水口吊桥计算书

合集下载

水中钢栈桥计算书

水中钢栈桥计算书

朝阳大桥新建工程水上施工栈桥计算书上海城建集团有限公司江西分公司二0一二年十月栈桥计算单1. 概述本栈桥主跨分为6m、12m两种,按3孔一联的连续梁设计。

栈桥设计控制荷载为挂-120和公路I级车辆荷载,通行80t履带吊,并考虑50t履带吊机及40t汽车吊墩顶起吊作业。

栈桥总体布置图如图1和图2所示(以下布置图以引桥处栈桥桩布置为例,锚固桩仅布置在主河槽)。

图1 栈桥立面布置图图2 栈桥横断面布置图1.1上部结构1.1.1 跨径:栈桥跨径分为6m、12m两种,均按3孔一联的连续梁设计。

1.1.2 桥宽:栈桥桥面宽8.0m,净宽为7.5m,按双向行车道设计。

1.1.3主梁:栈桥主梁贝雷梁组拼,横桥向布置8片,详见图2。

贝雷梁钢材为16Mn,贝雷梁销轴钢材为30CrMnSi。

1.1.4支撑架:主梁之间设置下平联支撑架和横向支撑架。

1.1.5桥面板:包括横向分配梁及面板,横向分配梁用骑马螺栓固定在贝雷梁上弦杆,并用短钢筋横向分三道串起,以提高整体稳定性。

桥面面板为10mm普通钢板,上焊接直径6mm钢筋防滑,桥面分配梁为I25b型钢。

1.1.6 栈桥高程:栈桥顶+23.5m。

1.1.7 设计车速:5km/h。

1.2下部构造1.2.1墩顶分配梁:制动墩及连续墩墩顶分配梁均为一层,采用2I36b制作。

1.2.2桩基础:岸边制动墩采用双排桩,每排3根,纵桥向间距为3.0m,横桥向间距为3.0m;岸边连续墩采用单排桩,每排3根,横桥向间距为3.0m;深水区制动墩采用三排桩,每排3根,纵桥向间距为6.0m,横桥向间距为3.0m。

1.2.3桥台:采用桩基台式,桥台、路堤修筑,必须满足相关规范要求。

2. 计算依据1)《钢结构设计规范》 (GB50017-2003);2)《混凝土结构设计规范》 (GB50010-2002);3)《公路桥涵设计通用规范》 (JTG D60-2004);4)《公路桥涵地基与基础设计规范》 (JTG D63-2007);5) 《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D63-2007);6)《装配式公路钢桥多用途使用手册》(黄绍金等编著) 人民交通出版社。

土木工程桥梁设计计算书范本 (doc 59页)

土木工程桥梁设计计算书范本 (doc 59页)

目录1 设计资料与结构尺寸 (1)1.1 设计资料 (1)1.2 结构尺寸 (2)2 主梁内力计算 (3)2.1 恒载作用内力计算 (3)2.1.1. 桥面铺装和人行道重力 (3)2.1.2. 横隔梁重力 (3)2.1.3. 主梁重力 (3)2.1.4. 恒载作用下总重力 (3)2.2 活载作用内力计算 (4)2.2.1. 主梁的荷载横向分布系数 (4)2.2.2. 活载作用内力计算 (12)2.3 内力组合 (19)3 配筋计算与强度验算 (22)3.1 纵向主筋的配置 (22)3.2 截面复核 (23)3.3 钢筋的配置 (24)3.4 腹筋设计 (24)3.5 斜截面承载力复核 (33)3.6 裂缝宽度验算 (40)3.7 主梁变形验算 (41)4 行车道板的计算 (43)4.1 行车道板内力计算 (43)4.1.1恒载内力 (43)4.1.2 活载内力 (43)4.1.3 荷载组合 (46)4.2 配筋与强度验算 (46)5 横梁的计算 (48)5.1 确定作用在中横隔梁上的计算荷载 (48)5.2 绘制跨中横隔梁的内力影响线 (49)5.2.1 计算弯矩影响线坐标值 (49)5.2.2 绘制剪力影响线 (50)5.3 截面内力计算及复核 (51)5.4 截面配筋及强度验算 (53)5.4.1 正弯矩计算配筋 (53)5.4.2 负弯矩计算配筋 (55)5.4.3 剪力计算配筋 (55)6 结束语 (57)7 参考文献 (58)1 设计资料与结构尺寸1.1 设计资料1. 标准跨径:Lb=25m(墩中心距离)。

