绳杆连接物的关联速度
第五讲 关联速度

第五讲关联速度所谓关联速度就是两个通过某种方式联系起来的速度.比如一根杆上的两个速度通过杆发生联系,一根绳两端的速度通过绳发生联系.常用的结论有:1,杆或绳约束物系各点速度的相关特征是:在同一时刻必具有相同的沿杆或绳方向的分速度.2,接触物系接触点速度的相关特征是:沿接触面法向的分速度必定相同,沿接触面切向的分速度在无相对滑动时相同.3,线状相交物系交叉点的速度是相交双方沿对方切向运动分速度的矢量和.4,如果杆(或张紧的绳)围绕某一点转动,那么杆(或张紧的绳)上各点相对转动轴的角速度相同·类型1质量分别为m1、m2和m3的三个质点A、B、C位于光滑的水平桌面上,用已拉直的不可伸长的柔软轻绳AB和BC连接,∠ABC=π-α,α为锐角,如图5-1所示.今有一冲量I沿BC方向作用于质点C,求质点A开始运动时的速度.图5-1 图5-2类型2绳的一端固定,另一端缠在圆筒上,圆筒半径为R,放在与水平面成α角的光滑斜面上,如图5-2所示.当绳变为竖直方向时,圆筒转动角速度为ω(此时绳未松弛),试求此刻圆筒轴O的速度、圆筒与斜面切点C的速度。
类型3直线AB以大小为v1的速度沿垂直于AB的方向向上移动,而直线CD以大小为v2的速度沿垂直于CD的方向向左上方移动,两条直线交角为α,如图5-3所示.求它们的交点P的速度大小与方向.(全国中学生力学竞赛试题)图5-3图5-4以上三例展示了三类物系相关速度问题.类型1求的是由杆或绳约束物系的各点速度;类型2求接触物系接触点速度;类型3则是求相交物系交叉点速度.三类问题既有共同遵从的一般规律,又有由各自相关特点所决定的特殊规律,我们若能抓住它们的共性与个性,解决物系相关速度问题便有章可循.首先应当明确,我们讨论的问题中,研究对象是刚体、刚性球、刚性杆或拉直的、不可伸长的线等,它们都具有刚体的力学性质,是不会发生形变的理想化物体,刚体上任意两点之间的相对距离是恒定不变的;任何刚体的任何一种复杂运动都是由平动与转动复合而成的.如图5-4所示,三角板从位置ABC移动到位置A′B′C′,我们可以认为整个板一方面做平动,使板上点B移到点B′,另一方面又以点B′为轴转动,使点A到达点A′、点C到达点C′.由于前述刚体的力学性质所致,点A、C及板上各点的平动速度相同,否则板上各点的相对位置就会改变.这里,我们称点B′为基点.分析刚体的运动时,基点可以任意选择.于是我们得到刚体运动的速度法则:刚体上每一点的速度都是与基点速度相同的平动速度和相对于该基点的转动速度的矢量和.我们知道转动速度v=rω,r是转动半径,ω是刚体转动角速度,刚体自身转动角速度则与基点的选择无关.根据刚体运动的速度法则,对于既有平动又有转动的刚性杆或不可伸长的线绳,每个时刻我们总可以找到某一点,这一点的速度恰是沿杆或绳的方向,以它为基点,杆或绳上其他点在同一时刻一定具有相同的沿杆或绳方向的分速度(与基点相同的平动速度).因此,我们可以得到下面的结论.结论1杆或绳约束物系各点速度的相关特征是:在同一时刻必具有相同的沿杆或绳方向的分速度.我们再来研究接触物系接触点速度的特征.由刚体的力学性质及“接触”的约束可知,沿接触面法线方向,接触双方必须具有相同的法向分速度,否则将分离或形变,从而违反接触或刚性的限制.至于沿接触面的切向接触双方是否有相同的分速度,则取决于该方向上双方有无相对滑动,若无相对滑动,则接触双方将具有完全相同的速度.因此,我们可以得到下面的结论.结论2接触物系接触点速度的相关特征是:沿接触面法向的分速度必定相同,沿接触面切向的分速度在无相对滑动时相同.相交物系交叉点速度的特征是什么呢?我们来看交叉的两直线a、b,如图5-5所示,设直线a不动,当直线b沿自身方向移动时,交点P并不移动,而当直线b沿直线a的方向移动时,交点P便沿直线a移动,因交点P亦是直线b上一点,故与直线b具有相同的沿直线a方向的平移速度.同理,若直线b固定,直线a移动,交点P的移动速度与直线a沿直线b方向平动的速度相同.根据运动合成原理,当两直线a、b各自运动,交点P的运动分别是两直线沿对方直线方向运动的合运动.于是我们可以得到下面的结论.图5-5结论3线状相交物系交叉点的速度是相交双方沿对方切向运动分速度的矢量和.这样,我们将刚体的力学性质、刚体运动的速度法则运用于三类相关速度问题,得到了这三类相关速度特征,依据这些特征,并运用速度问题中普遍适用的合成法则、相对运动法则,解题便有了操作的章法.下面我们对每一类问题各给出3道例题,展示每一条原则在不同情景中的应用.例1如图5-6所示,杆AB的A端以速度v做匀速运动,在杆运动时恒与一静止的半圆周相切,半圆周的半径为R,当杆与水平线的交角为θ时,求杆的角速度ω及杆上与半圆相切点C的速度.图5-6分析与解考察切点C的情况.由于半圆静止,杆上点C速度的法向分量为零,故点C速度必沿杆的方向.以点C为基点,将杆上点A速度v分解成沿杆方向分量v1和垂直于杆方向分量v2(如图5-7所示),则v1是点A与点C相同的沿杆方向平动速度,v2是点A对点C的转动速度,故可求得点C的速度为图5-7vC=v1=v·cosθ,又v2=v·sinθ=ω·AC.由题给几何关系知,A点对C点的转动半径为:AC=R·cotθ,代入前式中即可解得:ω=(vsin2θ)/(Rcosθ).例2如图5-8所示,合页构件由三个菱形组成,其边长之比为3∶2∶1,顶点A3以速度v沿水平方向向右运动,求当构件所有角都为直角时,顶点B2的速度vB2.