采暖系统的压力计算原理
采暖循环泵计算
采暖循环泵计算流量计算流量是采暖循环泵的重要参数,它取决于采暖系统的所需循环量。
流量的计算公式为:Q=C×Δt×V×n其中,Q为流量,C为比热容,Δt为温差,V为系统体积,n为循环次数。
扬程计算扬程是采暖循环泵的关键参数,它决定了泵的供水高度和循环距离。
扬程的计算公式为:H=h+Δp/ρg+V²/2g其中,H为扬程,h为提升高度,Δp为进出口压力差,ρ为介质密度,g为重力加速度。
功率计算功率是采暖循环泵的重要性能指标,它决定了泵的工作效率和耗电量。
功率的计算公式为:P=Q×H×γ/3600×η其中,P为功率,Q为流量,H为扬程,γ为介质重度,η为泵的效率。
泵的效率泵的效率是指泵在单位时间内输出功率与输入功率的比值。
理论效率与实际效率之间存在差异,实际效率受多种因素影响,如泵的类型、制造精度、维护情况等。
进出口压力进出口压力是采暖循环泵的重要参数,其计算公式为:Δp=ρg×H其中,Δp为进出口压力差,ρ为介质密度,g为重力加速度,H为扬程。
进出口压力的影响因素包括泵的性能、管道阻力、高度差等。
泵的汽蚀余量泵的汽蚀余量是指泵在一定进口压力下不发生汽蚀时的最小有效汽蚀余量。
必需汽蚀余量是指泵不发生汽蚀所需的最小汽蚀余量,安全汽蚀余量则是指泵在运行中不发生汽蚀的安全裕量。
汽蚀余量的计算公式为:NPSHr=0.553√[8ρ³/(γZr)]-NPSHa+NPSHs-P1/ρg+Δh²/(2g)+ΔhZ/(ρg)+(P2-P1)/(ρg)NPSHa-P1/ρg+ΔhZ/(ρg)P2-P1)/(ρg)P2/(ρg)-(Zr-1)Δh/(ρg)-[(Zr-1)²/(2Zr)]Δh²/(2g)-(Zr-1³)/(2Zr²)Δh³/(ρ²g³)-(Zr-1º³)/(6Zr³)Δh³/(ρ²g³)-(Zr¹²-3Zr¹º+2Zrº²)/(6Zr¹¹)Δh³/(ρ²g³)Kc pc y T WIn KW'' f Δha'''''0(d高高0'''K p:ρ\double a Y .大力五大切换需要符号方程式的高'''其中P1和P2分别为泵的进口和出口压力;Δh为泵的净扬程;Zr为相对扬程;ρ为介质密度;γ为重度;g为重力加速度;Kc为流体力学中的柯西中线数;pc为汽蚀系数;KW为单位重量液体在泵人口处所具有的能量;f为流体在泵人口处的速度头。
第四章室内热水供暖系统的水力计算
最不利环路计算
7. 求最不利环路总压力损失 即 8. 计算富裕压力值 考虑由于施工的具体情况,可能增加一些在设计计算中未 计入的压力损失。因此,要求系统应有10%以上的富裕度。
式中
⊿%——系统作用压力的富裕率; ⊿P'Ⅰ1——通过最不利环路的作用压力,Pa;
∑(⊿Py+⊿Pj) 1~14——通过最不利环路的压力损失,Pa。
计算最不利环路的阻力及富裕压头值。
散热器的进流系数α
3. 最末端第二根立管的计算 • 最末端第二根立管的作用压头P2 为与其并联的最不利环路的 各管段的压力损失总和。 • 先确定计算立管的平均比摩阻Rpj。 • 根据计算的Rpj和已知的各管段设计流量,查水力计算表,得 到在设计流量下各管段的管径和实际比摩阻R的值。并计算 管段的压力损失△H2。 • 最末端第二根立管的压力损失与其作用压头的不平衡率应保 持在±15%之内。 4. 计算其他立管 用同样的方法,由远及近计算其他立管,并使其不平衡率应 保持在±15%之内,必要时通过立管的阀门节流来达到。 在单管热水供暖系统中,立管的水流量全部或部分地 流进散热器。流进散热器的水流量与通过该立管水流量 的比值,称作散热器的进流系数α,可用下式表示
2. 3.
4.