2. 计算跨径:L=24.50m(支座中心距离)。

3. 预制长度:L’=24.95m(主梁预制长度)。

4. 桥面净空:净-7+2*1.0m人行道5. 设计荷载汽车—20级挂车—100级人群荷载32mkN横隔梁5根,肋宽15cm。

6.材料:(1)钢筋;其技术指标见表1(2)混凝土;指标见表2T型主梁,栏杆人行道为C25,桥面铺装为C30混凝土技术指标表表27.设计依据1、《桥梁工程》教材,刘龄嘉主编,人民交通出版社。

(完整版)XX水库供水隧洞结构计算书.doc

(完整版)XX水库供水隧洞结构计算书.doc

龙洞河水电站有压引水隧洞结构计算书1工程概况公明供水调蓄工程供水隧洞是从鹅颈至公明水库连通隧洞L0+387 桩号接往石岩水库的一条供水隧洞,全长 6.397km,桩号为 G0+000~G6+397。

根据初步设计报告供水隧洞为 2 级建筑物,设计流量为 10.24m3/s,采用圆型断面,内径为 3.4m。

供水隧洞进口底高程为29.60m,出口底高程为 27.50m,隧洞全段纵坡为 -0.0328%。

供水隧洞Ⅱ类围岩 3576m、Ⅲ类围岩 1836m、Ⅳ类围岩 345m、Ⅴ类围岩 310m。

2设计依据2.1 规范、规程《水工隧洞设计规范》( SL279-2002)(以下简称“隧洞规范”)《水工隧洞设计规范》( DL/T 5195-2004)(电力行业标准,下称“电力隧洞规范”)《水工钢筋混凝土结构设计规范(试行)》(SDJ20-78)(以下简称“砼规” )《锚杆喷射混凝土支护技术规范》(GB 50086-2001)2.2 参考资料《深圳市公明水库调蓄工程初步设计报告》(深圳市水利规划设计院, 2007.05)《G-12 隧洞衬砌内力及配筋计算通用程序》《PC1500 程序集地下结构计算程序使用中的几个问题》(新疆水利厅,张校正)《取水输水建筑物丛书-隧洞》《水工设计手册-水电站建筑物》(水利电力出版社, 1989)《水击理论与水击计算》(清华大学出版社, 1981)《水力学-下册》(吴持恭,高等教育出版社,1982)3计算方法隧洞支护及衬砌结构按新奥法理论进行设计,支护型式采用锚喷支护通过工程类比确定,喷锚支护类型及其参数参照电力隧洞规范附录 F 表 F.1 选取;衬砌型式采用钢筋混凝土衬砌。

根据隧洞规范 6.1.8 条第 2 点规定,围岩具有一定的抗渗能力、内水外渗可能造成不良地质段的局部失稳,经处理不会造成危害者,宜提出一般防渗要求,本工程按限制裂缝宽度设计,裂缝宽度短期组合不超过 0.3mm,长期组合不超过 0.25mm。

桥梁工程计算书

桥梁工程计算书

钢筋混凝土简支T形梁桥设计1.1基本设计资料1、跨度和桥面宽度(1)标准跨径:10m。

(2)计算跨径:9.6m。

(3)主梁全长:9.96m。

(4)桥面宽度:1.5m(人行道)+净-7m(行车道)+0.5m(防撞栏)。

2.技术标准设计荷载:公路—Ⅱ级,人行道和栏杆自重线密度按照单侧6kN/m计算,人群荷载为3kN/m2。

环境标准:Ⅰ类环境。

设计安全等级:二级。

3.主要资料(1)混凝土:混凝土简支T形梁及横梁采用C50混凝土:桥面铺装上层采用0.03m沥青混凝土,下层为厚0.06~0.13m的C50混凝土,沥青混凝土重度按26kN/m3计。

(2)钢材:主筋采用HRB335钢筋,其它用R235钢筋。

4.构造截面及截面尺寸图1-1 桥梁横断面和主梁纵断面图(单位:cm)如图1所示,全桥共由5片T形梁组成,单片T形梁高为0.9m,宽1.8m;桥上横坡为双向1.5%,坡度由C50混凝土桥面铺装控制;设有三根横梁。

