高速铁路受电弓的工作原理

合集下载

高铁受电弓的工作原理

高铁受电弓的工作原理

高铁受电弓的工作原理
高铁受电弓的工作原理主要分为两个步骤:接触线接触和电流传输。

当高铁列车行驶时,受电弓头与接触线进行接触。

受电弓头通过碳刷或铜制接触片与接触线建立电气连接。

在接触的过程中,受电弓头需要保持与接触线之间的恰当接触力。

这是通过受电弓臂的升降来实现的。

受电弓臂可以根据列车的速度和接触线的高度进行自动调整,以保持恰当的接触力。

接触线接触后,接下来就是电流传输的过程。

当高铁列车行驶时,接触线上的电能会通过受电弓头传递到高铁列车上。

受电弓头将接触线上的交流电能转换为直流电能,并通过受电弓臂和列车上的电气系统进行传输。

在传输过程中,受电弓头需要保持与接触线之间的稳定接触,以确保电流的正常传输。

高铁受电弓的工作原理虽然看似简单,但其中涉及到的技术和工程细节却非常复杂。

首先,受电弓头需要具备良好的导电性能,以确保电流的传输效率。

其次,受电弓臂需要具备一定的刚度和稳定性,以保持与接触线之间的恰当接触力。

同时,受电弓臂还需要具备足够的升降速度和精确度,以适应不同速度和高度的接触线要求。

此外,高铁受电弓还需要考虑到列车的运行状态,如风阻和振动等因素对受电弓的影响,需要通过设计和优化来提高受电弓的稳定性和可靠性。

总的来说,高铁受电弓是高速列车上的重要组成部分,它通过与接触线的接触来实现电能的传输。

其工作原理涉及到受电弓头、受电弓臂和列车的协同工作,需要考虑到多种因素以确保电能的稳定传输和列车的安全运行。

受电弓工作原理

受电弓工作原理

受电弓工作原理受电弓是电力机车、电力动车组和有轨电车等电气牵引车辆上的重要部件,它的作用是通过接触网吸收电能,将电能传输给车辆的牵引电动机,驱动车辆运行。

受电弓的工作原理是基于接触网和受电弓之间的接触和导电,下面将从接触网、受电弓结构和工作过程等方面详细介绍受电弓的工作原理。

接触网是电气牵引车辆供电系统的重要组成部分,它一般由一根或多根导线组成,悬挂在架空设备上,为电气牵引车辆提供电能。

接触网一般由铜、铝等材料制成,具有良好的导电性能和机械强度。

电气牵引车辆行驶时,受电弓通过接触网吸收电能,将电能传输给车辆的牵引电动机,从而驱动车辆运行。

受电弓的结构一般由受电弓支架、受电弓杆、受电弓头、接触板等部件组成。

受电弓支架一般安装在电气牵引车辆的车顶上,通过受电弓杆与受电弓头相连接,受电弓头上安装有接触板。

当电气牵引车辆行驶时,受电弓通过受电弓支架和受电弓杆与接触网保持接触,接触板与接触网之间形成一定的接触压力,从而实现电能的传输。

受电弓的工作原理是基于接触网和受电弓之间的接触和导电。

当电气牵引车辆行驶时,受电弓通过受电弓支架和受电弓杆与接触网保持接触,接触板与接触网之间形成一定的接触压力,从而实现电能的传输。

接触板与接触网之间的接触面积较大,接触压力较大,能够保证良好的导电性能。

受电弓通过接触网吸收电能,将电能传输给车辆的牵引电动机,从而驱动车辆运行。

受电弓的工作过程一般分为接触、牵引和分离三个阶段。

在接触阶段,受电弓通过受电弓支架和受电弓杆与接触网保持接触,接触板与接触网之间形成一定的接触压力,从而实现电能的传输。

在牵引阶段,受电弓吸收电能,将电能传输给车辆的牵引电动机,驱动车辆运行。

在分离阶段,受电弓通过受电弓支架和受电弓杆与接触网分离,完成电能的传输。

总之,受电弓是电气牵引车辆上的重要部件,它通过与接触网保持接触,吸收电能,将电能传输给车辆的牵引电动机,驱动车辆运行。

受电弓的工作原理是基于接触网和受电弓之间的接触和导电,具有良好的导电性能和机械强度。

受电弓工作原理

受电弓工作原理

受电弓工作原理
受电弓是电力机车接收电能的重要组成部分,它能够实现电力机车与电气化铁路之间的无线传输电能。

受电弓的主要工作原理是通过接触轨道上的架空线,将架空线上的直流或交流电能传输到电力机车上,以供电力机车运行。

下面将详细介绍受电弓的工作原理。

第一步:受电弓碰触架空线
当电力机车行驶到电气化铁路上时,受电弓的头部会碰触架空线,将架空线上的电能传输到电力机车的接触线上。

而架空线则是铁路电气化系统中的主要组成部分,其承担着将电能从发电站输送到电力机车的重要任务。

第二步:将电能传输到接触线