计算简图
一、等温降法计算步骤(异程系统)
1. 计算最不利环路 异程式系统的水力计算从系统的最不利环路开始。最不利 环路是指允许平均比摩阻R最小的一个环路。一般取最远立 管的环路作为最不利环路。 2. 计算各管段的流量 根据Rpj 值和已知的各管段设计流量,查水力计算表,
9 9 9 9 9 9 得到在设计流量下各管段的管径d和实际比摩阻R值。 最不利环路的平均比摩阻应在60~120Pa/m范围。 并计算各管段的局部阻力,计算各管段的压力损失。 根据最不利环路的各管段的阻力,计算出的总阻力H 。 比较系统可利用的作用压头,求出富裕压头值。 系统的作用压头应留有10%以上的富裕度,如不满足,则需要调整 环路中某些管段的管径。
室内热水供暖系统的水力计算
确定立管1的管径
立管1与管段3~10并联。同理,资用压力
立管选用最小管径DN15*15。
计算结果,立管1总压力损失为3517pa。
不平衡率24.3%,超过允许值,剩余压头用立管阀门消除。
通过上述计算可以看出:
例题1与例题2的系统热负荷,立管数,热媒参数和供热半径都相同,机械循环系统的作用压力比重力循环系统大地多,系统的管径就细很多。
根据并联环路节点平衡原理(管段15,16与管段1,14为并联管路),通过第二层管段15,16的资用压力为
确定通过立管1第二层散热器环路中各管段的管径
求平均比摩阻
管段15,16的总长度为5,平均比摩阻为
根据同样方法,按15和16管段的流量G及Rpj,确定管段的d,将相应的R,v值列入表中。
根据各管段的热负荷,求接近Rpj的管径。 将查出的d,R,v,G值列入表中。
2
确定长度压力损失
01
将每一管段R与l相乘,列入水力计算表中
02
根据系统图中管路的实际情况,列出各管段局部阻力管件名称。利用附录表,将其阻力系数 记于表中,最后将各管段总局部阻力系数 列入表中。
由于机械循环系统供回水干管的R值选用较大,系统中各立管之间的并联环路压力平衡较难。例题2中,立管1,2,3的不平衡率都超过 ±15% 的允许值。在系统初调节和运行时,只能靠立管上的阀门进行调节,否则例题2的异程式系统必然回出现近热远冷的水平失调。如系统的作用半径较大,同时又采用异程式布置管道,则水平失调现象更难以避免。
进行第一种情况的水力计算时,可以预先求出最不利循环环路或分支环路的平均比摩阻 。
01
Pa/m
02
式中 ——最不利循环环路或分支环路的循环作用压力,Pa; ——最不利循环环路或分支环路的管路总长度,m; ——沿程损失约占总压力损失的估计百分数
自然循环热水采暖系统
第七讲
若循环环路中有N组串联的冷却中心(散热器) 时,其循环作用压力可用下面一个通式表示:
P gh ( gH ( i i g) i i i 1)
i 1 i 1
N
N
由作用压力计算公式却中心 的高度差以及冷却中心的个数等因素有关 。
自然循环热水采暖系统
5
一、自然循环热水采暖系统的工作原理
h1
1
ρg
3 4
h
ρh
2 A P左 A
h0
P右
第七讲
自然循环热水采暖系统
5
一、自然循环热水采暖系统的工作原理
工作原理: 系统工作前先充满冷水。 当水在锅炉内被加热后, 密度减小,同时受着 从散热器流回来密度 较大的回水的驱动, 使热水沿供水干管上 升,流人散热器。在 散热器内水被冷却, 再沿回水干管流回锅 炉。
自然循环热水采暖系统
三、自然循环双管系统作用压力的计算
两个并联环路和两个冷却中 心。作用压力分别为: ΔP1 =gh1 (ρh-ρg) ΔP2 =g(h1+h2) (ρh-ρg) =gh1(ρh-ρg)+gh2(ρh-ρg) = ΔP1 +gh2(ρh-ρg)
ΔP2 > ΔP1 通过上层散热器环路的作用压力 比通过底层散热器的大
第七讲
自然循环热水采暖系统
8 2
二、自然循环热水采暖系统的主要型式
供热工程-中级职称复习题(中)
第四章室内热水供暖系统的水力计算第一节热水供暖系统管路水力计算的基本原理一、热水供暖系统管路水力计算的基本公式ΔP=ΔPy +ΔPi=R l+ΔP i Pa二、当量局部阻力法和当量长度法第二节重力循环双管系统管路水力计算方法第三节机械循环单管热水供暖系统管路的水力计算方法机械循环系统的作用半径大,其室内热水供暖系统的总压力损失一般约为10-20kPa,对水平式或较大型的系统,可达20一50kPa。
进行水力计算时,机械循环室内热水供暖系统多根据入口处的资用循环压力,按最不利循环环路的平均比摩阻来选用该环路各管段的管径。
当入口处资用压力较高时,管道流速和系统实际总压力损失可相应提高.在实际工程设计中,最不利循环环路常用控制值的方法,按=60—120Pa/m选取管径.剩余的资用循环压力,由入口处的调压装置节流。
在机械循环系统中,循环压力主要是由水泵提供,同时也存在着重力循环作用压力。
对机械循环双管系统,水在各层散热器冷却所形成的重力循环作用压力不相等,在进行各立管散热器并联环路的水力计算时,应计算在内,不可忽略.对机械循环单管系统,如建筑物各部分层数相同时,每根立管所产生的重力循环作用压力近似相等,可忽略不计;计算步骤1.进行管段编号2.确定最不利环路3.计算最不利环路各管段的管径4.确定其他立管的管径,计算阻力不平衡率在允许值±15%范围之内。
防止或减轻系统的水平失调现象的方法。
(1)供、回水干管采用同程式布置;(2)仍采用异程式系统,但采用“不等温降”方法进行水力计算;(3)仍采用异程式系统,采用首先计算最近立管环路的方法。
第四节机械循环同程式热水供暖系统管路的水力计算方法1.首先计算通过最远立管的环路.确定出供水干管各个管段、立管Ⅴ和回水总干管的管径及其压力损失.2。