1.2 主梁的计算1.2.1 主梁的荷载横向分布系数计算1.跨中荷载横向分布系数桥跨内设有三根横隔梁,具有可靠的横向联系,且承重结构的宽跨比为:B/l=9/9.6=0.9375>0.5。

故先按修正的刚性横隔梁法来绘制横向影响线和计算分布系数m c。

(1)计算主梁大的抗弯及抗扭惯性矩I和I T:1)求主梁截面的重心位置x(见图1-2):图1-2 主梁抗弯及抗扭惯性矩计算图式翼缘板的厚按平均厚度计算,其平均厚度为h1=1/2×(10+16)cm=13cm则(18018)1313/2901890/223.24(18018)139018x cm cm -⨯⨯+⨯⨯==-⨯+⨯2)抗弯惯性矩I为I=[1/12×(180-18)×133+(180-18)×13×(23.24-13/2)2+1/12×18×903 +18×90×(90/2-23.24)2] cm 4 =2480384 cm 4对于T 形梁截面,抗扭惯性矩可进似按下式计算: 式中 b i 、t i──── 单个矩形截面的宽度和高度; c i ──── 矩形截面抗扭刚度系数;m ──── 梁截面分成单个矩形截面的个数。

某某工程水上钢栈桥结构受力计算书

某某工程水上钢栈桥结构受力计算书

某某工程水上钢栈桥结构受力计算书1. 引言本文旨在对某某工程水上钢栈桥的结构受力进行详细计算,以确保工程的安全可靠性。

通过对各个部位的受力情况进行分析和计算,可以为设计和施工提供准确的参考依据。

2. 结构概述某某工程水上钢栈桥总长100米,宽10米。

栈桥采用钢结构梁柱框架形式,两侧设置护栏和人行道。

主桥墩采用水中混凝土浇筑形式,桥面铺设钢格栅。

3. 荷载计算3.1 桥梁自重根据桥梁结构的几何参数和构件材料密度,计算出桥梁自重为XN/m。

3.2 行车荷载根据某某工程的设计要求,考虑到未来可能的车辆荷载情况,按照公路桥设计规范,采用XXX标准,计算出行车荷载为X N/m。

3.3 人行荷载根据桥梁使用的特殊环境,考虑到人行道上可能同时存在多人和临时工程设备,按照相关规范,计算出人行荷载为X N/m。

3.4 风载荷载根据某某工程所在地的气象数据和设计要求,计算出风速、风向等参数,结合某某工程的结构形式,采用XXX标准,计算出风载荷载为X N/m。

4. 结构分析4.1 受力分析根据桥梁结构的特点和受力原理,对主要构件的受力情况进行分析,包括梁、柱、墩、桥面等,得出各个构件的轴力、弯矩和剪力分布情况。

4.2 结构稳定性考虑到某某工程水上钢栈桥的稳定性要求,对结构的整体抗侧扭和抗倾覆能力进行计算,并评估结构的稳定性。

5. 计算结果根据上述分析,得出某某工程水上钢栈桥各个构件的受力情况和结构稳定性评估。

具体计算结果如下:5.1 梁、柱、墩的轴力、弯矩和剪力分布情况- 梁1: 轴力X,弯矩X,剪力X- 柱1: 轴力X,弯矩X,剪力X- 墩1: 轴力X,弯矩X,剪力X5.2 结构稳定性评估- 抗倾覆安全系数: X- 抗侧扭安全系数: X6. 结论根据本次受力计算结果,某某工程水上钢栈桥的结构设计符合要求,满足受力稳定性和可靠性的要求。

然而,为确保工程的安全运行,建议在实际施工中严格按照设计要求进行施工,并进行必要的监测与维护。

吊桥主索安装计算书

吊桥主索安装计算书

拉马登农用车吊桥吊装计算书一、工程概况怒江索改桥第四合同段主要工程拉马登桥主跨径130米悬索桥。

桥址位于云南省怒江州兰坪县拉马登乡,是连接澜沧江西岸六兰公路和东岸拉马村的一座农用车吊桥,桥面净宽为 4.0+2x0.25m,桥塔基础为钢筋混凝土扩大基础,桥台采用重力式桥台。