当受电弓碰触架空线后,架空线上的电能会通过受电弓的导电部件传送到电力机车的接触线上,其实现了电能的传输和连接。

受电弓的导电部件通常由碳刷、铜接线和钢丝绳等组成,以确保电能的顺畅传输。

第三步:将电能传输到牵引电机
当电能传输到电力机车的接触线上后,再通过变压器将电能进行调整,以适应电力机车牵引电机的工作需要。

牵引电机通常采用交流电机,其能够将电能转化为机械能,从而推动电力机车行驶。

综上所述,受电弓是电力机车在电气化铁路上接收电能的关键组成部分,其工作原理是通过接触架空线,将架空线上的电能传输到电力机车上,并通过变压器将电能进行调整,最终驱动电力机车牵引电机的工作,推动电力机车行驶。

高速铁路受电弓的工作原理

高速铁路受电弓的工作原理

高速铁路受电弓的工作原理高速铁路作为现代交通的重要组成部分,为人们提供了更快、更便捷的出行方式。

而高速铁路列车的正常运行离不开供电系统的支持,其中受电弓作为关键部件之一,起到了将电能传输给列车的重要作用。

本文将介绍高速铁路受电弓的工作原理。

一、受电弓的定义与分类受电弓是安装在高速铁路列车车顶上,并与电网接触的装置,通过与供电线路的接触来获得电能。

根据其构造和工作原理的不同,受电弓可以分为机械式受电弓和气动式受电弓两种类型。

1. 机械式受电弓:机械式受电弓通常由一对可伸缩的碳刷组成,碳刷通过与供电线路的直接接触来获取电能。

当列车行驶过程中,机械式受电弓会根据电网的高度自动调节碳刷的伸缩长度,以保持良好的电接触,从而保证高效的电能传输。

2. 气动式受电弓:气动式受电弓采用了气动技术,通过气动部件来控制受电弓的伸缩。

与机械式受电弓相比,气动式受电弓具有更高的稳定性和可靠性,适用于高速列车等复杂运行条件。

二、高速铁路受电弓的工作原理高速铁路受电弓的工作原理可以概括为以下几个步骤:1. 接触网供电:在高速铁路上,有一组并联的供电线路,称为接触网。

接触网通过变电站从电网中获得电能,并将电能传输到各个供电线路上。

2. 受电弓接触供电线路:当列车驶过供电线路时,受电弓会与供电线路接触,通过碳刷或气动部件与供电线路建立电接触,从而将电能传输给列车。

3. 受电弓调节高度:高速铁路路况复杂,供电线路的高度会有所变化。

为了保持受电弓与供电线路之间的良好接触,受电弓会根据电网高度的变化,通过机械或气动系统自动调节受电弓的高度。

4. 受电弓传输电能:当受电弓与供电线路建立电接触后,电能会通过受电弓传输到列车的电动机或牵引系统中,从而驱动列车正常运行。

三、高速铁路受电弓的特点与优势高速铁路受电弓作为供电系统的重要组成部分,具有以下特点与优势:1. 快速调节能力:高速铁路受电弓能够根据供电线路的高度变化快速调节高度,以确保稳定的电能传输,保证列车正常运行。

高铁受电弓工作原理

高铁受电弓工作原理

高铁受电弓工作原理
高铁受电弓是高速列车接触网供电系统中的重要部件,它通过接触网接收电能,然后
传输到列车的牵引、辅助设备上,是高铁列车正常运行的关键。

高铁受电弓的工作原理是
怎样的呢?下面我们将详细介绍。

高铁受电弓的主要部件包括受电弓主体、伸缩装置、接触轮组、电动传动机构等。


高铁列车行驶时,受电弓通过伸缩装置将接触轮组与接触网接触,然后通过电动传动机构
调整接触轮组的位置,以确保高铁列车与接触网之间始终保持合适的接触压力和接触面积。

这样,通过接触网传送过来的电能就能够通过接触轮组传输到列车的电气设备上。

高铁受电弓的工作原理可以分为两个主要过程:受电过程和接触过程。

在受电过程中,受电弓通过受电机构感应接触网上的电压,然后通过接触系统将电压传递到列车的牵引系统、辅助设备上。

而在接触过程中,受电弓通过伸缩装置、电动传动机构调整接触轮组的
位置,使其与接触网保持良好的接触状态,确保电能传输的安全可靠。

高铁受电弓的工作原理还涉及到接触网的供电系统。

高铁列车行驶时,接触网通过供
电系统提供电能,而受电弓则负责将接触网上的电能传输到列车上。

高铁受电弓的工作原
理不仅涉及到受电弓本身的工作原理,还包括与接触网供电系统之间的配合和协调。

高铁受电弓的工作原理是通过受电机构感应接触网上的电压,然后通过接触系统将电
压传递到列车的牵引系统、辅助设备上,同时通过伸缩装置、电动传动机构调整接触轮组
的位置,确保与接触网保持良好的接触状态,以确保电能传输的安全可靠。

