统计热力学基础练习题一答案

合集下载

热力学统计物理练习试题和答案

热力学统计物理练习试题和答案

WORD 格式 整理 热力学·统计物理练习题一、填空题 . 本大题 70 个小题,把答案写在横线上。

1. 当热力学系统与外界无相互作用时 , 经过足够长时间 , 其宏观性质时 间改变,其所处的 为热力学平衡态。

2. 系统,经过足够长时间,其不随时间改变,其所处的状态为热力学平衡态。

3.均匀物质系统的热力学平衡态可由力学参量、电磁参量、几何参量、化 学参量等四类参量描述,但有 是独立的。

4.对于非孤立系统, 当其与外界作为一个整体处于热力学平衡态时,此时 的系统所处的状态是 。

5.欲描述非平衡系统的状态,需要将系统分成若干个小部分,使每小部分具有 小,但微观上又包含大量粒子,则每小部分都可视 为。

6.描述热力学系统平衡态的独立参量和 之间关系的方程式叫物态方程,其一般表达式为 。

7.均匀物质系统的独立参量有 个,而过程方程独立参量只有个。

8.定压膨胀系数的意义是在 不变的条件下系统体积随 的相对变化。

9.定容压力系数的意义是在 不变条件下系统的压强随的相 对变化。

10.等温压缩系数的意义是在 不变条件下系统的体积随的 相对变化。

11.循环关系的表达式为。

12.在无摩擦准静态过程中存在着几种不同形式的功,则系统对外界作的功 W Y i dy i ,其中 y i 是, Y i 是与 y i 相应的。

13. U B U A Q W ,其中 是作的功。

W14. dUQW0 ,-W 是作的功,且 -W 等于。

22( 、 均为热力学平衡态1、L2 为15.Q W QW ,L 1L 1 1 2 1L 2准静态过程)。

16.第一类永动机是指的永动机。

17.内能是 函数,内能的改变决定于和。

18.焓是函数,在等压过程中,焓的变化等于的热量。

19.理想气体内能温度有关,而与体积。

学习参考资料分享WORD 格式整理20.理想气体的焓温度的函数与无关。

21.热力学第二定律指明了一切与热现象有关的实际过程进行的。

第七章统计热力学基础

第七章统计热力学基础

第七章统计热⼒学基础第七章统计热⼒学基础⼀、选择题1、统计热⼒学主要研究()。

(A) 平衡体系(B)单个粒⼦的⾏为案(C) ⾮平衡体系(D) 耗散结构2、能量零点的不同选择,在下⾯诸结论中哪⼀种说法是错误的:( )(A) 影响配分函数的计算数值(B) 影响U,H,F,G 的数值(C) 影响Boltzmann分布数N 的数值(D) 影响能级能量εi的计算数值3、最低能量零点选择不同,对哪些热⼒学函数值⽆影响:( )(A) U (B) S (C) G (D) H4、统计热⼒学研究的主要对象是:()(A) 微观粒⼦的各种变化规律(B) 宏观体系的各种性质(C) 微观粒⼦的运动规律(D) 宏观系统的平衡性质5、对于⼀个U,N,V确定的体系,其微观状态数最⼤的分布就是最可⼏分布,得出这⼀结论的理论依据是:()(A) 玻兹曼分布定律(B) 等⼏率假设(C) 分⼦运动论(D) 统计学原理6、以0到9这⼗个数字组成不重复的三位数共有()(A) 648个(B) 720个(C) 504个(D) 495个7、各种不同运动状态的能级间隔是不同的,对于同⼀种⽓体分⼦,其平动、转动、振动和电⼦运动的能级间隔的⼤⼩顺序是:()(A) t > r > v > e(B) t < r < v < e(C) e > v > t > r(D) v > e > t > r8、在统计热⼒学中,对物系的分类按其组成的粒⼦能否被分辨来进⾏,按此原则:()(A) ⽓体和晶体皆属定域⼦体系(B) ⽓体和晶体皆属离域⼦体系(C) ⽓体属离域⼦体系⽽晶体属定域⼦体系(D) ⽓体属定域⼦体系⽽晶体属离域⼦体系9、对于定域⼦体系分布X所拥有的微观状态t x为:()(A) (B)(C) (D)10、当体系的U,N,V确定后,则:()(A) 每个粒⼦的能级 1, 2, ....., i⼀定,但简并度g1, g2, ....., g i及总微观状态数不确定。

热力学统计物理练习试题和答案

热力学统计物理练习试题和答案

热力学·统计物理练习题一、填空题. 本大题70个小题,把答案写在横线上。

1.当热力学系统与外界无相互作用时,经过足够长时间,其宏观性质时间改变,其所处的为热力学平衡态。

2.系统,经过足够长时间,其不随时间改变,其所处的状态为热力学平衡态。

3.均匀物质系统的热力学平衡态可由力学参量、电磁参量、几何参量、化学参量等四类参量描述,但有是独立的。

4.对于非孤立系统,当其与外界作为一个整体处于热力学平衡态时,此时的系统所处的状态是。

5.欲描述非平衡系统的状态,需要将系统分成假设干个小局部,使每小局部具有小,但微观上又包含大量粒子,那么每小局部都可视为。

6.描述热力学系统平衡态的独立参量和之间关系的方程式叫物态方程,其一般表达式为。

7.均匀物质系统的独立参量有个,而过程方程独立参量只有个。

8.定压膨胀系数的意义是在不变的条件下系统体积随的相对变化。

9.定容压力系数的意义是在不变条件下系统的压强随的相对变化。

10.等温压缩系数的意义是在不变条件下系统的体积随的相对变化。

11.循环关系的表达式为。

12.在无摩擦准静态过程中存在着几种不同形式的功,那么系统对外界作的功∑-=δi i dy Y W ,其中i y 是 ,i Y 是与i y 相应的 。

13.W Q U U A B +=-,其中W 是 作的功。

14.⎰=+=0W Q dU ,-W 是作的功,且-W 等于 。

15.⎰δ+δ2L 11W Q ⎰δ+δ2L 12W Q 〔1、2均为热力学平衡态,L 1、L 2为准静态过程〕。

16.第一类永动机是指 的永动机。

17.能是 函数,能的改变决定于和。

18.焓是函数,在等压过程中,焓的变化等于 的热量。

19.理想气体能 温度有关,而与体积 。

20.理想气体的焓温度的函数与 无关。

21.热力学第二定律指明了一切与热现象有关的实际过程进展的。

22.为了判断不可逆过程自发进展的方向只须研究和的相互关系就够了。

23.一般工作于两个一定温度热源之间的热机效率不大于。

统计热力学部分习题解答[1]

统计热力学部分习题解答[1]

