知方程并求得a2+a=-1然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x2+x+1=0得a2+a+1=0解得a2+a=-1所以2020-a2-a=2解析:2021【分析】把x=a 代入已知方程,并求得a 2+a=-1,然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x 2+x+1=0,得a 2+a+1=0,解得a 2+a=-1,所以2020-a 2-a=2020+1=2021.故答案是:2021.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.18.已知2x =是关于x 的方程220x x m ++=的一个根,则m =_________.-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程解这个方程即可【详解】已知是关于x 的方程的一个根故答案为:-8【点睛】本题考查一元二次方程的根问题掌握方程的根的性质会用方程的解代入构造解析:-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程,解这个方程即可【详解】已知2x =是关于x 的方程220x x m ++=的一个根,22220m +⨯+=8m =-故答案为:-8【点睛】本题考查一元二次方程的根问题,掌握方程的根的性质,会用方程的解代入构造参数方程是解题关键19.2019女排世界杯于9月14月至29日在日本举行,赛制为单循环比赛(即每两个队之间比赛一场)一共比赛66场,中国女排以全胜成绩卫冕世界杯冠军为国庆70周年献上大礼,则中国队在本届世界杯比赛中连胜__场11【分析】设中国队在本届世界杯比赛中连胜x 场则共有(x+1)支队伍参加比赛根据一共比赛66场即可得出关于x 的一元二次方程解之取其正值即可得出结论【详解】设中国队在本届世界杯比赛中连胜x 场则共有(x解析:11【分析】设中国队在本届世界杯比赛中连胜x 场,则共有(x+1)支队伍参加比赛,根据一共比赛66场,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】设中国队在本届世界杯比赛中连胜x 场,则共有(x+1)支队伍参加比赛,依题意,得:12x(x+1)=66, 整理,得:x 2+x-132=0,解得:x 1=11,x 2=-12(不合题意,舍去).所以,中国队在本届世界杯比赛中连胜11场.故答案为11.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 20.已知a 、b 是方程2320190x x +-=的两根,则24a a b ++的值为________.2016【分析】将x=a 代入可得然后由根与系数之间的关系得到整理即可得到答案【详解】解:由题意可知【点睛】本题考查了一元二次方程的解以及根与系数之间的关系熟练掌握基础知识是解题的关键解析:2016【分析】将x=a 代入2320190x x +-=,可得2320190a a +-=,然后由根与系数之间的关系得到3a b +=-,整理即可得到答案.【详解】解:由题意可知,2320190a a +-=,3a b +=-,232019a a ∴+=,24a a b ∴++23()a a a b =+++20193=-2016=.【点睛】本题考查了一元二次方程的解以及根与系数之间的关系,熟练掌握基础知识是解题的关键.三、解答题21.若a 为方程2(16x =的一个正根,b 为方程22113y y -+=的一个负根,求+a b 的值.解析:a+b= 5【分析】先求出2(16x =的根4x ,由a 为方程2(16x =的一个正根,得4a =+,再求22113y y -+=的根=1y ±b 为方程22113y y -+=的一个负根,得1b =+a b 即可.【详解】2(16x -=,4x -=±,4x ,a 为方程2(16x =的一个正根,4a =+,22113y y -+=,()2113y -=,1y -==1y ±b 为方程22113y y -+=的一个负根,1b =415a b +=+=.【点睛】本题考查一元二次方程的解法,会比较方程根的正负与大小,掌握一元二次方程的解法是解题关键.22.5月10日,重庆正式启动“加快发展直播带货行动计划”,以推动直播带货和“网红经济”发展,已知云阳桃片糕每盒12元,仙女山红茶每盒50元,第一次直播期间,共卖出云阳桃片糕和仙女山红茶共计2000盒.(1)若卖出桃片糕和红茶的总销售额不低于54400元,则至少卖出仙女山红茶多少盒? (2)第一次直播结束,为了回馈顾客,在第二次直播期向,桃片糕每盒降价10%3a ,红茶每盒降价4a %,桃片糕数量在(1)问最多的数量下增加6a %,红茶数量在(1)问最少的数量下增加4a %,最终第二次直播总销售额比第一次直播的最低销售额54400元少80a元,求a 的值.解析:(1)至少卖出仙女山红茶800盒;(2)a 的值为5.【分析】(1)设卖出仙女山红茶x 盒,则卖出桃片糕(2000-x )盒,由题意得关于x 的不等式,求解即可;(2)根据(1)的结果得出桃片糕最多卖出的盒数,根据题意得出关于x 的方程,解方程即可.【详解】解:(1)设卖出仙女山红茶x 盒,则卖出桃片糕(2000-x )盒,由题意得:50x+12(2000-x )≥54400,解得:x≥800,∴x 的最小值是800,∴至少卖出仙女山红茶800盒;(2)∵(1)中最少卖出仙女山红茶800盒,∴桃片糕最多卖出的盒数为:2000-800=1200(盒).由题意得:12×(110%3a -)×1200×(1+6a%)+50(1-4a%)×800×(1+4a%)=54400-80a , 解得:a 1=0(舍去),a 2=5.∴a 的值为5.【点睛】 本题考查了一元一次不等式和一元二次方程在实际问题中的应用,理清题中的数量关系并正确列式是解题的关键.23.某商场销售一批衬衫,每件进价是120元,当每件衬衫售价为160元时,平均每天可售出20件,为了扩大销售,尽快清库,增加盈利,商场经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件,据此规律,请回答:(1)当每件衬衫降价5元时,每天可销售多少件衬衫?商场获得的日盈利是多少? (2)若商场平均每天想盈利1200元,则每件衬衫应降价多少元?解析:(1)当每件衬衫降价5元时,每天可销售30件衬衫,商场获得的日盈利是1050元;(2)每件衬衫应降价20元【分析】(1)利用日销售量202=+⨯每件衬衫降低的价格,即可求出每天可销售衬衫的数量,利用日盈利额=销售每件衬衫的利润×日销售量,即可求出日盈利额;(2)设每件衬衫应降价x 元,则每天可销售()202x +件衬衫,根据日盈利额=销售每件衬衫的利润×日销售量,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论.【详解】(1)根据题意得,降价后,可售出:205230+⨯=(件)∴()1605120301050--⨯=(元)∴当每件衬衫降价5元时,每天可销售30件衬衫,商场获得的日盈利是1050元; (2)设每件衬衫应降价x 元,则每天可销售()202x +件衬衫依题意,得:()()1601202021200x x --+=,∴2302000x x -+=解得:110x =,220x =∵要尽快清库∴20x∴每件衬衫应降价20元.【点睛】本题考查了一元二次方程、有理数混合运算的知识;解题的关键是熟练掌握一元二次方程的性质,从而完成求解.24.解方程:22350x x --= (请用两种方法解方程) 解析:152x =,21x =- 【分析】采用公式法和因式分解法求解即可.【详解】解:方法1:∵a =2,b =-3,c =-5,∴2449b ac ∆=-=,∴x =∴152x =,21x =-; 方法2:()()2510x x -+=∴ 152x =,21x =-. 【点睛】 本题考查解一元二次方程,根据方程的特点选择合适的求解方法是解题的关键. 25.解答下列各题.(1)解方程:2(1)90x --=.(2)已知1x =,求225x x -+的值.解析:(1)14x =,22x =-;(2)6.【分析】(1)方程整理后,直接开平方即可求解;(2)代数式225x x -+配方整理成()214x -+后,把x 的值代入计算即可.【详解】(1)由原方程得2(1)9x -=,∴13x -=±,解得:14x =,22x =-;(2)∵2225(1)4x x x -+=-+,将1x =代入得:原式)2114=-+ 24=+6=.【点睛】本题考查了解一元二次方程-直接开平方法以及求代数式的值,熟练掌握完全平方公式是解本题的关键.26.解下列方程:(1)2320x x +-=(2)()220x x x -+-=解析:(1)1x =,2x =2)11x =-,22x =【分析】(1)直接应用公式法即可求解;(2)利用因式分解法即可求解.【详解】解:(1)2320x x +-=1,2x ==∴1x =,2x (2)()220x x x -+-=因式分解可得:()()120x x +-=,即10x +=或20x -=,解得11x =-,22x =.【点睛】本题考查解一元二次方程,根据方程特点选择合适的求解方法是解题的关键.27.物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销,销售量持续走高.在售价不变的基础上,三月底的销售量达到400件,设二、三这两个月月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顺客,经调查发现,销售单价与月平均销售的关系如下表:解析:(1)25%;(2)35元【分析】(1)由题意可得,1月份的销售量为:256件;设2月份到3月份销售额的月平均增长率,则二月份的销售量为:256(1+x );三月份的销售量为:256(1+x )(1+x ),又知三月份的销售量为:400元,由此等量关系列出方程求出x 的值,即求出平均增长率; (2)利用销量×每件商品的利润=4250求出即可.【详解】解:(1)设二、三这两个月的月平均增长率为x ,根据题意可得:256(1+x )2=400,解得:x 1=14=25%,x 2=94(不合题意舍去). 答:二、三这两个月的月平均增长率为25%; (2)由表可知:该商品每降价1元,销售量增加5件,设当商品降价m 元时,商品获利4250元,根据题意可得:(40-25-m )(400+5m )=4250,解得:m 1=5,m 2=-70(不合题意舍去),40-5=35元.答:销售单价应定为35元,商品获利4250元.【点睛】 此题主要考查了一元二次方程的应用,本题的关键在于理解题意,找到等量关系准确的列出方程是解决问题的关键.28.解方程.(1)230x x +-=. (2)4(21)12x x x -=-.解析:(1)12x x ==.(2)1211,24x x ==-. 【分析】(1)用配方法解即可;(2)先移项然后提取公因式,即可求解.【详解】(1)23+=x x ,∴211344x x ++=+,∴211324x ⎛⎫+= ⎪⎝⎭,∴122x +=±.1211,22x x ∴==-. (2)移项,得4(21)(21)0x x x -+-=, 提取公因式,得(21)(41)0x x -+=, 210x ∴-=或410x +=,1211,24x x ∴==-. 【点睛】本题考查了一元二次方程的解法,掌握基本解法并熟练进行解题是关键.。

人教版九年级数学上册 第21章专题 练习 一元二次方程的应用(含答案)

人教版九年级数学上册 第21章专题 练习 一元二次方程的应用(含答案)