高铁受电弓的
工作原理是高铁列车正常运行的关键,对于高铁运输的安全和稳定起着至关重要的作用。

受电弓知识点总结

受电弓知识点总结

受电弓知识点总结受电弓是电力机车和电力动车组的一种重要的输电装置,是将架空线路上的电能传送到列车上的装置。

在电气化铁路系统中,受电弓起到了非常关键的作用。

它不仅能够实现列车与电力线路之间的电能传输,还能够保证列车在高速行驶过程中和架空电缆之间的正确接触,确保电能的连续供应。

在本篇文章中,我们将系统地介绍受电弓的工作原理、种类、维护和维修等相关知识点。

一、受电弓的工作原理受电弓是一种能够贴合架空线路,连接列车与电力线路并传输电能的机械装置。

它的主要工作原理是通过受电弓的机械结构和控制系统,将列车上的电动机或者牵引变流器与架空电缆之间建立起良好的电气和机械接触,从而实现电能的输送和传输。

受电弓的工作原理可以概括为以下几个关键环节:1. 触网系统:受电弓首先要通过机械方式贴近架空电缆,确保电能的正常传输。

触网系统通常具有弹簧、气动或者液压装置,能够确保受电弓在高速行驶过程中能够稳定地贴合架空电缆。

2. 电气接触:受电弓通过电气接触将列车上的电气设备与架空电缆连接起来,确保电能的传输通畅。

3. 控制系统:受电弓还需要通过控制系统实现对受电弓的升降和调整,保证列车在行驶过程中保持与架空电缆的适当接触。

以上三个环节共同构成了受电弓的基本工作原理,保证了列车在行驶过程中能够稳定地获得电能,并保持与架空电缆的正确接触。

二、受电弓的种类根据不同的工作原理和使用场景,受电弓可以分为不同的种类,下面我们将着重介绍几种常见的受电弓种类。

1. 拉杆式受电弓:拉杆式受电弓是一种利用铰链机构伸缩的受电弓,通常适用于中低速列车。

它的优点是结构简单,维护较为方便,但是对于高速列车来说拉杆式受电弓的伸缩行程受限,不适合高速运行。

2. 弹性梁式受电弓:弹性梁式受电弓是一种通过弹性梁结构伸缩的受电弓,通常适用于中高速列车。

它的优点是能够适应高速列车的运行需要,但是相对于拉杆式受电弓结构更为复杂,维护难度较大。

3. 摇枕式受电弓:摇枕式受电弓是一种通过摇枕装置伸缩的受电弓,其特点是能够实现对受电弓的多方位调整,适用于高速列车。

受电弓工作原理

受电弓工作原理

受电弓工作原理
受电弓是电力机车和电动车辆等电气化交通工具中常用的接触网供电系统。

其工作原理如下:
1. 受电弓的基本原理是通过受电弓与接触网之间的接触,将接触网上的电能传递给电动车辆,以供其驱动电动机运行。

2. 受电弓通常由一个弓形的金属构架和一个绝缘材料做成。

弓形金属构架可以沿着车辆运行方向调整高度,以适应不同高度的接触网。

3. 当电动车辆行驶时,受电弓与接触网接触,形成电路闭合。

电流经过受电弓进入车辆,供电给车辆上的电动机。

4. 接触网上的电能是由供电系统提供的,通常是通过变电站将高压电能转换为接触网上的直流电。

5. 为了保证接触的稳定性和安全性,受电弓和接触网之间需要保持一定的接触压力。

这通常通过弹簧机构来实现,使受电弓能够自动对接触网进行上下运动调整。

总的来说,受电弓工作原理是通过受电弓与接触网之间的接触,将接触网上的电能传递给电动车辆,实现供电供能的功能。

浅析CRH3型动车组受电弓工作原理及调试

浅析CRH3型动车组受电弓工作原理及调试

浅析CRH3型动车组受电弓工作原理及调试摘要:CRH3型动车组受电弓是从接触网上受取电流的一种受流装置。

受电弓靠滑动接触受流,是动车组与固定供电装置之间连接的环节,其性能的优劣性直接影响到动车组工作的可靠性。

随着动车组运行速度的不断提高,对其受电弓性能,调试过程工作原理提出了越来越高的要求,探讨受电弓工作原理保证其性能稳定,实现动车组安全运行。

关键词:动车组;受电弓;原理;调试A brief analysis of the working principle and debugging of pantograph of CRH3emuAbstract:The model CRH3 pantograph is a current receiving device from the contact network.The pantograph receives the current by sliding contact, which is the link between the emu and the fixed power supply device.With the continuous improvement of the running speed of emu, higher and higher requirements are put forward for the pantograph performance and the working principle of the debugging process.Keyword:EMU;Pantograph;The principle;debugging引言受电弓是利用车顶接触网获取和传递电流的机械组成。