图5-8分析与解顶点B2作为B2A1杆上的一点,其速度是沿B2A1杆方向的速度v1及垂直于B2A1杆方向速度v1′的合成;同时作为杆B2A2上的一点,其速度又是沿B2A2杆方向的速度v2及垂直于B2A2杆方向的速度v2′的合成.由于两杆互成直角的特定条件,由图5-9显见,v2=v1′,v1=v2′.故顶点B2的速度可通过v1、v2速度的矢量和求得,而根据杆的约束的特征,得图5-9v1=(/2)vA1;v2=(/2)vA2,于是可得由几何关系可知vA1∶vA2∶vA3=A0A1∶A0A2∶A0A3=3∶5∶6,则vA1=v/2,vA2=(5/6)v,由此求得vB2=(/6)v.图5-10上述解析,我们是选取了速度为沿杆方向的某一点为基点来考察顶点B2的速度的.当然我们也可以选取其他合适的点为基点来分析.如图5-10所示,若以A1、A2点为基点,则B2点作为B2A1杆上的点,其速度是与A1点相同的平动速度vA1和对A1点的转动速度vn1之合成,同时B2点作为B2A2杆上的点,其速度是与A2点相同的平动速度vA2和对A2点的转动速度vn2之合成,再注意到题给的几何条件,从矢量三角形中由余弦定理得而由矢量图可知vn1=(/2)(vA2-vA1),代入前式可得vB2=(/6)v.两解殊途同归.例3如图5-11所示,物体A置于水平面上,物体A上固定有动滑轮B,D为定滑轮,一根轻绳绕过滑轮D、B后固定在C点,BC段水平.当以速度v拉绳头时,物体A沿水平面运动,若绳与水平面夹角为α,物体A运动的速度是多大?图5-11分析与解首先根据绳约束特点,任何时刻绳BD段上各点有与绳端D相同的沿绳BD段方向的分速度v,再看绳的这个速度与物体A移动速度的关系:设物体A右移速度为vx,则相对于物体A(或动滑轮B的轴心),绳上B点的速度为vx,即vBA=vx,方向沿绳BD方向;而根据运动合成法则,在沿绳BD方向上,绳上B点速度是相对于参照系A(或动滑轮B的轴心)的速度vx与参照系A对静止参照系速度vxcosα的合成,即v=vBA+vxcosα;由上述两方面可得vx=v/(1+cosα).例4如图5-12所示,半径为R的半圆凸轮以等速v0沿水平面向右运动,带动从动杆AB沿竖直方向上升,O为凸轮圆心,P为其顶点.求当∠AOP=α时,AB杆的速度.图5-12 图5-13分析与解这是接触物系相关速度问题.由题可知,杆与凸轮在A点接触,杆上A点速度vA是竖直向上的,轮上A点的速度v0是水平向右的,根据接触物系触点速度相关特征,两者沿接触面法向的分速度相同,如图5-13所示,即vAcosα=v0sinα,则vA=v0tanα.故AB杆的速度为v0tanα.例5如图5-14所示,缠在线轴上的绳子一头搭在墙上的光滑钉子A上,以恒定的速度v拉绳,当绳与竖直方向成α角时,求线轴中心O的运动速度vO.设线轴的外径为R,内径为r,线轴沿水平面做无滑动的滚动.分析与解当线轴以恒定的速度v拉绳时,线轴沿顺时针方向运动.从绳端速度v到轴心速度vO,是通过绳、轴相切接触相关的.考察切点B的速度:本题中绳与线轴间无滑动,故绳上B点与轴上B点速度完全相同,即无论沿切点法向或切向,两者均有相同的分速度.图5-15是轴上B点与绳上B点速度矢量图:轴上B点具有与轴心相同的平动速度vO 及对轴心的转动速度rω(ω为轴的角速度),那么沿切向轴上B点的速度为rω-vO sinα;而绳上B点速度的切向分量正是沿绳方向、大小为速度v,于是有关系式,即图5-14图5-15 rω-vO sinα=v.① 又由于线轴沿水平地面做纯滚动,故与水平地面相切点C的速度为零,则轴心速度为vO =Rω,② 由①、②两式可解得vO =(Rv)/(r-Rsinα).若绳拉线轴使线轴逆时针转动,vO =(Rv)/(r-Rsinα),自行证明.例6如图5-16所示,线轴沿水平面做无滑动的滚动,并且线端A点速度为v,方向水平.以铰链固定于点B的木板靠在线轴上,线轴的内、外径分别为r和R.试确定木板的角速度ω与角α的关系.图5-16 图5-17 分析与解设木板与线轴相切于C点,则板上C点与线轴上C点有相同的法向速度vn ,而板上C点的这个法向速度正是C点关于B轴的转动速度,如图5-17所示,即vn =ω·BC=ω·Rcot(α/2).①现在再来考察线轴上C点的速度:它应是C点对轴心O的转动速度vCn和与轴心相同的平动速度vO的矢量和,而vCn是沿C点切向的,则C点法向速度vn应是vn=vOsinα.②又由于线轴为刚体且做纯滚动,故以线轴与水平面切点为基点,应有v/(R+r)=vO/R.③将②、③两式代入①式中,得ω=(1-cosα)/(R+r)v.例7如图5-18所示,水平直杆AB在圆心为O、半径为r的固定圆圈上以匀速u竖直下落,试求套在该直杆和圆圈的交点处一小滑环M的速度,设OM与竖直方向的夹角为φ.图5-18分析与解当小环从圆圈顶点滑过圆心角为φ的一段弧时,据交叉点速度相关特征,将杆的速度u沿杆方向与圆圈切线方向分解,则M的速度为v=u/sinφ.例8如图5-19所示,直角曲杆OBC绕O轴在如图5-19所示的平面内转动,使套在其上的光滑小环沿固定直杆OA滑动.已知OB=10cm,曲杆的角速度ω=0.5rad/s,求φ=60°时,小环M的速度.图5-19 图5-20分析与解本题首先应该求出交叉点M作为杆BC上一点的速度v,而后根据交叉点速度相关特征,求出该速度沿OA方向的分量即为小环速度.由于刚性曲杆OBC以O为轴转动,故其上与OA直杆交叉点的速度方向垂直于转动半径OM、大小是v=ω·M=10cm/s.将其沿MA、MB方向分解成两个分速度,如图5-20所示,即得小环M的速度为:vM=vMA=v·tanφ=10cm/s.例9如图5-21所示,一个半径为R的轴环O1立在水平面上,另一个同样的轴环O2以速度v从这个轴环旁通过,试求两轴环上部交叉点A的速度vA与两环中心之距离d之间的关系.轴环很薄且第二个轴环紧邻第一个轴环.图5-21 图5-22分析与解轴环O2速度为v,将此速度沿轴环O1、O2的交叉点A处的切线方向分解成v1、v2两个分量,如图5-22,由线状相交物系交叉点相关速度规律可知,交叉点A的速度即为沿对方速度分量v1.注意到图5-22中显示的几何关系便可得。