专题:一元二次方程的应用一、 增长率问题1. 我市某楼盘准备以每平方 10000 元的均价对外销售由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方 8100 元的均价开盘销售,则平均每次下调的百分率是( )A. 8%B. 9%C. 10%D. 11%2. 某服装原价为 300 元,连续两次涨价a%后,售价为 363 元,则a 的值为()A. 5B. 10C. 15D. 203. 与去年同期相比我国石油进口量增长了a%,而单价增长了%2a,总费用增长了%5.15,则 a ( )A. 5B. 10C. 15D. 204. 一件产品原来每件的成本是 1000 元,在市场售价不变的情况下,由于连续两次降低成本,现在利润每件增加了 190 元,则平均每次降低成本的( )A. 10%B. 9.5%C. 9%D. 8.5%5. 某商品经过连续两次降价,销售单价由原来的 125 元降到 80 元,则两次降价的平均百分率为( )A. 10%B. 15%C. 20%D. 25%二、 传播问题6. 某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是 43,则这种植物每个支干长出的小分支个数是( )A. 4B. 5C. 6D. 77. 有一个人收到短信后,再用手机转发短消息,每人只转发一次,经过两轮转发后共有 133 人收到短消息,问每轮转发中平均一个人转发给()个人. A. 9B. 10C. 11D. 128. 有一人患流感,经过两轮传染后,共有 121 人患上了流感,那么每轮传染中,平均一个人传染的人数为( )A. 8人B. 9人C. 10人D. 11人9. 某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是 31,每个支干长出小分支的数量是()A. 5B. 6C. 5或6D. 710.有一人患了红眼病,经过两轮传染后共有144 人患了红眼病,那每轮传染中平均一个人传染的人数为()人.A. 10B. 11C. 12D. 1311.有一个人患了流感,经过两轮传染后得知第二次被传染的有420 人,如果每轮传染率都相同,那么每轮传染中平均一个人传染了个人.专题:一元二次方程的应用三、互动问题12.元旦节时,九年级一班有若干同学聚会共庆新年的来临,他们每两人均互送贺卡一张,已知他们共送出贺卡90 张,则参加此次同学聚会的人数是()A.9 B.10 C.12 D.1813.毕业典礼后,九年级(1)班有若干人,若每人给全班的其他成员赠送一张毕业纪念卡,则全班送贺卡共1190 张,九年级(1)班人数为()A.34 B.35 C.36 D.3714.重庆一中初二年级要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21 场比赛,应该邀请的球队个数为()A.6 B.7 C.8 D.915.一个小组新年互送贺卡,若全组共送贺卡42 张,则这个小组有()人.A.6 B.7 C.8 D.916.一个小组有若干人,新年互送贺年卡一张,已知全组共送贺年卡72 张,则这个小组有()A.12 人B.18 人C.9 人D.10 人17.要组织一次篮球场地,赛制为单循环形式,计划安排15 场比赛,应邀请()支球队参加比赛.A.3 B.4 C.5 D.6四、数字问题18.已知一个两位数,个位上的数字比十位上的数字少 4,这个两位数十位和个位交换位置后,新两位数与原两位数的积为 1612,那么原数中较大的两位数是()A .95B .59C .26D .6219.若两个连续整数的积为 56,则这两个连续整数的和为()A .15B .15-C .15±D .1-20.两个连续偶数之积为 168,则这两个连续偶数之和为()A .26B .26-C .26±D .都不对 21.已知两数之差为 4,积等于 45,则这两个数是() A .5 和 9B .9-和5-C .5 和5-或9-和 9D .5 和 9 或9-和5-专题:一元二次方程的应用六、 面积问题22.如图,要设计一幅宽cm 20,长cm 30的图案,其中有两横两竖的彩条,横竖彩条的宽度比为2:1,如果要使彩条所占面积是图案面积的7519,则竖彩条宽度为( ) A .cm 1B .cm 2C .cm 19D .cm 1或cm 1923.如图,有一长方形鸡场,鸡场的一边靠墙(墙长 18 米),另三边用竹篱笆围成,竹篱笆的总长为 35 米,与墙平行的边留有 1 米宽的门(门用其它材料做成),若鸡场的面积为 160 平方米,则鸡场与墙垂直的边长为()A .7.5 米B .8 米C .10 米D .10 米或 8 米24.如图所示,某小区在宽cm 20,长cm 32的矩形地面上修筑同样宽的人行道(图中阴影部分),余下的部分种上草坪.要使草坪的面积为2540cm ,则道路的宽为() A .cm 50B .cm 5C .cm 2D .cm 125.如图,房间地面的图案是用大小相同的黑、白正方形镶嵌而成.图中,第 1 个黑色形由 3 个正方形组成,第 2 个黑色形由 7 个正方形组成,那么组成第 12 个黑色形的正方形个数是A .44B .45C .46D .4726.如图,利用一面长 18 米的墙,用篱笆围成一个矩形场地ABCD ,设AD 长为x 米,AB 长为y 米,矩形的面积为S 平方米.(1)若篱笆的长为 32 米,求y 与x 的函数关系式,并直接写出自变量x 的取值范围;(2)在(1)的条件下,求S 与x 的函数关系式,并求出使矩形场地的面积为 120 平方米的围法.27.某社区决定把一块长m 50,宽m 30的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小、形状都相同的矩形),空白区域为活动区,且四周的 4 个出口宽度相同,当绿化区较长边x 为何值时,活动区的面积达到21341m ?28.阳光小区附近有一块长m 100,宽m 80的长方形空地,在空地上有两条相同宽度的步道(一纵一横)和一个边长为步道宽度 7 倍的正方形休闲广场,两条步道的总面积与正方形休闲广场的面积相等,如图 1 所示,设步道的宽为)(m a .(1)求步道的宽;(2)为了方便市民进行跑步健身,现按如图 2 所示方案增建塑胶跑道.已知塑胶跑道的宽为m 1,长方形区域甲的面积比长方形区域乙大2441m ,且区域丙为正方形,求塑胶跑道的总面积.29.如图,若要建一个矩形鸡场,鸡场的一面靠墙,墙长18 米,墙对面有一个2 米宽的门,另三边用竹篱笆围成,篱笆总长33 米,且围成的鸡场面积为150 平方米,则鸡场的长和宽各为多少米?专题:一元二次方程的应用七、降价促销问题30.随着夏季的到来,各类水果自然也成了大众喜爱的消费产品.已知某水果店第一次售出苹果和芒果共200千克,其中苹果的售价为24 元/千克,芒果的售价为20 元/千克,总销售额为4320 元.(1)求水果店第一次售出苹果和芒果各多少千克;(2)通过最近的调查发现消费者更加青睐于购买芒果,经销售统计发现与第一次相比,芒果的售价每降低1 元,销量就增加20 千克,苹果的售价和销量均保持不变,如果第二次的苹果和芒果全部售完比第一次的总销售额多980 元,求第二次芒果的售价.31.家乐商场销售某种衬衣,每件进价100 元,售价160 元,平均每天能售出30 件为了尽快减少库存,商场采取了降价措施.调查发现,这种衬衣每降价1 元,其销量就增加3 件.商场想要使这种衬衣的销售利润平均每天达到3600 元,每件衬衣应降价多少元?32.某商场今年年初以每件25 元的进价购进一批商品.当商品售价为40 元时,三月份销售128 件,四、五月份该商品的销售量持续走高,在售价不变的前提下,五月份的销量达到200 件.假设四、五两个月销售量的月平均增长率不变(1)求四、五两个月销售量的月平均增长率;(2)从六月起,商场采用降价促销方式回馈顾客,经调查发现,该商品每降 1 元,销售量增加 5 件,当商品降价多少元时,商场可获利2250 元?33.某商店经销A、B两种商品,现有如下信息:信息1:A、B两种商品的进货单价之和是3 元;信息2:A A商品零售单价比进货单价多1 元,B商品零售单价比进货单价的2 倍少 1 元;信息3:按零售单价购买A商品3 件和B商品2 件,共付12 元.请根据以上信息,解答下列问题:(1)求A、B两种商品的零售单价;(2)该商店平均每天卖出A商品500 件和B商品1500 件.经调查发现,A种商品零售单价每降0.1 元,A种商品每天可多销售 100 件.商店决定把 商品的零售单价下降)0( m m 元,B 商品的零售单价和销量都不变,在不考虑其他因素的条件下,当m 为多少时,商品每天销售A 、B 两种商品获取的总利润为 2000 元?34.某商场销售一批鞋子,平均每天可售出 20 双,每双盈利 50 元.为了扩大销售,增加盈利,商场决定采取降价措施,调查发现,每双鞋子每降价 1 元,商场平均每天可多售出 2 双. (1)若每双鞋子降价 20 元,商场平均每天可售出多少双鞋子?(2)若商场每天要盈利 1750 元,且让顾客尽可能多得实惠,每双鞋子应降价多少元?35.一商品销售某种商品,平均每天可售出 20 件,每件盈利 50 元.为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于 25 元的前提下,经过一段时间销售,发现销售单价每降低 1 元,平均每天可多售出 2 件. (1)若每件商品降价 2 元,则平均每天可售出 件;(2)当每件商品降价多少元时,该商品每天的销售利润为 1600 元?36.某超市销售一种饮料,平均每天可售出100 箱,每箱利润12 元,为了扩大销售,增加利润,超市准备适当降价.据测算,每箱每降价1 元,平均每天可多售出20 箱.(1)若每箱降价3 元,每天销售该饮料可获利多少元?(2)若要使每天销售该饮料获利1400 元,则每箱应降价多少元?(3)能否使每天销售该饮料获利达到1500 元?若能,请求出每箱应降价多少元;若不能,请说明理由.37.涡阳某童装专卖店在销售中发现,一款童装每件进价为60 元,销售价为100 元时,每天可售出30 件,为了迎接“六·一”儿童节,商店决定采取适当的降价措施,以扩大销售量增加利润,经市场调查发现,如果每件童装降价1 元,那么平均可多售出3 件.(1)若每件童装降价x元,每天可售出件,每件盈利元(用含的代数式表示).(2)每件童装降价多少元时,能让利于顾客并且商家平均每天能赢利1800 元.38.某商店经销甲、乙两种商品,已知一件甲种商品和一件乙种商品的进价之和为 30 元,每件甲种商品的利润是 4 元,每件乙种商品的售价比其进价的 2 倍少 11 元,小明在该商店购买 8 件甲种商品和 6 件乙种商品一共用了 262 元.(1)求甲、乙两种商品的进价分别是多少元?(2)在(1)的前提下,经销商统计发现,平均每天可售出甲种商品 400 件和乙种商品 300 件,如果将甲种商品的售价每提高 0.1 元,则每天将少售出 7 件甲种商品;如果将乙种商品的售价每提高 0.1 元,则每天将少售出 8 件乙种商品.经销商决定把两种商品的价格都提高a 元,在不考虑其他因素的条件下,当a 为多少时,才能使该经销商每天销售甲、乙两种商品获取的利润共 2500 元?39.某公司销售一种产品,进价为 20 元 件,售价为 80 元 件,公司为了促销,规定凡一次性购买 10 万件以上的产品,每多买 1 万件,每件产品的售价就减少 2 元,但售价最低不能低于 50 元/件,设一次性购买x 万件)0(>x (1)若15=x ,则售价应是 元/件;(2)一次性购买多少件产品时,该公司的销售总利润为 728 万元;40.因魔幻等与众不同的城市特质,以及抖音等新媒体的传播,重庆已经成为国内外游客最喜欢的旅游目的地城市之一,在著名“网红打卡地”磁器口,美食无数,一家特色小面店希望在五一长假期间获得好的收益,经过测算知,该小面成本为每碗 6 元,借鉴以往经验:若每碗卖 25 元,平均每天将销售 300 碗,若价格每降低 1 元,则平均每天可多售 30 碗.(1)若该小面店每天至少卖出 360 碗,则每碗小面的售价不超过多少元?(2)为了更好的维护重庆城市形象,店家规定每碗售价不得超过20 元,则当每碗售价定为多少元时,店家才能实现每天利润6300 元.参考答案1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.35.36.37.38.39.40.。

人教版数学九年级上册第二十一章解一元二次方程计算题练习卷[含答案]

人教版数学九年级上册第二十一章解一元二次方程计算题练习卷[含答案]

人教版数学九年级上册第二十一章解一元二次方程计算题练习卷一、计算题1.解下列方程:(1)x2−4x=0;(2)(x−6)(x+1)=−12.2.解方程:(1)(x+2)2﹣9=0;(2)x2﹣2x﹣3=0.3.解方程:(1)x2-2x-3=0;(2)x (x-2)-x+2=0.4.解方程:(x+3)2−25=05.解方程:x(x+2)=2x+4.6.解方程:(x+3)(x−√3)=x−√3.7.解方程:(1)x2=4x;(2)x(x﹣2)=3x﹣6.(1)4x(2x+1)=3(2x+1);(2)﹣3x2+4x+4=0.9.解下列方程:(1)x2−2x−8=0(2)(x−1)2=(x−1)10.用适当方法解下列一元二次方程:(1)x2﹣6x=1;(2)x2﹣4=3(x﹣2).11.解方程:x(x﹣3)=x﹣312.解方程:(x+3)2﹣2x(x+3)=0.13.解方程:x(2x﹣5)=2x﹣5.14.解下列关于x的方程.(1)6x(x−1)=x−1;(2)3x2−2x=x2+x+1.(1)x2−2x+1=0(2)2x2−7x+3=016.解方程:(1)(x−2)2=3(x−2);(2)3x2−4x−1=0.17.解方程:(1)(x﹣4)(5x+7)=0;(2)x2﹣4x﹣6=0.18.解方程:(1)x2﹣3x=0;(2)2x(3x﹣2)=2﹣3x.答案解析部分1.【答案】(1)解:x2−4x=0x(x−4)=0解得x1=0,x2=4(2)解:(x−6)(x+1)=−12x2−5x−6=−12x2−5x+6=0即(x−2)(x−3)=0解得x1=3,x2=22.【答案】(1)解:(x+2)2﹣9=0(x+2)2=9x+2=±3所以x1=−5,x2=1.(2)解:x2﹣2x﹣3=0(x+1)(x-3)=0x-3=0或x+1=0所以x1=−1,x2=3.3.【答案】(1)解:x2-2x-3=0x2-2x+1=3+1(x-1)2=4x-1=±2∴x1=3,x2=-1;(2)解:x (x-2)-(x-2)=0(x-2)(x-1)=0x-2=0或x-1=0∴x1=2,x2=1.4.【答案】解:(x+3)2=25,∴x+3=±5,解得:x1=2,x2=-8.5.【答案】解:x(x+2)=2x+4,x(x+2)-2(x+2)=0,(x+2)(x-2)=0,x+2=0或x-2=0,∴x1=-2,x2=2.6.【答案】解:(x+3)(x−√3)−(x−√3)=0,(x−√3)[(x+3)−1]=0.即(x−√3)(x+2)=0.∴x−√3=0或x+2=0,∴x1=√3或x2=−2.7.【答案】(1)解:∵x2=4x,∴x2-4x=0,则x(x-4)=0,∴x=0或x-4=0,解得x1=0,x2=4;(2)解:∵x(x-2)=3x-6,∴x(x-2)-3(x-2)=0,则(x-2)(x-3)=0,∴x-2=0或x-3=0,解得x1=2,x2=3.8.【答案】(1)解:4x(2x+1)=3(2x+1)(4x−3)(2x+1)=0x1=34,x2=−12(2)解:−3x2+4x+4=0a=−3,b=4,c=4,Δ=42+3×4×4=64∴x=−b±√b2−4ac2a=−4±8−6∴x1=−23,x2=29.【答案】(1)解:x2−2x−8=0(x−4)(x+2)=0解得:x1=−2,x2=4.(2)解:(x−1)2=(x−1)(x−1−1)(x−1)=0(x−2)(x−1)=0解得:x1=1,x2=2.10.【答案】(1)解:两边同加32.得x2−6x+32=1+32,即(x−3)2=10,两边开平方,得x−3=±√10,即x−3=√10,或x−3=−√10,∴x1=√10+3,x2=−√10+3(2)解:(x+2)(x−2)=3(x−2),∴(x+2)(x−2)−3(x−2)=0,∴(x−2)(x−1)=0,∴x−2=0,或x−1=0,解得x1=2,x2=111.【答案】解:x(x-3)=x-3x(x-3)-(x-3)=0,(x-3)(x-1)=0,解得:x1=3,x2=1.12.【答案】解:(x+3)2﹣2x(x+3)=0(x+3)(x+3−2x)=0(x+3)(3−x)=0解得x1=3,x2=−313.【答案】解:(2x-5)(x-1)=01x1=52,x2=14.【答案】(1)解:移项,得6x(x−1)−(x−1)=0由此可得(6x−1)(x−1)=06x−1=0,x−1=0解得x 1=16,x 2=1. (2)解:移项,得2x 2−3x −1=0a =2,b =−3,c =−1Δ=b 2−4ac =(−3)2−4×2×(−1)=17>0 ∴x =−(−3)±√172×2=3±√174 ∴x 1=3+√174,x 2=3−√174 15.【答案】(1)解:x 2−2x +1=0,即(x-1)2=0,∴x 1=x 2=1(2)解:2x 2−7x +3=0,因式分解得:(2x-1)(x-3)=0,∴2x-1=0或x-3=0,∴x 1=12,x 2=3 16.【答案】(1)解:原方程可化为(x −2)(x −5)=0 即x −2=0或x −5=0,∴x 1=2,x 2=5(2)解:∵a =3,b =−4,c =−1,∴Δ=b 2−4ac =28>0,∴x =4±√282×3=2±√73, ∴x 1=2+√73,x 2=2−√7317.【答案】(1)解:(x −4)(5x +7)=0, x −4=0或5x +7=0,x =4或x =−75, 即x 1=4,x 2=−75(2)解:x 2−4x −6=0,x 2−4x =6,x 2−4x +4=6+4,(x−2)2=10,x−2=±√10,x=2±√10,即x1=2+√10,x2=2−√10 18.【答案】(1)解:x2﹣3x=0,x(x﹣3)=0,∴x=0或x﹣3=0,∴x1=0,x2=3;(2)解:2x(3x﹣2)=2﹣3x,2x(3x﹣2)+(3x﹣2)=0,则(3x﹣2)(2x+1)=0,∴3x﹣2=0或2x+1=0,解得x1=23,x2=﹣12.。

人教版九年级数学上册《第二十一章 一元二次方程》单元测试卷(带答案)

人教版九年级数学上册《第二十一章 一元二次方程》单元测试卷(带答案)