部分习题解答2002/01/071.1试证明,在体积V 内,在ε 到ε + d ε 的能量范围内,三维自由粒子的量子态数为εεπεεd )2(2d )(21233m h V D =.D (ε)称为态密度.证明: 由(1.1.25)得知:在动量p 到p +d p 范围内的量子态(微观状态)数为p p h V d 423π, (1.1)根据三维自由粒子的能量动量关系m p 2/2=ε,易得m p p /d d =ε,即:εm p 22=, εεεd )2/(d /d 2/12/1m p m p ==, (1.2)将(1.2)代入(1.1),整理可得εεπεεd )2(2d )(21233m h V D =.1.2 试证明,在面积S = L 2内,在ε 到ε + d ε 的能量范围内,二维自由粒子的量子态数为επεεd 2d )(2m h SD =.D (ε)称为态密度.证明:仿照由(1.1.23)导出(1.1.25)之过程:在四维μ空间体积元d p x d p y d x d y 中可能的微观状态数为d p x d p y d x d y /h 2.可得,在面积S 中, 动量绝对值p 到p +d p 范围内的量子态(微观状态)数为p p h S y x p p h L Ld 2d d d d 1200202πϕπ=⎰⎰⎰, (1.3)根据二维自由粒子的能量动量关系m p 2/2=ε,易得m p p /d d =ε,即: 2/1)2(εm p =, εεεd )2/(d /d 2/12/1m p m p ==, (1.4)将(1.4)代入(1.3),整理可得επεεd 2d )(2m h SD =.1.4 已知一维线性谐振子的能量为.试求在ε 到ε + d ε 的能量范围内, 一维线性谐振子的量子态数.解:此题的能量动量关系中含有坐标,若采用1.1和1.2的方法,涉及到耦合变量的积分,不易求解.可从另一角度处理,导出结论.先计算在ε 到ε + d ε 的能量范围内,谐振子占据二维μ空间面积元的面积.根据一维线性谐振子的能量动量关系,可得μ空间能量≤ε 的面积为.因此, 在ε 到ε + d ε 的能量范围内面积元的面积为.又知,谐振子一个量子态占据μ空间的面积为h . 可得,在ε 到ε + d ε 的能量范围内, 一维线性谐振子的量子态数为.2.1 若一温度为T 1的高温热源向另一温度为T 2的低温物体传递热量Q ,用熵增加原理证明这一过程为不可逆过程.证明:熵增加原理适用于孤立系.可将热源与物体之总体视为孤立系.由于热源很大,在传热过程中,其温度不变,且经历的过程为可逆过程,熵增加为.由于熵为态函数,可设物体经历一可逆等温过程由初态变为末态,在该过程中的熵增加为,该值与这一热传导过程的熵变相等.于是,孤立系经历热传导过程的熵变为1112>⎪⎪⎭⎫⎝⎛-=∆+∆=∆T T Q S S S r t (2.1)据熵增加原理, 这一过程为不可逆过程(即:热传导是不可逆的).2.2 物体的初始温度T 1的高于热源的温度T 2 .有一热机在此物体和热源之间工作,直到物体的温度降低到T 2为止,若热机从物体吸收的热量为Q ,根据熵增加原理证明,此热机输出的最大功为),(212S S T Q W --=最大其中21S S -表示物体熵的减少量.证明: 熵增加原理适用于孤立系.可将物体、热源与热机之总体视为孤立系. 在过程(循环)中,物体的熵变为122S S S -=∆.设热机为可逆机,则热机的熵变1S ∆为零.若热机对外作功为W , 则在一温度为T 2的等温可逆过程中,热源的熵变为2T WQ S r -=∆.根据熵增加原理,有021212≥-+-=∆+∆+∆=∆T WQ S S S S S S r t , (2.2)所以 )(212S S T Q W --≤,物体对外做最大功时,等号成立,则)(212S S T Q W --=最大.2.3 由理想气体绝热自由膨胀的不可逆性证明热力学第二定律的开氏说法是正确的,即:不可能从单一热源吸热使之完全变成有用功而不引起其它变化.证明:设一热机仅从与外界绝热的一汽缸顶进行热交换,压缩该汽缸的活塞而作功.设汽缸的工作物质为理想气体.若在热机的一个循环中, 可从单一热源(汽缸)吸热Q ,完全变成对气体所做的功W , 而不引起其它变化,则热机压缩活塞所作的功与气体放热相等,即W = Q ,理想气体经历的过程为等内能过程,故而,温度不变.热机和汽缸经历此过程的总体效果是:理想气体在温度不变的情况下,体积减小而不引起其它变化.这正是理想气体绝热自由膨胀的逆过程.违背了理想气体绝热自由膨胀的不可逆性.所以, 不可能从单一热源吸热使之完全变成有用功而不引起其它变化.即开氏说法是正确的.另一方面,设一热机以理想气体为工作物质,从温度为T的一个恒温热源吸热,通过等温过程推动活塞对外作功,由于理想气体在等温过程中内能不变,吸收的热量完全变成对外所做的功.若理想气体的绝热自由膨胀为可逆过程,则在作功过程完成后,可绝热收缩且恢复到初始状态而不引起其它变化.从整个循环看来,总效果是: 从单一热源吸热使之完全变成有用功而不引起其它变化,这就违背了开氏说法.若开氏说法正确,则理想气体的绝热自由膨胀是不可逆的.综合上述两步的证明可得出:理想气体绝热自由膨胀的不可逆性与开氏说法等价.2.4 根据热力学第二定律证明两条绝热线不能相交.证:假设两条绝热线可以相交,如图所示,可由这两条绝热线与一等温线构成一个循环.V可令一可逆热机以该循环工作,即:由初态a出发经历等温膨胀过程到达b,在此过程中热机从热源吸热且对外界作功,再由b经历绝热膨胀过程到达c, 在此过程中热机对外界作功,最后,由c 经历绝热压缩过程返回初态a .在整个循环中,热机从单一热源吸热使之完全变成有用功(由三条线围成的封闭图形之面积)而不引起其它变化,这就违背了开氏说法.若开氏说法正确,则两条绝热线不能相交.3.1 试证明,对正则分布,熵可表示为∑-=sss k S ρρln ,其中,Z e sE s /βρ-=是系统处于s 态的几率. 证:对正则分布,有⎪⎪⎭⎫⎝⎛∂∂-=ββZ Z k S ln ln()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=∑∑--Z E e Z Z e k ss E s E s s βββln()∑⎥⎦⎤⎢⎣⎡---=-s s E Z E Z e k s ln ββ∑-=sss k ρρln , 证毕.3.3 设一维线性谐振子能量的经典表达式为2222121q m p m ωε+=,试计算经典近似的振动配分函数、内能和熵.解: 设系统由N 个一维线性谐振子组成,则经典近似的正则分布振动配分函数为∏⎰⎰=∞∞-∞∞---=N i i i i i N q m p m q p h Z 1222)22ex p(d d 1ωββNNq m p m q p h⎪⎪⎭⎫ ⎝⎛--=⎰⎰∞∞-∞∞-)22ex p(d d 1222ωββNh ⎪⎪⎭⎫⎝⎛=βωπ2, 这里,由于是振动配分函数,不必考虑粒子置换带来的影响N !.内能NkT Z E =∂∂-=ln β,熵⎪⎪⎭⎫⎝⎛∂∂-=ββZ Z k S ln ln⎪⎭⎫⎝⎛+=12ln ωπh kT Nk . 3.6 当选择不同的能量零点时,粒子第l 个能级的能量可取为l ε或*l ε.以∆表示两者之差.试证明相应的粒子配分函数存在以下关系z e z ∆-=β*.并讨论由配分函数z 和z *求得的热力学函数有何差别.解: 当粒子第l 个能级的能量取l ε时,粒子的配分函数为∑-=ll le z βεω.当粒子第l 个能级的能量取*l ε时,粒子的配分函数为∑∆-∆+-==ll ze e z l βεβω)(*.以下讨论基本热力学函数的差别:系统内能∆-=∆-∂∂-=∂∂-=N E N z N z NE **ln ln ββ,物态方程 ,ln ln **p z V N z V N p =∂∂=∂∂=ββ熵可见,由于能量零点的不同选择,仅对系统内能有影响,而对物态方程和熵无影响.5.2 表面活性物质的分子在液面上作二维自由运动,可以看作二维理想气体.试写出在二维理想气体中分子的速度分布和速率分布.并求出平均速率,最可几速率和方均根速率.解: 仿§5.2.2, 根据麦-玻分布,可求得在面积S 内d p x d p y 范围中的平均分子数为 .代入动量与速度的关系,可得在面积S 内速度范围d v x d v y 中的平均分子数yx y x v v v v v kT m h Sm a d d )(2exp 2222⎥⎦⎤⎢⎣⎡+--=α,(5.1)根据分子数为N 的条件,有yx y x v v v v kT m h Sm eN d d )(2exp 2222⎰⎰∞∞-∞∞-⎥⎦⎤⎢⎣⎡+-=α,可求得 mkT h n mkT h S N eππα2222==-,(5.2)将(5.2)代入(5.1),可得在单位面积中,速度范围d v x d v y 中的平均分子数yx y x v v v v kT m kT m nd d )(2ex p 222⎥⎦⎤⎢⎣⎡+-π.(5.3)(5.3)和(5.1)为二维理想气体中分子的速度分布.若将平面直角坐标换为极坐标d v x d v y →v d v d θ,并对角度积分,可得在单位面积中,速率范围d v 中的平均分子数v v v kT m kT m nd 2ex p 2⎥⎦⎤⎢⎣⎡-.(5.4)这就是二维理想气体分子的速率分布.由(5.4)可知,一个分子处于单位速率间隔内的几率密度为v v kT m kT m v ⎥⎦⎤⎢⎣⎡-=22ex p )(ρ平均速率m kT v v v kT m kTm v v v v 2d 2exp d )(022πρ=⎪⎭⎫ ⎝⎛-==⎰⎰∞. 由 02exp d )(d 2=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=v v kT m kT m v ρ,可得最可几速率m kT v m =.因为m kT v v v kT m kTm v v v v 2d 2exp d )(03222=⎪⎭⎫ ⎝⎛-==⎰⎰∞ρ, 则方均根速率m kTv v s 22==.5.3 根据麦克斯韦速度分布求出速率和平均动能的涨落. 解: 据(5.2.5),麦克斯韦速度分布律为zy x z y x v v v v v v kT m kT m n d d d )(2exp 22222/3⎥⎦⎤⎢⎣⎡++-⎪⎭⎫ ⎝⎛π,进行坐标变换zy x v v v d d d →ϕθθd d sin d 2v v ,并对角度积分⎰⎰=πππϕθθ204d d sin ,可得麦克斯韦速率分布vv v kT m kT m n d 2exp 24222/3⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛ππ.一个分子处于单位速率间隔内的几率密度为222/32exp 24)(v v kT m kT m v ⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛=ππρ.根据涨落的定义,速率的绝对涨落为:222)(v v v v -=-,因为⎰⎰∞⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛==0422/322d 2exp 24d )(vv v kT m kT m v v v v ππρ,对上述积分,可设kT m2=λ,则有[]⎰∞-⎪⎭⎫⎝⎛=0422/32d exp 4vv v v λπλπ[]⎰∞-∂∂⎪⎭⎫ ⎝⎛=02222/3d exp 4v v λλπλπλπλπλπ222/32∂∂⎪⎭⎫ ⎝⎛=2/52/3432-⎪⎭⎫ ⎝⎛=λππλπ=m kT 3又有[]⎰∞-⎪⎭⎫ ⎝⎛=0322/3d exp 4vv v v λπλπ[]⎰∞-⎪⎭⎫ ⎝⎛=02222/3d exp 2vv v λπλπ,令x v =2,则[]⎰∞-⎪⎭⎫ ⎝⎛=02/3d exp 2x x x v λπλπ=xex⎰∞-⎪⎭⎫⎝⎛02/1d 2λπλm kTπ8=,所以)83()(2π-=-m kT v v .欲计算平均能量的涨落,需仿上面先计算[]⎰∞-⎪⎭⎫⎝⎛=0622/34d exp 4vv v v λπλπλπλπλπ332/32∂∂⎪⎭⎫ ⎝⎛-=22215m T k =. 平均能量涨落())32215(2)(2222242πεε-=⎥⎦⎤⎢⎣⎡-=-m T k v v m . 5.4 气柱的高度为H ,截面为S ,处在重力场中.试求此气柱的平均势能和热容量.解: 视气柱为理想气体,根据经典麦-玻分布,可得一个分子处于μ空间体积元zy x p p p z y x d d d d d d 的几率为,理想气体分子在重力场中的能量.分子的平均势能为 .上述计算过程的第一步到第二步体现了分子动能和势能的统计独立性.若气体的数密度为n ,则气柱的平均势能为 . 不考虑动能的热容量 .5.6 试求双原子分子理想气体的振动熵.解: 此题类似于 3.3题,这里先计算分子的配分函数. 经典双原子分子的振动能量为一维线性谐振子,则分子振动配分函数为, 振动熵⎪⎭⎫ ⎝⎛+=12ln ωπh kT Nk . 这里,由于是振动配分函数,不必考虑分子置换带来的影响N !.7.1 根据玻色系统的微观状态数∏--+=ll l l l B a a W !)!1()!1(ωω,在11>>+≈-+l l l l a a ωω,11>>≈-l l ωω和1>>l a 的条件下,仿§3.3.2的最可几法导出玻色分布.解:对玻色系统,若粒子总数和总能量为常数,则有约束条件∑=l la N ,∑=lll a E ε.由拉格朗日未定乘子法,可对微观状态数的对数求有约束条件的变分极值,从而得到最可几分布,即0)(ln =--E N W B βαδ.其中,α和β为未定乘子,分别由两个约束条件为常数来确定.应用斯特林公式,有⎪⎪⎭⎫⎝⎛+≈∏l l l l l B a a W !!)!(ln ln ωωδδ ()∑+-+-+-++=ll l l l l l l l l l l l a a a a a a ln ln )()ln()(ωωωωωωδ()lll l l a a a δω∑-+=ln )ln(,则∑=⎪⎪⎭⎫⎝⎛--+=--ll l l lB a a E N W 0)1ln()(ln δβεαωβαδ,由于所有的l a 独立,所以)1ln(=--+βεαωlla ,整理可得 1-=+l e a ll βεαω,即欲求的玻色分布.7.3 证明,对于玻色系统,熵可表为[]∑++--=ss s s s f f f f k S )1ln()1(ln .其中s f 为量子态s 上的平均粒子数, ∑s 表示对所有粒子的所有量子态求和.证明:由(7.1.11)式,得巨配分函数的对数为∑----=Ξss e )1ln(ln βεα.根据熵的表达⎥⎦⎤⎢⎣⎡Ξ∂∂-Ξ∂∂-Ξ=ln ln ln ββααk S ()E N k βα++Ξ=ln∑⎥⎦⎤⎢⎣⎡---+--=++--s s ss s e e e k 11)1ln(βεαβεαβεαβεα. (7.1)又因11-=+s e f s βεα,(7.2)可有s sf f e s +=+1βεα,)1ln(ln s s s f f ++-=+βεα,(7.3)sf e s +=---111βεα,(7.4)将(7.2),(7.3)和(7.4)代入(7.1),并整理可得[]∑++--=ss s s s f f f f k S )1ln()1(ln .7.5 试求绝对零度下电子气体中电子的平均速率.解: 在体积V 中,速率v v v d +→范围内,考虑自旋时电子的态密度为2338)(v m h V v g π=,绝对零度时,费米函数为 ⎩⎨⎧><=F F,0,1v v v v f ,电子的平均速率m v vv v vv v v f v g v f v vg v F F F/24343d d d )(d )(00203μ====⎰⎰⎰⎰,其中0,μF v 分别为费米速度和费米能量.7.6 在极端相对论情形下电子能量与动量的关系为cp =ε,其中c 为光速.试求自由电子气体在0K 时的费米能量,内能和简并压.解: 在体积V 中,ε 到ε + d ε 的能量范围内电子的量子态数为εεππεεd 8d 8d )(23323c h V p p h V g ==.绝对零度时,费米函数为 ⎩⎨⎧><=00 ,0 ,1μεμε f .总电子数满足⎰⎰===0033323338d 8d )(μμπεεπεεc h V ch Vfg N ,可求出费米能量hcV N 3/1083⎪⎭⎫⎝⎛=πμ.电子气的内能⎰⎰====00040333334348d 8d )(μμμπεεπεεεN c h V ch Vfg E .气体的简并压043μV NV E p d ==.关于简并压的公式,可参见习题3.5.7.9 根据热力学公式⎰=TT C S Vd 及V V T E C ⎪⎭⎫ ⎝⎛∂∂=,求光子气体的熵. 解: 由(7.4.6),可得光子气的内能V T h c k E 43345158π=. 所以 V V T E C ⎪⎭⎫ ⎝⎛∂∂==V T h c k 333451532π,⎰⎰===T V V T h c k T V T h c k T T C S 033345233454532d 1532d ππ.7.11 铁磁体中的自旋波也是一种准粒子,遵从玻色分布,色散关系是2Ak =ω.试证明在低温下,这种准粒子的激发所导致的热容与2/3T成正比.证明: 在体积V 中,ω到ω+ d ω的频率范围内准粒子的量子态数为ωωπωωd d 4d )(2/123B p p h V g ==,推导上式时,用到关系k p =.这里B 为常数.由于准粒子数不守恒,玻色分布中的0=α.系统的内能为⎰⎰-=-=mm e B g e E ωωωβωβωωωωω002/3d 1d )(1 ,考虑到态密度在高频时发散,需引入截止频率m ω.但在低温下1>>ωβ ,在积分中可令∞→m ω.设x =ωβ ,则有2/502/32/5d 1T x e x CT E x ∝-=⎰∞,其中,C 为常数.易得 2/3TT E C VV ∝⎪⎭⎫ ⎝⎛∂∂=.。