受电弓由气囊组成的气动平衡系统控制,该气囊的压力空气由气动控制单元提供。

在压力空气作用下气囊产生扭矩,通过凸轮及弹性连接轴作用在下臂的铰链处,从而使受电弓根据设定速度升弓。

简述受电弓的工作原理

简述受电弓的工作原理

简述受电弓的工作原理
受电弓是电气化铁路机车车辆上的一种重要设备,其作用是将电网上的电能传输到机车车辆上,为其提供动力。

受电弓的工作原理可以简单地归纳为三个步骤:接触、导流、传输。

首先是接触。

受电弓的主体部分是由一根导电杆组成,它安装在机车车辆的屋顶上,通过一个可伸缩的机构与电线接触。

在机车车辆行驶过程中,导电杆不断地与电线接触,从而建立起机车车辆与电网之间的电气连接。

接下来是导流。

当导电杆与电线接触时,电能通过导电杆进入机车车辆内部的接触网系统。

接触网系统是由一组导电线构成的,它们悬挂在铁路轨道的两侧,与导电杆接触后,电能就可以通过接触网系统进入机车车辆内部。

最后是传输。

一旦电能进入机车车辆内部,它就需要通过转换器和控制器进行处理,最终驱动机车车辆行驶。

转换器主要负责将高压直流电转换为低压直流电,并将电能传输给机车车辆的牵引电机,从而使机车车辆产生牵引力。

控制器则负责监控电能的传输和牵引力的产生,保证机车车辆能够稳定、高效地运行。

受电弓的工作原理虽然看似简单,但其背后涉及到了众多的电学、机械学等知识。

为了保证受电弓的正常工作,需要对其进行定期的检修和维护,以确保其各个部件的良好运行。

同时,还需要对铁路
电气化系统进行严格的管理和监控,保证电能的传输和使用安全可靠。

dsa250型受电弓工作原理

dsa250型受电弓工作原理

dsa250型受电弓工作原理
DSA250型受电弓是一种用于电力化铁路的设备,主要用于接收铁路高速列车通过接触网提供的电能,从而驱动列车行驶。

受电弓通过与接触线接触,将电流传入列车的牵引系统,从而驱动列车前进。

常见的受电弓有气动受电弓和电动受电弓。

DSA250型受电弓采用了电动受电弓的工作原理,其结构包括受电弓架、受电弓、导电鞋、铜制接触线、弹簧支撑杆、驱动机构等。

当列车行驶到电力化铁路上时,受电弓架和受电弓将会与接触线接触,形成电路,电流将通过受电弓传输到牵引系统,从而驱动列车。

DSA250型受电弓具有以下特点:
1. 高效节能:DSA250型受电弓采用了先进的电动驱动技术,能够实现高效的能源利用和节能减排。

2. 稳定可靠:DSA250型受电弓采用了优质的材料和先进的加工工艺,具有高强度、高硬度、抗腐蚀等特点,能够确保受电弓的稳定性和可靠性。

3. 适应性强:DSA250型受电弓具有较高的适应能力,能够适应各种不同的铁路线路和列车类型,具有较强的通用性。

4. 维护简便:DSA250型受电弓的维护简便,可以通过对驱动机构进行检修和维护,确保受电弓的正常运转。

综上所述,DSA250型受电弓是一种高效、稳定、可靠、通用的电动受电弓,其工作原理是通过与接触线接触,传输电流到列车牵引系统,从而驱动列车行驶。

高速铁路受电弓的工作原理

高速铁路受电弓的工作原理

高速铁路受电弓的工作原理受电弓杆是受电弓的主要支撑部件,通常由导电材料制成。

它与列车车顶的导向系统连接,可以在列车运行时沿着导向系统上下移动。

牵引装置负责控制受电弓的升降和旋转。

它通常由电动机和传动装置组成,可通过列车上的控制系统进行控制。

当列车需要升起或收起受电弓时,牵引装置会启动电动机,从而牵引受电弓杆进行升降或旋转。

导电刷是受电弓的导电部分,通常由碳材料制成。

导电刷通过与接触线接触,将电能传输到受电弓杆,再通过传输装置传输到列车上的电机。

弹簧机构用于控制受电弓的接触力。

它通常由弹簧和张紧装置组成,可以调节受电弓与接触线之间的接触力。

足够的接触力可以确保受电弓与接触线之间的可靠接触,并减少电阻和电弧产生的可能性。

1.列车接近电力区域时,牵引装置会启动电动机,将受电弓杆从水平位置升起到接触线的高度。

这通常是由于受电弓杆上的导电刷接触到接触线并受到电力影响。

2.当受电弓接触到接触线时,导电刷通过电磁感应接收电能,并通过传输装置将电能传输到列车上的电机。

3.在列车运行过程中,受电弓始终保持与接触线的接触,以确保持续的电能传输。

4.当列车离开电力区域时,牵引装置会启动电动机,将受电弓杆从接触线的高度降低到水平位置。

这样可以确保受电弓在高速运行过程中不会与非电力区域的物体发生碰撞。

总结来说,高速铁路受电弓的工作原理是通过受电弓杆、牵引装置、导电刷和弹簧机构等部件的协作实现的。

它们通过电磁感应和接触导电的方式,将电能从接触线传输到列车上的电机,为高速列车的运行提供动力。

同时,弹簧机构可以确保受电弓与接触线之间保持足够的接触力,确保电能传输的可靠性。

高速铁路受电弓的高效工作对于高速列车的平稳运行和安全行驶具有重要的意义。

受电弓工作原理

受电弓工作原理

受电弓工作原理
受电弓是电力机车和电动列车的重要部件,它通过与接触网接触,将接触网上的电能传输到电动车辆上,为车辆的牵引和辅助设备提供电能。

受电弓的工作原理主要包括受电弓的结构和工作过程两个方面。

首先,受电弓的结构主要由受电弓架、受电弓臂、受电弓头、接触板等部件组成。

受电弓架是受电弓的支撑结构,受电弓臂是受电弓的伸缩部分,受电弓头是受电弓与接触网接触的部位,接触板是受电弓头与接触网之间的传导部件。

这些部件通过复杂的机械传动系统和电气控制系统相互配合,实现受电弓的伸缩和接触网的接触,从而完成电能的传输。

其次,受电弓的工作过程可以分为接触、牵引和辅助三个阶段。

在接触阶段,受电弓通过机械传动系统将受电弓头与接触网接触,建立电气连接。

在牵引阶段,电能从接触网传输到电动车辆上,为电动机提供动力,实现车辆的牵引运行。

在辅助阶段,电能还可以为车辆的辅助设备提供供电,如空调、照明等。

受电弓的工作原理是通过受电弓的结构和工作过程相互配合,实现电能的传输和利用。

在实际运行中,受电弓需要具有良好的机械性能和电气性能,能够适应各种复杂的运行环境和工况要求。

同时,受电弓的工作原理也需要与接触网、电动车辆和供电系统相互匹配,确保电能的有效传输和利用。

总的来说,受电弓作为电力机车和电动列车的重要部件,其工作原理涉及到机械传动、电气控制和电能传输等多个方面,需要具有良好的结构和工作性能,确保车辆的安全、稳定和高效运行。

通过不断的技术创新和改进,受电弓的工作原理将得到进一步完善和提升,为铁路运输的发展做出更大的贡献。

高速铁路受电弓的工作原理

高速铁路受电弓的工作原理

高速铁路受电弓的工作原理
高速铁路受电弓的工作原理
1.升弓
压缩空气经电空阀均匀进入传动气缸,气缸活塞压缩气缸内的降弓弹簧,此时升弓弹簧使下臂杆转动,抬起上框架和滑板,受电弓匀速上升,在接近接触线时有一缓慢停滞,然后迅速接触接触线。

2.降弓
传动气缸内的压缩空气经受电弓缓冲阀迅速排向大气,在降弓弹簧的作用下,克服升弓弹簧的作用力,使受电弓迅速下降,脱离接触网。

为保证牵引电流的顺利流通,受电弓和接触线之间必须有一定的接触压力。

弓网实际接触压力由以下四部分组成:
(1)静态接触压力。

受电弓升弓系统施加于滑板,使之向上的垂直力为静态接触压力(一般为70 N或90 N)。

(2)动态接触压力。

接触悬挂本身存在弹性差异,接触线在受电弓抬升作用下会产生不同程度的上升,从而使受电弓在运行中产生上下振动,使受电弓产生一个与其本身换算质量相关的上下交变的动态接触压力。