人教版九年级数学上册《第二十一章 一元二次方程》单元测试卷(带答案)一、单选题1.关于x 的方程2(1)320a x x -+-=是一元二次方程的条件是( )A .0a ≠B .1a =C .1a ≠D .a 为任意实数2.在下列各选项中,哪个选项是一元二次方程( )A .212x x =+B .25630x y -=-C .2345x x --D .233x x +=3.若关于x 的一元二次方程()22410k x x -++=有两个实数根则k 的取值范围是( )A .k 6<B .k 6<且2k ≠C .6k ≤且2k ≠D .6k >4.关于x 的方程2(1)320a x x --+=是一元二次方程,则( )A .a>0B .a≠0C .a≠1D .1a <5.目前电影《红船》票房已突破60亿元.第一天票房约3亿元,三天后票房累计总收入达9.5亿元,如果第二天,第三天票房收入按相同的增长率增长,增长率设为x .则可列方程为( )A .()319.5x +=B .()2319.5x += C .()23319.5x ++= D .()()2331319.5x x ++++= 6.国家决定对某药品价格分两次降价,若设平均每次降价的百分率为x ,该药品原价为18元,降价后的价格为y 元,则y 与x 的函数关系式为( )A .()361y x =-B .()361y x =+C .()2181y x =-D .()2181y x =-7.一次会议上,每两个参加会议的人都相互握一次手,有人统计一共握了 36 次手.设到会的人数为 x 人,则根据题意列方程为( )A .x (x+1)=36B .x (x ﹣1)=36C .2x (x+1)=36D .x (x ﹣1)=36×28.用配方法解方程24220x x --=时,配方结果正确的是( )A .()2224x -=B .()2225x +=C .()2226x -=D .()2227x -= 9.如果关于x 的一元二次方程k 2x 2﹣(2k +1)x +1=0有两个实数根,那么k 的取值范围是( )A .k ≥﹣14B .k ≥﹣14且k ≠0C .k <﹣14D .k >-14且k ≠0 10.有一人感染上感冒病毒,经过两轮传染后有100人感染这种病毒.则每一轮传染中平均一个人传染了( )A .8人B .9人C .10人D .11人11.某树主干长出若干数目的支干,每个支干又长出同样数目小分支,主干、支干、和小分支总数共57.若设主干长出x 个支干,则可列方程是( )A .(1+x )2=57B .1+x+x 2=57C .(1+x )x=57D .1+x+2x=5712.某单位在两个月内将开支从24000元降到18000元.如果设每月降低开支的百分率均为x (x >0),则由题意列出的方程应是( )A .B .C .D .二、填空题13.一元二次方程24510x x -+=的一次项系数为 .14.某校九年级举行篮球比赛,第一轮每个班级都要和其他班级进行一场比赛,结果共进行了28场比赛,问这个年级共有几个班级?设这个年级共有x 个班级,列方程得 ;某市篮球联赛每个队都要和同组的其他队进行两场比赛,然后决定小组出线的队伍.如果设小组中有x 支球队,共比赛了90场,可列方程 .15.已知一元二次方程()21210m x x --+=无实数根,则m 的取值范围是 . 16.设x 1,x 2是一元二次方程x 2﹣5x ﹣1=0的两实数根,则x 1+x 2的值为 .17.已知关于x 的一元二次方程()21410m x x --+=有两个不相等的实数根,则m 的取值范围是 .18.已知 a 、b 是方程 x 2﹣2x ﹣1=0 的两个根,则 a 2﹣a +b 的值是 .19.已知实数a 、b 满足a -b 2=4,则代数式a 2-3b 2+a -14的最小值是 .20.已知代数式()51x x -+与代数式96x -的值互为相反数,则x =三、解答题(本大题共5小题,共60分。

人教版初中九年级数学上册第二十一章《一元二次方程》经典练习卷(含答案解析)

人教版初中九年级数学上册第二十一章《一元二次方程》经典练习卷(含答案解析)

一、选择题1.欧几里得在《几何原本》中,记载了用图解法解方程22x ax b +=的方法,类似地可以用折纸的方法求方程210x x +-=的一个正根,如图,裁一张边长为1的正方形的纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落在线段EA 上,折出点B 的新位置F ,因而EF EB =,类似地,在AB 上折出点M 使AMAF =,表示方程210x x +-=的一个正根的线段是( )A .线段BMB .线段AMC .线段AED .线段EM B解析:B【分析】 设正方形的边长为1,AF =AM =x ,根据勾股定理即可求出答案.【详解】解:设正方形的边长为1,AF =AM =x ,则BE =EF =12,AE =x+12, 在Rt △ABE 中,∴AE 2=AB 2+BE 2,∴(x +12)2=1+(12)2, ∴x 2+x -1=0,∴AM 的长为x 2+x -1=0的一个正根,故选:B .【点睛】本题考查一元二次方程,解题的关键是根据勾股定理列出方程,本题属于中等题型. 2.用配方法转化方程2210xx +-=时,结果正确的是( ) A .2(1)2x += B .2(1)2x -= C .2(2)3x += D .2(1)3x +=A 解析:A【分析】方程两边都加上一次项系数的一半,利用完全平方公式进行转化,即可得到答案.【详解】解:2210x x +-=2212x x ++=∴2(1)2x +=,故选:A .【点睛】此题考查一元二次方程的配方法,掌握配方法是计算方法是解题的关键.3.已知三角形的两边长分别为4和6,第三边是方程217700x x -+=的根,则此三角形的周长是( )A .10B .17C .20D .17或20B 解析:B【分析】根据第三边是方程x 2﹣17x +70=0的根,首先求出方程的根,再利用三角形三边关系求出即可.【详解】解:∵217700x x -+=,∴(10)(7)0x x --=,∴110x =,27x =,∵4610+=,无法构成三角形,∴此三角形的周长是:46717++=.故选B .【点睛】此题主要考查了因式分解法解一元二次方程以及三角形的三边关系,正确利用因式分解法解一元二次方程可以大大降低计算量.4.一元二次方程2610x x +-=配方后可变形为( )A .()2310x +=B .()238x +=C .()2310x -=D .()238x -=A 解析:A【分析】方程常数项移到右边,两边加上一次项系数一半的平方即可得到结果.【详解】解:∵x 2+6x-1=0,∴x 2+6x=1,∴x 2+6x+9=10,∴(x+3)²=10,故选:A .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.5.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B .1k ≥-C .0k ≠D .1k >-且0k ≠D【分析】根据一元二次方程根的判别式得到关于k 的不等式,然后求解不等式即可.【详解】是一元二次方程,0k ∴≠.有两个不相等的实数根,则Δ0>,2Δ24(1)0k =-⨯-⨯>,解得1k >-.1k ∴>-且0k ≠.故选D【点睛】本题考查一元二次方程ax 2+bx +c =0(a ≠0)根的判别式:(1)当△=b 2﹣4ac >0时,方程有两个不相等的实数根;(2)当△=b 2﹣4ac =0时,方程有有两个相等的实数根;(3)当△=b 2﹣4ac <0时,方程没有实数根.6.等腰三角形的底边长为6,腰长是方程28150x x -+=的一个根,则该等腰三角形的周长为( )A .12B .16C .l2或16D .15B解析:B【分析】利用因式分解法解方程求出x 的值,再根据等腰三角形的概念和三角形三边关系确定出三角形三边长度,继而得出答案.【详解】解:∵x 2-8x+15=0,∴(x-3)(x-5)=0,则x-3=0或x-5=0,解得x 1=3,x 2=5,①若腰长为3,此时三角形三边长度为3、3、6,显然不能构成三角形,舍去; ②若腰长为5,此时三角形三边长度为5、5、6,可以构成三角形,所以该等腰三角形的周长为5+5+6=16,故选:B .【点睛】本题主要考查等腰三角形的概念、三角形三边的关系、解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.7.方程(2)2x x x -=-的解是( )A .2B .2-,1C .1-D .2,1-D【分析】先移项得到x(2﹣x)+(2﹣x)=0,然后利用因式分解法解方程.【详解】解:x(2﹣x)+(2﹣x)=0,(2﹣x)(x+1)=0,2﹣x=0或x+1=0,所以x1=2,x2=﹣1.故选:D.【点睛】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).8.一元二次方程x2=4x的解是()A.x=4 B.x=0 C.x=0或-4 D.x=0或4第II卷(非选择题)请点击修改第II卷的文字说明参考答案D解析:D【分析】先移项,利用因式分解法解一元二次方程.【详解】解:x2=4xx2-4x=0x(x-4)=0x=0或x=4,故选:D.【点睛】此题考查解一元二次方程,直接开平方法,配方法,公式法,因式分解法,根据一元二次方程的特点选择恰当的解法是解题的关键.9.下列方程中,有两个不相等的实数根的是()A.x2=0 B.x﹣3=0 C.x2﹣5=0 D.x2+2=0C解析:C【分析】利用直接开平方法分别求解可得.解:A .由x 2=0得x 1=x 2=0,不符合题意;B .由x ﹣3=0得x =3,不符合题意;C .由x 2﹣5=0得x 1=x 2=,符合题意; D .x 2+2=0无实数根,不符合题意;故选:C .【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.10.已知方程2202030x x +-=的根分别为a 和b ,则代数式2a a 2020a b ++的值为( )A .0B .2020C .1D .-2020A 解析:A【分析】将a 代入方程,可得2202030a a +-=,即220302a a =-,代入要求的式子,即可得到3+ab ,而a 、b 是方程的两个根,根据韦达定理,可求出ab 的值,即可求出答案.【详解】解:∵方程2202030x x +-=的根分别为a 和b∴2202030a a +-=,即220302a a =-∴2a a 2020a b ++=32020a -+ab+2020a=3+ab∵ab=-3∴2a a 2020a b ++=32020a -+ab+2020a=3+ab=3-3=0故选:A .【点睛】本题主要考查一元二次方程的解以及韦达定理,熟练解代入方程以及观察式子特点,抵消部分式子是解决本题的关键. 二、填空题11.已知x a =是方程2350x x --=的根,则代数式234a a -++的值为________.-1【分析】利用x=a 是方程x2-3x-5=0的根得到a2-3a=5然后利用整体代入的方法计算代数式的值【详解】解:∵x=a 是方程x2-3x-5=0的根∴a2-3a-5=0∴a2-3a=5∴故答案为解析:-1【分析】利用x=a 是方程x 2-3x-5=0的根得到a 2-3a=5,然后利用整体代入的方法计算代数式的值.【详解】解:∵x=a 是方程x 2-3x-5=0的根,∴a 2-3a-5=0,∴a 2-3a=5,∴()223434541a a a a -++=--+=-+=-.故答案为-1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.解方程:268x x +=-解:两边同时加_________,得26x x ++________8=-+________则方程可化为(_______)2=________两边直接开平方得_____________即_________或_____________所以1x =__________,2x =___________.999x+31x+3=±1x+3=1x+3=-1-2-4【分析】根据配方法求解即可【详解】解:两边同时加9得99则方程可化为1两边直接开平方得x+3=±1即x+3=1或x+3=-1所以-2-4故答案解析:9 9 9 x+3 1 x+3=±1 x+3=1 x+3=-1 -2 -4【分析】根据配方法求解即可.【详解】解:两边同时加9,得26x x ++98=-+9,则方程可化为()23x +=1,两边直接开平方得x+3=±1,即x+3=1或x+3=-1,所以1x =-2,2x =-4.故答案为:9;9;9;x+3;1;x+3=±1;x+3=1;x+3=-1;-2;-4.【点睛】本题考查了配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.13.将方程2630x x +-=化为()2x h k +=的形式是______.【分析】将方程常数项移到方程右边左右两边都加上9左边化为完全平方式右边合并即可得到所求的结果【详解】∵∴∴∴故答案为:【点睛】考查了解一元二次方程-配方法利用此方法解方程时首先将二次项系数化为1常数解析:()2312x +=【分析】将方程常数项移到方程右边,左右两边都加上9,左边化为完全平方式,右边合并即可得到所求的结果.【详解】∵2630x x +-=∴263x x +=∴26939x x+++=∴()2312x+= 故答案为:()2312x+=【点睛】考查了解一元二次方程-配方法,利用此方法解方程时,首先将二次项系数化为1,常数项移到方程右边,然后方程两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个常数,开方即可求出解.14.将一元二次方程(32)(1)83x x x -+=-化成一般形式是_____.