热力学统计物理-基础题库

热力学统计物理-基础题库

Q 一、选择题:(每题 3 分)下列选项正确的是().(热力学系统的平衡状态及其描述)(容易)A . 与外界物体有能量交换但没有物质交换的系统称为绝热系统。

B . 与外界物体既有能量交换又有物质交换的系统称为封闭系统。

C . 与外界物体既没有能量交换又没有物质交换的系统称为孤立系统。

D . 热力学研究的对象是单个的微观粒子。

答案:B.简单系统的物态方程的一般形式为().(物态方程)(容易)A. f ( p ,V ) = 0 ;B. f ( p ,V ,T ) = C ;C. f ( p ,V ,T ) = 0 ;D. f ( p ,V ) = C ;答案:C.下列关于状态函数的定义正确的是().(焓自由能吉布斯函数)(容易)A . 系统的焓是: H = U - pV ;B . 系统的自由能函数是: F = U + TS ;C . 系统的吉布斯函数是: G = U - TS + pV ;D . 系统的熵函数是: S = ;T答案:C.状态函数焓的全微分表达式为dH 为 ( ).(内能焓自由能和吉布斯函数的全微分)(中等)A. TdS - pdV ;B. TdS + Vdp ;C. -SdT - pdV ;D. -SdT + Vdp答案:B.内能函数的全微分表达式为dU 为 ( ). (内能焓自由能和吉布斯函数的全微分)(中等)A. TdS -pdV ;B. TdS +Vdp ;C. -SdT -pdV ;D. -SdT +Vdp答案:A.自由能函数的全微分表达式为dF 为 ( ). (内能焓自由能和吉布斯函数的全微分)(中等)A. TdS -pdV ;B. TdS +Vdp ;C. -SdT -pdV ;D. -SdT +Vdp答案:C.吉布斯函数的全微分表达式为dG 为 ( ). (内能焓自由能和吉布斯函数的全微分)(中等)A. TdS -pdV ;B. TdS +Vdp ;C. -SdT -pdV ;D. -SdT +Vdp答案:D.下列关于状态函数全微分正确的是().(内能焓自由能和吉布斯函数的全微分)(中等)A.内能: dU =TdS -pdV ;B.焓: dH =TdS -Vdp ;C.自由能: dF =-SdT +pdV ;D.吉布斯函数: dG =-SdT -Vdp ;答案:A.下面几个表达式中错误的是( ).(热量和焓)(容易).∂∂p ∂TCp =T∂TA.CVB.CV =∂U; V=∂S; V∂HC. C = ;p∂SD. ;p答案:B.下面关于热力学第零定律的表述错误的是()。

统计热力学习题1

统计热力学习题1

统计热力学习题一 . 选择题1. 玻尔兹曼熵定理一般不适用于: ( )(A) 独立子体系 (B) 理想气体 (C) 量子气体 (D) 单个粒子2.下列各体系中属于独立粒子体系的是: ( )(A) 绝对零度的晶体 (B) 理想液体混合物(C) 纯气体 (D) 理想气体的混合物3. 玻尔兹曼分布 _______ 。

(A) 是最概然分布,但不是平衡分布。

(B) 是平衡分布,但不是最概然分布。

(C) 即是最概然分布,又是平衡分布。

(D) 不是最概然分布,也不是平衡分布。

4. 在 N 个 NO 分子组成的晶体中,每个分子都有两种可能的排列方式,即 NO 和 ON,也可将晶体视为 NO 和 ON 的混合物,在 0K 时该体系的熵值(A) S O = 0 (B) S O = kln2 (C) S O = Nkln2 (D) S O = 2klnN5. 在分子运动的各配分函数中与压力有关的是: ( )(A)电子运动的配分函数 (B)平均配分函数 (C)转动配分函数 (D)振动配分函数6. 已知 CO 的转动惯量 I = 1.45×10-26 kg.m2,则 CO 的转动特征温度为:(A) 0.36 K (B) 2.78 K (C) 2.78×107 K (D) 5.56 K7. 关于配分函数,下面哪一点是不正确的 ( )(A) 粒子的配分函数是一个粒子所有可能状态的玻尔兹曼因子之和;(B) 并不是所有配分函数都无量纲;(C) 粒子的配分函数只有在独立粒子体系中才有意义;(D) 只有平动配分函数才与体系的压力有关。