高三物理难点 破解连接体中速度、位移及加速度关联

难点6破解连接体中速度、位移及加速度关联在学习了运动的合成与分解后,我们经常会碰到涉及相互关联的物体的速度求解。
这样的几个物体或直接接触、相互挤压,或借助其他媒介(如轻绳、细杆)等发生相互作用。
在运动过程中常常具有不同的速度表现,但它们的速度却是有联系的,我们称之为“关联”速度。
解决“关联”速度问题的关键有两点:一是物体的实际运动是合运动,分速度的方向要按实际运动效果分解,二是沿着相互作用的方向(如沿绳、沿杆)的分速度大小相等。
下面通过三种关联媒介来破解连接体中的关联物理量的问题。
连接媒介之一:绳杆连接物体的关联 对于绳子或杆连接的两个物体,轻杆与轻绳均不可伸长,绳连或杆连物体的速度在绳或杆的方向上的投影相等。
求绳连或杆连物体的速度关联问题时,首先要明确绳连或杆连物体的速度,然后将两物体的速度分别沿绳或杆的方向和垂直于绳或杆的方向进行分解,令两物体沿绳或杆方向的速度相等即可求出。
【调研1】【2011年高考上海卷第11题】如图,人沿平直的河岸以速度v 行走,且通过不可伸长的绳拖船,船沿绳的方向行进,此过程中绳始终与水面平行。
当绳与河岸的夹角为α,船的速率为A 、v sin αB 、v sin αC 、v cos αD 、v cos α 【解析】本题考查运动的合成与分解。
本题难点在于船的发动机是否在运行、河水是否有速度。
依题意船沿着绳子的方向前进,即船的速度就是沿着绳子的,根据绳子连接体的两端物体的速度在绳子上的投影速度相同,即人的速度v 在绳子方向的分量等于船速,故v 船=v cos α,C 对。
【答案】C 【规律总结】绳端速度的分解是绳端物体(绳端连接体如本题小船)实际速度(对地)的分解,实际速度产生两个效果:一是绳的缩短或伸长;二是绳绕滑轮的转动,且转动线速度垂直于绳。
绕过滑轮的轻绳力的特点是两端拉力相等,速度特点是沿绳的伸长或缩短方向速度相等。
因此绳子关联的物体的分解方法有两种,①将实际速度分解为沿着绳子方向和垂直绳子方向;②绳子两端的速度在绳子上的投影速度相同,比如本题中绳子左端的速度就是拉力的速度与绳子与船连接端的小船在绳子方向上的投影速度大小相等。
“关联”速度问题模型归类例析

关联”速度问题模型归类例析绳、杆等有长度的物体,在运动过程中,如果两端点的速度方向不在绳、杆所在直线上,两端的速度通常是不样的,但两端点的速度是有联系的,称之为“关联”速度。
关联速度”问题特点:沿杆或绳方向的速度分量大小相等。
绳或杆连体速度关系:①由于绳或杆具有不可伸缩的特点,则拉动绳或杆的速度等于绳或杆拉物的速度。
②在绳或杆连体中,物体实际运动方向就是合速度的方向。
③当物体实际运动方向与绳或杆成一定夹角时,可将合速度分解为沿绳或杆方向和垂直于绳或杆方向的两个分速度。
关联速度”问题常用的解题思路和方法:先确定合运动的方向,即物体实际运动的方向,然后分析这个合运动所产生的实际效果,即一方面使绳或杆伸缩的效果;另一方面使绳或杆转动的效果,以确定两个分速度的方向,沿绳或杆方向的分速度和垂直绳或杆方向的分速度,而沿绳或杆方向的分速度大小相同。
、绳相关联问题1.一绳一物模型1)所拉的物体做匀速运动例 1 如图 1 所示,人在岸上拉船,已知船的质量为m,水的阻力恒为厂,当轻绳与水平面的夹角为e 时,船的速度为u,此时人的拉力大小为T,则此时小结人拉绳行走的速度即绳的速度,易错误地采用力的分解法则,将人拉绳行走的速度。
即按图 3 所示进行分解,则水错选 B 选项.平分速度为船的速度,得人拉绳行走的速度为u /cos e ,会2)匀速拉动物体例2 如图 4 所示,在河岸上利用定滑轮拉绳索使小船靠岸,拉绳的速度为v,当拉船头的绳索与水平面的夹角为a时,船的速度是多少?解析方法1——微元分析法取小角度e ,如图5所示,设角度变化e 方法2——运动等效法因为定滑轮右边的绳子既要缩短又要偏转,所以定滑轮右边绳上的 A 点的运动情况可以等效为:先以滑轮为网心,以AC为半径做圆周运动到达B,再沿BC直线运动到D。
做圆周运动就有垂直绳子方向的线速度,做直线运动就有沿着绳子方向的速度,也就是说船的速度(即绳上 4 点的速度)的两个分速度方向是:一个沿绳缩短的方向,另一个垂直绳的方2.两绳一物模型例3 如图7 所示,两绳通过等高的定滑轮共同对称地系住个物体 A ,两边以速度v 匀速地向下拉绳,当两根细绳与竖直方向的夹角都为60。
高中物理专题关联速度

高中物理专题关联速度关联速度是指用绳、杆相连的物体,在运动过程中,其两个物体的速度通常不同,但物体沿绳或杆方向的速度分量大小相等,即连个物体有关联的速度。
解此类题的思路有两个:明确合运动即物体的实际运动速度和明确分运动,一般情况下,分运动表现在沿绳方向的伸长或收缩运动和垂直于绳方向的旋转运动。
解题的原则是速度的合成遵循平行四边形定则。
解题方法是把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相等求解。
典例1描述了一个人以恒定速度v通过定滑轮竖直向下拉小车在水平面上运动的情形。