【分析】先计算多项式乘以多项式并移项再合并同类项即可【详解】故答案为:【点睛】此题考查一元二次方程的一般形式掌握多项式乘以多项式合并同类项计算法则是解题的关键解析:23710x x -+=【分析】先计算多项式乘以多项式,并移项,再合并同类项即可.【详解】(32)(1)83x x x -+=-23322830x x x x +---+=23710x x -+=故答案为:23710x x -+=.【点睛】此题考查一元二次方程的一般形式,掌握多项式乘以多项式,合并同类项计算法则是解题的关键.15.若一元二次方程ax 2﹣bx ﹣2016=0有一根为x =﹣1,则a +b =_____.2016【分析】将x=-1代入ax2﹣bx ﹣2016=0得到a+b ﹣2016=0然后将a+b 当作一个整体解答即可【详解】解:把x =﹣1代入一元二次方程ax2﹣bx ﹣2016=0得:a+b ﹣2016=解析:2016.【分析】将x=-1代入ax 2﹣bx ﹣2016=0得到a +b ﹣2016=0,然后将a+b 当作一个整体解答即可.【详解】解:把x =﹣1代入一元二次方程ax 2﹣bx ﹣2016=0得:a +b ﹣2016=0,即a +b =2016.故答案是2016.【点睛】本题主要考查了一元二次方程的解,理解一元二次方程的解的概念是解答本题的关键. 16.如图,要设计一幅宽20cm ,长30cm 的图案,其中有两横彩条、一竖彩条,横、竖彩条的宽度比为1:3,如果要使彩条所占面积是图案面积的19%,竖彩条的宽度为________.3cm 【分析】设横彩条的宽度是xcm 竖彩条的宽度是3xcm 根据如果要使彩条所占面积是图案面积的19可列方程求解【详解】解:设横彩条的宽度是xcm 竖彩条的宽度是3xcm 则(30-3x )(20-2x )=解析:3cm【分析】设横彩条的宽度是xcm ,竖彩条的宽度是3xcm ,根据“如果要使彩条所占面积是图案面积的19%”,可列方程求解.【详解】解:设横彩条的宽度是xcm ,竖彩条的宽度是3xcm ,则(30-3x )(20-2x )=20×30×(1-19%),解得x 1=1,x 2=19(舍去).所以3x=3.答:竖彩条的宽度是3cm .故答案为:3cm【点睛】本题考查一元二次方程的应用,解题的关键是理解题意,学会正确寻找等量关系,构建方程解决问题.17.若a 是方程210x x ++=的根,则代数式22020a a --的值是________.2021【分析】把x=a 代入已知方程并求得a2+a=-1然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x2+x+1=0得a2+a+1=0解得a2+a=-1所以2020-a2-a=2解析:2021【分析】把x=a 代入已知方程,并求得a 2+a=-1,然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x 2+x+1=0,得a 2+a+1=0,解得a 2+a=-1,所以2020-a 2-a=2020+1=2021.故答案是:2021.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.18.已知x 1和x 2是方程2x 2-5x+1=0的两个根,则1212x x x x +的值为_____.5【分析】直接根据根与系数的关系求出再代入求值即可【详解】解:∵x1x2是方程2x2-5x+1=0的两个根∴x1+x2=-∴故答案为:5【点睛】本题考查了根与系数的关系:若x1x2是一元二次方程ax解析:5【分析】直接根据根与系数的关系,求出12x x +,12x x 再代入求值即可.【详解】解:∵x 1,x 2是方程2x 2-5x+1=0的两个根,∴x 1+x 2=--55-=22,121=2x x . ∴121252==512x x x x + 故答案为:5.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=b a -,x 1x 2=c a. 19.已知a ,b 是一元二次方程22310x x +-=的两实数根,则11a b+=________.3【分析】根据方程的系数结合根与系数的关系可得出a+b=-ab=-将其代入中即可求出结论【详解】解:∵是方程的两根故答案为:3【点睛】本题考查了根与系数的关系牢记两根之和等于-两根之积等于是解题的关键解析:3【分析】根据方程的系数结合根与系数的关系,可得出a+b=-32,ab=-12,将其代入11a b a b ab ++=中即可求出结论.【详解】解:∵a ,b 是方程22310x x +-=的两根, 32a b ∴+=-,12ab =-, 3112312a b a b ab -+∴+===-. 故答案为:3.【点睛】 本题考查了根与系数的关系,牢记“两根之和等于-b a ,两根之积等于c a”是解题的关键. 20.如图,世纪广场有一块长方形绿地,AB =18m ,AD =15m ,在绿地中开辟三条宽为xm 的道路后,剩余绿地的面积为144m 2,则x =_____.【分析】由在绿地中开辟三条宽为xm 的道路后剩余绿地的面积为144m2即可得出关于x 的一元二次方程此题得解【详解】解:设道路的宽为xm 根据题意得:(18﹣2x )(15﹣x )=144解得:或(舍去)答: 解析:3【分析】由在绿地中开辟三条宽为xm 的道路后,剩余绿地的面积为144m 2,即可得出关于x 的一元二次方程,此题得解.【详解】解:设道路的宽为xm ,根据题意得:(18﹣2x )(15﹣x )=144,解得:13x =或221x =(舍去),答:道路的宽为3m .故答案为:3.【点睛】此题考查一元二次方程的应用,根据题意找出等量关系,正确列方程是解题的关键.三、解答题21.解方程:2250x x +-=.解析:1216,16x x =-=-【分析】利用配方法解方程.【详解】2250x x +-=225x x +=2(1)6x +=1x =-±∴1211x x =-=-【点睛】此题考查解一元二次方程的方法—配方法,将等式变形为平方形式是解题的关键. 22.(1)用配方法解:221470x x --=;(2)用因式分解法解:()()222332x x -=-.解析:(1)1x =,2x =2)x 1=1,x 2=-1. 【分析】(1)先移项,把二次项系数化为1,再把方程两边同时加上一次项系数一半的平方,进而开平方解方程即可得答案;(2)先根据完全平方公式把方程两边展开,再移项整理成一元二次方程的一般形式,再利用因式分解法解方程即可得答案.【详解】(1)221470x x --=移项得:2x 2-14x=7,二次项系数化为1得:x 2-7x=72, 配方得:x 2-7x+27()2=72+27()2,即(x-72)2=634,开平方得:x-72=,解得:1x =272x -=. (2)()()222332x x -=-展开得:4x 2-12x+9=9x 2-12x+4移项、合并得:5x 2-5=0,分解因式得(x+1)(x-1)=0,解得:x 1=1,x 2=-1.【点睛】本题考查配方法及因式分解法解一元二次方程,熟练掌握解方程的步骤是解题关键. 23.解方程:(1)23620x x -+=(2)222(3)9x x -=-解析:(1)13x =,233x =;(2)x=3或x=9. 【分析】(1)根据公式法即可求出答案;(2)根据因式分解法即可求出答案.【详解】解:(1)∵3x 2-6x+2=0,∴a=3,b=-6,c=2,∴△=36-24=12,∴6363x ±±==∴1x =2x = (2)∵2(x-3)2=x 2-9,∴2(x-3)2=(x-3)(x+3),∴(x-3)[(2(x-3)-(x+3)]=0,∴(x-3)(x-9)=0∴x-3=0,x-9=0∴x=3或x=9.【点睛】本题考查解一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.24.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元:如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买了这种服装x 件.(1)填空:解析:(1)①80;②74;③25x ≥(2)20件【分析】(1)①如果一次性购买不超过10件,单价为80元;②用单价80元减去(13-10)×2,得出答案即可;③求出单价恰好是50元时的购买件数,即可分析得到;(2)根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出等式方程求出即可.【详解】解:(1)①∵如果一次性购买不超过10件,单价为80元,故填:80;②80-(13-10)×2=74,故填:74;③设购买a 件时,单价恰好是50元,80-(a -10)×2=50,解得:a =25,而题目中“单价不得低于50元”,∴25x ≥时,单价是50元,故填:25x ≥;(2)因为1200>800,所以一定超过了10件,设购买了x 件这种服装且多于10件,根据题意得出:[80-2(x -10)]x =1200,解得:x 1=20,x 2=30,当x =20时,80-2(20-10)=60元>50元,符合题意;当x =30时,80-2(30-10)=40元<50元,不合题意,舍去;答:购买了20件这种服装.【点睛】此题主要考查了一元二次方程的应用,根据已知得出每件服装的单价是解题关键. 25.计算题(1)解方程:2690x x ++= (2)解不等式组:3152(2)7x x x ->⎧⎨+<+⎩解析:(1)123x x ==-; (2)23x <<【分析】(1)利用因式分解法求解即可.(2)分别求出两个不等式的解集,最后找出公共部分即可.【详解】解:(1)2690x x ++=因式分解得:()230x +=解得:123x x ==-. (2)()31512272x x x ->⎧⎨+<+⎩ 解不等式1得:2x >解不等式2得:3x <∴不等式组的解集是23x <<.【点睛】本题考察解一元二次方程和一元一次不等式组,解题的关键是:(1)用因式分解法求解一元二次方程(2)不等式组解集的确定,原则是“同大取大,同小取小,大小小大中间找,大大小小找不到”.26.解方程:212270x x -+=解析:13x =,29x =.【分析】利用因式分解法解此一元二次方程,即可求解.【详解】解:212270x x -+=分解因式,得(3)(9)0x x --=,则30x -=或90x -=,∴13x =,29x =.【点睛】本题考查了解一元二次方程,熟练掌握一元二次方程的解法并能结合方程特点选择适当的解法是解题的关键.27.解方程(1)2420x x -+=(2)()255210x x ++= (3)2560x x -+=(4)()3133x x x +=+解析:(1)1222x x ==2)121x x ==-;(3)1232x x ==,;(4)1211x x =-=, 【分析】(1)直接利用配方法解方程得出答案即可;(2)方程整理后,利用利用配方法解方程得出答案即可;(3)利用分解因式法解方程即可;(4)方程整理后,利用提取公因式法分解因式进而解方程即可.【详解】(1)2420x x -+=,移项得:242x x -=-,配方得:24424x x -+=-+,即2(2)2x -=,开方得:2x -=,解得:1222x x ==(2)()255210x x ++=,整理得:2210x x ++=,即2(1)0x +=,∴121x x ==-;(3)2560x x -+=,因式分解得:()()320x x --=,∴30x -=,20x -=,∴1232x x ==,;(4)()3133x x x +=+,整理得:()()110x x x +-+=,因式分解得:()()110x x +-=,∴10x +=,10x -=, ∴1211x x =-=,. 【点睛】本题主要考查了解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.28.阅读下列材料:对于任意的正实数a ,b ,总有2a b ab +≥成立(当且仅当a b =时,等号成立),这个不等式称为“基本不等式”利用“基本不等式”可求一些代数式的最小值.例如:若0x >,求式子1x x +的最小值. 解:∵0x >,∴112212x x x x+≥⋅==,∴1x x +的最小值为2.(1)若0x >,求9x x+的最小值; (2)已知1x >,求2251x x x -+-的最小值. (3)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,AOB 、COD △的面积分别为4和9,求四边形ABCD 面积的最小值.解析:(1)6;(2)4;(3)25.【分析】(1)将原式变形为9x x +≥ (2)结合阅读材料将原式变形为()411x x -+-后即可确定最小值; (3)设S △BOC =x ,已知S △AOB =4,S △COD =9,则由等高三角形可知:BOC AOB COD AOD S S S S =△△△△,用含x 的式子表示出36AOD S x =△,再按照题中所给公式求得最小值,加上常数即可. 【详解】解:(1)∵0x >,∴9x x +≥又∵6=, ∴96x x+≥ ∴9x x+的最小值为6; (2)∵1x >∴10x ->, ∴222521411x x x x x x -+-++=--()2141x x -+=-()411x x =-+-≥∵∴22541x x x -+≥- ∴2251x x x -+-的最小值为4. (3)设(0)BOC S x x =>△,则由等高三角形可知:BOC AOB COD AODS S S S =△△△△ ∴49AOD x S =△,即36AOD S x=△, ∴四边形ABCD 面积364913x x =+++≥,∵13=25,当且仅当x=6时,取等号,∴四边形ABCD面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用,同时本题还考查了等高三角形的在面积计算中的应用.对不能直接应用公式的,需要正确变形才可以应用,本题中等难度略大.。