用同样方法,计算通过最近立管的环路,从而确定出立管、回水干管各管段的管径及其压力损失。
3.求并联环路立管和立管的压力损失不平衡率,使其不平衡率在±5%以内。
解析供暖系统工作压力
工作压力的计算过程:1、何为系统工作压力依据《采暖通风与空气调节术语标准》中的3.5.27 工作压力 working pressure;operating pressure系统正常运行时所应保持的压力。
通常在供暖系统正常运行时系统各处的压力并不相同,为了满足系统正常运行,确定系统工作压力时,一般只需确定系统工作时,压力最大处的压力即可。
如上图所示,该供暖系统中循环泵出口处压力最大(E点),在水压图中可以看出,该系统由高位水箱定压,即系统的静压,该静压由供暖系统高度来决定,一般静压=系统高度+(3~5)m,经过循环水泵的加压,压力升高,此时循环泵出口处压力=静压+循环泵的扬程,且这一点的压力为系统最大的压力值。
在系统运行中由E-D-C-B-A-O,由于管线压力损失的发生,压力逐渐降低,直至循环泵的吸入口处 (O点)。
因此要确定系统运行时工作压力,需要的条件包括有系统定压值(静压)、循环水泵的扬程、管网水压图等。
举例说明如下:如上图所示:这个供暖系统由三个建筑(1#、2#、3#)、换热器、循环泵及管网组成,单体供暖系统设计时,要确定每个单体内部系统工作压力,即分别确定的是1#楼的A处、2#楼的C处,3#楼的E处。
第一步,依据各建筑高度确定系统静压:设1#楼最高,其高度20m 系统静压=1#楼高度+(3~5)m=20+5=25m第二部,查循环泵扬程,设水泵杨程为21m。
第三部,查管网水压图,设其中P-A管网损失4m,A-C、C-E、F-D、D-B及B-J管网损失均3m,1、2、3楼内系统管网损失2m。
第四部,分析A处工作压力,工作压力=系统静压+系统静压-P-A管网损失=25+21-4=42m。
分析C处工作压力,工作压力=系统静压+系统静压-P-A管网损失-A-C管网损失=25+21-4-3=39m。
分析E处工作压力,工作压力=系统静压+系统静压-P-A管网损失-A-C管网损失- C-E管网损失=25+21-4-3-3=36m。
供热工程第四章室内热水供暖系统的水力计算
第三节 机械循环单管热水供暖系统 管路的水力计算方法循环室内热水供暖系统入口处 的循环作用压力已经确定,可根据入口 处的作用压力求出各循环环路的平均比 摩阻,进而确定各管段的管径。
2、如果系统入口处作用压力较高时,必然 要求环路的总压力损失也较高,这会使 系统的比摩阻、流速相应提高。
二、当量局部阻力法和当量长度法
在实际工程设计中,为了简化计算,也 有采用所谓“当量局部阻力法”或“当量长 度法”进行管路的水力计算。
当量局部阻力法(动压头法) 当量局部阻 力法的基本原理是将管段的沿程损失转变为 局部损失来计算。
当量长度法 当量长度法的基本原理是 将管段的局部损失折合为管段的沿程损失来 计算。
不等温降法在计算垂直单管系统时,
将各立管温降采用不同的数值。它是在 选定管径后,根据压力损失平衡的要求, 计算各立管流量,再根据流量计算立管 的实际温降,最后确定散热器的面积。 不等温降法有可能在设计上解决系统的 水平失调问题,但设计过程比较复杂。
第二节 重力循环双管系统管路 水力计算方法和例题
3.确定最不利环路各管段的管径d。
(1)求单位长度平均比摩阻
(2)根据各管段的热负荷,求出各管段的流量
(3)根据G、Rpj,查附录表4—1,选择最接近Rpj 的管径。选用的Rpj越大,需要的管径越小,会降
低系统的基建投资和热损失,但系统循环水泵的投 资和运行电耗会随之增加。所以需要确定一个经济 比摩阻,使得在规定的计算年限内总费用为最小。 机械循环热水供暖系统推荐选用的经济平均比摩阻 一般为60~120Pa/m。
(3)求通过底层与第二层并联环路的压降不平衡率。
10.确定通过立管I第三层散热器环路上各管段 的管径,计算方法与前相同。计算结果如下:
第四章室内热水供暖系统的水力计算
1.42
(
g
Re
d K
)2
(3)紊流粗糙区(阻力平方区)尼古拉兹公式
Re>445d/D
1
(1.14 2 g
d )2 K
当管径d≥40mm时, 采用希弗林松推荐的公式
λ=0.11(K/d)0.25
(4)流态判别
临界流速
1
Hale Waihona Puke 11临界雷诺数
d
Re1
11
2
445
第2种情况的水力计算,常用于校核计算,根据 最不利循环环路各管段改变后的流量和已知各 管段的管径,利用水力计算图表,确定该循环 坏环路各管段的压力损失以及系统必需的循环 作用压力,以检查循环水泵扬程是否满足要求。
进行第3种情况的水力计算,就是根据管段的管 径d和该管段的允许压降,来确定通过该管段 (例如通过系统的某一立管)的流量。对已有的 热水供暖系统,在管段已知作用压头下,校该 各管段通过的水流量的能力;以及热水供暖系 统采用所谓“不等温降” 水力计算方法,就是 按此方法进行计算的。这个问题将在本章第五 节“不等温降”计算方法和例题中详细阐述。
m/s
Re 2
445 d
(5)紊流区统一公式
柯列勃洛克公式 阿里特舒里公式
1
2
g
(
2.51
Re
K /d) 3.72
0.11( K 68 )0.25
d Re
阿里特舒里公式是布拉修斯公式和希弗林公式的综合
当量绝对粗糙度K 对于室内的热水供暖系统
K=0.2mm=0.0002m 对于室外热水系统
阻R与流量G的平方成正比,上式可改写为:
第十四讲自然循环热水采暖系统水力计算-本讲主要内容
第十四讲 自然循环水暖系统水力计算
11.