(3)气动力。

受电弓在运行中受空气流作用会产生一个随速度增加而迅速增加的气动力。

(4)阻尼力。

受电弓各关节在升降弓过程中会产生阻尼力。

弓网接触压力能直观地反映受电弓滑板和接触线间的接触情况,它必须符合正态分布规律,在一定范围内波动。

如果太小,会增加离线率;如果太大,会使滑板和接触线间产生较大的机械磨耗。

为保证受电弓具有可靠的受流质量,应尽量减小受电弓的归算质量,增加接触悬挂的弹性均匀性。

滑板的质量和机电性能对受流质量影响很大。

受电弓工作原理

受电弓工作原理

受电弓工作原理
受电弓是电力机车或电动列车的重要部件,它通过接触轨道上的电气设备,将
电能传输给车辆,从而驱动车辆行驶。

受电弓的工作原理是怎样的呢?接下来我们将详细介绍受电弓的工作原理。

首先,受电弓的基本结构包括接触网、受电弓杆、受电弓头、受电弓臂等部件。

接触网是安装在轨道上方的一根导线,它通过供电系统提供电能,受电弓杆则是连接接触网和受电弓头的部件,受电弓头是受电弓的关键部件,它负责与接触网接触,并将电能传输给受电弓臂,最终传输给车辆。