8. 热力学函数与分子配分函数的关系式对于定域粒子体系和离域粒子体系都相同的是 ( ) (A) G,F,S (B) U,H,S (C) U,H,C V (D) H,G,C V9. 粒子的配分函数 q 是 ( )(A) 一个粒子的 (B) 对一个粒子的玻尔兹曼因子取和;(C) 粒子的简并度和玻尔兹曼因子的乘积取和;(D) 对一个粒子的所有可能状态的玻尔兹曼因子取和。

统计热力学练习题一

统计热力学练习题一

物理化学试卷班级姓名分数一、选择题( 共10题20分)1. 2 分(1546) NH3分子的平动、转动、振动、自由度分别为:( )(A) 3, 2, 7(B) 3, 2, 6(C) 3, 3, 7(D) 3, 3, 62. 2 分(1369) 近独立定域粒子体系和经典极限下的非定域粒子体系的( )(A) 最概然分布公式不同(B) 最概然分布公式相同(C) 某一能量分布类型的微观状态数相同(D) 以粒子配分函数表示的热力学函数的统计表达示相同3. 2 分(1551) 一个体积为V、粒子质量为m的离域子体系,其最低平动能级和其相邻能级的间隔是:( )(A) h2/(8mV2/3)(B) 3h2/(8mV2/3)(C) 4h2/(8mV2/3)(D) 9h2/(8mV2/3)4. 2 分(1476) 已知I2(g)的基本振动频率ν=21 420 m-1, k B=1.38×10-23 J⋅K-1, h=6.627×10-34 J⋅s, c=3×108 m⋅s-1, 则I2(g) 的振动特征温度Θv为:( )(A) 2.13×10-14 K(B) 1.03×10-8 K(C) 308.5 K(D) 3.23×10-3 K5. 2 分(1513) 气体CO和N2有相近的转动惯量和相对分子摩尔质量,在相同温度和压力时,两者平动和转动熵的大小为:( )(A) S t,m(CO)=S t,m(N2), S r,m(CO)>S r,m(N2)(B) S t,m(CO)>S t,m(N2), S r,m(CO)>S r,m(N2)(C) S t,m(CO)=S t,m(N2), S r,m(CO)<S r,m(N2)(D) S t,m(CO)=S t,m(N2), S r,m(CO)=S r,m(N2)6. 2 分(1433)假定某原子的电子态有两个主要能级,即基态和第一激发态,能级差为1.38 10-21 J,其余能级可以忽略,基态是二重简并的。

热力学基础试题及答案

热力学基础试题及答案

热力学基础试题及答案一、选择题(每题2分,共20分)1. 热力学第一定律指出能量守恒,下列哪项描述是正确的?A. 能量可以被创造或消灭B. 能量可以从一个物体转移到另一个物体C. 能量可以在封闭系统中增加或减少D. 能量总是从高温物体流向低温物体答案:B2. 熵是热力学中描述系统无序度的物理量,下列哪项描述是正确的?A. 熵是一个状态函数B. 熵是一个过程函数C. 熵只与系统的温度有关D. 熵只与系统的压力有关答案:A3. 理想气体状态方程为PV=nRT,其中P代表压力,V代表体积,n代表摩尔数,R代表气体常数,T代表温度。

下列哪项描述是错误的?A. 理想气体状态方程适用于所有气体B. 在恒定温度下,气体的体积与压力成反比C. 在恒定压力下,气体的体积与温度成正比D. 在恒定体积下,气体的压力与温度成正比答案:A4. 热力学第二定律指出热量不能自发地从低温物体传递到高温物体,下列哪项描述是正确的?A. 热量总是从高温物体流向低温物体B. 热量可以在没有外界影响的情况下从低温物体流向高温物体C. 热量可以在外界做功的情况下从低温物体流向高温物体D. 热量可以在没有外界做功的情况下从低温物体流向高温物体答案:C5. 卡诺循环是理想化的热机循环,其效率只与热源和冷源的温度有关。

下列哪项描述是错误的?A. 卡诺循环的效率与工作介质无关B. 卡诺循环的效率与热源和冷源的温度差有关C. 卡诺循环的效率与热源和冷源的温度成正比D. 卡诺循环的效率在所有循环中是最高的答案:C6. 根据热力学第三定律,下列哪项描述是正确的?A. 绝对零度是可以达到的B. 绝对零度是不可能达到的C. 绝对零度下所有物质的熵为零D. 绝对零度下所有物质的熵为负值答案:B7. 热力学中的吉布斯自由能(G)是用来描述在恒温恒压条件下系统自发进行变化的能力。

下列哪项描述是错误的?A. 吉布斯自由能的变化(ΔG)是负值时,反应自发进行B. 吉布斯自由能的变化(ΔG)是正值时,反应非自发进行C. 吉布斯自由能的变化(ΔG)是零时,系统处于平衡状态D. 吉布斯自由能的变化(ΔG)与系统的温度和压力无关答案:D8. 相变是指物质在不同相态之间的转变,下列哪项描述是错误的?A. 相变过程中物质的化学性质不变B. 相变过程中物质的物理性质会发生变化C. 相变过程中物质的熵值不变D. 相变过程中物质的体积可能会发生变化答案:C9. 热力学中的临界点是指物质的气液两相在该点的物理性质完全相同。

第七章 统计热力学基础答

第七章 统计热力学基础答

第七章 统计热力学基础答一、选择题二、判断题 三、计算题 1、解:(1)CO 分子有三个自由度,因此,2123338.314273.15 5.65710J22 6.02210R T Lε-⨯⨯===⨯⨯⨯(2)由三维势箱中粒子的能级公式()(){}22222232232222222321233426208888828.0104 5.6571018.314273.15101.325106.626110 6.022103.81110xy zx y z hnn n m am a m Vm nRT n n n hhh p εεεε-=++⎛⎫∴++=== ⎪⎝⎭⨯⨯⨯⨯⨯⎛⎫=⎪⨯⎝⎭⨯⨯⨯=⨯2、解:假设该分子可用刚性转子描述,其能级公式为()()J10077.31045.1810626.61220 ,81224623422---⨯=⨯⨯⨯⨯-=∆+=πεπεIhJ J J22210429.710233807.130010077.3--⨯=⨯⨯⨯=∆kT ε3、解:根据Boltzmann 分布(){}{}003329.01.011exp exp g g kT kT g g kT g g n n =⨯-=--=εε基态的统计权重10=g ,能级()14222=++z y x n n n 的统计权重6=g (量子数1,2,3),因此997.163329.00=⨯=n n4、解:谐振子的能级为非简并的,且为等间隔分布的()⎩⎨⎧⨯=∆-=-+271I for 0.3553HClfor 10409.5exp kT n n jj ε5、解:分子的平动配分函数表示为()()()3133342323233323323109632.21050400314.82106260755.640010380658.1100221367.610142π2π2π2⨯=⨯⨯⨯⨯⎥⎦⎤⎢⎣⎡⨯⨯⨯⨯⨯⨯⨯===---pnRT hmkT V hmkT q t6、解:分子的振动特征温度为K5.308,=∆===∆kk h Θh v εννε分子的振动配分函数为9307.01ee130025.30830025.30822=-=-=⨯-⨯-eeq TΘTΘv v v()()557.130025.308exp 9307.02exp 0=⨯==v r v q T Θq557.10==v v q f7、解:正则系综特征函数()T V N Q kT A ,,ln -=,对理想气体()()!ln ln ln !ln ln !ln,,ln N k q q q q NkT q NkT N kT q NkT N qkT T V N Q kT A n e v r t N+--=+-=-=-=只有平动配分函数与体积有关,且与体积的一次方程正比,因此: NkTpV V NkT V q NkT V A T t T =∴-=⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂ ln8、解:根据计算可知,x n 、yn 和z n 只有分别取2,4,5时上式成立。

热力学基础-练习题及参考答案

热力学基础-练习题及参考答案

热力学基础练习1一、选择题1. 在下列各种说法:(1) 准静态过程就是无摩擦力作用的过程;(2) 准静态过程一定是可逆过程;(3) 准静态过程是无限多个连续变化的平衡态的连接;(4) 准静态过程在p-V图上可用一连续曲线表示。

中,正确的是( )A. (1)、(2);B. (3)、(4);C. (2)、(3)、(4);D. (1)、(2)、(3)、(4)。

2. 气体在状态变化过程中,可以保持体积不变或保持压强不变,这两种过程( )A. 一定都是准静态过程;B. 不一定是准静态过程;C. 前者是准静态过程,后者不是准静态过程;D. 后者是准静态过程,前者不是准静态过程。

3. 质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,使其体积增加一倍.那么气体温度的改变(绝对值)在( )A. 绝热过程中最大,等压过程中最小;B. 绝热过程中最大,等温过程中最小;C. 等压过程中最大,绝热过程中最小;D. 等压过程中最大,等温过程中最小。

4. 如图所示,一定量的理想气体,沿着图中直线从状态a( 压强p1=4atm,体积V1=2L)变到状态b( 压强p2=2atm,体积V2=4L).则在此过程中( )A. 气体对外作正功,向外界放出热量;B. 气体对外作正功,从外界吸热;C. 气体对外作负功,向外界放出热量;D. 气体对外作正功,内能减少。

二、填空题1. 不规则地搅拌盛于绝热容器中的液体,液体温度在升高,若将液体看作系统,则:(1) 外界传给系统的热量零;(2) 外界对系统作的功________零;(3) 系统的内能的增量_________零(填大于、等于、小于)。

2. 某理想气体等温压缩到给定体积时外界对气体作功|W1|,又经绝热膨胀返回原来体积时气体对外作功|W2|,则整个过程中气体(1) 从外界吸收的热量Q=________________;(2) 内能增加了∆E=______________________。

