三角形的三边关系ppt课件(自制)
合集下载
华东师大版数学七年级下册课件:9.1.3 三角形的三边关系(共17张PPT)
拓展思考:第三根木棒的长度应大于多少,小 于多少,才能与5cm,8cm的木棒组成三角形?
解:设第三根木棒的长度为acm,则由三角形三 边长的关系可得
8-5 <a < 8+5 即 3<a<13
故第三根木棒的长度应大于3cm,小于13cm,才能 与5cm,8cm的木棒组成三角形?
及时巩固
1、判断下列各组线段中,哪些能组成三角形, 哪些不能组成三角形,并说明理由。 (1)a=2.5cm, b=3cm, c=5cm. (2)e=6.3cm, f=6.3cm, g=12.6cm. 2、已知等腰三角形的两边长分别是3cm和6cm,则
A
D
B
C
播下一个行动,收获一种习惯;播下一种习惯,收获一种性格;播下一种性格,收获一种命运。思想会变成语言,语言会变成行动,行动会变成习惯,习惯会变成性格。性 制,会变成生活的必需品,不良的习惯随时改变人生走向。人往往难以改变习惯,因为造习惯的就是自己,结果人又成为习惯的奴隶!人生重要的不是你从哪里来,而是你 时侯,一定要抬头看看你去的方向。方向不对,努力白费!你来自何处并不重要,重要的是你要去往何方,人生最重要的不是所站的位置,而是所去的方向。人只要不失去 这个世界唯一不变的真理就是变化,任何优势都是暂时的。当你在占有这个优势时,必须争取主动,再占据下一个优势,这需要前瞻的决断力,需要的是智慧!世上本无移 是:山不过来,我就过去。人生最聪明的态度就是:改变可以改变的一切,适应不能改变的一切!亿万财富不是存在银行里,而是产生在人的思想里。你没找到路,不等于 什么,你必须知道现在应该先放弃什么!命运把人抛入最低谷时,往往是人生转折的最佳期。谁能积累能量,谁就能获得回报;谁若自怨自艾,必会坐失良机人人都有两个 一个是心门,成功的地方。能赶走门中的小人,就会唤醒心中的巨人!要想事情改变,首先自己改变,只有自己改变,才可改变世界。人最大的敌人不是别人,而是自己, 1、烦恼的时候,想一想到底为什么烦恼,你会发现其实都不是很大的事,计较了,就烦恼。我们要知道,所有发生的一切都是该发生的,都是因缘。顺利的就感恩,不顺 渡寒潭,雁过而潭不留影;风吹疏竹,风过而竹不留声。”修行者的心境,就是“过而不留”。忍得住孤独;耐得住寂寞;挺得住痛苦;顶得住压力;挡得住诱惑;经得起 子;担得起责任;1提得起精神。闲时多读书,博览凝才气;众前慎言行,低调养清气;交友重情义,慷慨有人气;困中善负重,忍辱蓄志气;处事宜平易,不争添和气; 泊且致远,修身立正气;居低少卑怯,坦然见骨气;卓而能合群,品高养浩气淡然于心,自在于世间。云淡得悠闲,水淡育万物。世间之事,纷纷扰扰,对错得失,难求完 反而深陷于计较的泥潭,不能自拔。若凡事但求无愧于心,得失荣辱不介怀,自然落得清闲自在。人活一世,心态比什么都重要。财富名利毕竟如云烟,心情快乐才是人生 在路上,在脚踏实地的道路上;我们的期待在哪里?在路上,在勤劳勇敢的心路上;我们的快乐在哪里?在路上,在健康阳光的大道上;我们的朋友在哪里?在心里,在真 钟,对自己负责;善于发现看问题的角度;不满足于现状,别自我设限;勇于承认错误;不断反省自己,向周围的成功者学习;不轻言放弃。做事要有恒心;珍惜你所拥有 学会赞美;不找任何借口。与贤人相近,则可重用;与小人为伍,则要当心;只满足私欲,贪图享乐者,则不可用;处显赫之位,任人唯贤,秉公办事者,是有为之人;身 则可重任;贫困潦倒时,不取不义之财者,品行高洁;见钱眼开者,则不可用。人最大的魅力,是有一颗阳光的心态。韶华易逝,容颜易老,浮华终是云烟。拥抱一颗阳光 随缘。心无所求,便不受万象牵绊;心无牵绊,坐也从容,行也从容,故生优雅。一个优雅的人,养眼又养心,才是魅力十足的人。容貌乃天成,浮华在身外,心里满是阳 飞,心随流水宁。心无牵挂起,开阔空净明。幸福并不复杂,饿时,饭是幸福,够饱即可;渴时,水是幸福,够饮即可;裸时,衣是幸福,够穿即可;穷时,钱是幸福,够 畅即可;困时,眠是幸福,够时即可。爱时,牵挂是幸福,离时,回忆是幸福。人生,由我不由天,幸福,由心不由境。心是一个人的翅膀,心有多大,世界就有多大。很 的环境,也不是他人的言行,而是我们自己。人心如江河,窄处水花四溅,宽时水波不兴。世间太大,一颗心承载不起。生活的最高境界,一是痛而不言,二是笑而不语。 人生的幸福在于祥和,生命的祥和在于宁静,宁静的心境在于少欲。无意于得,就无所谓失去,无所谓失去,得失皆安谧。闹市间虽见繁华,却有名利争抢;田园间无争, 和升平,最终不过梦一场。心静,则万象皆静。知足者常在静中邂逅幸福。顺利人生,善于处理关系;普通人生,只会使用关系;不顺人生,只会弄僵关系。为人要心底坦 脑清醒,不为假象所惑。智者,以别人惨痛的教训警示自己;愚者,用自己沉重的代价唤醒别人。对人多一份宽容,多一份爱心;对事多一份认真,多一份责任;对己多一 长,志不可满,乐不可极,警醒自己。静能生慧。让心静下来,你才能看淡一切。静中,你才会反观自己,知道哪些行为还需要修正,哪些地方还需要精进,在静中让生命 觉悟。让心静下来,你才能学会放下。你放下了,你的心也就静了。心不静,是你没有放下。静,通一切境界。人与人的差距,表面上看是财富的差距,实际上是福报的差 实际上是人品的差距;表面上看是气质的差距,实际上是涵养的差距;表面上看是容貌的差距,实际上是心地的差距;表面上看是人与人都差不多,内心境界却大不相同, 很重要的一件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运, 这样一想、一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往 太阳就要光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏 件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运,有时候其实 一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往是失败的开 光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏实。以平 在危险面前,平常心就是勇敢;在利诱面前,平常心就是纯洁;在复杂的环境面前,平常心就是保持清醒智慧。平常心不是消极遁世,而是一种境界,一种积极的人生。不 一个有价值的人而努力。命运不是机遇,而是选择;命运不靠等待,全靠争取。成熟就是学会在逆境中保持坚强,在顺境时保持清醒。时间告诉你什么叫衰老,回忆告诉你 要外来的赞许时,心灵才会真的自由。你没那么多观众,别那么累。温和对人对事。不要随意发脾气,谁都不欠你的。现在很痛苦,等过阵子回头看看,会发现其实那都不 交。人有绝交,才有至交学会宽容伤害自己的人,因为他们很可怜,各人都有自己的难处,大家都不容易。学会放弃,拽的越紧,痛苦的是自己。低调,取舍间,必有得失 错误面前没人爱听那些借口。慎言,独立,学会妥协的同时,也要坚持自己最基本的原则。付出并不一定有结果。坚持可能会导致失去更多过去的事情可以不忘记,但一定 作一个最好的打算和最坏的打算。做一个简单的人,踏实而务实。不沉溺幻想。不庸人自扰。不说谎话,因为总有被拆穿的一天。别人光鲜的背后或者有着太多不为人知的 学习。不管学习什么,语言,厨艺,各种技能。注意自己的修养,你就是孩子的第一位老师。孝顺父母。不只是嘴上说说,即使多打几个电话也是很好的。爱父母,因为他 爱的最无私的人。
解:设第三根木棒的长度为acm,则由三角形三 边长的关系可得
8-5 <a < 8+5 即 3<a<13
故第三根木棒的长度应大于3cm,小于13cm,才能 与5cm,8cm的木棒组成三角形?