供 热 工 程
确定通过立管Ⅱ各层环路各管段的管径
作为异程式双管系统的最不利循环环路是通 过最远立管Ⅰ底层散热器的环路。对与它并联的 其它立管的管径计算,同样应根据节点压力平衡 原理与该环路进行压力平衡计算确定。
① 确定通过立管Ⅱ底层散热器环路的作用压力 ② 确定通过立管Ⅱ底层散热器环路各管段的管径。两根
立管的压力损失应相等。
③ 对计算管段进行水力计算
④ 计算并联立管Ⅰ与Ⅱ的不平衡率 ⑤ 继续计算立管Ⅱ第二、三层散热器环路。
第十四讲 自然循环水暖系统水力计算
通过该双管系统水力计算结果,可以看出, 第三层的管段虽然取用了最小管径(DN15),但
热 • g——重力加速度,g=9.81m/s2;
工
•
H——所计算的散热器中心与锅炉中心的高差, m;
程 • g 、h 一供水和回水密度,kg/m3;
• Pf 一水外循环环路中冷却的附加作用压力,Pa。
第十四讲 自然循环水暖系统水力计算
注意:
供
通过不同立管和楼层的循环环路的
热
附加作用压力值是不同的,应按附录3-2 选定。
c) 求通过底层与第二层并联环路的压降不平 衡率
不平衡率允许范围为±15%。 正超可用支管 阀门调节。
第十四讲 自然循环水暖系统水力计算
10. 确定通过立管Ⅰ第三层散热器环路中各管 段的管径
供 ① 通过立管Ⅰ第三层散热器环路的作用压力
热
② 计算该管段的资用压力 ③ 计算该管段实际压力损失
工 ④ 不平衡率计算
供
② 根据各管段流速v,查出动压头值,依据求
热
出局部损失
蒸汽采暖系统水力计算
蒸汽采暖系统水力计算蒸汽采暖系统水力计算是指通过对管道网络、阀门、泵等元件进行分析和计算,确定流体在管道中的压力和流量分配,以保证系统能够正常运行。
水力计算是蒸汽采暖系统设计中的重要环节,也是保证系统效率和安全性的关键。
以下是蒸汽采暖系统水力计算的详细解释:1. 管网分析:首先需要对管道系统进行分析,确定管道直径、长度、材质等参数,并绘制出管道网络图。
通过管道网络图可以明确管道的路径以及各个分支的长度和管径,为后续的水力计算提供基础数据。
2. 流量计算:流量是蒸汽采暖系统设计的关键参数之一,也是水力计算的核心内容。
流量的计算需要考虑系统的热负荷、热传递系数、温差、流速等因素,并且需要根据实际情况进行修正,保证计算结果的准确性。
3. 压力计算:蒸汽采暖系统中,压力是保证系统正常运行的关键因素之一。
压力计算需要考虑管道长度、管径、阀门、泵等元件的压力损失情况,以及系统的设计压力,通过计算确定系统各点的压力分布和管网的工作压力范围。
4. 泵选型:泵是蒸汽采暖系统的主要动力设备,泵的选型需要考虑系统的热负荷、流量、压力等因素,并且需要根据实际情况进行修正。
在选型过程中还需要考虑泵的效率、可靠性、维护成本等因素。
5. 阀门选型:阀门在蒸汽采暖系统中起到了调节流量和控制压力的作用,阀门的选型需要根据系统的热负荷、流量、压力等参数进行综合考虑,并且需要根据实际情况进行修正。
在选型过程中还需要考虑阀门的材质、密封性、可靠性等因素。
总之,蒸汽采暖系统水力计算是系统设计的重要环节,通过对管道网络、阀门、泵等元件进行综合分析和计算,保证系统能够正常运行,提高系统的效率和安全性。
采暖系统水力计算.pptx
第9页/共13页
第四章 室内热水供暖系统的水力计算
同程式系统管路系统图
第10页/共13页
第四章 室内热水供暖系统的水力计算
4-4、不等温降的水力计算原理和方法
• 一、室内热水供暖系统管路的阻力数