统计热力学基础经典习题

统计热力学基础经典习题

选择题1. 下面有关统计热力学的描述,正确的是:( )A. 统计热力学研究的是大量分子的微观平衡体系B. 统计热力学研究的是大量分子的宏观平衡体系C. 统计热力学是热力学的理论基础D. 统计热力学和热力学是相互独立互不相关的两门学科 B2.在研究N、V、U有确定值的粒子体系的统计分布时,令∑ni = N,∑niεi = U,这是因为所研究的体系是:( )A. 体系是封闭的,粒子是独立的 B 体系是孤立的,粒子是相依的C. 体系是孤立的,粒子是独立的D. 体系是封闭的,粒子是相依的 C3.假定某种分子的许可能级是 0、ε、2ε和 3ε,简并度分别为 1、1、2、3 四个这样的分子构成的定域体系,其总能量为3ε时,体系的微观状态数为:( )A. 40B. 24C. 20D. 28 A4. 使用麦克斯韦-波尔兹曼分布定律,要求粒子数N 很大,这是因为在推出该定律时:( ) . 假定粒子是可别的 B. 应用了斯特林近似公式C. 忽略了粒子之间的相互作用D. 应用拉氏待定乘因子法 A5.对于玻尔兹曼分布定律ni =(N/q)·gi·exp( -εi/kT)的说法:(1) n i是第i 能级上的粒子分布数; (2) 随着能级升高,εi 增大,ni 总是减少的; (3) 它只适用于可区分的独立粒子体系; (4) 它适用于任何的大量粒子体系其中正确的是:( )A. (1)(3)B. (3)(4)C. (1)(2)D. (2)(4) C6.对于分布在某一能级εi上的粒子数ni,下列说法中正确是:( )A. n i与能级的简并度无关B. εi 值越小,ni 值就越大C. n i称为一种分布D.任何分布的ni 都可以用波尔兹曼分布公式求出 B7. 15.在已知温度T时,某种粒子的能级εj = 2εi,简并度gi = 2gj,则εj 和εi 上分布的粒子数之比为:( )A. 0.5exp(εj/2kT)B. 2exp(- εj/2kT)C. 0.5exp( -εj/kT)D. 2exp( 2εj/kT) C8. I2的振动特征温度Θv= 307K,相邻两振动能级上粒子数之n(v + 1)/n(v) = 1/2的温度是:( )A. 306 KB. 443 KC. 760 KD. 556 K B9.下面哪组热力学性质的配分函数表达式与体系中粒子的可别与否无关:( )A. S、G、F、CvB. U、H、P、C vC. G、F、H、UD. S、U、H、G B10. 分子运动的振动特征温度Θv 是物质的重要性质之一,下列正确的说法是: ( )A.Θv 越高,表示温度越高B.Θv 越高,表示分子振动能越小C. Θv越高,表示分子处于激发态的百分数越小D. Θv越高,表示分子处于基态的百分数越小 C11.下列几种运动中哪些运动对热力学函数G与A贡献是不同的: ( )A. 转动运动B. 电子运动C. 振动运动D. 平动运动 D12.三维平动子的平动能为εt = 7h2 /(4mV2/3 ),能级的简并度为:( )A. 1B. 3C. 6D. 2 C13.O2 的转动惯量J = 19.3×10 -47 kg·m2 ,则O2 的转动特征温度是:( )A. 10 KB. 5 KC. 2.07 KD. 8 K C14. 对于单原子分子理想气体,当温度升高时,小于分子平均能量的能级上分布的粒子数:( )A. 不变B. 增多C. 减少D. 不能确定 C15.在相同条件下,对于 He 与 Ne 单原子分子,近似认为它们的电子配分函数相同且等于1,则He 与Ne 单原子分子的摩尔熵是:( )A. Sm(He) > Sm (Ne)B. Sm (He) = Sm (Ne)C. Sm (He) < S m(Ne)D. 以上答案均不成立 C二、填空题1.某双原子分子 AB 取振动基态能量为零,在 T 时的振动配分函数为 1.02,则粒子分布在 v = 0 的基态上的分布数 N 0/N 应为 1/1.022.已知CO的转动惯量 I=1.45×10-26 kg·m2,则CO 的转动特征温度为: 2.78K3. 双原子分子以平衡位置为能量零点,其振动的零点能等于 0.5hv4. 双原子分子在温度很低时且选取振动基态能量为零,则振动配分函数值为 15. 2molCO2 的转动能 Ur为 2RT6. NH3分子的平动自由度为转动自由度为振动自由度为 3 ,3 ,67. 300K 时,分布在J=1 转动能级上的分子数是J=0 能级上的3exp(-0.1)倍,则分子转动特征温度是15K8. H2O 分子气体在室温下振动运动时 C v,m 的贡献可以忽略不计。

热力学统计习题解答

热力学统计习题解答

第一章 热力学的基本规律习题1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。

解:由得:nRT PV = V n R TP P n R T V ==; 所以, T P nR V T V V P 11)(1==∂∂=α T PV RnT P P V /1)(1==∂∂=β P Pn R T V P V V T T /111)(12=--=∂∂-=κ习题1.2 试证明任何一种具有两个独立参量的物质p T ,,其物态方程可由实验测得的体胀系数α及等温压缩系数T κ,根据下述积分求得:⎰-=)(ln dp dT V T κα如果,试求物态方程。

解: 因为0),,(=p V T f ,所以,我们可写成),(p T V V =,由此, dp pVdT T V dV T p )()(∂∂+∂∂=,因为T T p pVV T V V )(1,)(1∂∂-=∂∂=κα 所以, dp dT VdVdp V dT V dV T T κακα-=-=,所以, ⎰-=dp dT V T καln ,当p T T /1,/1==κα.CT pV pdpT dT V =-=⎰:,ln 得到 习题1.8 满足C pV n =(常量)的过程称为多方过程,其中常数n 为多方指数。

试证明:理想气体在多方过程中的热容量n C 为: V n C n n C 1--=γ 解:多方过程的热容量nn T n T V p T U T Q C ⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∆∆=→∆0lim (1)对于理想气体,内能U 只是温度T 的函数,V nC T U =⎪⎭⎫ ⎝⎛∂∂ 所以,nV n T V p C C ⎪⎭⎫⎝⎛∂∂+= (2)将多方过程的方程式C pV n =与理想气体的物态方程联立,消去压强p 可得11C TV n =-(常量) (3)将上式微分,有0)1(11=-+--T d V V n dT V n n 所以T n V T V n)1(--=⎪⎭⎫ ⎝⎛∂∂ (4) 代入式(2),即得Tn pVC C V n )1(--=V C n n 1--=γ习题1.9试证明:理想气体在某一过程中的热容量n C 如果是常数,该过程一定是多方过程,多方指数Vn p n C C C C n --=。

热力学与统计物理练习题1答案

热力学与统计物理练习题1答案

热力学与统计物理 练习题1答案一、简答题1. 热力学第二定律的克氏表述;不能把热量从低温物体传到高温物体而不引起其它变化。

2. 能量均分定理。

对于处在温度为T 的平衡状态的经典系统,粒子能量中每一个平方项的 平均值等于kT 21。

3. 单元复相系的平衡条件;(5分) 设有两相 βα,则两相平衡条件为βαβαβαμμ===p p T T分别为热平衡条件、力学平衡条件和相变平衡条件。

4. 熵增原理。

(5分) 孤立系统的熵永不减少。

二、计算机题1、试证明,在某一过程中理想气体的热容量n C 如果为常数,这个过程一定是多方过程,多方过程指数Vn Pn C C C C n --=,假设气体的定压热容量和定容热容量是常数。

解:根据热力学第一定律pdV dT C dT C V n +=由RT pV =,有RdT Vdp pdV =+,将dT 代入上式,得01=-+⎪⎭⎫⎝⎛--Vdp R C C pdV R C C V n V n两边除以pV ,再经整理,得到0=+pdpV dV n,经积分即得C pV n =。

2、图1.16所示的循环称狄塞尔(Diesel )循环。

试证明,理想气体在狄塞尔循环中的效率为 ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=1213121311V V V V V V V V γγγη , 假设PC 和V C 是常数。

解:狄塞尔循环为等压加热循环,在等压过程32→中,吸收热量(),231T T C Q p -=,在等容过程14→中,放出热量()142T T C Q V -=,所以该循环的效率()()()231423142312111T T T T T T C T T C T T C Q Q Q p V p ---=----=-=γη (1) 因32→为等压过程,所以2323V V T T =(2) 因21→和43→为绝热过程,所以122111--=γγV T V T 和133114--=γγV T V T (其中41V V =)由上两式,得到,1122113314--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛=-γγVV T V V T T T (3)将(3)式代入(1)式,并考虑到(2)式,经化简之后,则得⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=1213121311V V V V V V V V γγγη。

第三章+统计热力学基础练习题

第三章+统计热力学基础练习题

第三章统计热力学基础练习题试卷(一)一、是非题(5×4=20分)1、自然界真实存在的只有Boltzmann气体。

2、因晶体中的粒子彼此结合在一起,所以只能作相依子系处理。

3、所有三维平动子的配分函数计算式都相同。

4、转子的转动配分函数与转子质量无关。

5、根据可见,内能的绝对值可由统计热力学的方法求得。

二、填空题(5×4=20)1、一个粒子数、体积和内能完全确定的系统发生热力学过程时△S_____0。

2、三维平动子在基态的平动量子数n x、n y、n z值之分别为________。

3、对完美晶体,其微观状态数=_______。

4、一双原子分子,振动频率为,普朗克常数为,波尔兹曼常数为1.38×10-23J.K-1。

则其振动特征温度是_______K。

5、一个三维谐振子,振动频率相同,它处于第二能级(基态为第一能级)的能量=_______。

三、单选题(5×4=20)1、同一分子中,下列能量关系中正确的是:(B)(A)(C)2、4个可别粒子,可分布在同一能级的两个不同量子态上,其分布方式数为(A)4 (B)5 (C)6 (D)73、核运动配分函数对其无贡献的热力学函数是:(A)U,H (B)G,A (C)G,S (D)S,H4、根据可得(B)(A)(D)(C)5、化学平衡系统中,通常选择的公共能量标度是(A)各分子处于基态的能量和为零。