人教版九年级数学上册第二十一章 一元二次方程 专题练习题(含答案,教师版)

人教版九年级数学上册第二十一章 一元二次方程 专题练习题(含答案,教师版)

人教版九年级数学上册第二十一章 一元二次方程 专题练习题专题1 一元二次方程的解法1.用直接开平方法解下列方程:(1)3x 2-27=0;解:3x 2=27,x 2=9,x =±3,∴x 1=3,x 2=-3.(2)2(3x -1)2=8.解:(3x -1)2=4,3x -1=±2,∴x 1=1,x 2=-13.2.用配方法解下列方程:(1)x 2-2x +5=0;解:x 2-2x =-5,x 2-2x +1=-5+1,(x -1)2=-4<0,∴原方程无解.(2)14x 2-6x +3=0.解:x 2-24x +12=0,(x -12)2=132,x-12=±233,∴x1=233+12,x2=-233+12.3.用因式分解法解下列方程:(1)x2-3x=0;解:x(x-3)=0,∴x=0或x-3=0.∴x1=0,x2=3.(2)(x-3)2-9=0;解:∵(x-3)2-32=0,∴(x-3+3)(x-3-3)=0,即x(x-6)=0.∴x=0或x-6=0.∴x1=0,x2=6.(3)2(t-1)2+8t=0;解:原方程可化为2t2+4t+2=0.∴t2+2t+1=0.∴(t+1)2=0.∴t1=t2=-1.(4)x2-3x=(2-x)(x-3);解:原方程可化为x(x-3)=(2-x)(x-3).移项,得x(x-3)-(2-x)(x-3)=0.∴(x-3)(2x-2)=0.∴x -3=0或2x -2=0.∴x 1=3,x 2=1.(5)x 2-4x -12=0.解:分解因式,得(x -6)(x +2)=0,∴x 1=6,x 2=-2.4.用公式法解下列方程:(1)3x 2-2x +1=0;解:∵a =3,b =-2,c =1,b 2-4ac =(-2)2-4×3×1=-8<0,∴原方程无实数根.(2)x 2-23x +2=0;解:∵a =1,b =-23,c =2,b 2-4ac =(-23)2-4×1×2=4,∴x =-(-23)±22×1=3±1. ∴x 1=3-1,x 2=3+1.(3)3x =2(x +1)(x -1). 解:将原方程化为一般形式,得2x 2-3x -2=0.∵a =2,b =-3,c =-2,b 2-4ac =(-3)2-4×2×(-2)=11>0,224∴x 1=6+224,x 2=6-224. 5.用合适的方法解下列方程:(1)4(x -3)2-25(x -2)2=0;解:原方程可化为[2(x -3)]2-[5(x -2)]2=0,即(2x -6)2-(5x -10)2=0.∴(2x -6+5x -10)(2x -6-5x +10)=0,即(7x -16)(-3x +4)=0.∴x 1=167,x 2=43. (2)5(x -3)2=x 2-9;解:5(x -3)2=(x +3)(x -3),移项,得5(x -3)2-(x +3)(x -3)=0.∴(x -3)[5(x -3)-(x +3)]=0,即(x -3)(4x -18)=0.∴x -3=0或4x -18=0.∴x 1=3,x 2=92. (3)t 2-22t +18=0. 解:方程两边都乘8,得8t 2-42t +1=0.∵a =8,b =-42,c =1, ∴b 2-4ac =(-42)2-4×8×1=0.2×84∴t 1=t 2=24. 6.阅读材料:为了解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1看作一个整体,设x 2-1=y ,那么原方程可化为y 2-5y +4=0①,解得y 1=1,y 2=4.当y =1时,x 2-1=1,∴x 2=2.∴x =±2;当y =4时,x 2-1=4,∴x 2=5.∴x =± 5.故原方程的解为x 1=2,x 2=-2,x 3=5,x 4=- 5.解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用换元法达到了降次的目的,体现了转化的数学思想;(2)请利用以上知识解方程:(x 2+x)2-5(x 2+x)+4=0;(3)请利用以上知识解方程:x 4-3x 2-4=0.解:(2)设y =x 2+x ,则y 2-5y +4=0.∴(y -1)(y -4)=0.解得y 1=1,y 2=4.①当x 2+x =1,即x 2+x -1=0时,解得x =-1±52; ②当x 2+x =4,即x 2+x -4=0时,解得x =-1±172. 综上所述,原方程的解为x 1=-1+52,x 2=-1-52,x 3=-1+172,x 4=-1-172.(3)设x 2=y ,则y 2=x 4,原方程化为y 2-3y -4=0,解此方程,得y 1=4,y 2=-1.∵y ≥0,∴y =4.当y =4时,x 2=4,解得x 1=2,x 2=-2.专题2 根的判别式及根与系数的关系的综合1.若关于x 的一元二次方程x 2+mx +m 2-3m +3=0的两根互为倒数,则m 的值等于(B)A .1B .2C .1或2D .02.已知关于x 的方程x 2-(2k 2-3)x +k +7=0有两个不相等的实数根x 1,x 2,且x 1=5-x 2,则k 的值为-2.3.已知关于x 的一元二次方程x 2+(2m +3)x +m 2=0有两个实数根α,β.(1)求m 的取值范围;(2)若1α+1β=-1,求m 的值. 解:(1)由题意知,(2m +3)2-4×1×m 2≥0,解得m ≥-34. (2)由根与系数的关系,得α+β=-(2m +3),αβ=m 2.∵1α+1β=-1,∴α+βαβ=-1. ∴-(2m +3)m 2=-1. 变形得m 2-2m -3=0,解得m 1=-1,m 2=3.经检验,m 1=-1和m 2=3是原分式方程的解.由(1)知m ≥-34,∴m 1=-1应舍去. ∴m 的值为3.4.已知关于x 的一元二次方程x 2-6x +m +4=0有两个实数根x 1,x 2.(1)求m 的取值范围;(2)若x 1,x 2满足3x 1=|x 2|+2,求m 的值.解:(1)∵关于x 的一元二次方程x 2-6x +m +4=0有两个实数根x 1,x 2,∴Δ=(-6)2-4(m +4)=20-4m ≥0.解得m ≤5.(2)∵关于x 的一元二次方程x 2-6x +m +4=0有两个实数根x 1,x 2,∴x 1+x 2=6①,x 1x 2=m +4②.∵3x 1=|x 2|+2,∴x 1>0.当x 2≥0时,有3x 1=x 2+2③,联立①③,解得x 1=2,x 2=4.∴8=m +4.∴m =4,满足m ≤5;当x 2<0时,有3x 1=-x 2+2④,联立①④,解得x 1=-2,x 2=8(不合题意,舍去).∴m 的值为4.5.已知x 1,x 2是关于x 的一元二次方程x 2-2(m +1)x +m 2+5=0的两个实数根.(1)若(x 1-1)(x 2-1)=19,求m 的值;(2)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.解:(1)根据题意,得x1+x2=2(m+1),x1x2=m2+5.(x1-1)(x2-1)=19整理,得x1x2-(x1+x2)+1=19.把x1+x2=2(m+1),x1x2=m2+5代入x1x2-(x1+x2)+1=19,得m2+5-2(m+1)+1=19.整理,得m2-2m-15=0.解得m1=-3,m2=5.∵由Δ=4(m+1)2-4(m2+5)≥0,得m≥2,∴m1=-3不合题意,应舍去.∴m的值为5.(2)若等腰△ABC的腰长为7,把x=7代入方程x2-2(m+1)x+m2+5=0,得49-14(m+1)+m2+5=0,解得m1=4,m2=10.若m=4,则原方程为x2-10x+21=0,解得x1=7,x2=3.△ABC三边为7,7,3(符合题意).若m=10,则原方程为x2-22x+105=0,解得x1=7,x2=15.△ABC三边为7,7,15(不合题意,舍去).若等腰△ABC的底边长为7,则Δ=[-2(m +1)]2-4(m 2+5)=8m -16=0,解得m =2.原方程为x 2-6x +9=0.解得x 1=x 2=3.△ABC 三边为3,3,7(不合题意,舍去).综上可知:△ABC 三边为7,7,3,周长为7+7+3=17,即这个三角形的周长为17.专题3 一元二次方程的实际应用1.印度古算书中有这样一首诗:“一群猴子分两队,高高兴兴在游戏.八分之一再平方,蹦蹦跳跳树林里;其余十二叽喳喳,伶俐活泼又调皮.告我总数共多少,两队猴子在一起.”你能解决这个问题吗?解:设有x 只猴子,由题意,得(18x)2+12=x , 整理,得x 2-64x +768=0,解得x 1=16,x 2=48.答:这群猴子的总数为16只或48只.2.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16 m ,宽(AB)9 m 的矩形场地ABCD 上修建三条同样宽的小路,其中两条与AB 平行,另一条与AD 平行,其余部分种草.要使草坪部分的总面积为112 m 2,则小路的宽应为多少?解:设小路的宽应为x m ,根据题意,得(16-2x)(9-x)=112.解得x 1=1,x 2=16.∵16>9,∴x =16不符合题意,舍去.∴x =1.答:小路的宽应为1 m.3.某农场去年种植了10亩地的南瓜,亩产量为2 000 kg ,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,设南瓜种植面积的增长率为x.(1)则今年南瓜的种植面积为10(1+x)亩;(用含x 的代数式表示)(2)如果今年南瓜亩产量的增长率是种植面积的增长率的12,今年南瓜的总产量为60 000 kg ,求南瓜亩产量的增长率.解:根据题意,得10(1+x)×2 000(1+x 2)=60 000, 整理,得x 2+3x -4=0,解得x 1=1=100%,x 2=-4(不合题意,舍去).∴12x =50%. 答:南瓜亩产量的增长率为50%.4.某养殖场为了响应党中央的扶贫政策,今年起采用“场内+农户”养殖模式,同时加强对蛋鸡的科学管理,蛋鸡的产蛋率不断提高,三月份和五月份的产蛋量分别是2.5万千克与3.6万千克,现假定该养殖场蛋鸡产蛋量的月增长率相同.(1)求该养殖场蛋鸡产蛋量的月平均增长率;(2)假定当月产的鸡蛋当月在各销售点全部销售出去,且每个销售点每月平均销售量最多为0.32万千克.如果要完成六月份的鸡蛋销售任务,那么该养殖场在五月份已有的销售点的基础上至少再增加多少个销售点?解:(1)设该养殖场蛋鸡产蛋量的月平均增长率为x ,根据题意,得2.5(1+x)2=3.6.解得x =0.2,x =-2.2(不合题意舍去).答:该养殖场蛋鸡产蛋量的月平均增长率为20%.(2)设再增加y 个销售点,根据题意,得3.6+0.32y ≥3.6×(1+20%),解得y ≥94. 答:至少再增加3个销售点.5.如图,在直角墙角AOB(OA ⊥OB ,且OA ,OB 长度不限)中,要砌20 m 长的墙,与直角墙角AOB 围成地面为矩形的储仓,且地面矩形AOBC 的面积为96 m 2.(1)求矩形地面的长;(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为50元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?解:(1)设AC =x m ,则BC =(20-x)m ,由题意,得x(20-x)=96,整理,得x 2-20x +96=0,解得x 1=12,x 2=8.当AC =12时,BC =8;当AC =8时,BC =12.答:矩形地面的长为12 m.(2)①若选用规格为0.80×0.80(单位:m)的地板砖:120.8×80.8=15×10=150(块), 150×50=7 500(元);②若选用规格为1.00×1.00(单位:m)的地板砖:121×81=96(块), 96×80=7 680(元).∵7 500<7 680,∴选用规格为0.80×0.80(单位:m)的地板砖费用较少.6.为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价x(单位:万元/台)成一次函数关系.(1)求年销售量y 与销售单价x 的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元/台,如果该公司想获得10 000万元的年利润,那么该设备的销售单价应是多少万元/台?解:(1)设年销售量y 与销售单价x 的函数关系式为y =kx +b(k ≠0),将(40,600),(45,550)代入y =kx +b ,得⎩⎪⎨⎪⎧40k +b =600,45k +b =550.解得⎩⎪⎨⎪⎧k =-10,b =1 000. ∴年销售量y 与销售单价x 的函数关系式为y =-10x +1 000.(2)根据题意,得(x -30)(-10x +1 000)=10 000,整理,得x 2-130x +4 000=0,解得x 1=50,x 2=80.∵此设备的销售单价不得高于70万元/台,∴x =50.答:该设备的销售单价应是50万元/台.7.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x <20)之间满足一次函数关系,其图象如图所示:(1)求y 与x 之间的函数关系式;(2)商贸公司要想获利2 090元,则这种干果每千克应降价多少元?解:(1)设一次函数关系式为y =kx +b ,当x =2,y =120;当x =4,y =140.∴⎩⎪⎨⎪⎧2k +b =120,4k +b =140,解得⎩⎪⎨⎪⎧k =10,b =100. ∴y 与x 之间的函数关系式为y =10x +100.(2)由题意,得(60-40-x)(10x +100)=2 090,解得x 1=1,x 2=9.∵让顾客得到更大的实惠,∴x =9.答:商贸公司要想获利2 090元,且让顾客得到更大的实惠,则这种干果每千克应降价9元.8.如图,在△ABC 中,∠C =90°,AC =16 cm ,BC =8 cm ,一动点P 从点C 出发沿着CB 边以2 cm/s 的速度运动,另一动点Q 从点A 出发沿着AC 边以4 cm/s 的速度运动,P ,Q 两点同时出发,运动时间为t s.(1)若△PCQ 的面积是△ABC 面积的14,求t 的值; (2)△PCQ 的面积能否与四边形ABPQ 面积相等?若能,求出t 的值;若不能,说明理由.解:(1)根据题意,得S △PCQ =12×2t(16-4t),S △ABC =12×8×16=64. ∵△PCQ 的面积是△ABC 面积的14, ∴12×2t(16-4t)=64×14. 整理,得t 2-4t +4=0,解得t =2.答:当t =2 s 时,△PCQ 的面积为△ABC 面积的14. (2)△PCQ 的面积不能与四边形ABPQ 面积相等.理由如下:当△PCQ 的面积与四边形ABPQ 面积相等时,则S △PCQ =12S △ABC ,即12×2t(16-4t)=64×12, 整理,得t 2-4t +8=0.∵Δ=(-4)2-4×1×8=-16<0,∴此方程没有实数根.∴△PCQ 的面积不能与四边形ABPQ 面积相等.。

人教版九年级数学上册第二十一章《一元二次方程》测试卷(含答案)

人教版九年级数学上册第二十一章《一元二次方程》测试卷(含答案)

人教版九年级数学上册第二十一章《一元二次方程》测试卷(含答案)题号 一 二 三总分 19 20 21 22 23 24分数一.选择题(共10小题,每题3分,共30分) 1.下列式子是一元二次方程的是( )A .3x 2-6x +2B .x 2-y +1=0 C .x 2=0D.1x 2+x =22.若方程2x 2+mx =4x +2不含x 的一次项,则m =( )A .1B .2C .3D .43.一元二次方程x 2-2x =0的根是( )A .x 1=0,x 2=-2B .x 1=1,x 2=2C .x 1=1,x 2=-2D .x 1=0,x 2=24.用配方法解方程x 2-6x -8=0时,配方结果正确的是( )A .(x -3)2=17B .(x -3)2=14C .(x -6)2=44D .(x -3)2=1 5.若方程x 2﹣5x ﹣1=0的两根为x 1、x 2,则+的值为( )A .5B .C .﹣5D .6. 已知(m 2+n 2)(m 2+n 2+2)-8=0,则m 2+n 2的值为( )A. -4或2 B .-2或4 C. 4 D. 2 7、某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长率为( )A .10%B .15%C .20%D .25%8、已知实数x 满足()()2224120x x x x ----=,则代数式21x x -+的值是( )A .7B .-1C .7或-1D .-5或39、上海世博会的某纪念品原价168元,连续两次降价a %后售价为128元,下面所列方程中正确的是( )A.168(1+a%)2=128 B.168(1-a%)2=128C.168(1-2a%)=128 D.168(1-a2%)=12810、《代数学》中记载,形如21039x x+=的方程,求正数解的几何方法是:“如图1,先构造一个面积为2x的正方形,再以正方形的边长为一边向外构造四个面积为52x的矩形,得到大正方形的面积为392564+=,则该方程的正数解为853-=.”小聪按此方法解关于x的方程260x x m++=时,构造出如图2所示的图形,已知阴影部分的面积为36,则该方程的正数解为()A.6 B.353 C.352 D.3 352二、填空题(每题3分,共24分)11.关于x的方程3x m﹣3﹣2x+4=0是一元二次方程,则m的值为.12.把方程x2+x+3=0变形为(x+h)2=k的形式,其中h,k为常数,则k =.13.若关于x的一元二次方程ax2+2x﹣1=0无解,则a的取值范围是.14.若一元二次方程mx+x2+2=0有两个相等的实数根,则m =.15.菱形的两条对角线的长分别是方程x2﹣mx+56=0的两个根,则菱形的面积是.16.长汀县体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请支球队参加比赛.17.若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=.18.已知关于x的二次方程ax2+bx+c=0没有实数根,一位老师改动了方程的二次项系数后,得到的新方程有两个根为12和4;另一位老师改动原来方程的某一个系数的符号,所得到的新方程的两个根为﹣2和6,那么=.三.解答题(共46分,19题6分,20 ---24题8分)19.解方程:(1)x2+2x﹣3=0;(2)2(5x﹣1)2=5(5x﹣1);(3)(x+3)2﹣(2x﹣3)2=0;(4)3x2﹣4x﹣1=0.20.已知关于x的方程x2+mx﹣6=0的一个根为2,求方程的另一个根.21.已知关于x的一元二次方程x2﹣(2k﹣2)x+k2=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若方程的两实数根x1,x2满足|x1+x2|=x1x2﹣22,求k的值.22.已知等腰三角形的三边长分别为a,b,4,且a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,求m的值.23.如图,要利用一面墙(墙长为55m),用100m的围栏建羊圈,基本结构为三个大小相同的矩形.(1)如果围成的总面积为400m2,求羊圈的边AB,BC的长各为多少;(2) 保持羊圈的基本结构,羊圈总面积是否可以达到800m2?请说明理由.24.为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2018年该市投入基础教育经费5000万元,2020年投入基础教育经费7200万元.(1)求该市投入基础教育经费的年平均增长率.(2) 如果按(1) 中投入基础教育经费的年平均增长率计算,该市计划2021年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台调配给农村学校,若购买一台电脑需3500元,购买一台实物投影仪需2000元,则最多可购买电脑多少台?参考答案一.选择题(共10小题)题号 1 2 3 4 5 6 7 8 9 10 答案 C D D A C B B C D A二.填空题(共8小题)11.解:∵关于x的方程3x m﹣3﹣2x+4=0是一元二次方程,∴m﹣3=2,解得:m=5,故答案为:5.12.解;移项,得x2+x=﹣3,配方,得x2+x+=﹣3+,∴(x+)2=﹣.∴h=,k=﹣.故答案为:﹣.13.解:∵关于x的一元二次方程ax2+2x﹣1=0无解,∴a≠0且Δ=22﹣4×a×(﹣1)<0,解得a<﹣1,∴a的取值范围是a<﹣1.故答案为:a<﹣1.14.解:∵mx+x2+2=0,∴x2+mx+2=0,a=1,b=m,c=2,∵方程有两个相等的实数根,∴b2﹣4ac=0,∴m2﹣4×1×2=0,即m2=8,∴m=.故答案为:.15.解:设菱形的两条对角线的长为m、n,根据题意得mn=56,所以菱形的面积=mn=×56=28.故答案为28.16.解:设要邀请x支球队参加比赛,由题意,得x(x﹣1)=28解得:x1=8,x2=﹣7(舍去).答:应邀请8支球队参加比赛.故答案为:8.17.解:∵α、β是一元二次方程x2+2x﹣6=0的两根,∴α+β=﹣2,αβ=﹣6,∴α2+β2=(α+β)2﹣2αβ=(﹣2)2﹣2×(﹣6)=4+12=16,故答案为:16.18.解:利用新方程有两个根为12和4构造1个一元二次方程为:x2﹣(12+4)x+12×4=0 即x2﹣16x+48=0,与ax2+bx+c=0对应.于是得到:b=﹣16k,c=48k.(其中k是不为0的整数.)从而原方程为:kx2﹣16kx+48k=0(方程从无根变有根,只能是改变系数a或c).同样再由另一个新方程的两个根﹣2和6,构造一个方程:x2﹣(﹣2+6)x+(﹣2)×6=0,即x2﹣4x﹣12=0.此方程两边同乘以4k,得 4kx2﹣16kx﹣48k=0,它与ax2﹣16kx+48k=0对应,得a=4k,从而原方程就是:4kx2﹣16kx+48k =0,所以==8.故答案为8.三.解答题(共7小题)19.解:(1)分解因式得:(x+3)(x﹣1)=0,可得x+3=0或x﹣1=0,解得:x1=﹣3,x2=1;(2)方程整理得:2(5x﹣1)2﹣5(5x﹣1)=0,分解因式得:(5x﹣1)[2(5x﹣1)﹣5]=0,可得5x﹣1=0或10x﹣7=0,解得:x1=0.2,x2=0.7;(3)分解因式得:(x+3+2x﹣3)(x+3﹣2x+3)=0,可得3x=0或﹣x+6=0,解得:x1=0,x2=6;(4)这里a=3,b=﹣4,c=﹣1,∵△=16+12=28>0,∴x==,解得:x1=,x2=.20.解:设方程另一个根为x1,根据题意得2x1=﹣6,解得x1=﹣3,即方程的另一个根是﹣3.21.解:(1)∵方程有两个实数根x1,x2,∴△=(2k﹣2)2﹣4k2≥0,解得k≤;(2)由根与系数关系知:x1+x2=2k﹣2,x1x2=k2,∵k≤,∴2k﹣2<0,又|x1+x2|=x1x2﹣1,代入得,|2k﹣2|=k2﹣22,可化简为:k2+2k﹣24=0.解得k=4(不合题意,舍去)或k=﹣6,∴k=﹣6.22.解:当a=4时,∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴4+b=12,∴b=8,而4+4≠0,不符合题意;当b=4时,∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴4+a=12,而4+4=8,不符合题意;当a=b时,∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴12=a+b,解得a=b=6,∴m+2=36,∴m=34.23.【答案】(1)设AB=xm,则BC=(100-4x)m,100-4x55,x11.25.由题意知,x(100-4x)=400,即x2-25x+100=0,解得x1=20,x2=5(舍),AB=20m,BC=100-420=20m.答:羊圈的边AB长为20m,BC长为20m.(2)不能.理由:设AB=ym时,羊圈总面积可以达到800m2,由题意,得y(100-4y)=800,即y2-25y+200=0,a=1,b=-25,c=200,-4ac=(−25)2-41200=-175<0,方程无实数根,羊圈总面积不可能达到800m2.24.解:(1)设该市投入基础教育经费的年平均增长率为x,根据题意,得5000(1+x)2=7200,解得x1=0.2=20%,x2=-2.2(舍去).答:该市投入基础教育经费的年平均增长率为20%.(2)2021年投入基础教育经费为7200(1+20%)=8640(万元), 设购买电脑m台,则购买实物投影仪(1500-m)台,根据题意,得3500m+2000(1500-m)864000005%,解得m880. 答:最多可购买电脑880台.。

