模糊控制理论 Fuzzy Control
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模糊控制理论Fuzzy Control
模糊控制
在传统的控制领域里,控制系统动态模式的精确与否是影响控制优劣的最主要关键,系统动态的信息越详细,则越能达到精确控制的目的。然而,对于复杂的系统,由于变量太多,往往难以正确的描述系统的动态,于是工程师便利用各种方法来简化系统动态,以达成控制的目的,但却不尽理想。换言之,传统的控制理论对于明确系统有强而有力的控制能力,但对于过于复杂或难以精确描述的系统,则显得无能为力了。因此便尝试着以模糊数学来处理这些控制问题。
自从Zadeh发展出模糊数学之后,对于不明确系统的控制有极大的贡献,自七○年代以后,便有一些实用的模糊控制器相继的完成,使得我们在控制领域中又向前迈进了一大步,在此将对模糊控制理论做一番浅介。
[编辑本段]
概述
3.1概念
图3.1为一般控制系统的架构,此架构包含了五个主要部分,即:定义变量、模糊化、知识库、逻辑判断及反模糊化,底下将就每一部分做简单的说明:
(1) 定义变量:也就是决定程序被观察的状况及考虑控制的动作,例如在一般控制问题上,输入变量有输出误差E与输出误差之变化率CE,而控制变量则为下一个状态之输入U。其中E、CE、U统称为模糊变量。
(2) 模糊化(fuzzify):将输入值以适当的比例转换到论域的数值,利用口语化变量来描述测量物理量的过程,依适合的语言值(linguisitc value)求该值相对之隶属度,此口语化变量我们称之为模糊子集合(fuzzy subsets)。
(3) 知识库:包括数据库(data base)与规则库(rule base)两部分,其中数据库是提供处理模糊数据之相关定义;而规则库则藉由一群语言控制规则描述控制目标和策略。
(4) 逻辑判断:模仿人类下判断时的模糊概念,运用模糊逻辑和模糊推论法进行推论,而得到模糊控制讯号。此部分是模糊控制器的精髓所在。
(5) 解模糊化(defuzzify):将推论所得到的模糊值转换为明确的控制讯号,做为系统的输入值。
3.2变量选择与论域分割
3.2.1变量选择
控制变量的选择要能够具有系统特性,而控制变量选择是否正确,对系统的性能将有很大的影响。例如做位置控制时,系统输出与设定值的误差量即可当做模糊控制器的输入变量。一般而言,可选用系统输出、输出变化量、输出误差、输出误差变化量及输出误差量总和等,做为模糊控制器的语言变量,而如何选择则有赖工程师对于系统的了解和专业知识而定。因此,经验和工程知识在选择控制变量时占有相当重要的角色。
3.2.2论域分割
前一节提到了控制变量的选择问题,当控制变量确定之后,接下来就是根据经验写出控制规则,但是在做成模糊控制规则之前,首先必需对模糊控制器的输入和输出变量空间做模糊分割。例如当输入空间只有单一变量时,可以用三个或五个模糊集合对空间做模糊分割,划分成三个或五个区域,如图3.2(a)所示。当输入空间为二元变量时,如采用四条模糊控制规则,可以将空间分成四个区域,如图3.2(b)所示。模糊分割即对部分空间表为模糊状态,图中斜线部分即为对明确的领域。
模糊分割时各领域间重叠的程度大大地影响控制的性能;一般而言,模集合重叠的程度并没有明确的决定方法,目前大都依靠模拟和实验的调整决定分割方式,不过最近有些报告提出大约1/3~1/2最为理想。重叠的部份意味着模糊控制规则间模糊的程度,因此模糊分割是模糊控制的重要特征。
3.3 隶属度函数的型式
Mamdani教授最初所用的模糊变量分为连续型和离散型两种型式,因此隶属度函数的型式也可以分为连续型与离散型两种。由于语言变量及相对应隶属度函数的选择,将造成多不同的模糊控制器架构;因此,底下将对各隶属度函数的型式加以介绍:1. 连续型隶属度函数
模糊控制器中常见的连续型隶属度函数有下列三种:
(1)吊钟形:如图3.3(a)所示,其隶属度函数可表示如下:
(2)三角形:如图3.3(b)所示,其隶属度函数可表示如下:
(3)梯形:如图3.3所示,其隶属度函数之表示法和三角形相类似。
在式中参数a为隶属度函数中隶属度为1时的x值,参数W为隶属度函数涵盖论域宽窄的程度。而图中NB,NM,NS,ZO,PS,PM,PB等是论域中模糊集合的标记,其意义如下所示:
NB=负方向大的偏差(Negative Big)
NM=负方向中的偏差(Negative Medium)
NS=负方向小的偏差(Negative Small)
ZO=近于零的偏差(Zero)
PS=正方向小的偏差(Positive Small)
PM=正方向中的偏差(Positive Medium)
PB=正方向大的偏差(Positive Big)
图上将模糊集合之全集合加以正规化为区间〔-1,1〕,在模糊控制上,使用标准化的模糊变量,其全集也常正规化,这时之正规化常数(亦称为增益常数),也是在设计模糊控制器时必须决定的重要参数。
2. 离散型隶属度函数
Mamdani教授除了使用连续型之外,另外也使用了全集合由13个元素所构成的离散合。而且模糊集合之隶属度均以整数表示,这是由于用微处理机计算时使用整数比用〔0,1〕的小数更方便,如表3.1所示。
模糊控制理论发展之初,大都采用吊钟形的隶属度函数,但近几年几乎都已改用三角形的隶属度函数,这是由于三角形计算上比较简单,且在性能上正与吊钟形几乎没有差别的缘故。
3. 4模糊控制规则
控制规则是模糊控制器的核心,规则的正确与否直接影响控制器的性能,而规则数目的多寡也是一个重要因素,因此底下将对控制规则做进一步的探讨。
3.4. 1模控制规则的来源
模糊控制规则的取得可经由下列各种方式:
(1)专家的经验和知识
前面曾经提到模糊控制也称为控制上的专家系统,专家的经验和知识是设计上有余力的线索。人类日常生活常中判断事情时,使用语言定性分析多于数值定量分析;而模糊控制规则提供了一个自然的架构来描述人类的行为及决策分析,并且专家的知识通常可用if….then的型式来表示。
藉由询问经验丰富的专家,在获得系统的知识后,将知识改为if….then的型式,则如此便可构成模糊控制规则。为了获得最佳的系统性能,常需多次使用试误法,以修正模糊控制规则。
(2)操作员的操作模式
现在流行的专家系统,其想法只考虑知识的获得,专家巧妙地操作复杂的控制对象,但要将专家的诀窍加以逻辑化并不容易;因此,在控制上也要考虑技巧的获得。在许多工业系统无法以一般的控制理论做正确的控制,但是熟练的操员在没有数学模