(B)各分子完全离解为气态原子的能量和为零。

(C)各分子在基态的解离能为零。

(D)各分子完全离解为处于基态的气态原子的能量和为零。

四、双选题1、三个可别粒子分布于同一能级的两个不同量子态上时,下列说法中正确的是:A、分布方式有4种。

B、每种分布方式的微观状态数均不同。

C、总微观状态数为8。

D、分布方式有3种。

E、最概然分布的微观状态数为4。

2、对玻尔兹曼分布,下面的说法中正确的是A、玻尔兹曼分布对能级上分布的粒子数无限制。

B、能级上的分布数n j一定大于简并度g j。

03-统计热力学基础

03-统计热力学基础

三、统计热力学基础(313题)一、选择题 ( 共38题 )1. 1 分 (1301)玻耳兹曼熵定理一般不适用于: ( )(A) 独立子体系 (B) 理想气体 (C) 量子气体 (D) 单个粒子2. 1 分 (1302)非理想气体是: ( )(A) 独立的全同粒子体系 (B) 相依的粒子体系(C) 独立的可别粒子体系 (D) 定域的可别粒子体系3. 2 分 (1304)下列各体系中属于独立粒子体系的是: ( )(A) 绝对零度的晶体 (B) 理想液体混合物(C) 纯气体 (D) 理想气体的混合物4. 1 分 (1362)玻耳兹曼分布 _______ 。

(A) 是最概然分布,但不是平衡分布(B) 是平衡分布,但不是最概然分布(C) 即是最概然分布,又是平衡分布(D) 不是最概然分布,也不是平衡分布5. 1 分 (1363)对于近独立非定位体系,在经典极限下能级分布 D 所拥有的微观状态数t 为:( )(A) ∏=i i i n !!i N N N t g (B) ∏=i i i n !!iN g N t n (C) ∏=ii n !!iN N N t g (D) ∏=i i n !!i N g N t n 6. 1 分 (1364)对于服从玻耳兹曼分布定律的体系,其分布规律为: ( )(A) 能量最低的单个量子状态上的粒子数最多(B) 第一激发能级上的粒子数最多(C) 视体系的具体条件而定(D) 以上三答案都不对7. 2 分 (1369)近独立定域粒子体系和经典极限下的非定域粒子体系的 ( )(A) 最概然分布公式不同(B) 最概然分布公式相同(C) 某一能量分布类型的微观状态数相同(D) 以粒子配分函数表示的热力学函数的统计表达示相同8. 2 分 (1370)如果我们把同一种分子分布在二个不同能级ε与ε'上的n 与n ' 个分子看成是“不同种”的分子 A 与 A',则这“两种分子”将可按 A' A 进行转化而达到平衡。

第9章统计热力学练习题练习题及答案

第9章统计热力学练习题练习题及答案

第9章统计热力学练习题练习题及答案第九章统计热力学练习题一、是非题1、由理想气体组成的系统是独立子系统。

()2、由非理想气体组成的系统是非独立子系统。

()3、由气体组成的统计系统是离域子系统。

()4、由晶体组成的统计系统是定域子系统。

()5、假设晶体上被吸附的气体分子间无相互作用,则可把该气体系统视为定域的独立子系统。

()6、独立子系统必须遵守∑∑==ii i ii N N N εε的关系,式中ε为系统的总能量, εi 为粒子在i 能级上的能量,N 系统总粒子数,Ni 为分布在能级i 上的粒子数。

()7、平动配分函数与体积无关。

()8、振动配分函数与体积无关。

()9、设分子的平动、振动、转动、电子等配分函数分别以等表示,则分子配分函数q 的因子分解性质可表示为:e r v t q q q q q ln ln ln ln ln +++=。

()10、对离域子系统,热力学函数熵S 与分子配分函数q 的关系为ln NU q S Nk Nk T N=++。

()二、选择题1、按照统计热力学系统分类原则,下述系统中属于非定域独立子系统的是:()(1)由压力趋于零的氧气组成的系统。

(2)由高压下的氧气组成的系统。

(3)由氯化钠晶体组成的系统。

2. 对定域子系统,某种分布所拥有的微观状态数W D 为:()。

(1)D !i N i i i g W N =∏ (2) D !!i g i i i N W N N =∏(3)D !i g i i iN W N =∏ (4)D !!i n i i i g W N n =∏ 3、玻耳兹曼分布:()(1)就是最概然分布,也是平衡分布;(2)不是最概然分布,也不是平衡分布;(3)只是最概然分布,但不是平衡分布;(4)不是最概然分布,但是平衡分布。

4、玻耳兹曼熵定理ln S k =Ω:()(1)适用于相依子系统;(2)仅适用于理想气体;(3)适用于大量粒子组成的独立子系统;(4)适用于单个粒子。

(完整版)03-统计热力学基础答案

(完整版)03-统计热力学基础答案

第三章 统计热力学基础 答案一、选择题 ( 共38题 )1. 1 分 (1301) (D)2. 1 分 (1302) (B)3. 2 分 (1304) (D)4. 1 分 (1362) (C)5. 1 分 (1363) (B)6. 1 分 (1364) (A)7. 2 分 (1369) (B)8. 2 分 (1370)[答] 根据配分函数的含义,在达到平衡时,在ε与ε'上分布的分数分别为: n /N = exp(-ε/kT )/q 及 n '/N = exp[(-ε'/kT )/q ] (1分) 则 K n = n /n ' = exp[-(ε-ε')/kT ] (1分) 9. 2 分 (1371)[答] (A) 从 6 个可别粒子中拿出 3 个来编为一组,放在 N 0能级,再从 (6 - 3) 个可别粒子中拿出 2 个来编为一组,放在 N 1能级上, 最后从 (6 - 3 - 2)个可别粒子中拿出 1,放在 N 2能级上。