人教 版 九年级(上)数学 第21章 一元二次方程 专题训练(含解析)

人教 版 九年级(上)数学 第21章 一元二次方程 专题训练(含解析)

第21章一元二次方程专题训练一.选择题(共10小题)1.下列方程中,一定是一元二次方程的是A.B.C.D.2.一元二次方程的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定3.若是方程的一个根,则的值为A.2020B.C.2019D.4.用配方法解一元二次方程配方后可变形为A.B.C.D.5.方程的根是A.B.C.,D.,6.若关于的方程没有实数根,则的取值范围是A.B.C.D.7.等腰三角形边长分别为,,2,且,是关于的一元二次方程的两根,则的值为A.8B.9C.9或8D.8或108.国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为,则可列方程为A.B.C.D.9.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽米.则可列方程为A.B.C.D.10.定义运算:,若、是方程的两个根,则的值为A.B.C.D.二.填空题(共8小题)11.方程的解是.12.若关于的一元二次方程的常数项为0,则的值为13.设、是方程的两个根,且,则.14.如果方程可以配方成,那么.15.已知关于的一元二次方程有实数根,则的取值范围是.16.三角形两边长分别是4和2,第三边长是的一个根,则三角形的周长是.17.如图,某小区有一块长为,宽为的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为.18.如果关于的一元二次方程有两个实数根,其中一个根为另一个根的,则称这样的方程为“半根方程”.例如方程的根为的,,则,则称方程为“半根方程”.若方程是“半根方程”,且点是函数图象上的一动点,则的值为.三.解答题(共7小题)19.解方程:.20.解方程:.21.已知关于的方程.(1)求证:无论为何实数,方程总有实数根.(2)如果方程有两个实数根,,当时,求出的值.22.某商场销售一种商品,每件进价60元,每件售价110元,每天可销售50件,每销售一件需要支付给商场管理费3元.6月份该商品搞“减价促销”活动,市场调查发现,售价每降低1元,每天销售量增加2件,若某一天销售该商品共获利2590元,求该商品降价多少元?23.小张2019年末开了一家商店,受疫情影响,2020年4月份才开始盈利,4月份盈利6000元,6月份盈利达到7260元,且从4月份到6月份,每月盈利的平均增长率都相同.(1)求每月盈利的平均增长率.(2)按照这个平均增长率,预计2020年7月份这家商店的盈利将达到多少元?24.为改善生态环境,建设美丽乡村,某村规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的.(1)求该广场绿化区域的面积;(2)求广场中间小路的宽.25.某楼盘准备以每平方米6000元的均价对外销售,新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?参考答案一.选择题(共10小题)1.下列方程中,一定是一元二次方程的是A.B.C.D.解:.此方程中未明确、、的取值情况,故此方程不是一元二次方程;.是一元二次方程;.中含有2个未知数,故此方程不是一元二次方程;.不是整式方程,故此方程不是一元二次方程;故选:.2.一元二次方程的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定解:由题意可知:△,故选:.3.若是方程的一个根,则的值为A.2020B.C.2019D.解:是方程的一个根,,,,.故选:.4.用配方法解一元二次方程配方后可变形为A.B.C.D.解:,,.故选:.5.方程的根是A.B.C.,D.,解:,,则或,解得或,故选:.6.若关于的方程没有实数根,则的取值范围是A.B.C.D.解:方程没有实数根,△,解得,故选:.7.等腰三角形边长分别为,,2,且,是关于的一元二次方程的两根,则的值为A.8B.9C.9或8D.8或10解:当时,,,,不能组成一个三角形,当时,,,,能组成一个三角形,,故选:.8.国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为,则可列方程为A.B.C.D.解:设我国2017年至2019年快递业务收入的年平均增长率为,由题意得:,故选:.9.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽米.则可列方程为A.B.C.D.解:设道路的宽为,根据题意得.故选:.10.定义运算:,若、是方程的两个根,则的值为A.B.C.D.解:、是方程的两个根,由根与系数的关系得:,,,故选:.二.填空题(共8小题)11.方程的解是,.解:,或,所以,.故答案为,.12.若关于的一元二次方程的常数项为0,则的值为1解:关于的一元二次方程的常数项为0,,解得:,故答案为:1.13.设、是方程的两个根,且,则4.解:、是方程的两个根,,.,即,.故答案为:4.14.如果方程可以配方成,那么1.解:,,即,又,,,则,故答案为:1.15.已知关于的一元二次方程有实数根,则的取值范围是且.解:关于的一元二次方程有实数根,△且,解得且.故答案为:且.16.三角形两边长分别是4和2,第三边长是的一个根,则三角形的周长是10.解:方程,分解因式得:,解得:或,当时,,不能构成三角形,舍去,则三角形周长为.故答案为:10.17.如图,某小区有一块长为,宽为的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为2.解:设人行通道的宽度为米,将两块矩形绿地合在一起长为,宽为,由已知得:,整理得:,解得:,,当时,,,不符合题意舍去,即.答:人行通道的宽度为2米.故答案为:2.18.如果关于的一元二次方程有两个实数根,其中一个根为另一个根的,则称这样的方程为“半根方程”.例如方程的根为的,,则,则称方程为“半根方程”.若方程是“半根方程”,且点是函数图象上的一动点,则的值为.解:不妨设方程的两根分别为,,且,点是函数图象上的一动点,,方程化为,由韦达定理得:.,.故答案为:.三.解答题(共7小题)19.解方程:.解:原方程移项得:;,,则或,解得:或.20.解方程:.解:方法一:,或,解得,.方法二:,,则,或,解得:,.21.已知关于的方程.(1)求证:无论为何实数,方程总有实数根.(2)如果方程有两个实数根,,当时,求出的值.【解答】(1)证明:①当时,方程为,是一元一次方程,有实数根;②当时,方程是一元二次方程,关于的方程中,△,无论为何实数,方程总有实数根.(2)解:如果方程的两个实数根,,则,,,,解得.故的值是或2.22.某商场销售一种商品,每件进价60元,每件售价110元,每天可销售50件,每销售一件需要支付给商场管理费3元.6月份该商品搞“减价促销”活动,市场调查发现,售价每降低1元,每天销售量增加2件,若某一天销售该商品共获利2590元,求该商品降价多少元?解:设该商品降价元,则每天可销售件,依题意,得:,整理,得:,解得:,.答:该商品降价10元或12元.23.小张2019年末开了一家商店,受疫情影响,2020年4月份才开始盈利,4月份盈利6000元,6月份盈利达到7260元,且从4月份到6月份,每月盈利的平均增长率都相同.(1)求每月盈利的平均增长率.(2)按照这个平均增长率,预计2020年7月份这家商店的盈利将达到多少元?解:(1)设每月盈利的平均增长率为,依题意,得:,解得:,(不合题意,舍去).答:每月盈利的平均增长率为.(2)(元.答:按照这个平均增长率,预计2020年7月份这家商店的盈利将达到7986元.24.为改善生态环境,建设美丽乡村,某村规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的.(1)求该广场绿化区域的面积;(2)求广场中间小路的宽.解:(1)(平方米).答:该广场绿化区域的面积为144平方米.(2)设广场中间小路的宽为米,依题意,得:,整理,得:,解得:,(不合题意,舍去).答:广场中间小路的宽为1米.25.某楼盘准备以每平方米6000元的均价对外销售,新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?解:(1)设平均每次下调的百分率为,依题意,得,解得,(不合题意,舍去),答:平均每次下调的百分率为;(2)方案①可优惠:元;方案②可优惠:元,,方案①更划算.。

人教版初中九年级数学上册第二十一章《一元二次方程》习题(含答案解析)

人教版初中九年级数学上册第二十一章《一元二次方程》习题(含答案解析)