桥梁横跨澜沧江,基本与澜沧江水流正交。

桥型:桥梁采用130m的桥跨布置,主桥采用悬索桥构造。

线型:桥梁平面位于直线上。

技术标准:公路等级:等外路;设计速度:5Km/h;设计荷载:农用车15t(单车);桥面宽度:桥面净宽4.0+2X0.25m。

设计洪水频率:1%;设计水位:1395.389m;最高洪水水位:1407m计算风速:根据规范P=1/50取值地震设防:地震基本烈度为Ⅶ度。

1.主跨内上部构造荷载总重:序号材料名称规格单位数量单位重(kg) 重量(kg) 备注1 主缆12Φ46主缆m 2108.088 8.84 18635.5 2-05#2 索夹ZG45铸钢套102 60.918 6213.6 2-07#3 索夹连接螺栓D=22 付612 0.183 112 2-07#4 上锚点锚具JZ32-02 (20Cr)付102 14.9 1519.8 2-07#5 上锚点浇铸料锌铜合金个102 4.4 448.8 2-07#6 上锚点连接销轴20Cr 只102 1.40 142.8 2-07#7 下锚点锚具JZ32-03(20Cr)付102 7.3 744.6 2-07#8 下锚点浇铸料锌铜合金个102 3.93 400.9 2-07#9 下锚点螺杆20Cr M56 根102 18 1836 2-07#10 下锚点锁紧螺母GB/T6172.1-2000 只102 2.10 214.2 2-07#11 下锚点吊挂螺母JZ32-05 20Cr M56 只204 3.10 632.4 2-07#12 下锚点限位螺母GB/T6170-2000,20Cr, M56只102 3.10 316.2 2-07#13 吊索Φ32 6x7+IWS钢芯m 497.68 4.301 2140.52 2-07#14 横梁 36a槽钢[360*96*9*5100 m 520.2 47.814 24872.84 2-09#15 螺栓M14X40 只2856 0.0729 208.2 2-09#16 横梁连接钢板□300*254*16 块153 9.571 1461.4 2-09#17 横梁连接钢板□200*254*16 块51 6.38 325.4 2-09#18 横梁连接钢板□200*254*20 块204 7.976 1627.1 2-09#19 横梁契形垫块个5712 0.0785 448.4 2-09#20 纵梁工字钢20a工字钢m 1787.8 27.929 49931.5 2-10#21 纵梁连接板□300*100*10 块588 2.355 1384.7 2-10#22 纵梁连接螺栓M16X60 个1174 0.128 150.5 2-10#23 A型桥面板10mm □4500*1270*10 块 2 488.628 897.3 2-10#24 B型桥面板10mm □4500*1500*10 块83 529.875 43979.6 2-10#25 桥面板连接螺栓M14X40 个2324 0.0729 169.4 2-10#26 人行道槽钢[20a m 512 22.63 11586.6 2-13#27 人行道花纹钢板□128000*250*10 块 2 2512 5024.00 2-13#28 栏杆1 镀锌钢管Φ60X5 件102 2846.7 2-13#29 栏杆2镀锌方钢管Φ30X3 件204 1551.6 2-13#30 栏杆3 镀锌环Φ170X10 件1456 441.0 2-13#31 栏杆4镀锌钢管Φ30X3 件1456 2469.6 2-13# 合计173437.62.单根上部净载均布荷载=173.412*9.8/120=14.162KN/m二、 设计主缆安装条件 (一)东西岸边跨1、塔顶主缆交点标高=1213.402、索塔混凝土顶标高=1213.0253、边跨水平倾角α1=24°4、主跨水平倾角α2=18.314544°=18°18′52″5、倾角合计α3=α1+α2=42°18′52″6、索鞍半径R=1352mm7、索鞍位置切线长T=Rtg(α4/2)=1352*tg(42°18′52″/2)=523mm 8、索鞍位置外距E=Ttg(α4/4)=523*tg(42°18′52″/4)=98mm 9、索鞍位置弧长L1=42°18′52″/57.29578*R=998mm10、东岸主索塔顶与锚碇交点距离=16.37+1.31+0.61+0.89/2=18.735m 11、东岸边跨内主索长度L2=mm 2050824cos 18735=︒12、西岸主索塔顶与锚碇交点距离=18.31+1.31+0.61+0.89/2=20.675m 13、西岸边跨内主索长度L3=mm 2263224cos 20675=︒(三)主跨120m主跨内索长L4=])f (7256)f (532)f(381[642L L LL +-+ =])121(7256)121(532)121(3 81[*120000642+-+=122187mm (四)主索长度L=2*L1+L2+L3+L4-4T-2*500=2*998+20508+22632+122187-4*523-2*500=164231mm三、 受力计算(不考虑动载、风载、行人荷载等作用,按柔性计算理论进行计算,上部构造荷载为集中荷载)1. 主索跨中最低点高程=1213.50-10.00=1203.50m 2. 安装后主索最大水平张力H=βcos 8f qL m 2=KN 16.2549108120162.142=⨯⨯ 塔顶支点反力V=2Qm.cos qL +β=KN 72.8492120162.14=⨯ 钢索最大张力T=KN 05.268772.84916.254922=+ 3. 主缆抗拉安全系数=17400/2687.05=6.47>[3.5~5] 四、 主缆加工及下料技术要求主缆由厂家加工并进行墩头锚的加工,成品索完成前应先确定主索的破断拉力、弹性模量等力学指标。