此种分布的微态数为: 112336C C C = {6!/[3!(6-3)!]}×{3!/[2!(3-2)!]}×{1!/[1!(1-1)!]}= 6!/(3!2!1!) 10. 5 分 (1402) (C) 11. 2 分 (1433) [答] B)/exp()/exp()/exp(0,e 1,e 00,e 11,e 01kT g g kT g kT g N N εεε∆-=--= (1分) =0.184 (1分) 12. 5 分 (1436) [答] (A)N 1/N 0=0.02/0.98=exp(-ε1/kT )/exp(-ε0/kT ) =exp[-(ε1-ε0)/kT ]=exp(-hc ~v 1/kT ) (3分) -hc ~v 1/kT =ln(0.02/0.98)=-3.892 T =2060 K (2分) 13. 1 分 (1461) (D) 14. 1 分 (1462) (A) 15. 2 分 (1465) (C) 16. 2 分 (1466) (B)17. 2 分 (1467) (D) F r = G r = -NkT ln q r U V = H V = NkT ×[x /(e x -1)] C V ,V = C p ,V = Nk ×[x 2e x /(e x -1)2] x = Θv /T C p ,t = (5/2)Nk C V ,t = (3/2)Nk 所以 C p,t ≠ C V ,t18. 1 分 (1470) (D) 19. 1 分 (1472) (B)20. 2 分 (1476) (C) Θv = hc v %/k = 308.5 K21. 2 分 (1479) (B) Θr = h 2/(8π2Ik ) = 2.78 K 22. 2 分 (1513) A因对CO, σ=1 对N 2, σ=223. 1 分 (1531) (D) 24. 1 分 (1533) (D) 25. 1 分 (1534) (B) 26. 1 分 (1535) (A) 27. 1 分 (1537) (A) 28. 1 分 (1538) (B) 29. 2 分 (1540) (D) 30. 2 分 (1541) (D) 31. 5 分 (1543)[答] (B) N 1/N 0= g r,1exp(-εr,1/kT )/[g r,0exp(-εr,0/kT )] = 2exp(-0.1) Θr =0.1T /2 = 0.1×300 K/2 = 15 K32. 2 分 (1546) (D) 33. 2 分 (1547)[答] (D) C p ,m /C V ,m = (C p ,t + C p ,r )/( C V ,t + C V ,r ) = [(5/2)Nk +(3/2)Nk ]/[(3/2)Nk +(3/2)Nk ] = 1.33 34. 2 分 (1548)[答] (A) S r,m = R [ln T /σΘ r +1] σ (CO) = 1;σ (N 2) = 2 则S m (CO) > S m (N 2) 35. 2 分 (1549)[答] (B) εt = (h 2/8mV 3/2) (n x 2+ n y 2+ n z 2) g t = 3!/2! = 3 (设 n x = 2 , n y = 1 , n z = 1)36. 2 分 (1551) (B) 37. 2 分 (1617) (D) 38. 2 分 (1680) A二、填空题 ( 共71 题 ) 1. 2 分 (1303)[答] 基本假定是:(1) 粒子之间彼此独立无关 (1分) (2) 等概率定理 (0.5分) (3) 玻耳兹曼熵定理 (0.5分) 2. 2 分 (1311) [答]!!)!(B A B A N N N N +3. 2 分 (1317) [答] 1202 K对第一振动激发态εkT h ν=+=)211(v (1分) ν=ΘT 23=1202 K (1分) 4. 2 分 (1318)[答] )/ln(1212ΩΩk S S S =-=∆ (1分) )1003.3ex p()/ex p(/2312⨯=∆=k S ΩΩ (1分) 5. 5 分 (1319)[答] kT I h J J =+=)π8/()1(22r ε (2分) 22/π8)1(h IkT J J =+=107.2 (2分) J =10 (1分) 6. 2 分 (1320)[答] T =0.70 K)π8/()1(22r I h J J +=ε (1分) 第一激发态εr =1kT T h =⨯+⨯)π8/()11(22)2/π8/(2222m kr h T ==0.70 K (1分) 7. 5 分 (1321) [答] T =0.691 K()2222r π8/)1()π8/()1(r h J J I h J J με+=+= (2分)()kg 10943.22/2/202-⨯===m m m μ (1分) 当J =0时,()22r 01π8/2r h kT μεεε==∆=- (1分)T =()K 691.0π8/2222=k r h μ (1分)8. 2 分 (1322) [答] 0,1==总总S Ω111=⨯=⨯=B A ΩΩΩ总 (1分) S 总=S A +S B =0+0=0 (1分) 9. 2 分 (1365)[答] N 0= (L /q )×g 0exp(-ε0/kT ) = L /q (1分) = (6.023×1023 mol -1)/1.6 = 3.76×1023 mol -1 (1分) 10. 2 分 (1366)[答] N i+1/N i = exp(-Δε/kT ) = 0.352 11. 2 分 (1368)[答] N i = (N /q )×g i exp(-εi /kT ) (1分) 近独立粒子体系,且为处于热力学平衡态的孤立体系 (1分) 12. 2 分 (1421)[答] )/ex p()/ex p(221121kT g kT g N N εε--= (1分) =0.595 (1分) 13. 2 分 (1422)[答] 510 1.310N N νν-===⨯10exp(/)N N hv kT νν===- (1分) =13105.⨯- (1分) 14. 5 分 (1423) [答] 1000 K220exp(2/)[exp(/)]N N hv kT hv kT νν===-=-=0.5414 (2分) exp(/)(.).-==hv kT 054140735812 (1分) T =-hv k /(ln .)07358=1000 K (2分) 15. 5 分 (1424)[答] exp(/)i q kT ε=-∑=1+exp(-ε/kT )+exp(-2ε/kT )+exp(-3ε/kT )+· · · =1+x +x 2+x 3+· · ·=1/(1-x )=1/[1-exp(-ε/kT )] (3分) N 0/N =1/q =1-exp(-ε/kT )=)]3001038.1/(102.3ex p[12320⨯⨯⨯----=0.9996 (2分)16. 5 分 (1425)[答] 分子按转动能级分布的有效状态数为]/)1(ex p[)12()/ex p(r T ΘJ J J kT g i i +-+=-ε =()exp[.()]2101011J J J +-+不能断言 (1分) 17. 10 分 (1431)[答] h νν)21(v +=ε, g v =1 (1分) )π8/()1(22r I h J J +=ε, g r =2J +1 (1分))/exp()/exp()/exp()/exp(r ,2v ,2v ,1v ,1r ,5r ,5v ,2v ,2)1,1()5,2(kT g kT g kT g kT g N N J v J v εεεε-⋅--⋅-===== (4分)=2222[exp( 2.5/)](251)exp[5(51)/(8π)][exp( 1.5/)](221)exp[2(21)/(8π)]hv kT h IkT hv kT h IkT -⨯+-+-⨯+-+=)/6ex p(5)/v 5.1ex p()/30ex p(11)/v 5.2ex p(r r T ΘT ΘT ΘT Θ-⋅⋅--⋅⋅- (2分)=0.0407 (2分) 18. 10 分 (1432)[答] vhc ~=ε )/ex p()/ex p()/ex p(221100e kT g kT g kT g q εεε-+-+-==5.118782.0/e 00==q g NN (4分)218.0/)]/exp([e 111=-=q kT g NN ε (3分)0/)]/exp([e 222=-=q kT g NN ε (3分) 19. 2 分 (1434)[答] N 1/N 0=g 1exp(-ε1/kT )/g 0 (2分) 20. 2 分 (1435)[答] N 0/N =1/1.02=0.98 (2分) 21. 5 分 (1437) [答] T =2493 KN 1/N 0=exp(-h v /kT )=0.26 (3分) T =K 2493])26.0/[(ln =⨯k hv (2分) 22. 5 分 (1438)[答] q e =g e,0exp(-εe,0/kT )+g e,1exp(-εe,1/kT )+g e,2exp(-εe,2/kT ) =4exp(0)+2exp(-0.5813)+6exp(-147.4)=5.118 (3分) N 1/N =g e,1exp(-εe,1/kT )/q e =0.218 (2分) 23. 2 分 (1439)[答])~ex p()ex p(1212kTvhc kT g g N N -=-=ε (1分) =exp[-143.98/(T /K)]=exp(-143.98/100)=0.2370 (1分) 24. 10 分 (1440)[答] N 1/N 0=[g 1exp(-ε1/kT )]/[g 0exp(-ε0/kT )]=2exp(-kT /kT )/1=2/e=73.6% (5分) N 1+N 0=L , N 1/N 0=0.736,N 1=(0.736/1.736)L (2分) U =N 0ε0+N 1ε1=N 1kT=(0.736/1.736)LkT =0.424RT (3分) 25. 2 分 (1443) [答]26. 2 分 (1448)[答] N 1/N 0=3exp(-ε1/kT )/exp(-ε0/kT ) =3exp(-2Bh /kT )=3exp[-5.723/(T /K)] (1分) T →∞时, N 1/N 0=3 (1分) 27. 1 分 (1464) [答] q =gii∑exp(-εi /kT )(1分)处于热力学平衡态近独立粒子体系中的单个分子 (1分) 28. 2 分 (1468)[答] F = -kT ln q N (0.5分) F = -kT ln q N /N ! (0.5分) F = -kT ln Z (1分) 29. 2 分 (1473)[答] f t -T 1/2 (0.5分) f r -T 1/2 (0.5分)f v -T (1分) 30. 2 分 (1489)[答] 乘积; q t .q v .q r .q e .q n 31. 2 分 (1501)[答] 0.368; 1.104 N 2*/N 1*= exp[-(U 2-U 1)/ kT ] = e -1= 0.368 N 2*/N 1*= (g 2/ g 1) exp[-(U 2-U 1)/kT ] = 1.104 32. 2 分 (1511) [答] ∑-+=-=ii ikT g g kT gq )/ex p()/ex p(21εε (2分)33. 2 分 (1512)[答] A h mkT q ⨯=)/π2(2d 2,t (2分) 34. 2 分 (1514)[答] )/ex p()/ex p()/ex p(332211kT g kT g kT g q εεε-+-+-= (1分) =1+3exp(-100/200)+5exp(-300/200)=3.9353 (1分) 35. 2 分 (1515)[答] 1618216r 218r )O ()O (m m q q = (2分) 36. 2 分 (1516)[答] 556.1)]/ex p(1[1v v =--=-T Θq (1分)f v =q v =1.556 (1分) 37. 2 分 (1517)[答] )]/ex p(1/[1v kT h q ν--= (1分) T →0时, q v =1 (1分) 38. 5 分 (1518)[答] 在二维相空间中,水有6个运动自由度。

第七章、统计热力学基础习题和答案

第七章、统计热力学基础习题和答案

转动特征温度是
15K
8. H2O 分子气体在室温下振动运动时 C v,m 的贡献可以忽略不计。则它的 C p,m /C v,m
值为 (H2 O 可当作理想气体)
1.33
9.三维平动子的平动能 Et=6h2 /8mV 能级的简并度为
3
10.晶体 CH3 D 中的残余熵 S0,m 为
Rln4
三、判断题 1.玻耳兹曼熵定理一般不适用于单个粒子。 2.玻耳兹曼分布是最概然分布, 但不是平衡分布。 3.并不是所有配分函数都无量纲。 4.在分子运动的各配分函数中平均配分函数与压力有关。 5.粒子的配分函数 q 是粒子的简并度和玻耳兹曼因子的乘积取和。 6.对热力学性质 (U、V 、N) 确定的体系,体系中粒子在各能级上的分布数一定。 7.理 想 气 体 的 混 合 物 属 于 独 立 粒 子 体 系 。 8.量子统计认为全同粒子在不同的量子态中不可别。 9.任何两个粒子数相同的独立粒子体系, 不定因子 a的值趋于一致。 10.量热熵由量热实验结果据热力学公式算得。
D. Θv 越高,表示分子处于基态的百分数越小
C
11.下列几种运动中哪些运动对热力学函数 G 与 A 贡献是不同的: ( )
A. 转动运动
B. 电子运动
C. 振动运动
D. 平动运动
D
12.三维平动子的平动能为 εt = 7h2 /(4mV 2/3 ),能级的简并度为: ( )
A. 1
B. 3
C. 6
8ma 2 h2
8mV 2 3 h2
8m h2
23
nRT
p
8 28.0104 5.657 10 21
23
1 8.314 273.15
34 2