一、选择题1.方程22(1)10m x -+-=是关于x 的一元二次方程,则m 的取值范围是( ) A .m≠±lB .m≥-l 且m≠1C .m≥-lD .m >-1且m≠1D 解析:D【分析】根据一元二次方程的定义及二次根式有意义的条件求解可得.【详解】∵方程22(1)10m x -+-=是关于x 的一元二次方程,∴210m -≠,解得1m ≠±,10m +≥,解得:1m ≥-,∴1m >-且1m ≠,故选:D .【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.用配方法转化方程2210xx +-=时,结果正确的是( ) A .2(1)2x += B .2(1)2x -= C .2(2)3x += D .2(1)3x +=A 解析:A【分析】方程两边都加上一次项系数的一半,利用完全平方公式进行转化,即可得到答案.【详解】解:2210x x +-=2212x x ++=∴2(1)2x +=,故选:A .【点睛】此题考查一元二次方程的配方法,掌握配方法是计算方法是解题的关键.3.若x=0是关于x 的一元二次方程(a+2)x 2x+a 2+a-6=0的一个根,则a 的值是( )A .a ≠2B .a=2C .a=-3D .a=-3或a=2B解析:B【分析】将x=0代入方程中,可得关于a 的一元二次方程方程,然后解方程即可,注意a≥2这一隐含条件.【详解】解:将x=0代入(a+2)x 2- 2+a-6=0中,得: a 2+a-6=0,解得:a 1=﹣3,a 2=2,∵a+2≠0且a ﹣2≥0,即a≥2,∴a=2,故选:B .【点睛】本题考查一元二次方程方程的解、解一元二次方程、二次根式有意义的条件,理解方程的解的意义,熟练掌握一元二次方程的解法是解答的关键,注意隐含条件a≥0.4.某小区2018年屋顶绿化面积为22000m ,计划2020年屋顶绿化面积要达到22880m .设该小区2018年至2020年屋顶绿化面积的年平均增长率为x ,则可列方程为( )A .2000(12)2880x +=B .2000(1)2880x ⨯+=C .220002000(1)2000(1)2880x x ++++=D .22000(1)2880x +=D解析:D【分析】一般用增长后的量=增长前的量×(1+增长率),如果设绿化面积的年平均增长率为x ,根据题意即可列出方程.【详解】解:设平均增长率为x ,根据题意可列出方程为:2000(1+x )2=2880.故选:D .【点睛】此题考查了由实际问题抽象出一元二次方程,即一元二次方程解答有关平均增长率问题.对于平均增长率问题,在理解的基础上,可归结为a (1+x )2=b (a <b );平均降低率问题,在理解的基础上,可归结为a (1-x )2=b (a >b ).5.一元二次方程2304y y +-=,配方后可化为( ) A .21()12y +=B .21()12y -=C .211()22y +=D .213()24y -=A 解析:A【分析】根据配方法解一元二次方程的步骤计算可得.【详解】解:∵2304y y +-=, ∴y 2+y=34, 则y 2+y+14=34+14, 即(y+12)2=1, 故选:A .【点睛】本题主要考查解一元二次方程-配方法,用配方法解一元二次方程的步骤:①把原方程化为ax 2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边; ③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.6.设m 、n 是一元二次方程2430x x -+=的两个根,则23m m n -+=( ) A .1-B .1C .17-D .17B 解析:B【分析】根据一元二次方程的根的定义、根与系数的关系即可得.【详解】由一元二次方程的根的定义得:2430m m -+=,即243m m -=-, 由一元二次方程的根与系数的关系得:441m n -+=-=, 则2234m m n m m m n -+=-++, ()()24m m m n =-++,34=-+,1=,故选:B .【点睛】本题考查了一元二次方程的根的定义、根与系数的关系,熟练掌握一元二次方程的根与系数的关系是解题关键.7.若关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根,则a 的取值范围是( )A .a <-2B .a >-2C .-2<a <0D .-2≤a <0C解析:C【分析】由关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根可得2214244202b ac a a ⎛⎫∆=-=-⨯⨯-=+> ⎪⎝⎭,解不等式即可求出a 的取值范围. 【详解】∵关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根, ∴2214244202b ac a a ⎛⎫∆=-=-⨯⨯-=+> ⎪⎝⎭, 解得:a >−2,∵a <0,∴−2<a <0.故选C .【点睛】本题考查一元二次方程根的判别式,掌握根的判别式的应用为解题关键.8.若关于x 的一元二次方程260x x c -+=有两个相等的实数根,则常数c 的值为( ) A .3B .6C .8D .9D 解析:D【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于c 的一元一次方程,解方程即可得出结论.【详解】解:260x x c -+=有两个相等的实根,2(6)40c ∴∆=--=,解得:9c =故选:D .【点睛】本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于c 的一元一次方程是解题的关键.9.已知一元二次方程x 2﹣6x+c =0有一个根为2,则另一根及c 的值分别为( ) A .2,8B .3,4C .4,3D .4,8D解析:D【分析】设方程的另一个根为t ,根据根与系数的关系得到t +2=6,2t =c ,然后先求出t ,再计算c 的值.【详解】解:设方程的另一个根为t ,根据题意得t +2=6,2t =c ,解得t =4,c =8.故选:D .【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a. 10.一元二次方程(x ﹣3)2﹣4=0的解是( ) A .x =5B .x =1C .x 1=5,x 2=﹣5D .x 1=1,x 2=5D 解析:D【分析】利用直接开平方法求解即可.【详解】解:∵(x ﹣3)2﹣4=0,∴(x ﹣3)2=4,则x ﹣3=2或x ﹣3=﹣2,解得x 1=5,x 2=1,故选:D .【点睛】本题考查了用直接开平方法解一元二次方程,掌握解法是关键.二、填空题11.把方程2230x x --=化为2()x h k +=的形式来求解的方法我们叫配方法,其中h ,k 为常数,那么本题中h k +的值是_________.3【分析】首先把常数项移到等号右边经配方h 和k 即可求得进而通过计算即可得到答案【详解】根据题意移项得配方得:即∴∴故答案是:3【点睛】本题考查了配方法解一元二次方程的知识;解题的关键是熟练掌握配方法解析:3【分析】首先把常数项移到等号右边,经配方,h 和k 即可求得,进而通过计算即可得到答案.【详解】根据题意,移项得223x x -=,配方得:22131x x -+=+,即2(1)4x -=,∴1h =-,4k =∴143h k +=-+=故答案是:3.【点睛】本题考查了配方法解一元二次方程的知识;解题的关键是熟练掌握配方法的性质,从而完成求解.12.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是________.且【分析】根据根的判别式及一元二次方程的定义解题即可【详解】∵关于x 的一元二次方程有两个不相等的实数根解得又∵该方程为一元二次方程且故答案为:且【点睛】本题主要考查根的判别式及一元二次方程的定义属于解析:1k ->且0k ≠.【分析】根据根的判别式及一元二次方程的定义解题即可.【详解】∵关于x 的一元二次方程有两个不相等的实数根,()224241440b ac k k ∴∆=-=-⨯-=+>,解得1k >-.又∵该方程为一元二次方程,0k ∴≠,1k ∴>-且0k ≠.故答案为:1k >-且0k ≠.【点睛】本题主要考查根的判别式及一元二次方程的定义,属于基础题,掌握根的判别式及一元二次方程的定义是解题的关键.13.将一元二次方程(32)(1)83x x x -+=-化成一般形式是_____.【分析】先计算多项式乘以多项式并移项再合并同类项即可【详解】故答案为:【点睛】此题考查一元二次方程的一般形式掌握多项式乘以多项式合并同类项计算法则是解题的关键解析:23710x x -+=【分析】先计算多项式乘以多项式,并移项,再合并同类项即可.【详解】(32)(1)83x x x -+=-23322830x x x x +---+=23710x x -+=故答案为:23710x x -+=.【点睛】此题考查一元二次方程的一般形式,掌握多项式乘以多项式,合并同类项计算法则是解题的关键.14.一元二次方程-+=(5)(2)0x x 的解是______________.x1=5x2=-2【分析】直接利用因式分解法得出方程的根【详解】解:∵(x-5)(x+2)=0∴x-5=0或x+2=0∴x1=5x2=-2故答案为:x1=5x2=-2【点睛】此题主要考查了一元二次方 解析:x 1=5,x 2=-2【分析】直接利用因式分解法得出方程的根.【详解】解:∵(x-5)(x+2)=0,∴x-5=0或x+2=0,∴x 1=5,x 2=-2,故答案为:x 1=5,x 2=-2.【点睛】此题主要考查了一元二次方程的解法,正确理解因式分解法解方程是解题关键. 15.若关于x 的一元二次方程()23x c -=有实根,则c 的值可以是_________________.(写出一个即可)1(答案不唯一)【分析】根据非负数的性质可得于是只要使c 的值非负即可【详解】解:若关于的一元二次方程有实根则所以的值可以是1(答案不唯一)故答案为:1(答案不唯一)【点睛】本题考查了一元二次方程的解解析:1(答案不唯一)【分析】根据非负数的性质可得0c ≥,于是只要使c 的值非负即可.【详解】解:若关于x 的一元二次方程()23x c -=有实根,则0c ≥,所以c 的值可以是1(答案不唯一).故答案为:1(答案不唯一).【点睛】本题考查了一元二次方程的解法,正确理解题意、掌握非负数的性质是关键. 16.已知实数a ,b 是方程210x x --=的两根,则11a b+的值为______.-1【分析】利用根与系数的关系得到a+b=1ab=-1再根据异分母分式加减法法则进行计算代入求值【详解】∵是方程的两根∴a+b=1ab=-1∴===-1故答案为:-1【点睛】此题考查一元二次方程根与解析:-1【分析】利用根与系数的关系得到a+b=1,ab=-1,再根据异分母分式加减法法则进行计算代入求值.【详解】∵a ,b 是方程210x x --=的两根,∴a+b=1,ab=-1,∴11a b+ =a b ab+ =11- =-1, 故答案为:-1.【点睛】此题考查一元二次方程根与系数的关系式,异分母分式的加减法计算法则.17.对于任意实数a 、b ,定义:a ◆b =a 2+ab +b 2.若方程(x ◆2)﹣5=0的两根记为m 、n ,则(m +2)(n +2)=_____.-1【分析】根据新定义可得出mn 为方程x2+2x−1=0的两个根利用根与系数的关系可得出m +n =−2mn =−1变形(m +2)(n +2)得到mn +2(m +n )+4然后利用整体代入得方法进行计算【详解】 解析:-1【分析】根据新定义可得出m 、n 为方程x 2+2x−1=0的两个根,利用根与系数的关系可得出m +n =−2、mn =−1,变形(m +2)(n +2)得到mn +2(m +n )+4然后利用整体代入得方法进行计算.【详解】解:∵(x ◆2)﹣5=x 2+2x +4﹣5,∴m 、n 为方程x 2+2x ﹣1=0的两个根,∴m +n =﹣2,mn =﹣1,∴(m +2)(n +2)=mn +2(m +n )+4=﹣1+2×(﹣2)+4=﹣1.故答案为﹣1.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a≠0)的根与系数的关系:若方程两根为x 1,x 2,则x 1+x 2=b a -,x 1•x 2=c a. 18.等腰三角形ABC 中,8BC =,AB 、AC 的长是关于x 的方程2100x x m -+=的两根,则m 的值是___.或【分析】等腰三角形ABC 中边可能是腰也可能是底应分两种情况进行讨论分别利用根与系数的关系三角形三边关系定理求得方程的两个根进而求得答案【详解】解:∵关于x 的方程∴∴∵是等腰三角形的长是关于x 的方程解析:25或16【分析】等腰三角形ABC 中,边BC 可能是腰也可能是底,应分两种情况进行讨论,分别利用根与系数的关系、三角形三边关系定理求得方程的两个根,进而求得答案.【详解】解:∵关于x 的方程2100x x m -+=∴1a =,10b =-,c m = ∴1210b x x a +=-=,12c x x m a == ∵ABC 是等腰三角形,AB 、AC 的长是关于x 的方程2100x x m -+=的两根 ∴①当8BC =为底、两根AB 、AC 均为等腰三角形的腰时,有1210AB AC x x +=+=且AB AC =即5AB AC ==,此时等腰三角形的三边分别为5、5、8,根据三角形三边关系定理可知可以构成三角形,则1225m x x AB AC ==⋅=;②当8BC =为腰、两根AB 、AC 中一个为腰一个为底时,有122810x x x +=+=,即22x =,此时此时等腰三角形的三边分别为2、8、8,根据三角形三边关系定理可知可以构成三角形,则1216m x x AB AC ==⋅=.∴综上所述,m 的值为25或16.故答案是:25或16【点睛】本题考查了一元二次方程根与系数的关系、等腰三角形的性质、三角形三边关系定理等,熟练掌握相关知识点是解题的关键.19.已知2x =是关于x 的方程220x x m ++=的一个根,则m =_________.-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程解这个方程即可【详解】已知是关于x 的方程的一个根故答案为:-8【点睛】本题考查一元二次方程的根问题掌握方程的根的性质会用方程的解代入构造解析:-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程,解这个方程即可【详解】已知2x =是关于x 的方程220x x m ++=的一个根,22220m +⨯+=8m =-故答案为:-8【点睛】本题考查一元二次方程的根问题,掌握方程的根的性质,会用方程的解代入构造参数方程是解题关键20.如图,世纪广场有一块长方形绿地,AB =18m ,AD =15m ,在绿地中开辟三条宽为xm 的道路后,剩余绿地的面积为144m 2,则x =_____.【分析】由在绿地中开辟三条宽为xm 的道路后剩余绿地的面积为144m2即可得出关于x 的一元二次方程此题得解【详解】解:设道路的宽为xm 根据题意得:(18﹣2x )(15﹣x )=144解得:或(舍去)答: 解析:3【分析】由在绿地中开辟三条宽为xm 的道路后,剩余绿地的面积为144m 2,即可得出关于x 的一元二次方程,此题得解.【详解】解:设道路的宽为xm ,根据题意得:(18﹣2x )(15﹣x )=144,解得:13x =或221x =(舍去),答:道路的宽为3m .故答案为:3.【点睛】此题考查一元二次方程的应用,根据题意找出等量关系,正确列方程是解题的关键.三、解答题21.新冠疫情蔓延全球,口罩成了人们的生活必须品.某商店销售一款口罩,每袋进价为12元,计划每袋售价大于12元但不超过20元,通过市场调查发现,这种口罩每袋售价为18元时,日均销售量为50袋,而当每袋售价提高1元时,日均销售量就减少5袋. (1)在每袋售价为18元的基础上,将这种口罩的售价每袋提高x 元,则日均销售量是_________袋;(用含x 的代数式表示)(2)经综合考察,要想使这种口罩每天赢利315元,该商场每袋口罩的销售价应定为多少元?解析:(1)505x -;(2)19元.【分析】(1)销售量=原来销售量-下降销售量,据此列式即可;(2)设这种口罩的售价每袋提高x 元,根据销售量×每袋利润=总利润列出方程求解即可.【详解】(1)∵每袋售价提高1元时,日均销售量就减少5袋,∴每天销量减少5x 袋,∵售价为18元时,日均销售量为50袋,∴将这种口罩的售价每袋提高x 元,则日均销售量是:505x -.故答案为:505x -(2)设这种口罩的售价每袋提高x 元,根据题意得:(1812)(505)315x x +--=,化简得:2430x x -+=,解得:121,3x x ==,当11x =时,每袋售价是:18119+=(元);当23x =时,每袋售价是:18321+=(元);∵计划每袋售价大于12元但不超过20元,∴23x =舍去.∴当1x =时,每袋售价是19元.答:该商场每袋口罩的售价应定为19元.【点睛】本题考查一元二次方程的应用,关键是根据售价和销售量的关系,以利润做为等量关系列方程求解.22.若a 为方程2(16x =的一个正根,b 为方程22113y y -+=的一个负根,求+a b 的值.解析:a+b= 5【分析】先求出2(16x =的根4x ,由a 为方程2(16x =的一个正根,得4a =+,再求22113y y -+=的根=1y ±b 为方程22113y y -+=的一个负根,得1b =+a b 即可.【详解】2(16x -=,4x -=±,4x ,a 为方程2(16x =的一个正根,4a =+,22113y y -+=,()2113y -=,1y -==1y ±b 为方程22113y y -+=的一个负根,1b =415a b +=+=.【点睛】本题考查一元二次方程的解法,会比较方程根的正负与大小,掌握一元二次方程的解法是解题关键.23.已知关于x 的方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0.(1)求证:无论k 为何实数,方程总有实数根;(2)若此方程有两个根x 1,x 2,且x 12+x 22=8,求k 的值.解析:(1)见解析;(2)-1或13 【分析】(1)根据方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0计算判别式的值得到△=(k +1)2≥0,即可证明结论;(2)利用根与系数的关系得到x 1+x 2=31k k -,x 1x 2=()21k k -,再根据x 12+x 22=8得出(31k k -)2﹣2•()21k k-=8,解此方程即可求解. 【详解】(1)证明:关于x 的方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0中,∵a =k ,b =﹣(3k ﹣1),c =2(k ﹣1),△()()231421k k k ⋅⋅=-﹣- 2296188k k k k ++=--221k k =++2(1)k =+,∴无论k 为任何实数,△0≥.∴无论k 为任何实数,方程总有实数根;(2)解:根据题意得x 1+x 2=31k k -,x 1x 2=()21k k -, ∵x 12+x 22=8,∴(x 1+x 2)2﹣2x 1x 2=8,∴(31k k -)2﹣2•()21k k-=8, 整理得3k 2+2k ﹣1=0,解得k 1=13,k 2=﹣1, 经检验k 1=13,k 2=﹣1为原方程的解, ∵k ≠0,∴k 的值为﹣1或13. 