当细绳与水平面成60°角时,小车在水平面上做加速运动。
典例2描述了一个均匀直杆上连着两个小球A、B,不计一切摩擦。
当杆滑到某个位置时,B球水平速度为vB加速度为aB杆与竖直夹角为α,求此时A球速度和加速度大小。
根据公式,vAvBtanα,aAaBtanα。
专练提升中,问题1描述了一个人在岸上拉船的情形。
已知船的质量为m,水的阻力恒为Ff,当轻绳与水平面的夹角为θ时,船的速度为v,此时人的拉力大小为F,则人拉绳行走的速度为v/cosθ。
问题2描述了一个用一小车通过轻绳提升一货物的情形。
某一时刻,两段绳恰好垂直,且拴在小车一端的绳与水平方向的夹角为θ,此时货物的速度为v/sinθ。
问题3描述了两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上的情形。
若A车以速度v向右匀速运动,当绳与水平面的夹角分别为α和β时,B车的速度为v(sinα+sinβ)。
最后一个问题描述了水平面上固定一个与水平面夹角为θ的斜杆A。
另一竖直杆B以速度v水平向左匀速直线运动,则从两杆开始相交到最后分离的过程中,两杆交点P的速度方向和大小分别为沿A杆向上,大小为v/cosθ。
5.一根长度为L的杆OA,O端用铰链固定,另一端固定着一个小球A,靠在一个质量为M,高为h的物块上,如图4-7所示。
假设物块与地面的摩擦不计,求当物块以速度v向右运动时,小球A的线速度vA(此时杆与水平方向夹角为θ)。
速度的关联讲解

所谓关联速度就是两个通过某种方式联系起来的速度.比如一根杆上的两个速度通过杆发生联系,一根绳两端的速度通过绳发生联系.常用的结论有:1,杆或绳约束物系各点速度的相关特征是:在同一时刻必具有相同的沿杆或绳方向的分速度.2,接触物系接触点速度的相关特征是:沿接触面法向的分速度必定相同,沿接触面切向的分速度在无相对滑动时相同.3,线状相交物系交叉点的速度是相交双方沿对方切向运动分速度的矢量和.4,如果杆(或张紧的绳)围绕某一点转动,那么杆(或张紧的绳)上各点相对转动轴的角速度相同·类型1 质量分别为m1、m2和m3的三个质点A、B、C位于光滑的水平桌面上,用已拉直的不可伸长的柔软轻绳AB和BC连接,∠ABC=π-α,α为锐角,如图5-1所示.今有一冲量I沿BC方向作用于质点C,求质点A开始运动时的速度.(全国中学物理竞赛试题)图5-1 图5-2类型2 绳的一端固定,另一端缠在圆筒上,圆筒半径为R,放在与水平面成α角的光滑斜面上,如图5-2所示.当绳变为竖直方向时,圆筒转动角速度为ω(此时绳未松弛),试求此刻圆筒轴O的速度、圆筒与斜面切点C的速度.(全国中学生奥林匹克物理竞赛试题)类型3 直线AB以大小为v1的速度沿垂直于AB的方向向上移动,而直线CD以大小为v2的速度沿垂直于CD的方向向左上方移动,两条直线交角为α,如图5-3所示.求它们的交点P的速度大小与方向.(全国中学生力学竞赛试题)图5-3图5-4以上三例展示了三类物系相关速度问题.类型1求的是由杆或绳约束物系的各点速度;类型2求接触物系接触点速度;类型3则是求相交物系交叉点速度.三类问题既有共同遵从的一般规律,又有由各自相关特点所决定的特殊规律,我们若能抓住它们的共性与个性,解决物系相关速度问题便有章可循.首先应当明确,我们讨论的问题中,研究对象是刚体、刚性球、刚性杆或拉直的、不可伸长的线等,它们都具有刚体的力学性质,是不会发生形变的理想化物体,刚体上任意两点之间的相对距离是恒定不变的;任何刚体的任何一种复杂运动都是由平动与转动复合而成的.如图5-4所示,三角板从位置ABC移动到位置A′B′C′,我们可以认为整个板一方面做平动,使板上点B移到点B′,另一方面又以点B′为轴转动,使点A到达点A′、点C到达点C′.由于前述刚体的力学性质所致,点A、C及板上各点的平动速度相同,否则板上各点的相对位置就会改变.这里,我们称点B′为基点.分析刚体的运动时,基点可以任意选择.于是我们得到刚体运动的速度法则:刚体上每一点的速度都是与基点速度相同的平动速度和相对于该基点的转动速度的矢量和.我们知道转动速度v=rω,r是转动半径,ω是刚体转动角速度,刚体自身转动角速度则与基点的选择无关.根据刚体运动的速度法则,对于既有平动又有转动的刚性杆或不可伸长的线绳,每个时刻我们总可以找到某一点,这一点的速度恰是沿杆或绳的方向,以它为基点,杆或绳上其他点在同一时刻一定具有相同的沿杆或绳方向的分速度(与基点相同的平动速度).因此,我们可以得到下面的结论.结论1 杆或绳约束物系各点速度的相关特征是:在同一时刻必具有相同的沿杆或绳方向的分速度.我们再来研究接触物系接触点速度的特征.由刚体的力学性质及“接触”的约束可知,沿接触面法线方向,接触双方必须具有相同的法向分速度,否则将分离或形变,从而违反接触或刚性的限制.至于沿接触面的切向接触双方是否有相同的分速度,则取决于该方向上双方有无相对滑动,若无相对滑动,则接触双方将具有完全相同的速度.因此,我们可以得到下面的结论.结论2 接触物系接触点速度的相关特征是:沿接触面法向的分速度必定相同,沿接触面切向的分速度在无相对滑动时相同.相交物系交叉点速度的特征是什么呢?我们来看交叉的两直线a、b,如图5-5所示,设直线a不动,当直线b沿自身方向移动时,交点P并不移动,而当直线b沿直线a的方向移动时,交点P便沿直线a移动,因交点P亦是直线b上一点,故与直线b具有相同的沿直线a方向的平移速度.同理,若直线b固定,直线a移动,交点P的移动速度与直线a沿直线b方向平动的速度相同.