定通过该管段的水流量。 室内热水供暖管路系统是由许多串联或并联管段
组成的管路系统。
第2页/共13页
第四章 室内热水供暖系统的水力计算
进行第一种情况的水力计算时,可以预先求出最不利循环环路或分支环路 的平均比摩阻 。
Rpj
P l
Pa/m
式中 —P—最不利循环环路或分支环路的循环作用压力,Pa;
——最不利循环环路或分支环路的管路总长度,m;
第4页/共13页
第四章 室内热水供暖系统的水力计算
4-3、机械循环单管热水供暖系统管路的 水力计算方法和例题
与重力循环系统相比,机械循环系统的作用半径大,传统的室内热水供暖 系统的总压力损失一般约为10~20kPa;对于分户采暖等水平式或大型的系统, 可达20~50kPa。
传统的采暖系统进行水力计算时,机械循环室内热水供暖系统多根据入口 处的资用循环压力,按最不利循环环路的平均比摩阻Rpj来选用该环路各管段 的管径。当入口处资用压力较高时,管道流速和系统实际总压力损失可相应 提高。但在实际工程设计中,最不利循环环路的各管段水流速过高,各并联 环路的压力损失难以平衡,所以常用控制Rpj值的方法,按Rpj=60~120Pa/m 选取管径。剩余的资用循环压力,由入口处的调压装置节流。
第四章 室内热水供暖系统的水力计算
三、室内热水供暖系统管路水力计算的主要任务和方法 • 室内热水供暖系统管路水力计算的主要任务,通常为: • 1.按已知系统各管段的流量和系统的循环作用压力
第四章供暖系统水力计算
Pa
式 中 ζ zh — — 段 折 局 阻 系 管 的 算 部 力 数 S —— 段 阻 特 数 简 阻 数 , 管 的 力 性 ( 称 力 ) Pa/(kg/h) 2 , 它 数 表 当 段 量 = 1kg/h时 压 损 值 的 值 示 管 流 G 的 力 失 。
这种方法在单管顺流式系统水力计算时用。 3.当量长度法 3.当量长度法 基本原理是将管段的局部损失折合为沿程损失来计算。 2 2
(一)沿程损失 在管路的水力计算中, 在管路的水力计算中,把管路中水流量和管径都没有改变的一 段管子,称为一个计算管段. 段管子,称为一个计算管段.任何一个热水供暖系统都是由许多 串联与并联的计算管段组成.每米管长的沿程损失(也称为比摩阻, 串联与并联的计算管段组成.每米管长的沿程损失(也称为比摩阻, 比压降) 其值可用流体力学中的达西 比压降)。其值可用流体力学中的达西维斯巴赫公式进行计算 Pa/m Pa/ (4-1) λ ——管段的摩擦阻力系数; 式中 ——管段的摩擦阻力系数; d ——管道内径,m; ——管道内径, v ——热媒在管道内的流速,m/s; ——热媒在管道内的流速,m/s; ρ ——热媒的密度,kg/ ——热媒的密度,kg/m3。 值的确定: 1. λ值的确定: 摩擦阻力系数,取决于热媒在管道内的流动状态和管壁的粗糙程度, 摩擦阻力系数 , 取决于热媒在管道内的流动状态和管壁的粗糙程度 , 即 (Re, ε=K/ λ=(Re,ε) , Re = vd ,ε=K/d
d 2 R=
λ ρv2
ν
Re——雷诺数,流动状态的准则数,当Re<2320时,流动为层流流 Re——雷诺数,流动状态的准则数, Re<2320时 动,当Re>2320时,流动为紊流流动; Re>2320时 Μ——热媒的运动粘滞系数,㎡/s; ——热媒的运动粘滞系数, K ——管壁的当量绝对粗糙度; ——管壁的当量绝对粗糙度; ε——管壁的相对粗糙度;其它同前. ——管壁的相对粗糙度;其它同前.