及时巩固
1、判断下列各组线段中,哪些能组成三角形, 哪些不能组成三角形,并说明理由。 (1)a=2.5cm, b=3cm, c=5cm. (2)e=6.3cm, f=6.3cm, g=12.6cm. 2、已知等腰三角形的两边长分别是3cm和6cm,则
A
D
B
C
播下一个行动,收获一种习惯;播下一种习惯,收获一种性格;播下一种性格,收获一种命运。思想会变成语言,语言会变成行动,行动会变成习惯,习惯会变成性格。性 制,会变成生活的必需品,不良的习惯随时改变人生走向。人往往难以改变习惯,因为造习惯的就是自己,结果人又成为习惯的奴隶!人生重要的不是你从哪里来,而是你 时侯,一定要抬头看看你去的方向。方向不对,努力白费!你来自何处并不重要,重要的是你要去往何方,人生最重要的不是所站的位置,而是所去的方向。人只要不失去 这个世界唯一不变的真理就是变化,任何优势都是暂时的。当你在占有这个优势时,必须争取主动,再占据下一个优势,这需要前瞻的决断力,需要的是智慧!世上本无移 是:山不过来,我就过去。人生最聪明的态度就是:改变可以改变的一切,适应不能改变的一切!亿万财富不是存在银行里,而是产生在人的思想里。你没找到路,不等于 什么,你必须知道现在应该先放弃什么!命运把人抛入最低谷时,往往是人生转折的最佳期。谁能积累能量,谁就能获得回报;谁若自怨自艾,必会坐失良机人人都有两个 一个是心门,成功的地方。能赶走门中的小人,就会唤醒心中的巨人!要想事情改变,首先自己改变,只有自己改变,才可改变世界。人最大的敌人不是别人,而是自己, 1、烦恼的时候,想一想到底为什么烦恼,你会发现其实都不是很大的事,计较了,就烦恼。我们要知道,所有发生的一切都是该发生的,都是因缘。顺利的就感恩,不顺 渡寒潭,雁过而潭不留影;风吹疏竹,风过而竹不留声。”修行者的心境,就是“过而不留”。忍得住孤独;耐得住寂寞;挺得住痛苦;顶得住压力;挡得住诱惑;经得起 子;担得起责任;1提得起精神。闲时多读书,博览凝才气;众前慎言行,低调养清气;交友重情义,慷慨有人气;困中善负重,忍辱蓄志气;处事宜平易,不争添和气; 泊且致远,修身立正气;居低少卑怯,坦然见骨气;卓而能合群,品高养浩气淡然于心,自在于世间。云淡得悠闲,水淡育万物。世间之事,纷纷扰扰,对错得失,难求完 反而深陷于计较的泥潭,不能自拔。若凡事但求无愧于心,得失荣辱不介怀,自然落得清闲自在。人活一世,心态比什么都重要。财富名利毕竟如云烟,心情快乐才是人生 在路上,在脚踏实地的道路上;我们的期待在哪里?在路上,在勤劳勇敢的心路上;我们的快乐在哪里?在路上,在健康阳光的大道上;我们的朋友在哪里?在心里,在真 钟,对自己负责;善于发现看问题的角度;不满足于现状,别自我设限;勇于承认错误;不断反省自己,向周围的成功者学习;不轻言放弃。做事要有恒心;珍惜你所拥有 学会赞美;不找任何借口。与贤人相近,则可重用;与小人为伍,则要当心;只满足私欲,贪图享乐者,则不可用;处显赫之位,任人唯贤,秉公办事者,是有为之人;身 则可重任;贫困潦倒时,不取不义之财者,品行高洁;见钱眼开者,则不可用。人最大的魅力,是有一颗阳光的心态。韶华易逝,容颜易老,浮华终是云烟。拥抱一颗阳光 随缘。心无所求,便不受万象牵绊;心无牵绊,坐也从容,行也从容,故生优雅。一个优雅的人,养眼又养心,才是魅力十足的人。容貌乃天成,浮华在身外,心里满是阳 飞,心随流水宁。心无牵挂起,开阔空净明。幸福并不复杂,饿时,饭是幸福,够饱即可;渴时,水是幸福,够饮即可;裸时,衣是幸福,够穿即可;穷时,钱是幸福,够 畅即可;困时,眠是幸福,够时即可。爱时,牵挂是幸福,离时,回忆是幸福。人生,由我不由天,幸福,由心不由境。心是一个人的翅膀,心有多大,世界就有多大。很 的环境,也不是他人的言行,而是我们自己。人心如江河,窄处水花四溅,宽时水波不兴。世间太大,一颗心承载不起。生活的最高境界,一是痛而不言,二是笑而不语。 人生的幸福在于祥和,生命的祥和在于宁静,宁静的心境在于少欲。无意于得,就无所谓失去,无所谓失去,得失皆安谧。闹市间虽见繁华,却有名利争抢;田园间无争, 和升平,最终不过梦一场。心静,则万象皆静。知足者常在静中邂逅幸福。顺利人生,善于处理关系;普通人生,只会使用关系;不顺人生,只会弄僵关系。为人要心底坦 脑清醒,不为假象所惑。智者,以别人惨痛的教训警示自己;愚者,用自己沉重的代价唤醒别人。对人多一份宽容,多一份爱心;对事多一份认真,多一份责任;对己多一 长,志不可满,乐不可极,警醒自己。静能生慧。让心静下来,你才能看淡一切。静中,你才会反观自己,知道哪些行为还需要修正,哪些地方还需要精进,在静中让生命 觉悟。让心静下来,你才能学会放下。你放下了,你的心也就静了。心不静,是你没有放下。静,通一切境界。人与人的差距,表面上看是财富的差距,实际上是福报的差 实际上是人品的差距;表面上看是气质的差距,实际上是涵养的差距;表面上看是容貌的差距,实际上是心地的差距;表面上看是人与人都差不多,内心境界却大不相同, 很重要的一件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运, 这样一想、一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往 太阳就要光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏 件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运,有时候其实 一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往是失败的开 光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏实。