根据运动合成原理,当两直线a、b各自运动,交点P的运动分别是两直线沿对方直线方向运动的合运动.于是我们可以得到下面的结论.图5-5结论3 线状相交物系交叉点的速度是相交双方沿对方切向运动分速度的矢量和.这样,我们将刚体的力学性质、刚体运动的速度法则运用于三类相关速度问题,得到了这三类相关速度特征,依据这些特征,并运用速度问题中普遍适用的合成法则、相对运动法则,解题便有了操作的章法.下面我们对每一类问题各给出3道例题,展示每一条原则在不同情景中的应用.例1 如图5-6所示,杆AB的A端以速度v做匀速运动,在杆运动时恒与一静止的半圆周相切,半圆周的半径为R,当杆与水平线的交角为θ时,求杆的角速度ω及杆上与半圆相切点C的速度.图5-6分析与解考察切点C的情况.由于半圆静止,杆上点C速度的法向分量为零,故点C速度必沿杆的方向.以点C为基点,将杆上点A速度v分解成沿杆方向分量v1和垂直于杆方向分量v2(如图5-7所示),则v1是点A与点C相同的沿杆方向平动速度,v2是点A对点C的转动速度,故可求得点C的速度为图5-7vC=v1=v·cosθ,又v2=v·sinθ=ω·AC.由题给几何关系知,A点对C点的转动半径为AC=R·cotθ,代入前式中即可解得ω=(vsin2θ/(Rcosθ.例2 如图5-8所示,合页构件由三个菱形组成,其边长之比为3∶2∶1,顶点A3以速度v沿水平方向向右运动,求当构件所有角都为直角时,顶点B2的速度vB2.图5-8分析与解顶点B2作为B2A1杆上的一点,其速度是沿B2A1杆方向的速度v1及垂直于B2A1杆方向速度v1′的合成;同时作为杆B2A2上的一点,其速度又是沿B2A2杆方向的速度v2及垂直于B2A2杆方向的速度v2′的合成.由于两杆互成直角的特定条件,由图5-9显见,v2=v1′,v1=v2′.故顶点B2的速度可通过v1、v2速度的矢量和求得,而根据杆的约束的特征,得图5-9v1=(/2vA1;v2=(/2vA2,于是可得由几何关系可知vA1∶vA2∶vA3=A0A1∶A0A2∶A0A3=3∶5∶6,则vA1=v/2,vA2=(5/6v,由此求得vB2=(/6v.图5-10上述解析,我们是选取了速度为沿杆方向的某一点为基点来考察顶点B2的速度的.当然我们也可以选取其他合适的点为基点来分析.如图5-10所示,若以A1、A2点为基点,则B2点作为B2A1杆上的点,其速度是与A1点相同的平动速度vA1和对A1点的转动速度vn1之合成,同时B2点作为B2A2杆上的点,其速度是与A2点相同的平动速度vA2和对A2点的转动速度vn2之合成,再注意到题给的几何条件,从矢量三角形中由余弦定理得而由矢量图可知vn1=(/2(vA2-vA1),代入前式可得vB2=(/6v.两解殊途同归.例3 如图5-11所示,物体A置于水平面上,物体A上固定有动滑轮B,D为定滑轮,一根轻绳绕过滑轮D、B后固定在C点,BC段水平.当以速度v拉绳头时,物体A沿水平面运动,若绳与水平面夹角为α,物体A运动的速度是多大?图5-11分析与解首先根据绳约束特点,任何时刻绳BD段上各点有与绳端D相同的沿绳BD段方向的分速度v,再看绳的这个速度与物体A移动速度的关系:设物体A右移速度为vx,则相对于物体A(或动滑轮B的轴心,绳上B点的速度为vx,即vBA=vx,方向沿绳BD方向;而根据运动合成法则,在沿绳BD方向上,绳上B点速度是相对于参照系A(或动滑轮B的轴心的速度vx与参照系A对静止参照系速度vxcosα的合成,即v=vBA+vxcosα;由上述两方面可得vx=v/(1+cosα.例4 如图5-12所示,半径为R的半圆凸轮以等速v0沿水平面向右运动,带动从动杆AB沿竖直方向上升,O为凸轮圆心,P为其顶点.求当∠AOP=α时,AB杆的速度.图5-12 图5-13分析与解这是接触物系相关速度问题.由题可知,杆与凸轮在A点接触,杆上A点速度vA是竖直向上的,轮上A点的速度v0是水平向右的,根据接触物系触点速度相关特征,两者沿接触面法向的分速度相同,如图5-13所示,即vAcosα=v0sinα,则vA=v0tanα.故AB杆的速度为v0tanα.例5 如图5-14所示,缠在线轴上的绳子一头搭在墙上的光滑钉子A上,以恒定的速度v拉绳,当绳与竖直方向成α角时,求线轴中心O的运动速度vO.设线轴的外径为R,内径为r,线轴沿水平面做无滑动的滚动.分析与解当线轴以恒定的速度v拉绳时,线轴沿顺时针方向运动.从绳端速度v到轴心速度vO,是通过绳、轴相切接触相关的.考察切点B的速度:本题中绳与线轴间无滑动,故绳上B点与轴上B点速度完全相同,即无论沿切点法向或切向,两者均有相同的分速度.图5-15是轴上B点与绳上B点速度矢量图:轴上B点具有与轴心相同的平动速度vO及对轴心的转动速度rω(ω为轴的角速度),那么沿切向轴上B点的速度为rω-vOsinα;而绳上B点速度的切向分量正是沿绳方向、大小为速度v,于是有关系式,即图5-14 图5-15rω-vOsinα=v.①又由于线轴沿水平地面做纯滚动,故与水平地面相切点C的速度为零,则轴心速度为vO=Rω,②由①、②两式可解得vO=(Rv/(r-Rsinα.若绳拉线轴使线轴逆时针转动,vO=(Rv/(r-Rsinα,请读者自行证明.例6 如图5-16所示,线轴沿水平面做无滑动的滚动,并且线端A点速度为v,方向水平.以铰链固定于点B的木板靠在线轴上,线轴的内、外径分别为r和R.试确定木板的角速度ω与角α的关系.图5-16 图5-17分析与解设木板与线轴相切于C点,则板上C点与线轴上C点有相同的法向速度vn,而板上C点的这个法向速度正是C点关于B轴的转动速度,如图5-17所示,即vn=ω·BC=ω·Rcot(α/2.