解析供暖系统工作压力
工作压力的计算过程:1、何为系统工作压力?依据《采暖通风与空气调节术语标准》中的3.5.27 工作压力working pressure;operating pressure系统正常运行时所应保持的压力。
通常在供暖系统正常运行时系统各处的压力并不相同,为了满足系统正常运行,确定系统工作压力时,一般只需确定系统工作时,压力最大处的压力即可。
如上图所示,该供暖系统中循环泵出口处压力最大(E点),在水压图中可以看出,该系统由高位水箱定压,即系统的静压,该静压由供暖系统高度来决定,一般静压=系统高度+(3~5)m,经过循环水泵的加压,压力升高,此时循环泵出口处压力=静压+循环泵的扬程,且这一点的压力为系统最大的压力值。
在系统运行中由E-D-C-B-A-O,由于管线压力损失的发生,压力逐渐降低,直至循环泵的吸入口处(O点)。
因此要确定系统运行时工作压力,需要的条件包括有系统定压值(静压)、循环水泵的扬程、管网水压图等。
举例说明如下:如上图所示:这个供暖系统由三个建筑(1#、2#、3#)、换热器、循环泵及管网组成,单体供暖系统设计时,要确定每个单体内部系统工作压力,即分别确定的是1#楼的A处、2#楼的C处,3#楼的E 处。
第一步,依据各建筑高度确定系统静压:设1#楼最高,其高度20m系统静压=1#楼高度+(3~5)m=20+5=25m第二部,查循环泵扬程,设水泵杨程为21m。
第三部,查管网水压图,设其中P-A管网损失4m,A-C、C-E、F-D、D-B及B-J管网损失均3m,1、2、3楼内系统管网损失2m。
第四部,分析A处工作压力,工作压力=系统静压+系统静压-P-A管网损失=25+21-4=42m。
分析C处工作压力,工作压力=系统静压+系统静压-P-A管网损失-A-C管网损失=25+21-4-3=39m。
分析E处工作压力,工作压力=系统静压+系统静压-P-A管网损失-A-C管网损失- C-E管网损失=25+21-4-3-3=36m。
室内热水供暖系统水力计算
室内热水供暖系统水力计算
首先,流量计算是确定系统中水的流量大小。
流量大小取决于所需的
供暖热负荷以及供暖设备的工作参数。
常用的热负荷计算方法有传统的经
验法和热负荷软件计算法。
计算完成后,可以得到所需的供暖流量。
其次,压降计算是确定系统中各个部分的压力降。
压力降会影响热水
在管道中的流动速度和流量分布。
通过压降计算,可以确定每段管道的压
力降以及连接部件如弯头、三通和阀门等对压力降的影响。
一般使用管网
分段法进行压降计算,将系统划分为若干段,分别计算每段管道的压力降。
最后,根据流量和压降的计算结果,可以确定所需的水泵功率。
水泵
功率计算需要考虑供水压力、供水流量以及管路的管径和长度等参数。
通
常可以根据水泵性能曲线和所需流量来确定合适的水泵型号和功率。
在进行水力计算时,还需要考虑一些其他因素。
比如,对于长距离管
道或有高度差的管道,需要考虑管道的波动防护和水锤的问题;对于系统
中的回水管道,需要考虑回水水流的阻力和回水温度的控制等。
室内热水供暖系统的水力计算是供暖工程设计的重要环节,合理的水
力计算可以确保系统正常运行、节能高效,并提供良好的供暖效果。
因此,设计人员需要对水力计算方法和相关规范进行熟悉和了解,同时结合实际
工程情况进行计算和选型。
民用建筑采暖系统工作压力与试验压力计算
即为满足节能要求,此表还要上交审图单位,详见下表:
“水泵H”处输入动压38,一点一点向下将直到满足要求 EHR2≤EHR1即可,此时动压就为29最合适,因此约取30m。
系统静压就为系统高点标高加泵房地面标高(负标高取正值即可)即可。
采暖循环水泵是以动压为基础的,因为循环水泵要克服沿程阻力+局部阻力。
采暖补水泵是以静压为基础的,因为补水泵要为系统定压。
系统的工作压力,包括末端设备及系统管道是动压+静压,计算出来多少就为多少,比如为66m,那么工作压力取不小于0.66 MPa的任意数值,比如工作压力取值0.7 MPa,但最后施工方采购管材及系统设备时,会按0.8 MPa或1.0 MPa既有材料承压参数档位去选取,当然,管材及设备的承压的选择远高于系统工作压力是没有太大必要的,只能造成成本的浪费,满足即可。
还是本项目,某栋楼21F,最高楼26F,层高3m,净高度相差5X3=15m,因此本楼顶点工作压力为:动压30m+静压15m,试验压力再加0.1 MPa。
补充说明:其实系统定压点的压力为静水压力+(5-10)m,一般取5m,但是泵出口损失5m,所以工作压力全公式P=动压+静压+5m-5m=动压+静压。
采暖自然作用压头的计算
采暖自然作用压头的计算
首先,需要考虑管道的几何形状、长度、直径和管道内的流体。
然后需要考虑流体的密度、粘度和流速。
这些参数将影响自然循环
系统的压力损失。