其次,受电弓的工作原理是利用接触网提供的电能,通过受电弓头与接触网的
接触,将电能传输给受电弓臂。

当电力机车或电动列车行驶时,受电弓头与接触网保持接触,电能通过受电弓臂传输到车辆,从而驱动车辆行驶。

在行驶过程中,受电弓头需要保持与接触网的良好接触,以确保电能传输的稳定性和可靠性。

受电弓的工作原理还涉及到一些关键技术,如受电弓的自动调节技术、接触网
的动态调整技术等。

受电弓的自动调节技术能够根据列车的速度和轨道的高低变化,自动调节受电弓头与接触网的接触力,以确保电能传输的稳定性和安全性。

接触网的动态调整技术则能够根据列车的行驶速度和方向,动态调整接触网的高度和位置,以确保受电弓头与接触网的良好接触。

总的来说,受电弓的工作原理是通过接触网提供的电能,通过受电弓头与接触
网的接触,将电能传输给车辆,从而驱动车辆行驶。

受电弓的工作原理涉及到多个关键部件和关键技术,它对电力机车和电动列车的安全性和可靠性有着重要影响。

希望本文能够帮助读者更好地理解受电弓的工作原理。

CRH1型动车组受电弓毕业设计

CRH1型动车组受电弓毕业设计

CRH1型动车组受电弓毕业设计1. 引言动车组是一种高速铁路列车,它的受电弓起到了接触电网供电的重要作用。

CRH1型动车组是中国铁路总公司研制的一种高速铁路列车,本文将对其受电弓进行毕业设计。

2. 受电弓的功能与原理受电弓是动车组车头上的一个设备,主要功能是与高架电网接触,将电能传递给车辆。

其原理是通过弓臂与电网间的接触,将电流传递到列车上。

受电弓通常由弓臂、弓轨、碳刷等部件组成。

弓臂是受电弓中最重要的部件,负责接触电网并传导电流。

弓臂的材料通常是导电性好且具有较高的强度。

弓轨则起到了支撑弓臂的作用,通常采用铝合金制成。

碳刷则负责将电流传到列车的电气设备。

3. 设计需求本文的设计任务是对CRH1型动车组受电弓进行设计,需满足以下几个方面的需求:1.与电网的接触质量要好,能够稳定传递电流。

2.弓臂要具备足够的强度和刚度,能够在高速行驶时稳定接触电网。

3.弓轨要轻量化,同时要有足够的强度承受受电弓的重量。

4.碳刷要具备耐磨损、导电性好的特点。

5.设计要满足国家相关标准和规范。

4. 设计方案4.1 弓臂设计弓臂是受电弓中最重要的部件之一,为了满足高速行驶时的稳定性要求,我们需要选择高强度、高韧性的材料。

同时,为了减轻重量,采用铝合金材料制造弓臂是一个不错的选择。

在设计弓臂形状时,需要考虑到与电网的接触状态。

为了确保接触质量良好,可以采用较长的弓臂,同时加入一些弹簧装置,以适应电网高度的变化。

此外,还需要考虑弓臂的结构,以提高其整体强度和稳定性。

4.2 弓轨设计弓轨是支撑弓臂的部件,需要具备足够的强度和刚度。

由于动车组需要在高速运行时保持稳定的接触,因此设计弓轨时需要采用较高强度的材料,如铝合金。

另外,为了减轻重量,还可以采用中空结构设计。

4.3 碳刷设计碳刷是将电流传递给列车的重要部件,需要具备良好的导电性能和耐磨损能力。

一般来说,碳刷的材料采用含有导电颗粒的碳材料,并且在设计时要选择适当的硬度和形状。

受电弓升弓原理

受电弓升弓原理

受电弓升弓原理
受电弓升弓是电力机车、电动客车等电气化铁路车辆上的装置,用于与架空接触网建立电气连接。

其升弓原理如下:
1. 驱动装置:受电弓装置内置有电动机或液压装置,通过驱动机构带动受电弓的上下运动。

2. 轨道探测:受电弓上面装有滚子或承力轮,通过与轨道接触,可以检测到接触网的高度和轨道的位置。

3. 接触网高度信号:探测到的接触网高度信息被传输到控制系统中,控制系统根据电气化铁路的运行要求和接触网的高度,对受电弓进行自动或手动控制。

4. 上升动作:当受电弓需要升起时,控制系统向驱动装置发送信号,驱动装置启动电动机或液压装置,使受电弓开始上升。

5. 充分接触:受电弓上升后,通过控制系统的反馈和传感器的检测,判断受电弓是否充分接触到接触网,如果未完全接触,则会进行微调直到接触充分。