①现在再来考察线轴上C点的速度:它应是C点对轴心O的转动速度vCn和与轴心相同的平动速度vO的矢量和,而vCn是沿C点切向的,则C点法向速度vn应是vn=vOsinα.②又由于线轴为刚体且做纯滚动,故以线轴与水平面切点为基点,应有v/(R+r=vO/R.③将②、③两式代入①式中,得ω=(1-cosα/(R+rv.例7 如图5-18所示,水平直杆AB在圆心为O、半径为r的固定圆圈上以匀速u竖直下落,试求套在该直杆和圆圈的交点处一小滑环M的速度,设OM与竖直方向的夹角为φ.图5-18分析与解当小环从圆圈顶点滑过圆心角为φ的一段弧时,据交叉点速度相关特征,将杆的速度u沿杆方向与圆圈切线方向分解,则M的速度为v=u/sinφ.例8 如图5-19所示,直角曲杆OBC绕O轴在如图5-19所示的平面内转动,使套在其上的光滑小环沿固定直杆OA滑动.已知OB=10cm,曲杆的角速度ω=0.5rad/s,求φ=60°时,小环M的速度.图5-19 图5-20分析与解本题首先应该求出交叉点M作为杆BC上一点的速度v,而后根据交叉点速度相关特征,求出该速度沿OA方向的分量即为小环速度.由于刚性曲杆OBC以O为轴转动,故其上与OA直杆交叉点的速度方向垂直于转动半径OM、大小是v=ω·M=10cm/s.将其沿MA、MB方向分解成两个分速度,如图5-20所示,即得小环M的速度为vM=vMA=v·tanφ=10cm/s.例9 如图5-21所示,一个半径为R的轴环O1立在水平面上,另一个同样的轴环O2以速度v从这个轴环旁通过,试求两轴环上部交叉点A的速度vA与两环中心之距离d之间的关系.轴环很薄且第二个轴环紧邻第一个轴环.图5-21 图5-22分析与解轴环O2速度为v,将此速度沿轴环O1、O2的交叉点A处的切线方向分解成v1、v2两个分量,如图5-22,由线状相交物系交叉点相关速度规律可知,交叉点A的速度即为沿对方速度分量v1.注意到图5-22中显示的几何关系便可得。
关联速度的分解资料讲解

关联速度的分解收集于网络,如有侵权请联系管理员删除“关联”速度的分解在高中运动的合成与分解教学中,学生常对该如何分解速度搞不清楚、或很难理解,其主要原因是无法弄清楚哪一个是合速度、哪一个是分速度.这里有一个简单的方法:物体的实际运动方向就是合速度的方向,然后分析这个合速度所产生的实际效果,以确定两个分速度的方向.一、绳、杆连接的物体绳、杆等连接的物体,在运动过程中,其两端物体的速度通常是不一样的,但两端物体的速度是有联系的,称为“关联”速度.关联速度的关系——物体沿杆(或绳)方向的速度分量大小相等.因此,求这类问题时,首先要明确绳连物体的速度为合速度,然后将两物体的速度分别分解成沿绳方向和与绳垂直方向,令两物体沿绳方向的速度相等即可求出.例1.如图1-1所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v 运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?解析:绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v 物是合速度,将v 物按如图1-2所示进行分解.其中:v =v 物cos θ,使绳子收缩,v ⊥=v 物sin θ使绳子绕定滑轮上的A 点转动,所以v 物=cos v . 例2.一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个质量为M ,高为h 的物块上,如图2-1所示,物块以速度v 向右运动,试求当杆与水平方向夹角为θ时,小球A 的线速度v A 图1-图1-2收集于网络,如有侵权请联系管理员删除图4解析:选取物与棒接触点B 为连结点,B 点的实际速度(合速度)也就是物块速度v ;B 点又在棒上,参与沿棒向A 点滑动的速度v 1和绕O 点转动的线速度v 2,因此,将这个合速度沿棒及垂直于棒的两个方向分解.由速度矢量分解图得v 2=v sin θ,设此时OB 长度为a ,则a =h /sin θ,令棒绕O 点转动角速度为ω,则ω=v 2/a =v sin 2θ/h ,故A 的线速度v A =ωL =vL sin 2θ/h .例3.如图3-1所示,S 为一点光源,M 为一平面镜,光屏与平面镜平行放置,SO 是垂直照射在M 上的光线,已知SO =L ,若M 以角速度ω绕O 点逆时针匀速转动,则转过30°角时,光点S ′在屏上移动的瞬时速度v 为多大? 解析:由几何光学知识可知,当平面镜绕O 逆时针转过30°时,则∠SOS ′=60°,此时OS ′=L /cos60°,选取光点S ′为连结点,该点实际速度(合速度)就是在光屏上移动速度v ;光点S ′又在反射光线OS ′上,它参与沿光线OS ′的运动速度v 1和绕O 点转动线速度v 2;因此将这个合速度沿光线OS ′及垂直于光线OS ′的两个方向分解,由速度矢量分解图3—2可得:v 1=v sin60°,v 2=v cos60°,又由圆周运动知识可得,光线OS ′绕O 转动角速度为2ω,则:v 2=2ωL /cos60°,vc os60°=2ωL /cos60°,解得v =8ωL .二、相互接触的物体求相互接触物体的速度关联问题时,首先要明确两接触物体的速度,分析弹力的方向,然后将两物体的速度分别沿弹力的方向和垂直于弹力的方向进行分解,令两物体沿弹力方向的速度相等即可求出.例4.一个半径为R 的半圆柱沿水平方向向右以速度v 0匀速运动.在半圆柱上放置一根竖直杆,此杆只图2—1 图2—2图3-1 图3—2收集于网络,如有侵权请联系管理员删除 能沿竖直方向运动,如图4所示.当杆与半圆柱体接触点P 与柱心的连线与竖直方向的夹角为θ时,求竖直杆运动的速度.解析:设竖直杆运动的速度为v 1,方向竖直向上,由于弹力沿OP 方向,所以有v v 01、在OP 方向的投影相等,即有v v 01sin cos θθ=,解得v v 10=tan θ.。