以平 在危险面前,平常心就是勇敢;在利诱面前,平常心就是纯洁;在复杂的环境面前,平常心就是保持清醒智慧。平常心不是消极遁世,而是一种境界,一种积极的人生。不 一个有价值的人而努力。命运不是机遇,而是选择;命运不靠等待,全靠争取。成熟就是学会在逆境中保持坚强,在顺境时保持清醒。时间告诉你什么叫衰老,回忆告诉你 要外来的赞许时,心灵才会真的自由。你没那么多观众,别那么累。温和对人对事。不要随意发脾气,谁都不欠你的。现在很痛苦,等过阵子回头看看,会发现其实那都不 交。人有绝交,才有至交学会宽容伤害自己的人,因为他们很可怜,各人都有自己的难处,大家都不容易。学会放弃,拽的越紧,痛苦的是自己。低调,取舍间,必有得失 错误面前没人爱听那些借口。慎言,独立,学会妥协的同时,也要坚持自己最基本的原则。付出并不一定有结果。坚持可能会导致失去更多过去的事情可以不忘记,但一定 作一个最好的打算和最坏的打算。做一个简单的人,踏实而务实。不沉溺幻想。不庸人自扰。不说谎话,因为总有被拆穿的一天。别人光鲜的背后或者有着太多不为人知的 学习。不管学习什么,语言,厨艺,各种技能。注意自己的修养,你就是孩子的第一位老师。孝顺父母。不只是嘴上说说,即使多打几个电话也是很好的。爱父母,因为他 爱的最无私的人。
《三角形三边之间的关系》公开课PPT课件
• 相似三角形定义:两个三角形如果它们的对应角相等,则 这两个三角形相似。
相似三角形判定条件及性质
相似三角形判定条件
两边对应成比例且夹 角相等,则两个三角 形相似。
两角对应相等,则两 个三角形相似。
相似三角形判定条件及性质
01
02
03
04
三边对应成比例,则两个三角 形相似。
相似三角形的性质
对应角相等,对应边成比例。
在几何变换中,如平移、旋转、对称等,面积公式可以帮助我们判断图形变换前后面积是 否发生变化,以及变化的具体数值。
面积公式在解决实际问题中的应用
在实际问题中,如土地测量、建筑设计等领域,面积公式可以帮助我们计算不规则图形的 面积,为决策提供支持。
05
三角形相似与全等判 定方法
相似三角形判定条件及性质
学生自我评价报告分享
学习成果展示
邀请学生代表分享自己在课堂上的学习成果,包括对于三角形三 边之间关系的理解、相关问题的解决思路等。
学习方法分享
鼓励学生分享自己在学习过程中的有效方法和经验,如如何记忆 公式、如何理解抽象概念等。
学习困惑与反思
引导学生反思自己在学习过程中遇到的困难和问题,并提出改进 的建议和措施。
几何意义
确保三条边长度不会相差 过大,从而无法形成三角 形。
验证方法
通过测量或计算三角形的 三条边,验证两边之差是 否小于第三边。
特殊情况讨论
等腰三角形
两条等长的边与第三边的关系 仍然满足上述定理。
等边三角形
三条等长的边自然满足上述定 理。
直角三角形
在直角三角形中,斜边是最长 的一边,两条直角边之和大于 斜边,同时两条直角边之差小 于斜边。
周长相等,面积相等。
相似三角形判定条件及性质
相似三角形判定条件
两边对应成比例且夹 角相等,则两个三角 形相似。
两角对应相等,则两 个三角形相似。
相似三角形判定条件及性质
01
02
03
04
三边对应成比例,则两个三角 形相似。
相似三角形的性质
对应角相等,对应边成比例。
在几何变换中,如平移、旋转、对称等,面积公式可以帮助我们判断图形变换前后面积是 否发生变化,以及变化的具体数值。
面积公式在解决实际问题中的应用
在实际问题中,如土地测量、建筑设计等领域,面积公式可以帮助我们计算不规则图形的 面积,为决策提供支持。
05
三角形相似与全等判 定方法
相似三角形判定条件及性质
学生自我评价报告分享
学习成果展示
邀请学生代表分享自己在课堂上的学习成果,包括对于三角形三 边之间关系的理解、相关问题的解决思路等。
学习方法分享
鼓励学生分享自己在学习过程中的有效方法和经验,如如何记忆 公式、如何理解抽象概念等。
学习困惑与反思
引导学生反思自己在学习过程中遇到的困难和问题,并提出改进 的建议和措施。
几何意义
确保三条边长度不会相差 过大,从而无法形成三角 形。
验证方法
通过测量或计算三角形的 三条边,验证两边之差是 否小于第三边。
特殊情况讨论
等腰三角形
两条等长的边与第三边的关系 仍然满足上述定理。
等边三角形
三条等长的边自然满足上述定 理。
直角三角形
在直角三角形中,斜边是最长 的一边,两条直角边之和大于 斜边,同时两条直角边之差小 于斜边。
周长相等,面积相等。
三角形三边关系定理(共6张PPT)
如(图3),能任.意因画为一5个+解△6A>得B1C0,,x一1=0只3+小.66虫.>从5,点1B0 出+ 5发>,6沿,三角形的边爬到点C,它有几条路线可以选择?各条线路的长一样吗?你能运用所
学解知得识x 解= 1释0你. 的结果吗?你能由此推出三条边之间有怎样的关系?
B即C三>角A形C两-A边B的.和所大于以第,三边三.边长分别为3.6 cm,7.2 cm,7.2 cm.
(1)3,4,5;(2)5,6,11;(3)5,6,10.
解:(1)能.因为3 + 4>5,3 + 5>4,4 + 5>3,
符合三角形两边的和大于第三边.
(2)不能.因为5 + 6 =11,
不符合三角形两边的和大于第三边.
(3)能.因为5 + 6>10,10 + 6>5,10 + 5>6,
符合三角形两边的和大于第三边.
即三角形两边的和大于第三边.
B
C
探索三角形三边的关系
• 问题:
由不等式②③移项可得 BC >AB -AC,
BC >AC -AB. 由此你能得出什么结论?