桥梁计算书——精选推荐

桥梁计算书——精选推荐

桥梁计算书⽬录第⼀章装配式简⽀实⼼板桥计算 (1)⼀、⼯程概况 (1)⼆、桥⾯⼏何特性及作⽤效应计算 (1)三、截⾯设计 (10)第⼆章装配式简⽀空⼼板桥计算 (13)⼀、⼯程概况 (13)⼆、桥⾯⼏何特性及作⽤效应计算 (13)三、截⾯设计 (22)第三章装配式简⽀T型梁桥计算 (25)⼀、⼯程概况 (25)⼆、桥⾯⼏何特性及作⽤效应计算 (25)三、承载能⼒极限状态下截⾯设计、配筋与验算 (35)第⼀章装配式简⽀实⼼板桥计算⼀、⼯程概况桥梁横向设计总宽为4.7m ,设计全长为30m ,为五跨铰接板桥,跨径为5*6m ;上部结构为铰接预制板,下部结构为桩墩、台钢筋砼⽿墙布置。

⼆、桥⾯⼏何特性及作⽤效应计算 1、桥⾯总体布置预制板标准跨径:I k =6.00m ;计算跨径:I 0=5.62m ;板长:5.98m ;桥⾯净空:4+2*0.35=4.7m ;设计荷载:公路—Ⅱ级*0.8。

2、构造形式及尺⼨选定全桥采⽤20块C30预制钢筋砼实⼼板,每块实⼼板宽99cm (其中桥墩⾄⽀座中⼼线间距为18cm ,伸缩缝宽2cm )。

C30混凝⼟实⼼板:f ck =20.1MPa ,f cd =13.8MPa ,f tk =2.01MPa ,f td =1.39MPa 。

3、作⽤效应计算 3.1永久效应作⽤计算3.1.1实⼼板效应作⽤计算(第⼀阶段结构⾃重)g 1:m kN g /585.82562.5/93.11=?=3.1.2桥⾯系⾃重(第⼆阶段结构⾃重)g 2:全桥宽铺装每延⽶总重为:8.99/5/5.62×25=7.998m kN /; C25砼缘⽯重:6.43/5/5.62×25=5.721m kN /;栏杆重⼒:6.673m kN /上述⾃重效应是在各实⼼板形成整体后,再加上板桥上的,为了使计算⽅便近似按各板平均分担重⼒效应,则每块实⼼板分摊到的每延⽶桥⾯的重⼒为:mkN g /098.54721.5998.7673.62=++=3.1.3铰缝重⼒(第⼆阶段结构⾃重)g 3:m KN g /24.02562.5/4/216.03=?=3.1.4恒载内⼒计算m kN g g /585.81Ⅰ==m kN g g g /34.524.0098.532=+=+=∏ m kN g g g /92.1334.5585.8Ⅰ=+=+=∏由此计算出简⽀实⼼板永久作⽤(⾃重)效应,计算结果见表1-1。

小河村人行吊桥计算书

小河村人行吊桥计算书

小河村人行吊桥计算书金家坝水电站库区项目金家坝水电站库区项目小河村人行吊桥计算书小河村人行吊桥计算书宁波顺和路桥设计有限公司重庆分公司宁波顺和路桥设计有限公司重庆分公司2009.5 2009.51 桥梁基本概况小河村桥跨径为15+100+20=135m~桥面总长为主跨的96m~预拱度为0.9m~主索采用7根GB/T20118-2006标准的6×19W+IWRφ32钢丝绳~其抗拉强度为1770MPa~主索垂跨比为1/11,垂高9.09米.吊杆采用Φ24钢筋。