6. 稳定锁定:一旦受电弓充分接触到接触网并稳定,控制系统会向驱动装置发送停止信号,停止上升动作,并使受电弓锁定在合适的位置,保持与接触网的接触状态。

总之,受电弓升弓原理主要是通过控制驱动装置,根据接触网
高度信号实现受电弓的自动升起,并确保其充分接触并稳定锁定在接触网上,以建立电气连接。

高速铁路受电弓的工作原理

高速铁路受电弓的工作原理

高速铁路受电弓的工作原理高速铁路是现代交通运输的重要组成部分,而受电弓则是高速铁路电气化运行的关键设备之一。

本文将详细介绍高速铁路受电弓的工作原理,包括其结构和工作过程。

一、受电弓的结构受电弓是连接高速列车与电气化轨道之间的设备,其主要功能是将供电的电能传递给列车,以供列车运行和提供各种系统设备的用电。

受电弓一般由触网机构和牵引机构两部分组成。

1. 触网机构:触网机构是受电弓的上部组成部分,主要由集电弓头、上、下弓臂、弓柱等构件组成。

集电弓头是受电弓的前端,用于与接触线进行接触并传递电能。

上、下弓臂通过铰接装置连接在一起,可以调节受电弓的接触线高度。

弓柱则是支撑和固定受电弓的结构。

2. 牵引机构:牵引机构是受电弓的下部组成部分,主要由电机、传动装置和控制系统等构件组成。

电机通过传动装置产生牵引力,使受电弓能够顺利连接到接触线上,实现电能的传递。

控制系统则负责控制牵引机构的运行,使受电弓能够根据列车的运行状态进行自动调节和控制。

二、受电弓的工作过程高速铁路受电弓的工作过程主要包括以下几个步骤:接触、传递电能和牵引。

1. 接触:在列车行驶过程中,受电弓的集电弓头与接触线建立接触。

当列车靠近接触线时,集电弓头会先碰触到接触线,然后通过弓臂的调节使受电弓与接触线保持良好的接触状态。

接触线上的电能随即传递到受电弓上。

2. 传递电能:在接触建立后,供电系统会将电能通过接触线传递到受电弓上。

通过受电弓的导电装置,电能会进一步传递到列车的牵引机构上。

牵引机构将电能转化为机械能,驱动列车运行。

3. 牵引:通过受电弓传递的电能,列车的牵引机构可以产生足够的牵引力,以推动列车行驶。

在列车运行过程中,受电弓会始终保持与接触线的良好接触状态,以确保稳定的电能传递。

受电弓的工作原理是依靠牵引机构和接触线之间的物理连接,通过电能的传递实现列车的动力供应。

由于高速铁路列车的运行速度较快,受电弓的工作要求也较高,需要确保在高速行驶中牵引力的稳定和可靠传递。

高速铁路受电弓

高速铁路受电弓

1.2 高速铁路受电弓的技术要求
高速弓与普通弓的最大区别在于高速时高速弓的离线率较小,受流较稳定,主要是靠较轻的弓 头质量和较好的弓网接触性能来保证的。当电力机车在常速下运行时,受电弓与接触网之间可以保 持可靠的接触,因而能够保证受电弓与接触网间良好的动态受流。然而,随着高速电力机车运行速 度的提高,受电弓的振动加剧,频繁出现的离线现象,使受电弓的受流质量恶化,机车速度受到限 制。随着新材料的不断研发成功和开发应用,受电弓滑板(碳滑板、铜基粉末冶金滑板和浸金属碳 滑板等)所采用的材料必将逐步向碳纤维、金属纤维、带有润滑功能的金属基和无机非金属基复合 材料发展。目前广泛使用的接触网导线(铜银接触线、铜锡接触线、铜镁接触线)将向铜合金化和 复合金属化方向发展。在接触网一定的前提下,受电弓滑板一般应具备良好的导电性,抑制离线电 弧的产生,满足良好的耐磨性、足够的强度和对自然环境适应性强等性能要求。


谢谢观看


1.2 高速铁路受电弓的技术要求
Hale Waihona Puke 受电弓是靠一定的抬升力让滑板与接触线 保持接触的。当列车高速运行时,受电弓 的滑板就像一个小小的飞机机翼,在气流 的作用也会产生一个动态的抬升力,抬升 力随列车运行速度的升高而增大。当列车
运行时,接触线在受电弓抬升力的作用下 技术 产生上下振动,振动波向前传播,这就给 要求