AB + AC >BC, ① AC + BC >AB, ② AB + BC >AC. ③
三角形两边的差小于第Biblioteka 边.三角形三边关系定理的应用
例1 下列长度的三条线段能否组成三角形?为什么?
(〔31) 〕能如.果因腰为长是5 +底6边>的102,倍1,0那+ 么6>各5边,的10长+是5>多6少,?
( 三3角)形能三.边因关为系5定+理6>的1应0,用10 ABC + ABCC >>BACB, ①②
三角形三边的关系课件
最合适呢?
思考题
图中有( 6 )个三角形。 有( 4 )个直角三角形。 有( 1 )个锐角三角形。 有( 1 )个钝角三角形。
4+3+2+1=10(个)
这节课有哪些收获?
三角形任意两边 的和大于第三边
两点间所有连线中线段最 短,这条线段的长度叫做 两点间的距离
谢谢!
三角形的三边关系:
三角形任意两边的和大于第三边。
用今天学过的知识说一说为什么中间的路线最短。
家
学校
三角形中任意两边的和大于第三边
尽管草地不允许 踩,但还是被人们 踩出了一条小路, 这是为什么?我们 能不能运用今天所 学的知识解释这一 现象?
教 学 楼
大 草坪
道
请勿 践踏!
图书馆
小猴盖新房,他准备了2根3米长的 木料做房顶,还要一根木料做横梁,请 你们帮他想一想,他该选几米长的木料
三角形三边的关系课件
哪条路线最短?为什么?
家
学校
两点间所有连线中线段最短,这条线段的长度叫做 两点间的距离。
我们来做个实验
剪出下面4组纸条(单位:cm) (1)6、7、8。 (2)4、5、9。 (3)3、6、10。 (4)8、11、11。
每组纸条都能摆出三角形吗?
8
7 6
当两根小棒的长度和大于第三 根小棒时,能围成三角形。
9
5 4
当两根小棒的长度和等于第三根小 棒时,不能围成三角形。
10
6 3
当两根小棒的长度和小于第三根小 棒时,不能围成三角形。
结论汇报
(√1)
6 67 7
88
(×2)
4
5
94
5
9
三角形任意两边的和大于第三边。
思考题
图中有( 6 )个三角形。 有( 4 )个直角三角形。 有( 1 )个锐角三角形。 有( 1 )个钝角三角形。
4+3+2+1=10(个)
这节课有哪些收获?
三角形任意两边 的和大于第三边
两点间所有连线中线段最 短,这条线段的长度叫做 两点间的距离
谢谢!
三角形的三边关系:
三角形任意两边的和大于第三边。
用今天学过的知识说一说为什么中间的路线最短。
家
学校
三角形中任意两边的和大于第三边
尽管草地不允许 踩,但还是被人们 踩出了一条小路, 这是为什么?我们 能不能运用今天所 学的知识解释这一 现象?
教 学 楼
大 草坪
道
请勿 践踏!
图书馆
小猴盖新房,他准备了2根3米长的 木料做房顶,还要一根木料做横梁,请 你们帮他想一想,他该选几米长的木料
三角形三边的关系课件
哪条路线最短?为什么?
家
学校
两点间所有连线中线段最短,这条线段的长度叫做 两点间的距离。
我们来做个实验
剪出下面4组纸条(单位:cm) (1)6、7、8。 (2)4、5、9。 (3)3、6、10。 (4)8、11、11。
每组纸条都能摆出三角形吗?
8
7 6
当两根小棒的长度和大于第三 根小棒时,能围成三角形。
9
5 4
当两根小棒的长度和等于第三根小 棒时,不能围成三角形。
10
6 3
当两根小棒的长度和小于第三根小 棒时,不能围成三角形。
结论汇报
(√1)
6 67 7
88
(×2)
4
5
94
5
9
三角形任意两边的和大于第三边。
《三角形的边》三角形PPT优质课件
C、因为3+4<8,所以不能构成三角形,故C错误;
D、因为3+3>4,所以能构成三角形,故D正确.
故选:D.
知识巩固
2.若三角形的三边长分别为3,2-2x,5,则x的取值范围是多少?
-3<x<0
解析:由三角形的三边关系可知,
5-3 <2-2x <5+3
解得-3<x<0,
典例剖析
2a
已知△ABC的三边长分别是a、b、c,化简|a+b-c|-|b-a-c|=______。
一个三角形的三边关系:
三角形任何两边的和大于第三边,任何两边的差小于第三边。
典例剖析
三角形的两边分别为3和7,第三边长为偶数,求第三边的长。
解:∵ ︳两边之差︳<第三边 <两边之和
∴ 7-3<第三边<7+3
即4<第三边<10
又∵ 第三边为偶数
∴ 三边的长为6或8
方法点拨
在三角形第三边未知的情况下,判段第三条边可能有两种情况。三角形三边的关系:三角形
×(18-4)=7cm,所以能围成三角形。
例:如图,点P是△ABC内一点,连接BP,并
延长交AC于点D。
(1)试探究线段AB+BC+CA与线段2BD的大
小关系;
(2)试探就AB+AC与PB+PC的大小关系。
解:(1)∵根据三角形三边关系可得AB+AD>BD,BC+AD>BD,
∴AB+AD+BC+AD>2BD,
一个三角形,若不符合就不可能构成一个三角形。
解:(1)设底边长为xcm,则腰长为2xcm,
x+2x+2x=18,可得:x=3.6cm
D、因为3+3>4,所以能构成三角形,故D正确.
故选:D.
知识巩固
2.若三角形的三边长分别为3,2-2x,5,则x的取值范围是多少?
-3<x<0
解析:由三角形的三边关系可知,
5-3 <2-2x <5+3
解得-3<x<0,
典例剖析
2a
已知△ABC的三边长分别是a、b、c,化简|a+b-c|-|b-a-c|=______。
一个三角形的三边关系:
三角形任何两边的和大于第三边,任何两边的差小于第三边。
典例剖析
三角形的两边分别为3和7,第三边长为偶数,求第三边的长。
解:∵ ︳两边之差︳<第三边 <两边之和
∴ 7-3<第三边<7+3
即4<第三边<10
又∵ 第三边为偶数
∴ 三边的长为6或8
方法点拨
在三角形第三边未知的情况下,判段第三条边可能有两种情况。三角形三边的关系:三角形
×(18-4)=7cm,所以能围成三角形。
例:如图,点P是△ABC内一点,连接BP,并
延长交AC于点D。
(1)试探究线段AB+BC+CA与线段2BD的大
小关系;
(2)试探就AB+AC与PB+PC的大小关系。
解:(1)∵根据三角形三边关系可得AB+AD>BD,BC+AD>BD,
∴AB+AD+BC+AD>2BD,
一个三角形,若不符合就不可能构成一个三角形。
解:(1)设底边长为xcm,则腰长为2xcm,
x+2x+2x=18,可得:x=3.6cm
直角三角形三边的关系课件
2. 如果一个直角三角形的两条边长分别是3厘米和4厘米, 那么这个三角形的周长是多少厘米?
