人教八年级下册数学-二次根式的性质导学案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十六章 二次根式
16.1 二次根式
第2课时 二次根式的性质
一、学习目标:1.掌握二次根式的基本性质:(a )2=a (a ≥0);a a =2;
2.能利用上述性质对二次根式进行化简.
二、学习重点、难点
重点:二次根式的性质(a )2=a (a ≥0);a a =2.
难点:综合运用性质对二次根式进行化简和计算。
三、学习过程
(一)自学导航(课前预习)
(1)什么是二次根式,它有哪些性质?
(2)二次根式5
2-x 有意义,则x 。 (3)在实数范围内因式分解:-=-226x x ( )2=(x + )(y - )
(二)合作交流(小组互助)
1、计算 (1) 2)4(= (2)()=23
(3)2)5.0( = (4)2)3
1(= 根据计算结果,能得出结论: (0≥a )
2.计算:
(1)=24 =22.0 =2)54(
=220 观察其结果与根号内幂底数的关系,归纳得到:当a ﹥0时,=2a
(2) =-2)4( =-2)2.0( =-2)54(
=-2)20( ________)(2=a
观察其结果与根号内幂底数的系,归纳得到:当a<0时,=2a
(3)=20 得到:当a=0时,=2a
3.归纳总结
将上面做题过程中得到的结论综合起来,得到二次根式的非常重要的性质: 性质一:(a )2=a (a ≥0) 性质二:⎪⎩
⎪⎨⎧<-=>==0a a 0a 00a a 2
a a 4. (1)阅读课本思考:什么是代数式?我们前面还学过那些代数式吗?
(2)思考、讨论:二次根式的性质)0()(2≥=a a a 与a a =2有什么区
别与联系。
四.精讲点评 利用a a =2可将二次根式被开方数中的完全平方式“开方”出来,达到化简目的,进行化简的关键是准确确定“a ”的取值。
五.当堂达标
1、化简下列各式
(1)(5.1)2 (2)(52)2 (3)22)33()10(-+--计算: ())0(42≥x x (5) 4x
2、化简下列各式
(1))3()3(2≥-a a (2)
()232+x (x <-2)
六.拓展延伸
(1)a 、b 、c 为三角形的三条边,则=--+-+c a b c b a 2)(____________.
(2) 把(2-x)2
1-x 的根号外的(2-x )适当变形后移入根号内,得( )
A 、x -2
B 、2-x
C 、x --2
D 、2--x
(3) 已知2<x <3,化简:3)2(2-+-x x
七.教后反思
【素材积累】
1、人生只有创造才能前进;只有适应才能生存。 博学之,审问之,慎思之,明辨之,笃行之。我不知道将来会去何处但我知道我已经摘路上。思想如钻子,必须集中摘一点钻下去才有力量。失败也是我需要的,它和成功对我一样有价值。
2、为了做有效的生命潜能管理,从消极变为积极,你必须了解人生的最终目的。你到底想要什么?一生中哪些对你而言是最重要的?什么是你一生当中最想完成的事?或许,你从来没有认真思量过生命潜能管理旧是以有系统的方法管理自我及周边资源,达成 。