【点睛】 本题考查了根的判别式及根与系数关系,掌握一元二次方程根的判别式及根与系数的关系是解题的关键.24.火锅是重庆人民钟爱的美食之一;解放碑某老火锅店为抓住“十一黄金周”这个商机,通过网上广告宣传和实地派发传单等一系列促销手段吸引了不少本地以及外地游客,火锅店门庭若市.据店员统计;仅“十一黄金周”前来店内就餐选择红汤火锅和清汤火锅的游客共2500人,其中红汤火锅和清汤火锅的人均消费分别为80元和60元.(1)“十一”期间,若选择红汤火锅的人数不超过清汤火锅人数的1.5倍,求至少有多少人选择清汤火锅?(2)随着“十一”的结束,前来店内就餐的人数逐渐减少,据接下来的第二周统计数据显示,与(1)选择清汤火锅的人数最少时相比,选择红汤火锅的人数下降了a %,选择清汤火锅的人数不变,但选择红汤火锅的人均消费增长了a %,选择清汤火锅的人均消费增长了1%5a ,最终第二周两种火锅的销售总额与(1)中选择清汤火锅的人数最少时两种火锅的销售总额相等,求a 的值.解析:(1)至少有1000人选择清汤火锅;(2)a 的值为10【分析】(1)设有x 人选择清汤火锅,则有(2500﹣x )人选择红汤火锅,根据选择红汤火锅的人数不超过清汤火锅人数的1.5倍列出一元一次不等式,然后解不等式取其最小值即可; (2)根据第二周两种火锅的销售总额与(1)中选择清汤火锅的人数最少时两种火锅的销售总额相等列出关于a 的一元二次方程,然后解方程取其正值即可解答.【详解】解:(1)设有x 人选择清汤火锅,则有(2500﹣x )人选择红汤火锅,根据题意, 得:2500﹣x≤1.5x ,解得:x≥1000,答:至少有1000人选择清汤火锅;(2)根据题意,得:80(1+a%)×(2500﹣1000)(1﹣a%)+60(1+15a%)×1000=80×(2500﹣1000)+60×1000,整理,得:12x 2﹣120a=0,解得:a 1=10,a 2=0(不合题意,舍去),答:a 的值为10.【点睛】本题考查一元一次不等式的应用、一元二次方程的应用,解答的关键是理解题意,找准数量间的关系,正确列出不等式和方程.25.解下列方程:(1)2410x x --=;(2)(4)123x x x -=-.解析:(1)12x =22x =2)x 4=或x 3=-【分析】(1)利用配方法解方程;(2)利用因式分解法解方程.【详解】(1)2410x x --=2445x x +=-2(2)5x -=则2x -=解得12x =22x =(2)解:(4)3(4)0x x x -+-=,(4)(3)0x x -+=,则40x -=或30x +=,解得x 4=或x 3=-.【点睛】此题考查解一元二次方程:直接开平方法、配方法、公式法、因式分解法,根据一元二次方程的特点选择恰当的解法是解题的关键.26.用适当的方法解方程:(l )2(3)26x x +=+(2)2810x x -+=.解析:(1)13x =-,21x =-;(2)1x =,24x =【分析】(1)用因式分解法求解可得;(2)用配方法求解即可.【详解】解:(1)∵(x+3)2-2(x+3)=0,∴(x+3)(x+1)=0,∴x+3=0或x+1=0,解得:x=-3或x=-1;(2)2810x x -+=281x x -=-28+1615x x -=2(4)15x -=4x -=∴1x =,24x =【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.27.定义:若关于x 的一元二次方程()200++=≠ax bx c a 的两个实数根1x ,()212x x x <,分别以1x ,2x 为横坐标和纵坐标得到点()12,M x x ,则称点M 为该一元二次方程的衍生点.(1)若关于x 的一元二次方程为()22210x m x m m --+-=.①求证:不论m 为何值,该方程总有两个不相等的实数根,并求出该方程的衍生点M 的坐标;②由①得到的衍生点M 在直线l :3y x =-+与坐标轴围成的区域上,求m 的取值范围.(2)是否存在b ,c ,使得不论()0k k ≠为何值,关于x 的方程20x bx c ++=的衍生点M 始终在直线()25y kx k =+-的图象?若有,求出b ,c 的值:若没有,说明理由. 解析:(1)①见解析,()1,M m m -;②12m ≤≤;(2)存在,12b =-,20c =【分析】(1)①根据根的判别式和衍生点的定义,即可得出结论;②先确定点出点M 在在直线y=x+1上,借助图象即可得出结论;(2)求出定点,利用根与系数的关系解决问题即可.【详解】解:(1)①()22210x m x m m --+-=,∵()()2221410m m m ⎡⎤∆=----=>⎣⎦, ∴不论x 为何值,该方程总有两个不相等的实数根,()22210x m x m m --+-=,解得:11x m =-,2x m =,方程()22210x m x m m --+-=的衍生点为()1,M m m -.②由①得,()1,M m m -,令1-=m x ,m y =,∴1y x =+,∴点M 在在直线1y x =+上,与y 轴交于A 点,当x=0时,y=1,∴()0,1A ,∵直线1l :3y x =-+与直线1y x =+交于B 点,解31y x y x =-+⎧⎨=+⎩, 解得12x y =⎧⎨=⎩,∴()1,2B ,∵点M 的在直线l :3y x =-+与坐标轴围成的区域上∴12m ≤≤;(2)存在.直线()()25210y kx k k x =+-=-+,过定点()2,10M ,∴20x bx c ++=两个根为12x =,210x =,∴210b +=-,210c ⨯=,∴12b =-,20c =.【点睛】本题考查了新定义,一元二次方程根的判别式,一元二次方程的根与系数的关系,两条直线相交问题,解题的关键是理解题意,学会用转化的思想思考问题.28.用一块边长为70cm 的正方形薄钢片制作一个长方体盒子.(1)如果要做成一个没有盖的长方体盒子,可先在薄钢片的四个角上截去四个相同的小正方形(如图①),然后把四边折合起来(如图②).当做成的盒子的底面积为2900cm 时,求该盒子的容积;(2)如果要做成一个有盖的长方体盒子,制作方案要求同时符合下列两个条件: ①必须在薄钢片的四个角上截去一个四边形(如图③阴影部分),②沿虚线折合后薄钢片即无空隙又不重叠地围成各盒面,求当底面积为2800cm 时,该盒子的高.解析:(1)18000cm 3;(2)15cm【分析】(1)根据图中给出的信息,设四个相同的小正方形边长为x ,先表示出盒子的正方形底面的边长,然后根据底面积=900即可得到方程,求解即可;(2)该盒子的高为y ,根据底面积为800列出方程,解之即可.【详解】解:(1)设四个相同的小正方形边长为x ,由题意可得:(70-2x )2=900,解得:x 1=20,x 2=50(舍),∴该盒子的容积为900×20=18000cm 3;(2)设该盒子的高为y , 根据题意得:()7027028002y y -⨯-=, 解得:y 1=15,y 2=55(舍), 因此当底面积是800平方厘米时,盒子的高是15厘米.【点睛】本题主要考查了一元二次方程的实际运用,只要搞清楚盒子底面各边的长和盒子的高的关系即可作出正确解答.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第21章《一元二次方程》专题练习一.选择题1.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定2.用配方法解方程x2+2x﹣3=0,下列配方结果正确的是()A.(x﹣1)2=2 B.(x﹣1)2=4 C.(x+1)2=2 D.(x+1)2=4 3.关于x的方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3 B.m≥3 C.m≤3且m≠2 D.m<34.已知x1,x2是方程x2﹣x+1=0的两根,则x12+x22的值为()A.3 B.5 C.7 D.45.我国南宋数学家杨辉曾提出这样一个问题:“直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步.“如果设矩形田地的长为x步,那么同学们列出的下列方程中正确的是()A.x(x+12)=864 B.x(x﹣12)=864C.x2+12x=864 D.x2+12x﹣864=06.下列说法正确的是()A.若x2=4,则x=2B.方程x(2x﹣1)=x的解为x=1C.若x2+2x+k=0的一个根为1,则k=﹣3D.若分式的值为零,则x=1或x=27.关于x的方程x2+|x|﹣a2=0的所有实数根之和等于()A.﹣1 B.1 C.0 D.﹣a28.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽x米.则可列方程为()A.32×20﹣32x﹣20x=540 B.(32﹣x)(20﹣x)=540C.32x+20x=540 D.(32﹣x)(20﹣x)+x2=5409.已知关于x的方程x2+kx﹣2=0的一个根是1,则它的另一个根是()A.﹣3 B.3 C.﹣2 D.210.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是()A.2秒钟B.3秒钟C.4秒钟D.5秒钟11.已知x1,x2是x2﹣4x+1=0的两个根,则x1+x2是()A.﹣1 B.1 C.﹣4 D.412.新型冠状病毒肺炎疫情防控期间,某小区在某商场对“84”消毒液进行抢购.第一天销售量达到100瓶,第二天、第三天销售量连续增长,第三天销售量达到500瓶,且第二天与第三天的增长率相同,设增长率为x,根据题意列方程为()A.100(1+x)2=500 B.100(1+x2)=500C.500(1﹣x)2=100 D.100(1+2x)=500二.填空题13.已知关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,则k值为.14.如图,是一个长为30m,宽为20m的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为米.15.若m是关于x的方程x2﹣2x﹣3=0的解,则代数式4m﹣2m2+2的值是.16.某产品每件的生产成本为50元,原定销售价65元,经市场预测,从现在开始的第一季度销售价格将下降10%,第二季度又将回升5%.若要使半年以后的销售利润不变,设每个季度平均降低成本的百分率为x,根据题意可列方程是.17.有一个人患了新冠肺炎,经过两轮传染后共有169人患了新冠肺炎,每轮传染中平均一个人传染了个人.18.在Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高,动点P从点A出发,沿A→D方向以cm/s的速度向点D运动.设△ABP的面积为S1,矩形PDFE的面积为S2,运动时间为t秒,则t=秒时,S1=2S2.三.解答题19.用适当的方法解下列方程(1)(x+3)2=5(x+3)(2)2x2﹣x+3=0.20.已知关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的实数根.(1)求k的取值范围:(2)若k为正整数,且该方程的根都是整数,求k的值及该方程的根.21.某新建火车站站前广场需要绿化的面积为35000米2,施工队在绿化了11000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?22.已知,关于x的一元二次方程x2﹣2x﹣m=0有实数根.(1)求m的取值范围;(2)若a,b是此方程的两个根,且满足(a2﹣a+1)(2b2﹣4b﹣1)=,求m 的值.23.物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月底的销售量达到400件.设二、三这两个月月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加5件,当商品降价多少元时,商场获利4250元?24.如图所示,在△ABC中,∠B=90°,AB=5cm,BC=6cm.点P从点A开始沿AB 边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A、B同时出发,当其中一点到达终点,另一点随即停止.(1)那么几秒后,PQ的长度等于5cm?(2)在点P、Q移动的过程中,四边形APQC的面积能否等于11cm2?说明理由.25.乐高积木是儿童喜爱的玩具.这种塑胶积木一头有凸粒,另一头有可嵌入凸粒的孔,形状有1300多种,每一种形状都有12种不同的颜色,以红、黄、蓝、白、绿色为主.它靠小朋友自己动手动脑,可以拼插出变化无穷的造型,令人爱不释手,被称为“魔术塑料积木”.某玩具店购进一批甲、乙两款乐高积木,它们的进货单价之和是720元.甲款积木零售单价比进货单价多80元.乙款积木零售价比进货单价的1.5倍少120元,按零售单价购买甲款积木4盒和乙款积木2盒,共需要2640元.(1)分别求出甲乙两款积木的进价;(2)该玩具店平均一个星期卖出甲款积木40盒和乙款积木24盒,经调查发现,甲款积木零售单价每降低2元,平均一个星期可多售出甲款积木4盒,商店决定把甲款积木的零售价下降m(m>0)元,乙款积木的零售价和销量都不变.在不考虑其他因素的条件下,为了顾客能获取更多的优惠,当m为多少时,玩具店一个星期销售甲、乙两款积木获取的总利润为5760元.参考答案一.选择题1.解:∵△=42﹣4×3×(﹣5)=76>0,∴方程有两个不相等的实数根.故选:B.2.解:∵x2+2x﹣3=0∴x2+2x=3∴x2+2x+1=1+3∴(x+1)2=4故选:D.3.解:当m﹣2=0,即m=2时,方程变形为2x+1=0,解得x=﹣;当m﹣2≠0,则△=22﹣4(m﹣2)≥0,解得m≤3且m≠2,综上所述,m的范围为m≤3.故选:A.4.解:∵x1,x2是方程的两根,∴x1+x2=,x1•x2=1,∴=(x1+x2)2﹣2x1•x2=5﹣2=3.故选:A.5.解:设矩形田地的长为x步,那么宽就应该是(x﹣12)步.根据矩形面积=长×宽,得:x(x﹣12)=864.故选:B.6.解:A、若x2=4,则x=±2,所以A选项错误;B、方程x(2x﹣1)=x变形为x(2x﹣1﹣1)=0,则方程的解为x=0或1,所以B选项错误;C、若x2+2x+k=0的一个根为1,则1+2+k=0,解得k=﹣3,所以C选项正确;D、分式的值为0,则x2﹣3x+2=0且x﹣1≠0,则x=2,所以D选项错误.故选:C.7.解:方程x2+|x|﹣a2=0的解可以看成函数y=x与函数y=﹣x2+a2的图象的交点的横坐标,根据对称性可知:所有实数根之和等于0.故选:C.8.解:设道路的宽为x,根据题意得(32﹣x)(20﹣x)=540.故选:B.9.解:设方程的另一个根为t,根据题意得1•t=﹣2,解得t=﹣2.故选:C.10.解:设动点P,Q运动t秒后,能使△PBQ的面积为15cm2,则BP为(8﹣t)cm,BQ为2tcm,由三角形的面积计算公式列方程得,×(8﹣t)×2t=15,解得t1=3,t2=5(当t=5时,BQ=10,不合题意,舍去).∴动点P,Q运动3秒时,能使△PBQ的面积为15cm2.故选:B.11.解:x1+x2=4.故选:D.12.解:设月平均增长率为x,根据题意得:100(1+x)2=500.故选:A.二.填空题(共6小题)13.解:根据题意得△=(﹣2)2﹣4k=0,解得k=3.故答案为:3.14.解:设小道进出口的宽度为x米,依题意得(30﹣2x)(20﹣x)=532,整理,得x2﹣35x+34=0.解得,x1=1,x2=34.∵34>30(不合题意,舍去),∴x=1.答:小道进出口的宽度应为1米.故答案为:1.15.解:∵m是关于x的方程x2﹣2x﹣3=0的解,∴m2﹣2m﹣3=0,∴m2﹣2m=3,∴4m﹣2m2+2=﹣2(m2﹣2m)+2=﹣2×3+2=﹣4.故答案为:﹣4.16.解:设每个季度平均降低成本的百分率为x,依题意,得:65×(1﹣10%)×(1+5%)﹣50(1﹣x)2=65﹣50.故答案为:65×(1﹣10%)×(1+5%)﹣50(1﹣x)2=65﹣50.17.解:设每轮传染中平均一个人传染了x个人,根据题意,得x+1+(x+1)x=169x=12或x=﹣14(舍去).答:每轮传染中平均一个人传染了12个人.故答案为:12.18.解:∵Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高,∴AD=BD=CD=8cm,又∵AP=t,则S1=AP•BD=×8×t=8t,PD=8﹣t,∵PE∥BC,∴∠AEP=∠C=45°,∠APE=∠ADC=90°,∴∠PAE=∠PEA=45°∴PE=AP=t,∴S2=PD•PE=(8﹣t)•t,∵S1=2S2,∴8t=2(8﹣t)•t,解得:t=6或0(舍弃)故答案是:6.三.解答题(共7小题)19.解:(1)方程移项得:(x+3)2﹣5(x+3)=0,分解因式得:(x+3)(x+3﹣5)=0,解得:x1=﹣3,x2=2;(2)2x2﹣x+3=0,∵a=2,b=﹣1,c=3,∴b2﹣4ac=1﹣24=﹣23<0,则此方程无解.20.解:(1)依题意得△=22﹣4(2k﹣4)>0,解得:k<:(2)因为k<且k为正整数,所以k=1或2,当k=1时,方程化为x2+2x﹣2=0,△=12,此方程无整数根;当k=2时,方程化为x2+2x=0 解得x1=0,x2=﹣2,所以k=2,方程的有整数根为x1=0,x2=﹣2.21.解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:﹣=4,解得:x=2000,(4分)经检验,x=2000是原方程的解,答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56,解得:x1=2,x2=(不合题意,舍去).答:人行道的宽为2米.22.解:(1)∵x2﹣2x﹣m=0有实数根,∴△=4+4m≥0,解得:m≥﹣1;(2)将a,b代入一元二次方程可得:a2﹣2a﹣m=0,b2﹣2b﹣m=0,∴a2﹣2a=m,b2﹣2b=m,又(a2﹣a+1)(2b2﹣4b﹣1)=,∴(m+1)(2m﹣1)=,即(2m+5)(m﹣1)=0,可得2m+5=0或m﹣1=0,解得:m=1或m=﹣(舍去).23.解:(1)设二、三这两个月的月平均增长率为x,根据题意可得:256(1+x)2=400,解得:x1=,x2=﹣(不合题意舍去).答:二、三这两个月的月平均增长率为25%;(2)设当商品降价m元时,商品获利4250元,根据题意可得:(40﹣25﹣m)(400+5m)=4250,解得:m1=5,m2=﹣70(不合题意舍去).答:当商品降价5元时,商品获利4250元.24.解:(1)当PQ=5时,则PQ2=25=BP2+BQ2,即25=(5﹣t)2+(2t)2,解得:t=0(舍)或2.故2秒后,PQ的长度为5cm;(2)△PBQ的面积=(5﹣x)×2x=﹣x2+5x,△ABC的面积=×5×6=15,∴四边形APQC的面积=15﹣(﹣x2+5x)=x2﹣5x+15=11,解得:x1=1,x2=4,∴在点P、Q移动的过程中,第1秒,第4秒时,四边形APQC的面积能等于11cm2.25.解:(1)设甲款积木的进价为每盒x元,乙款积木的进价为每盒y元,则,解得:.答:甲款积木的进价为每盒400元,乙款积木的进价为每盒320元;(2)由题可得:(80﹣m)(40+2m)+24×40=5760,解得m1=20,m2=40.因为顾客能获取更多的优惠,所以m=40.。

相关文档
最新文档