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
勾股定理的无字证明
赵爽弦图
c b
a
a
①
②
cb
证明:s总=4s1+s2
4*1ab ba2 2
大正方形的面积可以表示为 (a+b)2 。
又可以表示为
4
ab 2
c2.
对比两种表示方法,看看能不能
得到勾股定理的结论.
(a+b)2= 4 ab C2 2
c2 = a2+ b2
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
1
(a+b)(a+b) =
(a2+b2)+ ab
21
S梯形 =
2
1
c2 +2 ·
1
ab =
c2+ab
德 证 法
2
2
2
即:在Rt△ABC中,∠C=90°
c2 = a2 + b2
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
已知 1=S 12,=S3S3,=2S4,=4,S求 5、 S6、 S7的值
S2 S1 S5
S3
S4
S6
S7
结论:
S1+S2+S3+S4 =S5+S6 =S7
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
勾股定理的无字证明
赵爽弦图
c b
a
a
①
②
cb
证明:s总=4s1+s2
4*1ab ba2 2
大正方形的面积可以表示为 (a+b)2 。
又可以表示为
4
ab 2
c2.
对比两种表示方法,看看能不能
得到勾股定理的结论.
(a+b)2= 4 ab C2 2
c2 = a2+ b2
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
1
(a+b)(a+b) =
(a2+b2)+ ab
21
S梯形 =
2
1
c2 +2 ·
1
ab =
c2+ab
德 证 法
2
2
2
即:在Rt△ABC中,∠C=90°
c2 = a2 + b2
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
已知 1=S 12,=S3S3,=2S4,=4,S求 5、 S6、 S7的值
S2 S1 S5
S3
S4
S6
S7
结论:
S1+S2+S3+S4 =S5+S6 =S7
《三角形三边之间的关系》课件
第一组
第二组 第三组 第四组 第五组 第六组 第七组
4、5、5
4、 5、 6 4、6、10 4、5、10 5、 5、 6 5、5、10 5、6、10
能
4+5>5 4+5>6
5+5>4 4+6>5 5+6>4
能
不能 不能
4+6=10 4+10>6 6+10>4 4+5<10 4+10>5 5+10>4 5+5>6 5+5=10 5+6>5 5+10>5
√
√
×
√
4、请你算一算
徐老师要取三根小棒。他已经取 了两根,第一根长4厘米,第二 根长7厘米。第三根取几厘米就 一定能围成一个三角形?
用长度为2cm、2cm、6cm、6cm、6cm 这五条线段中的任意三条线段拼成一个
三角形,你能拼成几种不同的形状?
6
6
6
6
2
6
能 不能
能
5+6>10 5+10>6 6+10>5
两条线段长度之和小于第三条
两条线段长度之和小于第三条
不能围成三角形
两条线段长度之和等于第三条
有两条线段长度之和等于第三条 不能围成三角形源自两条线段长度之和大于第三条线段
两条线段长度之和大于第三条线段
可以围成三角形
岑兜中心小学:陈华忠
小 明 上 学 线 路 图
1、我上学有几条路可以怎么走? 2、走哪条路最近,为什么?
实验一
从五根小棒中随意拿三根来摆三角形,
看看你有什么发现?
实验二
用长是4cm、5cm、5cm、6cm、10cm的小棒摆三角形, (每边只能用一根小棒来表示)并做好记录。
三角形三条边之间的关系-PPT课件
A、12厘米 B、2厘米 C、10厘米
绿色圃中小学教育网lspjy
3、请你设计。 公路两侧有A、B两个村子(如图),现
在要在公路上修建一个公共汽车站,让这两 个村子的人都能最省时、最方便。请问,公 共汽车C应建在什么地方?
A
B
绿色圃中小学教育网lspjy
下面的三条线段可以围成一个三角形吗? (单位:厘米)
•1、任何三条线段都能组
成一个三角形。
()
2
4+11>5,所以4
、5、11三边可以构成
三角形。
绿色圃中小学教育网lspjy
判断下列长度的三组纸条(单位:厘米)
(1)6、2、8、
(2)4、6、9、 (3)5、6、10、
哪组纸条可以摆 成三角形?
绿色圃中小学教育网lspjy
在能拼成三角形的各组小棒下面画“√”
高,我们会继续研究。
绿色圃中小学教育网lspjy
再见
绿色圃中小学教育网lspjy
3 3 3
(√ )
绿色圃中小学教育网lspjy
下面的三条线段可以围成一个三角形吗? (单位:厘米)
3 1
2
(× )
绿色圃中小学教育网lspjy
考考你:
1、下面的三条线段可以围成一个三角形吗?能的打“√”
(单位:厘米)
4 3 2
(√ )
绿色圃中小学教育网lspjy
有关三角形边的关系, 其实还有许多值得研究的 问题,随着大家年级的升
两边的和等于第三边时lspjy
当两边的和大于第三边时
绿色圃中小学教育网lspjy
绿色圃中小学教育网lspjy
绿色圃中小学教育网lspjy
绿色圃中小学教育网lspjy
绿色圃中小学教育网lspjy
3、请你设计。 公路两侧有A、B两个村子(如图),现
在要在公路上修建一个公共汽车站,让这两 个村子的人都能最省时、最方便。请问,公 共汽车C应建在什么地方?
A
B
绿色圃中小学教育网lspjy
下面的三条线段可以围成一个三角形吗? (单位:厘米)
•1、任何三条线段都能组
成一个三角形。
()
2
4+11>5,所以4
、5、11三边可以构成
三角形。
绿色圃中小学教育网lspjy
判断下列长度的三组纸条(单位:厘米)
(1)6、2、8、
(2)4、6、9、 (3)5、6、10、
哪组纸条可以摆 成三角形?