运动的合成与分解——“关联”速度问题

运动的合成与分解——“关联”速度问题●问题概述:绳、杆等有长度的物体,在运动过程中,其两端点的速度通常是不一样的,但两端点的速度是有联系的,称之为“关联”速度。
关联速度的关系——沿杆(或绳)方向的速度分量大小相等。
●关键点:1.绳子末端运动速度的分解,应按运动的实际效果进行。
2.速度投影定理:不可伸长的杆(或绳),尽管各点速度不同,但各点速度沿绳方向的投影相同。
●例题:如图所示,人用绳子通过定滑轮拉物体A,当人以速度v0匀速前进时,物体A将做( )A.匀速运动B.加速运动B.C.匀加速运动 D.减速运动解题探究:①物体A的运动有两个运动效果,分别是什么?②将该物体的速度沿哪两个方向分解?●规律总结求解绳(杆)拉物体运动的合成与分解问题的思路和方法:①先明确合运动的方向:物体的实际运动方向②然后弄清运动的实际效果:沿绳或者杆的伸缩效果;使绳子或者杆转动的效果。
③再确定两个分运动的方向:沿着绳子(杆)、垂直于绳子(杆)●常见的模型●巩固练习1、如图所示,人以水平速度v跨过定滑轮匀速拉动绳子,当拉小车的绳子与水平地面的夹角为β时,小车沿水平地面运动的速度为( )A.V B.vcosβC.vsinβD.v cosβ2、如图所示,纤绳以恒定速率v1沿水平方向通过定滑轮牵引小船靠向岸边,设小船速度为v2,则小船靠岸过程的运动情况是( )A.加速靠岸,v2>v1 B.加速靠岸,v2<v1C.减速靠岸,v2>v1 D.匀速靠岸,v2<v13、两根光滑的杆互相垂直地固定在一起,上面分别穿有一个小球,小球a、b间用一细直棒相连,如图所示。
当细直棒与竖直杆夹角为θ时,两小球实际速度大小之比为( )A.sinθB.cosθC.tanθD.cotθ4、如图所示,物体A以速度v沿杆匀速下滑,A用细绳通过定滑轮拉物体B,当绳与水平夹角为θ时,B的速度为()A.v cosθ B.v sinθC.v/cosθ D.v/sinθ5、(不定项)如图所示,在水平地面上做匀速直线运动的小车,通过定滑轮用绳子吊起一个物体,若小车和被吊的物体在同一时刻速度分别为1v 和2v ,绳子对物体的拉力为T ,物体所受重力为G ,则下面说法正确的是( )A .物体做匀速运动,且v 1=v 2B .B .物体做加速运动,且v 1>v 2C .物体做加速运动,且T>GD .物体做匀速运动,且T =G6、如图所示,套在竖直细杆上的环A 由跨过定滑轮的不可伸长的轻绳与重物B 相连。
用绳子或杆连接的两个物体的速度关系: Microsoft Office Word 文档

荥阳二高---陈玉东 要想弄明白这个问题,首先要清楚一个特点,即“高中物理中所讲到的绳(伸直状态下)或杆的长度是不会变化的”。
首先,我们看下面的三幅图。
在上面的三幅图中,箭头的方向即物体的运动方向。
由于连接AB 的绳子或杆的长度不会变化,所以在沿着绳子的方向上A 、B 两物体在任意时间内所运动的距离都相等,所以,V A =V B 。
在图4中,A 物体的速度方向与绳子在一条线上,但是,B 物体沿水平面运动时,它的速度方向与绳子就不在一条线上。
如果B 物体从1位置运动到2位置时,B 沿水平面运动的距离与绳子向左上方收缩的长度并不相等。
从图5中可以看得更清楚。
在图5中,AC̅̅̅̅的长度是物体在1位置时滑轮右侧的绳子长度,BC̅̅̅̅是物体在2位置时滑轮右侧的绳子长度。
若取CD ̅̅̅̅=BC ̅̅̅̅,则AB̅̅̅̅的长度是物体B 沿水平面向左运动的距离,DA̅̅̅̅的长度为绳子向 左上方收缩的长度,也等于A 物体向左运动的距离。
如果我们研究的时间段无限短,则θ角将无限小,此时,∠CDB =∠CBD≈900,故∆ABD 可以视为直角三角形,∠A DB =900,且AD ̅̅̅̅=AB̅̅̅̅cos α, 在相同的时间内物体A 向左运动的距离在数值上等于AD̅̅̅̅。
由于VA=AD̅̅̅̅̅̅t , V B =AB̅̅̅̅t所以,V A =V B cos α。
简而言之:与B 物体相连的绳子既有沿绳向左上方收缩的效果,也有向左绕滑轮转运的效果。
所以,可以把B 物体的实际速度作为合速度进行分解,分别分解到沿着绳子和垂直于绳子两个方向上。
而且,沿着绳子方向的两个分速度是相等的。
例如,图7中A、B两个物体的速度均不沿绳子方向,我们就将两个物体的实际速度都按上面的方法进行分解。
分别是:沿着绳子方向和垂直于绳子方向(如图8),根据沿绳子方向的分速度相等,即可得到如下关系:V A cosα=V B cosβ。
图9中用细杆连接的AB两球靠墙放置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绳(杆)连接物的关联速度
---梁志亮
绳子末端速度的分解问题,是“运动的合成与分解”中的一个难点也是易错点。
同学们在处理此类问题时,往往因搞不清哪一个是合速度(实际速度),哪一个是分速度而导致解题失败。
希望能通过下面几个例题,帮助同学们消除解题中的困惑。
例1:如图1的A所示,在河岸上利用定滑轮拉绳使小船靠岸,拉绳的速度为v,当绳与水平面成θ角时,船的速度是多少?