速 铁
项目
高速铁路受电弓

1.1 高速铁路受电弓的工作原理
1.升弓 升弓
压缩空气经电空阀均匀进入传动气缸,气缸活塞压缩气缸内的降弓弹簧,此时升弓弹簧使下臂杆转 动,抬起上框架和滑板,受电弓匀速上升,在接近接触线时有一缓慢停滞,然后迅速接触接触线。
1.1 高速铁路受电弓的工作原理

受电弓的结构组成

受电弓的结构组成

受电弓的结构组成受电弓是电力机车和电动车等电气化铁路车辆中的重要组成部分。

它的主要作用是将架空线路上的电能传递到车辆上,以供车辆运行。

受电弓的结构组成是一个非常重要的话题,本文将从受电弓的基本原理、结构组成、材料特性等多个方面进行探讨。

一、受电弓的基本原理受电弓的基本原理是利用车顶上的受电弓接触架空线路上的导线,通过导线将电能传递到车辆上,以供车辆运行。

受电弓的接触方式主要有两种,一种是集电靴接触方式,另一种是滑板接触方式。

其中,集电靴接触方式适用于高速列车,而滑板接触方式适用于低速列车。

二、受电弓的结构组成受电弓的结构组成主要包括受电弓支架、受电弓杆、受电弓头、受电弓接触器、滑板等几个部分。

1.受电弓支架受电弓支架是受电弓的主体部分,它通常由钢材制成,具有足够的强度和刚度。

受电弓支架一般采用铸造或锻造工艺制造,以确保其强度和耐久性。

2.受电弓杆受电弓杆是连接受电弓支架和受电弓头的部分,它的材料通常是高强度铝合金或碳纤维复合材料。

这些材料具有轻量化、高强度和耐腐蚀性等特点,可以有效提高受电弓的性能和寿命。

3.受电弓头受电弓头是受电弓的关键部分,它直接接触架空线路上的导线,负责传递电能。

受电弓头一般采用铜合金制造,具有良好的导电性和耐磨性。

4.受电弓接触器受电弓接触器是受电弓的控制部分,它负责控制受电弓的升降和位置调整。

受电弓接触器一般由电动机、减速器、传动机构和控制电路等部分组成。

5.滑板滑板是滑板接触方式下的重要组成部分,它是连接受电弓头和车体的部分,负责传递电能。

滑板一般采用铜合金或碳纤维复合材料制造,具有良好的导电性和耐磨性。

三、受电弓的材料特性受电弓的材料特性对其性能和寿命有着重要的影响。

受电弓的材料通常需要具备以下特点:1.强度高:受电弓需要具有足够的强度和刚度,以承受架空线路上的导线的重量和风压等外力。

2.轻量化:受电弓需要具备轻量化的特点,以减轻车顶负荷,提高车辆的运行效率。

3.耐腐蚀性好:受电弓需要具有良好的耐腐蚀性,以防止受电弓在恶劣环境下发生腐蚀和损坏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高速铁路受电弓的工作原理
1.升弓
压缩空气经电空阀均匀进入传动气缸,气缸活塞压缩气缸内的降弓弹簧,此时升弓弹簧使下臂杆转动,抬起上框架和滑板,受电弓匀速上升,在接近接触线时有一缓慢停滞,然后迅速接触接触线。

2.降弓
传动气缸内的压缩空气经受电弓缓冲阀迅速排向大气,在降弓弹簧的作用下,克服升弓弹簧的作用力,使受电弓迅速下降,脱离接触网。

为保证牵引电流的顺利流通,受电弓和接触线之间必须有一定的接触压力。

弓网实际接触压力由以下四部分组成:
(1)静态接触压力。

受电弓升弓系统施加于滑板,使之向上的垂直力为静态接触压力(一般为70 N或90 N)。

(2)动态接触压力。

接触悬挂本身存在弹性差异,接触线在受电弓抬升作用下会产生不同程度的上升,从而使受电弓在运行中产生上下振动,使受电弓产生一个与其本身换算质量相关的上下交变的动态接触压力。

(3)气动力。

受电弓在运行中受空气流作用会产生一个随速度增加而迅速增加的气动力。

(4)阻尼力。

受电弓各关节在升降弓过程中会产生阻尼力。

弓网接触压力能直观地反映受电弓滑板和接触线间的接触情况,它必须符合正态分布规律,在一定范围内波动。

如果太小,会增加离线率;如果太大,会使滑板和接触线间产生较大的机械磨耗。

为保证受电弓具有可靠的受流质量,应尽量减小受电弓的归算质量,增加接触悬挂的弹性均匀性。

滑板的质量和机电性能对受流质量影响很大。

相关文档
最新文档