设计标准~桥面2.2m,设计荷载:人群荷载为3.5kN/m2~风荷载为0.4kN/m,设计洪水位参照库区校核洪水位。

桥梁设计线位于路拱顶点处,桥梁中心线,~构造物标高系中心处高程,本桥为悬索桥~塔架为钢筋混凝土~横梁采用I18a普通热扎工字钢~纵梁采用[14普通热扎槽钢~桥面采用5cm钢筋砼预制板,塔基嵌入中风化灰岩不小于4米~基底岩石单轴极限抗压强度不小于15MPa。

2 荷载作用工况及其组合本次计算分析确定如下荷载作用工况及其组合:工况一: 恒载工况二: 恒载,活载工况三: 恒载,活载,风荷载3 空间梁单元全桥模型的建立本桥采用midas软件建立计算模型~共188个单元~主塔、加劲梁采用梁单元~主缆、吊杆采用只受拉单元~塔底、主缆锚定区均采用固定约束边界~计算模型见下图:图1 MIDAS全桥模型(主跨垂跨比为1/11)4 主桥塔底反力图2 西岸桥塔支反力(分别为自重、恒载+活载、恒载+活载+风载工况)图3 东岸桥塔支反力(分别为自重、恒载+活载、恒载+活载+风载工况) 5 锚碇区主缆拉力图4 西岸锚固区主缆拉力(分别为自重、恒载+活载、恒载+活载+风载工况)图5 东岸锚固区主缆拉力(分别为自重、恒载+活载、恒载+活载+风载工况) 6 桥塔应力与内力图6 西岸桥塔应力(分别为自重、恒载+活载、恒载+活载+风载工况)图7 东岸桥塔应力(分别为自重、恒载+活载、恒载+活载+风载工况)图8 西岸桥塔轴力(分别为自重、恒载+活载、恒载+活载+风载工况)图9 东岸桥塔轴力(分别为自重、恒载+活载、恒载+活载+风载工况)图10 西岸桥塔弯矩(分别为自重、恒载+活载、恒载+活载+风载工况)图11 东岸桥塔弯矩(分别为自重、恒载+活载、恒载+活载+风载工况) 7 主缆应力与内力图12 主缆拉力(分别为自重、恒载+活载、恒载+活载+风载工况)图13 主缆应力(分别为自重、恒载+活载、恒载+活载+风载工况) 8 吊杆应力与内力图14 吊杆应力(分别为自重、恒载+活载、恒载+活载+风载工况)图15 吊杆拉力(分别为自重、恒载+活载、恒载+活载+风载工况)9 加劲梁应力与内力图16 加劲梁应力(分别为自重、恒载+活载、恒载+活载+风载工况)图17 加劲梁轴力(分别为自重、恒载+活载、恒载+活载+风载工况)图18 加劲梁弯矩(分别为自重、恒载+活载、恒载+活载+风载工况)图19 加劲梁竖向挠度(分别为自重、恒载+活载、恒载+活载+风载工况)图20 横向风作用下加劲梁的横向变形10 计算结果汇总表格表1 主塔主要计算结果汇总应力(MPa) 轴力(吨) 弯矩(KN.m) 反力塔顶位移 (mm) (吨) Max Min Max Min Max Min工况一西岸工况二桥塔工况三工况一东岸工况二桥塔工况三表2 加劲梁主要计算结果汇总应力(MPa) 轴力(吨) 弯矩(KN.m) 挠度工况 (cm) Max Min Max Min Max Min 工况一工况二工况三表3 主缆主要计算结果汇总应力(MPa) 轴力(吨)Max Min Max Min工况一工况二工况三表4 主缆锚碇受力情况汇总(吨)工况一工况二工况三西岸锚碇东岸锚碇表5 吊杆提供拉力结果汇总(KN)工况一工况二工况三 DG0 19.6 31.4 31.317.3 28.6 28.5 DG1DG2 19.6 31.4 31.3 DG3 18.4 29.9 29.8 DG4 18.6 30.1 30.1 DG5 18.7 30.2 30.1 DG6 18.7 30.2 30.1 DG7 18.7 30.2 30.1 DG8 18.7 30.2 30.1 DG9 18.7 30.2 30.2 DG10 18.7 30.3 30.2 DG11 18.7 30.3 30.2 DG12 18.7 30.3 30.2 DG13 18.9 30.5 30.5 DG14 20.0 32.7 32.6 DG15 21.2 35.6 35.5 DG16 5.5 16.3 16.0表6 吊杆应力结果汇总(MPa)工况一工况二工况三DG0 43.3 69.4 69.2DG1 38.2 63.2 63.0DG2 43.3 69.4 69.2DG3 40.7 66.0 65.9DG4 41.2 66.6 66.5DG5 41.3 66.7 66.5DG6 41.3 66.7 66.6DG7 41.3 66.7 66.6DG8 41.3 66.8 66.6DG9 41.3 66.8 66.7DG10 41.3 66.9 66.7DG11 41.3 66.9 66.8DG12 41.3 66.9 66.8DG13 41.7 67.5 67.4DG14 44.1 72.2 72.1DG15 46.9 78.7 78.5DG16 12.2 36.0 35.511 计算结论综合小河村桥设计的分析结果~兹提出结论如下:(1) 在人群荷载作用下主梁最大向下竖向变形值为10.6 cm~参考《公路悬索桥设计规范》(送审稿)规定的主梁变形值33.3 cm(L/300~L为跨度)~满足主梁变形要求,(2) 在运营阶段状态下~主缆最高应力为15.1MPa~吊索最高应力为1.5 MPa ~满足设计强度要求,(3)分析结果表明~在运营阶段主梁受力基本合理~主梁全部处于受压状态~最大压应力为4.47MPa,(4) 东西岸桥塔基本未出现拉应力~最大压应力为6.29MPa~主塔横梁出现最大拉应为为0.2MPa~均属于设计强度范围,(5) 综合上面分析~柳树河桥设计方案的结构体系成立~桥塔、主缆、吊杆、主梁尺寸设计合理~结构安全。