其次,需要考虑流体通过换热器和其他设备时的压力损失。
这
些设备的设计和性能将影响系统的压头计算。
另外,还需要考虑系统中的高度差,因为自然循环系统依赖于
热水在管道中的密度差来实现循环。
高度差将影响系统的静压头。
最后,需要考虑系统的热负荷和流体的温度变化对压头的影响。
热负荷越大,流速越快,压力损失也会增加。
综上所述,在计算采暖自然作用压头时,需要考虑管道几何、
流体参数、设备压力损失、高度差和热负荷等多个因素,以确保系
统能够正常运行。
这些因素的综合影响将决定自然循环系统所需的
压头。
因此,在实际计算中,需要综合考虑这些因素,并进行详细
的流体力学和热力学计算,以得出准确的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
采暖系统的压力计算原理
一、流体力学基础
1,流体的压强p:单位帕斯卡(Pa) 1Pa=1N/㎡。
单位面积所受的压力。
流体压强产生源于它的流动性,因此流体微元对各个方向的压强大小相等。
水的压强公式:p=ρgh 只与水柱高度有关,这也是为什么人们常用水柱高度(m)来表达压强。
2,流体的能量(单位均为焦耳):压力能P、位能(重力势能)Z=ρgz、动能ρν2/2。
(1)压力能与压强的区别:压力能P是能量,单位是焦耳;压强p是压力,单位是帕斯卡。
要注意区别。
两者关系:p=P/ρg。
(2)水的压强公式中h和位能公式中z的区别:h是水柱本身的高度,z是水柱的重心距离0参考面的距离。
如下图所示:
3,伯努利方程
流体在单位体积下:
Z1+P1+ρν12/2=Z2+P2+ρν22/2+ΔQ (单位:焦耳)ΔQ ——由阻力产生的能量损耗伯努利方程是特定情况下的能量守恒定律。
z1+p1+ν12/2g=z2+p2+ν22/2g+ΔH (单位:mH2o)ΔH——阻力损耗此公式是伯努利方程的变形,用压强的形式间接表达了能量守恒定律。
也可表示为:
Z1/ρg+P1/ρg+ν12/2g=Z2/ρg+P2/ρg+ν22/2g+ΔH
这个式子,是用水柱高度(即水头)表达的伯努利方程。
Z1/ρg为位置水头,P1/ρg为压强水头,ν12/2g为速度水头。
经此变形,可知,伯努利方程可以用压力来表达能量,压力的变化即能量的变化。
二、循环流体
1,循环流体的特点:1)管径变化不大的情况下,动能的变化是很小的,因此一般是可以忽略不计的;
2)循环水泵只负责补充由于摩擦阻力和局部阻力产生的能量损耗,因此,循环水泵运行时的扬程是系统的总阻力损耗,而对压力能P、位能(重力势能)Z=ρgz、动能ρν2/2是没有影响的,水泵扬程只等于ΔH。
(当采用热水自然循环系统时,热水供回水的密度差承担了循环水泵的功能)
3)由于动能的忽略不计,水柱的总能量一般只考虑压力能P、位能(重力势能)Z=ρgz两部分,(即伯努利方程中的前两项Z1/ρg+P1/ρg),称为测压管水头H c=Z1/ρg+P1/ρg。
系统每一点的测压管水头连接成线,即是水压图:
2,资用压差:测压管水头H c=Z1/ρg+P1/ρg 是管道内水柱的总能量体现。
因此,在循环水系统中,H c即是某一点水系统能提供的总压力,即“资用压力”,那么供回水之间资用压力的差值(即“资用压差”)就是该供回水管段之间所有连接的末端设备可以损耗的能量的总能量。
如采暖入口的资用压差为50KPa,那整个系统的阻力损失最多只能是50KPa,否则,系统将不能正常运行。
资用压差=系统阻力损失。
3,静压:流体静止时对容器壁的压强。
p=ρgh
4,工作压力:流体工作时对容器壁的压强。
由于工作时水泵的加压作用,测压管水头H c 大于静止时的值。
而系统任意点的位置水头Z1/ρg是固定的,不因系统静止或运行而改变(因为距离基准点的距离是不变的)因此,测压管水头H c增加的部分都转化为压强水头P1/ρg,
即流体对管壁的压力增大了(不再是p=ρgh了)。
H c↑,工作压力=压强水头P1/ρg ↑,位置水头Z1/ρg不变。
(H c=Z1/ρg+P1/ρg)
由此可知,可以认为,水泵增加给系统的压力,相当于“暂时”储存在压强水头中(宏观表现就是管壁的压力增大),然后在克服沿程阻力和局部阻力时,逐渐消耗储存在压强水头中的能量,直到回到水泵吸入口,消耗完毕,储存在压强水头中的水泵充能为0,压强水头恢复到和静压相等(定压点p=ρgh)。
5,任意点工作压力的确定
既然系统运行时,工作压力是大于静压的,那么就不能用p=ρgh计算。
在上面的论述中,工作压力实际上是用来克服阻力损失了。
因此在以水泵为基准点时,可以用水泵扬程(H y +静压ρgh)(即水泵出口工作压力)减去该管段阻力得到。
但一般更直观的办法是绘制水压图,通过水压图读取某一点的工作压力。
水压图表达的是测压管水头
H c=Z1/ρg+P1/ρg,工作压力Z1/ρg=测压管水头H c -位置水头Z1/ρg。