解析:
方法一:
图1
1、找关联点(A点)
2、判断合速度(水平向左)
3、速度的合成与分解(沿绳子与垂直绳子)
4、验证正误(新位置在两坐标轴方向上)
船的实际运动是水平运动,它产生的实际效果可以从图B中的A
点为例说明:A是绳子和船的公共点,一是A点沿绳的收缩方向的运动,二是A点绕O点沿顺时针方向的转动,所以,船的实际速度v可分解为船沿绳方向的速度v1和垂直于绳的速度v2,如图1所示。
由图可知:v=v1/cosθ
方法二:微元法:如图C
1、关联点在很短时间内经过一小位移S
2、绳子缩短了S′=OA-OB=PA=Scosθ<S
3、速度比即是位移比。
例2.如图2所示,一辆匀速行驶的汽车将一重物提起,在此过程中,重物A的运动情况是()
A. 加速上升,且加速度不断增大
B. 加速上升,且加速度不断减小
C. 减速上升,且加速度不断减小
D. 匀速上升
解析:物体A的速率即为左段绳子上移的速率,而左段绳子上移的速率与右段绳子在沿着绳长方向的分速率是相等的。
右段绳子实际上同时参与两个运动:沿绳方向拉长及向上摆动。
将右段绳子与汽车相连的端点的运动速度v沿绳子方向和与绳子垂直方向分解,如图3所示,则沿绳方向的速率即为物体A的速率
v A=v1=vsinθ。
随着汽车的运动,θ增大,v A=v1
增大,故A应加速上升。
由v-t图线的意义知,其斜率为加速度,在0°~90°范围内,随θ角的增大,曲线y=sinθ的斜率逐渐减小,所以A上升的加速度逐渐减小。
答案 B
点评本题主要考查了运动的分解,解题的关键是要分清合速度与分速度。
一般情况下,物体相对于给定的参考系(一般为地面)的实际运动就是合运动,本例中,汽车的实际运动就是合运动。
另外,运动的分解要按照它的实际效果进行。
例3.如图4所示,以速度v沿竖直杆匀速下滑的物体A用轻绳通过定滑轮拉物体B,当绳与水平面夹角为θ时,物体B的速度为()
A.v B.v.sinθ C.v.cosθ D.V/sinθ
图4 图5
解析:如图5,将A的速度分解为沿绳子方向和垂直于绳子方向,,根据平行四边形定则得,v B=vsinθ.故B正确,A、C、
D 错误.故选B .
例4.如图6所示,均匀直杆上连着两个小球A 、B ,
不计一切摩擦.当杆滑到如图位置时,B 球水平速度为
v B ,加速度为a B ,杆与竖直夹角为α,求此时A 球速
度和加速度大小?
图6
解析:分别对小球A 和B 的速度进行分解,设杆上的速度为v 则对A 球速度分解,分解为沿着杆方向和垂直于杆方向的两个速度。
v =v A cos α
对B 球进行速度分解,得到v =v B sin α
联立得到v A =v B tan α
加速度也是同样的思路,得到a A =a B tan α
例5.如图所示,A 、B 两车通过细绳跨接在定滑轮两侧,并分别置于
光滑水平面上,若A 车以速度v 0向右匀速运
动,当绳与水平面的夹角分别为α和β时,B
车的速度是多少?
解析:
右边的绳子的速度等于A 车沿着绳子方向的分速度,设绳子速度为v 。
将A 车的速度分解为沿着绳子的方向和垂直于绳子的方向,则
v =v A cos β
同理,将B 车的速度分解为沿着绳子方向和垂直于绳子的方向,则
v =v B cos α
由于定滑轮上绳子的速度都是相同的,得到A
B v v αβcos cos = 例6.如图所示,一块橡皮用细线悬挂于O 点,用钉子靠着线的左侧,沿与水平方向成30°的斜面向右以速度v 匀速运动,运动中始终保持悬线竖直,则橡皮运动的速度( )
A .大小为v ,方向不变和水平方向成60°
B .大小为v ,方向不变和水平方向成60°
C .大小为2v ,方向不变和水平方向成60°
D .大小和方向都会改变
解析:橡皮沿与水平方向成300的斜面向右以速度v 匀速运动,由于橡皮沿与水平方向成300的斜面向右以速度v 匀速运动的位移一定等于橡皮向上的位移,故在竖直方向以相等的速度匀速运动,根据平行四边形定则,可知合速度也是一定的,故合运动是匀速运动;根据平行四边形定则求得合速度大小为v 3,方向不变和水平方向成60°. 故选B .(此题与2013年江苏单科题相似)。