热力学与统计物理试题及答案

热力学与统计物理试题及答案

一.选择(25分)1.下列不是热学状态参量的是( )A.力学参量B.几何参量C.电流参量 D 。

化学参量2。

下列关于状态函数的定义正确的是( )A.系统的吉布斯函数是:G=U —TS+PVB 。

系统的自由能是:F=U+TSC 。

系统的焓是:H=U —PVD.系统的熵函数是:S=U/T3.彼此处于热平衡的两个物体必存在一个共同的物理量,这个物理量就是( )A.态函数B.内能 C 。

温度 D 。

熵4。

热力学第一定律的数学表达式可写为( )A 。

W Q U U AB +=- B.W Q U U B A +=-C 。

W Q U U A B -=-D 。

W Q U U B A -=-5.熵增加原理只适用于( )A 。

闭合系统 B.孤立系统 C 。

均匀系统 D.开放系统二.填空(25分)1.孤立系统的熵增加原理可用公式表示为( ).2.热力学基本微分方程du=( )。

3.热力学第二定律告诉我们,自然界中与热现象有关的实际过程都是()。

4.在S。

V不变的情况下,平衡态的()最小。

5。

在T。

VB不变的情形下,可以利用( )作为平衡判据。

三.简答(20分)1.什么是平衡态?平衡态具有哪些特点?2.什么是开系,闭系,孤立系?四.证明(10分)证明范氏气体的定容热容量只是温度的函数,与比容无关五.计算(20分)试求理想气体的体胀系数α,压强系数β,等温压缩系数T K参考答案一。

选择 1~5AACAB二。

填空1。

ds≧02。

Tds—pdv3。

不可逆的4。

内能5。

自由能判据三.简答1.一个孤立系统,不论其初态如何复杂,经过足够长的时间后,将会达到这样状态,系统的各种宏观性质在长时间内不发生变化,这样的状态称为热力学平衡态.特点:不限于孤立系统弛豫时间涨落热动平衡2.开系:与外界既有物质交换,又有能量交换的系统闭系:与外界没有物质交换,但有能量交换的系统,孤立系:与其他物体既没有物质交换也没有能量交换的系统四.证明解证:范氏气体()RT b v v a p =-⎪⎭⎫ ⎝⎛+2 T v U ⎪⎭⎫ ⎝⎛∂∂=T V T p ⎪⎭⎫ ⎝⎛∂∂—p =T 2va pb v R =-- T v U ⎪⎭⎫ ⎝⎛∂∂=2va ⇒)(),(0T f v a U v T U +-= =V C V T U ⎪⎭⎫ ⎝⎛∂∂=)(T f ' ;与v 无关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理化学试卷 答案
一、选择题 ( 共10题 20分 )
1. 2 分 (1546) [答] (D)
2. 2 分 (1369) [答] (B)
3. 2 分 (1551) [答] (B)
4. 2 分 (1476) [答] (C)
Θv = hc v
/k = 308.5 K 5. 2 分 (1513) [答] A (2分)
因对CO, σ=1 对N 2, σ=2 6. 2 分 (1433) [答] B
)/e x p ()/e x p ()/e x p (
,e 1,e 00,e 11,e 01kT g g kT g kT g N N εεε∆-=--= (1分) =0.184 (1分) 7. 2 分 (1680) [答] A (2分)
8. 2 分 (1548) [答] (A) S r,m = R [ln T /σΘ r +1]
σ (CO) = 1;σ (N 2) = 2 则S m (CO) > S m (N 2)
9. 2 分 (1304) [答] (D) *. 2 分 (1540) [答] (D)
二、填空题 ( 共10题 20分 ) 11. 2 分 (1368)
[答] N i = (N /q )×g i exp(-εi /kT ) (1分) 近独立粒子体系,且为处于热力学平衡态的孤立体系 (1分) 12. 2 分 (0093)
[答] ΔH +g ΔZ +1
2ΔU 2=Q -W 轴 (1分)
稳流过程中的敞开体系 (1分) 13. 2 分 (1676)
[答] N 1/N 0=g r,1exp(-εr,1/kT )/g r,0exp(-εr,0/kT )=3exp(-0.1) (1分) K 152/K 3001.02/1.0r =⨯==T Θ (1分) 14. 2 分 (1681)
[答] m,v v v v (298.15K)ln[1exp(/)][/]/[exp(/)1]S R ΘT RΘT ΘT =---+-$
(1分) =11
mol K J 0014.0--⋅⋅ (1分)
15. 2 分 (1512)
[答] A h mkT q ⨯=)/π2(2d 2,t (2分) 16. 2 分 (1439)
[答] )~exp()exp(1212kT
v
hc kT g g N N -=-=ε (1分)
=exp[-143.98/(T /K)]
=exp(-143.98/100)=0.2370 (1分)
17. 2 分 (1468)
[答] F = -kT ln q N (0.5分) F = -kT ln q N /N ! (0.5分) F = -kT ln Z (1分) 18. 2 分 (1675)
[答] k
v
hc Θ~v ==308.5 K (2分)
19. 2 分 (1366)
[答] N i+1/N i = exp(-Δε/kT ) = 0.352
20. 2 分 (1421)
[答] )/exp()/exp(221121kT g kT g N N εε--= (1分) =0.595 (1分) 三、计算题 ( 共 5题 40分 ) 21. 10 分 (1390)
[答] (a) q e = g 1exp(-ε1/kT ) + g 2exp(-ε2/kT ) + g 3exp(-ε3/kT )
= 1 + 3exp(-100/200) + 5exp(-300/200) = 3.9353 (4分) (b) N 2= (N A /q e )g 2exp(-ε2/kT ) = 2.784×1023 mol -1 (3分) (c) N 1: N 2: N 3= g 1: g 2: g 3= 1 : 3 : 5 ( T → ∞) (3分)
22. 10 分 (1387)
[答] 因为 ν
= 1/λ = ν/c = h ν/hc =ε/hc 所以 q e = g 0exp(-ε0/kT ) + g 1exp(-ε1/kT ) + g 2exp(-ε2/kT )
= 5.118 (4分) 电子在基态上分布分数为: N 0/N = g 0/q e = 0.782 (2分) 电子分配在第一激发态上分布分数为:N 1/N = [g 1exp(-ε1/kT )]/q e
= 0.218 (2分) 电子分配在第二激发态的分布分数为:N 2/N = [g 2exp(-ε2/kT )]/q e
≈ 0 (2分)
23. 10 分 (1397)
[答] 在转动能级上 Boltzmann 分布为:
P = N i /N = [g i exp(-εi ,r /kT )]/q r
= [(2J +1)exp{-J (J +1)h 2/(8π2IkT )}/q γ
(3分) 能级分布数最多的 J 值应为: d P /d J = 0 而q r 为常数不是 J 的函数 (2分) d P /d J = (1/q r )[2exp(-J (J +1)Θr /T ) - (2J +1)2×(Θr /T )×exp(-J (J +1) Θr /T )] = 0 2 - (2J +1)2Θr /T = 0 J = (T /2Θr )1/2 - 1/2 (2分) 当 T = 270 K , Θr = 2.8 K 时, J = 6.4 ≈ 6 (3分)
24. 5 分 (1406)
[答] ε0=0 ε1=ε ε2=2 ε3=3
分布 g 0=1 g 1= 3 g 2= 4 g 3= 6 (1分) (1) 2 0 0 1 因只有一个量子态,
故该分布不可能。

(1分) (2) 1 1 1 0 Ω2=[1!/(0!1!)][3!/(1!2!)]×
[4!/(1!3!)]=12 (1分) (3) 0 3 0 0 Ω=3!/(3!0!)=1 (1分) 不能用的原因是g 不大。

(1分)
25. 5 分 (1621)
[答] U r =nRT =(2 mol)×(8.314 J·K -1·mol -1)×(298 K) =4960 J (2分) S r =nR (ln q r +1) =(2 mol)×(8.314 J·K -1·mol -1)×(ln121.2+1) =96.4 J·K -1 (3分)
四、问答题 ( 共 3题 20分 ) 26. 10 分 (1566)
[答] (1) S t,m = (5/2)R + R ln{[(2πMkT )3/2/(L 3/2 h 3)]×V /L }
故 M 愈大,S t,m 愈大,HBr 气体平动熵最大 (2分) S r,m = R + R ln(T /σΘr )
Θr 愈大,S m,r 愈小,故 Cl 2气体摩尔转动熵最大 (2分) Θr = h ν/k 故 Cl 2分子基本振动频率最小 (1分)
(2) S m $= S t,m $+ S r,m $+ S v ,m $+ S e,m $
= [12.47 J·K -1·mol -1 ln(M /g·mol -1)+108.784 J·K -1·mol -1]
+ R + R ln(T /σΘr ) + R (Θv /T )/[exp(Θv /T )-1]
- R ln(1-exp(-Θv /T )) + R ln g e,0 (2分) CO 和 N 2的Θr 相同,Θv 相同(振动不激发),M 相近,g e,0 均为 1,两者仅σ不同,σ (CO) = 1 σ (N 2) = 2 ∆S = S m $
(CO)- S m $
(N 2) = R ln2 = 5.76 J·K -1·mol -1 (2分) 该值与 (197.5-191.5) J·K -1·mol -1= 6.0 J·K -1·mol -1 相近,因此 CO 气体与 N 2 气体摩尔熵差主要来源于两种分子的对称数不同。

(1分)
27. 5 分(1444)
[答] (1) Ω*=(N!/∏N i!)
i
i
i
n
g =
∏4![22×22/(2!2!)]=96 (1分)
(2) Ω*=∏{(N i+g i-1)!/[N i!(g i-1)!]}
={(2+2-1)!/[2!(2-1)!]}×{(2+2-1)!/[2!(2-1)!]}=9 (1分)
(3) Ω*=∏{g i!/[N i!(g i-N i)!]}
=
!0!2!2
!0!2!2
⨯=1
28. 5 分(1622)
1622
[答] p=Nk B T(∂ln q/∂V)T(3分) =[Nk B T/f(T)V]f(T)=Nk B T/V(2分)。

相关文档
最新文档