三、倒空、超压与气化
计算出工作压力,就可以进行倒空、超压与气化的判断。
1,倒空:当工作压力小于管壁外大气压力时,管壁外空气会在大气压力的作用下进入管道,管道内形成空气柱或者气泡。
因此,管道内的工作压力必须在每一点都大于大气压力才行。
当系统定压点位置选择不当时,有可能出现倒空现象。
2,超压:工作压力大于设备或者管道额定工作压力时,即超压。
最容易发生超压的位置是水泵出口或供水管的底部。
当系统静水压高或者循环水泵扬程较大时,一定要注意底层设备超压的问题。
气化:水在某一温度下对应一个气化的饱和压力。
当工作压力小于该温度下的饱和压力时,即发生气化。
因此,确定是否气化的关键在于水的温度(对应饱和压力)和工作压力。
当水温一定时,工作压力最小的位置,最容易发生气化现象。
一般是回水管的最高点。
因此。
需在回水管的最高点设排气阀。
标准图集《采暖空调循环水系统定压》05K210中提出,(1)开式水箱定压,开式水箱距离系统最高点为1m。
(2)补水泵定压,水泵扬程应比系统补水点压力高30~50KPa。
3,
四、采暖系统的试压
根据规范《建筑给水排水及采暖工程施工质量验收规范》GB50242-2002第8.6.1条
同时不小于0.3MPa。
关于采暖系统的试验压力的确定,北京市建筑设计院的专家张锡虎在他的一篇文章中有详细说明,现摘录如下:
采暖系统工作压力确定
北京市建筑设计院张锡虎
在设计文件的设计及施工说明中,常可以见到“系统的水压试验压力按照施工质量验收规范的规定”的说法,把确定水压试验压力的责任,让给了施工单位,这是不妥的。
因为,在《建筑给水排水及采暖工程施工质量验收规范》(GB 50242-2002)和《通风与空调工程施工及验收规范》(GB 50243-2002)这两个标准中,都提出:①“试验压力应符合设计要求。
当设计未注明时,应符合下列规定……”;②试验压力按照工作压力确定。
因此,执行《建筑给水排水及采暖工程施工质量验收规范》和《通风与空调工程施工及验收规范》这两个标准的规定,有两个问题需要明确:
第一,应直接给出水压试验压力或工作压力的具体数值。
例如:《建筑给水排水及采暖工程施工质量验收规范》规定: 蒸汽、热水采暖系统,应以系统顶点的工作压力加0.1MPa (高温热水系统应为系统顶点的工作压力加0.4MPa),同时在系统顶点的试验压力不小于0.3MPa。
塑料管或复合管,系统顶点的工作压力加0.2MPa,同时在系统顶点的试验压力不小于0.4MPa。
如果设计不给出“工作压力”或“系统顶点的工作压力”,施工单位是难以确定水压试验压力的。
即使对于设计人,在实际工程应用中,“系统顶点工作压力”也不易确定。
从原理上讲,系统任意点工作压力是静压力加水泵形成的动力水头之和。
然而,在进行个体项目设计时,冷热源循环水泵常未选定,即使已选定,水泵的工作点也会随管网阻力特性而改变,而且计算点的水泵作用动力水头,还需减去从水泵出口至计算点的水头损失。
因此,实际上只能执行上述规定中“顶点试验压力不得小于0.3MPa”的附加条件,即简化为:对非高温热水、非塑料管或非复合管,水压试验压力应为系统静压加0.3MPa。
(可取整数)
第二,水压试验压力必须明确所对应于何标高(一般以±0.000为基准面)。
※例如:采暖系统的顶点相对于±0.000是50m,开式膨胀水箱最高水位高于系统顶点2m,系统静压相对于±0.000是52m。
如果水压试验的压力表设在±0.000处,试验压力应为0.52 + 0.30 = 0.82MPa;如果水压试验的压力表设在相对标高30m处,试验压力应为0.82 - 0.30 = 0.52MPa;如果水压试验的压力表设在地下室相对标高- 10m处,试验压力则应为0.82 + 0.10 = 0.92MPa。
※例如:采暖系统的顶点相对于±0.000是50m,定压水罐的上限压力高于系统的顶点10m,系统静压相对于±0.000是60m。
如果水压试验的压力表设在±0.000处,试验压力应为0.60 + 0.30 = 0.90MPa;如果水压试验的压力表设在相对标高30m处,试验压力应为0.90 - 0.30 = 0.60MPa;如果水压试验的压力表设在地下室相对标高- 10m处,试验压力则应为0.90 + 0.10 = 1.0MPa。
※例如:高层建筑高区采暖系统的顶点相对于±0.000是130m,定压水罐的上限压力高于系统的顶点10m,系统静压相对于±0.000是140m。
如果水压试验的压力表设在±0.000处,试验压力应为1.40 + 0.30 = 1.70MPa;如果水压试验的压力表设在相对标高70m处,试验压力则应为1.70- 0.70 = 1.00MPa;如果水压试验的压力表设在地下室相对标高- 10m处,试验压力则应为1.70 + 0.10 = 1.80MPa。