绿色圃中小学教育网lspjy
在能拼成三角形的各组小棒下面画“√”
高,我们会继续研究。
绿色圃中小学教育网lspjy
再见
绿色圃中小学教育网lspjy
3 3 3
(√ )
绿色圃中小学教育网lspjy
下面的三条线段可以围成一个三角形吗? (单位:厘米)
3 1
2
(× )
绿色圃中小学教育网lspjy
考考你:
1、下面的三条线段可以围成一个三角形吗?能的打“√”
(单位:厘米)
4 3 2
(√ )
绿色圃中小学教育网lspjy
有关三角形边的关系, 其实还有许多值得研究的 问题,随着大家年级的升
两边的和等于第三边时lspjy
当两边的和大于第三边时
绿色圃中小学教育网lspjy
绿色圃中小学教育网lspjy
绿色圃中小学教育网lspjy
绿色圃中小学教育网lspjy
三角形三边关系课件PPT
三角形三边关系课件
目录
• 三角形三边关系概述 • 三角形三边关系定理 • 三角形三边关系的性质 • 三角形三边关系的实际应用 • 三角形三边关系的练习题与解答
01 三角形三边关系概述
三角形的基本定义
由三条边围成的闭合二维图形 三个内角之和为180度
分为等边、等腰、直角等不同类型来自三边关系的重要性利用代数方法,通过建立方程组并求解,证明三角形三 边关系定理。
三角形三边关系定理的应用
01
02
03
解决几何问题
三角形三边关系定理可以 用于解决与三角形相关的 几何问题,例如求角度、 判断三角形的形状等。
实际应用
在建筑、工程、航海等领 域中,三角形三边关系定 理可用于确定物体之间的 距离和位置关系。
03 三角形三边关系的性质
三角形的边长性质
三角形任意两边之和大于第三边
三角形任意两边之差小于第三边
三角形的边长关系与三角形的形 状和大小有关
三角形的角度性质
三角形内角和等于180度 三角形外角等于其不相邻的两个内角之和
三角形角度的大小与三角形的形状和大小有关
三角形的面积性质
三角形面积等于底边与对应高的乘积的一半 等底等高的三角形面积相等
已知三角形的三边长度,可以利用海 伦公式计算三角形的面积。
在建筑设计中的应用
结构设计
在建筑设计中,三角形结 构具有稳定性,可以用于 屋顶、桥梁等结构设计中。
造型设计
三角形元素可以用于建筑 外观造型设计,如尖顶、 拱门等,增加建筑的艺术 感和视觉效果。
安全评估
建筑设计时需要考虑结构 的承载能力和稳定性,利 用三角形三边关系可以评 估结构的强度和安全性。
05
答
目录
• 三角形三边关系概述 • 三角形三边关系定理 • 三角形三边关系的性质 • 三角形三边关系的实际应用 • 三角形三边关系的练习题与解答
01 三角形三边关系概述
三角形的基本定义
由三条边围成的闭合二维图形 三个内角之和为180度
分为等边、等腰、直角等不同类型来自三边关系的重要性利用代数方法,通过建立方程组并求解,证明三角形三 边关系定理。
三角形三边关系定理的应用
01
02
03
解决几何问题
三角形三边关系定理可以 用于解决与三角形相关的 几何问题,例如求角度、 判断三角形的形状等。
实际应用
在建筑、工程、航海等领 域中,三角形三边关系定 理可用于确定物体之间的 距离和位置关系。
03 三角形三边关系的性质
三角形的边长性质
三角形任意两边之和大于第三边
三角形任意两边之差小于第三边
三角形的边长关系与三角形的形 状和大小有关
三角形的角度性质
三角形内角和等于180度 三角形外角等于其不相邻的两个内角之和
三角形角度的大小与三角形的形状和大小有关
三角形的面积性质
三角形面积等于底边与对应高的乘积的一半 等底等高的三角形面积相等
已知三角形的三边长度,可以利用海 伦公式计算三角形的面积。
在建筑设计中的应用
结构设计
在建筑设计中,三角形结 构具有稳定性,可以用于 屋顶、桥梁等结构设计中。
造型设计
三角形元素可以用于建筑 外观造型设计,如尖顶、 拱门等,增加建筑的艺术 感和视觉效果。
安全评估
建筑设计时需要考虑结构 的承载能力和稳定性,利 用三角形三边关系可以评 估结构的强度和安全性。
05
答
《三角形三边的关系》ppt课件
地图制作 在制作地图时,利用三角形不等式原理可以根据 已知的距离和角度信息,推算出未知地点的坐标 位置。
遥感技术 在遥感技术中,三角形不等式可用于处理和分析 卫星图像数据,提取地物信息和进行地形分析。
其他领域中的实际应用案例
机器人路径规划
在机器人技术领域,三角形不等式可用于规划机器人的行动路径, 确保其以最短距离到达目的地。
通过测量或计算三角形的三条边, 验证两边之和是否大于第三边。
三角形两边之差小于第三边
01
02
03
定理内容
在任意三角形中,任意两 边之差小于第三边。
几何意义
确保三条边能够形成一个 稳定的三角形,避免过长 或过短的边导致三角形变 形。
验证方法
通过测量或计算三角形的 三条边,验证两边之差是 否小于第三边。
面积的影响。
面积最大化问题
03
在给定周长或某些边长的条件下,探讨如何使三角形面积最大
化。
面积最大化问题探讨
等周长的三角形面积最大化
对于周长一定的三角形,探讨其面积最大化的条件及求解方法。
等腰三角形的面积最大化
对于等腰三角形,在给定底边和腰长的情况下,探讨其面积最大化 的条件及求解方法。
直角三角形面积最大化
三边长度可以求出相似比。
在全等三角形中,已知三边长度 可以直接判定两个三角形全等, 或者已知两边和夹角可以求出第
三边长度。
通过比较相似三角形或全等三角 形的三边长度,可以解决一些与 三角形有关的实际问题,如测量、
建筑设计等。
06
三角形不等式在实 际问题中的应用
城市规划与建筑设计中的应用
道路设计
在道路规划中,利用三角形不等 式原理可以确定最短路径,优化
遥感技术 在遥感技术中,三角形不等式可用于处理和分析 卫星图像数据,提取地物信息和进行地形分析。
其他领域中的实际应用案例
机器人路径规划
在机器人技术领域,三角形不等式可用于规划机器人的行动路径, 确保其以最短距离到达目的地。
通过测量或计算三角形的三条边, 验证两边之和是否大于第三边。
三角形两边之差小于第三边
01
02
03
定理内容
在任意三角形中,任意两 边之差小于第三边。
几何意义
确保三条边能够形成一个 稳定的三角形,避免过长 或过短的边导致三角形变 形。
验证方法
通过测量或计算三角形的 三条边,验证两边之差是 否小于第三边。
面积的影响。
面积最大化问题
03
在给定周长或某些边长的条件下,探讨如何使三角形面积最大
化。
面积最大化问题探讨
等周长的三角形面积最大化
对于周长一定的三角形,探讨其面积最大化的条件及求解方法。
等腰三角形的面积最大化
对于等腰三角形,在给定底边和腰长的情况下,探讨其面积最大化 的条件及求解方法。
直角三角形面积最大化
三边长度可以求出相似比。
在全等三角形中,已知三边长度 可以直接判定两个三角形全等, 或者已知两边和夹角可以求出第
三边长度。
通过比较相似三角形或全等三角 形的三边长度,可以解决一些与 三角形有关的实际问题,如测量、
建筑设计等。
06
三角形不等式在实 际问题中的应用
城市规划与建筑设计中的应用
道路设计
在道路规划中,利用三角形不等 式原理可以确定最短路径,优化
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
莅临指导
三角形的三边关系
富阳市永兴中学 段春炳
数 和谐美 哪 哪
学 对称美
里里 就有
美
简洁美 有 数 奇异美 美 ,
.
好奇心是成功的重要法宝
变形“金刚”奇怪吗?
三角形的稳定性
四边形的不稳定性
三角形的稳定性具体指的是什么意思?
做一做
1、以线段a、b、c为边做一个三角形
a
b
c
2、以线段a、b、c、d为边做一个四边形
53、勇士搏出惊涛骇流而不沉沦,懦 夫在风 平浪静 也会溺 水。 54、好好管教自己,不要管别人。
55、人的一生没有一帆风顺的坦途。 当你面 对失败 而优柔 寡断, 当动摇 自信而 怨天尤 人,当 你错失 机遇而 自暴自 弃的时 56、失去金钱的人损失甚少,失去健 康的人 损失极 多,失 去勇气 的人损 失一切 。 57、暗自伤心,不如立即行动。
a
c
b
d
三角形的稳定性:
三角形三条边的长确定,则三角 形的形状和大小就唯一确定.
理一理
三角形的三边关系
为什么?
A
b+c>a
c
b a+b>c “两点之间,线段最短”
a+c>b
B
a
C
三角形的任何两边之和大于第三边。
反之:在三条线段中 若任两线段之和大于第三线段 则这三条线段能构成一个三角形。
画一画
画一个三角形,使它的三条 边长分别为7cm、5cm、4cm. 2
46、活在昨天的人失去过去,活在明 天的人 失去未 来,活 在今天 的人拥 有过去 和未来 。 47、你可以一无所有,但绝不能一无 是处。
48、通过辛勤工作获得财富才是人生 的大快 事。— —巴尔 扎克 49、相信自己能力的人,任何事情都 能够做 到。
50、有了坚定的意志,就等于给双脚 添了一 对翅膀 。—— 乔·贝利 51、每一种挫折或不利的突变,是带 着同样 或较大 的有利 的种子 。—— 爱默生 52、如果你还认为自己还年轻,还可 以蹉跎 岁月的 话,你 终将一 事无成 ,老来 叹息。
提高动手实践、 创新能力,提高 合作交流的水平.
同学们再见!
3、后悔是崇高的理想就像生长在高山 上的鲜 花。如 果要搞 下它, 勤奋才 能是攀 登的绳 索。 44、幸运之神的降临,往往只是因为 你多看 了一眼 ,多想 了一下 ,多走 了一步 。 45、对待生活中的每一天若都像生命 中的最 后一天 去对待 ,人生 定会更 精彩。
≥ AC+BD
C
谈谈你的收获和感受.
1.三角形的稳定性. 1.数学就在我们身边
2.已知三边画三角形. 2.数学有趣又有用.
3.三角形的三边关系.
4.画图、拼接、翻折 等实验方法是探索 数学奥秘的常用手段.
3.数学激发了我们的 好奇心.
4.在动手、动脑、交流 中提高.
建议作业
要求 必做
内容
课本P52习题8.2第2题 课本P62复习题第2、11题
45、生活犹如万花筒,喜怒哀乐,酸 甜苦辣 ,相依 相随, 无须过 于在意 ,人生 如梦看 淡一切 ,看淡 曾经的 伤痛, 好好珍 惜自己 、善待 自己。 46、有志者自有千计万计,无志者只 感千难 万难。 47、苟利国家生死以,岂因祸福避趋 之。 48、不要等待机会,而要创造机会。
49、如梦醒来,暮色已降,豁然开朗 ,欣然 归家。 痴幻也 好,感 悟也罢 ,在这 青春的 飞扬的 年华, 亦是一 份收获 。犹思 “花开 不是为 了花落 ,而是 为了更 加灿烂 。 50、人活着要呼吸。呼者,出一口气 ;吸者 ,争一 口气。 51、如果我不坚强,那就等着别人来 嘲笑。
试一试
以下列长度的各组线段为边,画一个三角形.
(1)5cm,4cm,3cm; (2)9cm,5cm,4cm; (3)7cm,4cm,2cm;
判一判
下列长度的各组线段能否组成一个三角形? (1) 15cm、10 cm、7 cm; (2)4 cm、5 cm、10 cm; (3)3 cm、8 cm、5 cm; (4)4 cm、5 cm、6 cm.
三角形较短两边之和大于第三边。
想一想
已知三角形两边a、b长为 9、5,
则第三边c的取值范围
。3
三角形的任何两边之和大于第三边。 三角形的任何两边之差小于第三边。
|a-b|< c<a+b
议一议
鲁班给徒弟两根树,一根长八尺,另一根长一丈二 尺,要想做屋架,你帮徒弟想一想,第三根树应多长?
4尺<c<20尺 C=8尺
58、当你快乐时,你要想,这快乐不 是永恒 的。当 你痛苦 时,你 要想, 这痛苦 也不是 永恒的 。 59、抱最大的希望,为最大的努力, 做最坏 的打算 。 60、成功的关键在于相信自己有成功 的能力 。
61、你既然期望辉煌伟大的一生,那 么就应 该从今 天起, 以毫不 动摇的 决心和 坚定不 移的信 念,凭 自己的 智慧和 毅力, 去创造 你和人 类的快 乐。 62、能够岿然不动,坚持正见,度过 难关的 人是不 多的。 ——雨 果一种 耗费精 神的情 绪,后 悔造物 之前, 必先造 人。 43、富人靠资本赚钱,穷人靠知识致 富。 44、顾客后还有顾客,服务的开始才 是销售 的开始 。
C=12尺
屋架为什么做成三角形? F 四边形的不稳定性有用 呢?
考考你
已知: 等腰三角形周长为11,边 长都为整数.求:三边的长.
方法1:
方法2:
方法3:
5、5、1 1、5、5 5、5、1
5、3、3 3、4、4 4、4、3
4、4、3 5、3、3 3、3、5
先考虑最大边 先考虑底边 先考虑腰
拓展一步
目的 巩固基础知识
选做
如图A、B、C为三个村庄,现在这三个村 打算造个学校,A、B、C三个村的就学人 数之比为3:2:1,为了使学生到校距离 总和最小,请问校址选在哪里?
A
提高应用数学思 想、数学建模的 能力.
小组 合作 完成
实验题:
B
C
对一般或特殊的三角形纸片进行翻折、剪拼 等实验,去发现一些规律
若一平面上有A、B、C三个点,则
①AB+AC ≥ BC
BA C
②若AB+AC>BC 则以A、B、C为顶点 一定能构成△ ABC吗?
A BC
请你决策
如图A、B、C、D为四个村庄,现在这四 个村打算造个学校,为了使学校到四个村庄的 距离之和最小,请问校址选在哪里?
A
D
PA+PB+PC+PD
B
P = (PA+PC)+(PB+PD)
三角形的三边关系
富阳市永兴中学 段春炳
数 和谐美 哪 哪
学 对称美
里里 就有
美
简洁美 有 数 奇异美 美 ,
.
好奇心是成功的重要法宝
变形“金刚”奇怪吗?
三角形的稳定性
四边形的不稳定性
三角形的稳定性具体指的是什么意思?
做一做
1、以线段a、b、c为边做一个三角形
a
b
c
2、以线段a、b、c、d为边做一个四边形
53、勇士搏出惊涛骇流而不沉沦,懦 夫在风 平浪静 也会溺 水。 54、好好管教自己,不要管别人。
55、人的一生没有一帆风顺的坦途。 当你面 对失败 而优柔 寡断, 当动摇 自信而 怨天尤 人,当 你错失 机遇而 自暴自 弃的时 56、失去金钱的人损失甚少,失去健 康的人 损失极 多,失 去勇气 的人损 失一切 。 57、暗自伤心,不如立即行动。
a
c
b
d
三角形的稳定性:
三角形三条边的长确定,则三角 形的形状和大小就唯一确定.
理一理
三角形的三边关系
为什么?
A
b+c>a
c
b a+b>c “两点之间,线段最短”
a+c>b
B
a
C
三角形的任何两边之和大于第三边。
反之:在三条线段中 若任两线段之和大于第三线段 则这三条线段能构成一个三角形。
画一画
画一个三角形,使它的三条 边长分别为7cm、5cm、4cm. 2
46、活在昨天的人失去过去,活在明 天的人 失去未 来,活 在今天 的人拥 有过去 和未来 。 47、你可以一无所有,但绝不能一无 是处。
48、通过辛勤工作获得财富才是人生 的大快 事。— —巴尔 扎克 49、相信自己能力的人,任何事情都 能够做 到。
50、有了坚定的意志,就等于给双脚 添了一 对翅膀 。—— 乔·贝利 51、每一种挫折或不利的突变,是带 着同样 或较大 的有利 的种子 。—— 爱默生 52、如果你还认为自己还年轻,还可 以蹉跎 岁月的 话,你 终将一 事无成 ,老来 叹息。
提高动手实践、 创新能力,提高 合作交流的水平.
同学们再见!
3、后悔是崇高的理想就像生长在高山 上的鲜 花。如 果要搞 下它, 勤奋才 能是攀 登的绳 索。 44、幸运之神的降临,往往只是因为 你多看 了一眼 ,多想 了一下 ,多走 了一步 。 45、对待生活中的每一天若都像生命 中的最 后一天 去对待 ,人生 定会更 精彩。
≥ AC+BD
C
谈谈你的收获和感受.
1.三角形的稳定性. 1.数学就在我们身边
2.已知三边画三角形. 2.数学有趣又有用.
3.三角形的三边关系.
4.画图、拼接、翻折 等实验方法是探索 数学奥秘的常用手段.
3.数学激发了我们的 好奇心.
4.在动手、动脑、交流 中提高.
建议作业
要求 必做
内容
课本P52习题8.2第2题 课本P62复习题第2、11题
45、生活犹如万花筒,喜怒哀乐,酸 甜苦辣 ,相依 相随, 无须过 于在意 ,人生 如梦看 淡一切 ,看淡 曾经的 伤痛, 好好珍 惜自己 、善待 自己。 46、有志者自有千计万计,无志者只 感千难 万难。 47、苟利国家生死以,岂因祸福避趋 之。 48、不要等待机会,而要创造机会。
49、如梦醒来,暮色已降,豁然开朗 ,欣然 归家。 痴幻也 好,感 悟也罢 ,在这 青春的 飞扬的 年华, 亦是一 份收获 。犹思 “花开 不是为 了花落 ,而是 为了更 加灿烂 。 50、人活着要呼吸。呼者,出一口气 ;吸者 ,争一 口气。 51、如果我不坚强,那就等着别人来 嘲笑。
试一试
以下列长度的各组线段为边,画一个三角形.
(1)5cm,4cm,3cm; (2)9cm,5cm,4cm; (3)7cm,4cm,2cm;
判一判
下列长度的各组线段能否组成一个三角形? (1) 15cm、10 cm、7 cm; (2)4 cm、5 cm、10 cm; (3)3 cm、8 cm、5 cm; (4)4 cm、5 cm、6 cm.
三角形较短两边之和大于第三边。
想一想
已知三角形两边a、b长为 9、5,
则第三边c的取值范围
。3
三角形的任何两边之和大于第三边。 三角形的任何两边之差小于第三边。
|a-b|< c<a+b
议一议
鲁班给徒弟两根树,一根长八尺,另一根长一丈二 尺,要想做屋架,你帮徒弟想一想,第三根树应多长?
4尺<c<20尺 C=8尺
58、当你快乐时,你要想,这快乐不 是永恒 的。当 你痛苦 时,你 要想, 这痛苦 也不是 永恒的 。 59、抱最大的希望,为最大的努力, 做最坏 的打算 。 60、成功的关键在于相信自己有成功 的能力 。
61、你既然期望辉煌伟大的一生,那 么就应 该从今 天起, 以毫不 动摇的 决心和 坚定不 移的信 念,凭 自己的 智慧和 毅力, 去创造 你和人 类的快 乐。 62、能够岿然不动,坚持正见,度过 难关的 人是不 多的。 ——雨 果一种 耗费精 神的情 绪,后 悔造物 之前, 必先造 人。 43、富人靠资本赚钱,穷人靠知识致 富。 44、顾客后还有顾客,服务的开始才 是销售 的开始 。
C=12尺
屋架为什么做成三角形? F 四边形的不稳定性有用 呢?
考考你
已知: 等腰三角形周长为11,边 长都为整数.求:三边的长.
方法1:
方法2:
方法3:
5、5、1 1、5、5 5、5、1
5、3、3 3、4、4 4、4、3
4、4、3 5、3、3 3、3、5
先考虑最大边 先考虑底边 先考虑腰
拓展一步
目的 巩固基础知识
选做
如图A、B、C为三个村庄,现在这三个村 打算造个学校,A、B、C三个村的就学人 数之比为3:2:1,为了使学生到校距离 总和最小,请问校址选在哪里?
A
提高应用数学思 想、数学建模的 能力.
小组 合作 完成
实验题:
B
C
对一般或特殊的三角形纸片进行翻折、剪拼 等实验,去发现一些规律
若一平面上有A、B、C三个点,则
①AB+AC ≥ BC
BA C
②若AB+AC>BC 则以A、B、C为顶点 一定能构成△ ABC吗?
A BC
请你决策
如图A、B、C、D为四个村庄,现在这四 个村打算造个学校,为了使学校到四个村庄的 距离之和最小,请问校址选在哪里?
A
D
PA+PB+PC+PD
B
P = (PA+PC)+(PB+PD)