水库大桥结构计算书

水库大桥结构计算书

新余市虎踞大道新建市政设计工程何家山水库大桥施工图设计结构计算书计算:复核:审核:中交第二航务工程勘察设计院有限公司2011年7月何山家水库大桥结构计算书1、计算依据及设计规范1.1 计算依据1.公路等级:城市主干道;2.设计荷载:公路—Ⅰ级;1.2 设计规范1.《公路工程技术标准》(JTG B01—2003)2、《公路桥涵设计通用规范》(JTG D60—2004)3、《公路圬工桥涵设计规范》(JTG D61—2005)4、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62—2004)5、《公路桥涵地基与基础设计规范》(JTG D63-2007)6、《公路桥梁抗震设计细则》(JTG/TB02-01-2008)7、《公路桥涵施工技术规范》(JTJ041—2000)8、《公路交通安全设施设计规范》(JTG D81—2006)9、《公路交通安全设施施工技术规范》(JTGF71—2006)2、设计参数桥梁分两幅,每幅宽17.75m,上部采用现浇钢筋砼实腹式拱桥,净跨径为18m,矢跨比为1/2。

混凝土、普通钢筋各项力学指标按《公路钢筋混凝土和预应力混凝土桥涵设计规范》(JTG D62-2004)执行。

混凝土剪变模量按弹性模量的0.4倍采用,柏松比采用0.2。

主要参数如下:结构重要性系数:1.1。

混凝土容重:26kN/m3。

沥青混凝土容重:25kN/m3。

收缩徐变按10年考虑。

汽车冲击系数分别按D60-2004选取。

梁体整体升温温差20℃,整体降温温差20℃。

3、上部结构计算软件计算结果由桥梁博士计算软件生成,采用平面杆系模型计算。

4、上部结构计算结果(附内力图)4.1主拱圈1.主拱圈持久状况正常使用极限状态承载能力满足规范要求2.施工阶段主拱圈正截面强度验算满足规范要求。

3.荷载短期效应组合(考虑长期效应影响)裂缝宽度验算满足规范要求。

1.1概述何山家水库大桥位于虎踞大道第二合同段,中心桩号为K2+570,交角90度。

钢吊箱设计计算书

钢吊箱设计计算书

钢吊箱设计计算书一、工程概述1.1承台概况罗屿大桥9#~20#墩均为深水基础高桩承台,材料为C40海工混凝土,为封底混凝土C20。

承台顶标高为-2.000m,承台底标高为-4.5m,承台尺寸为6.25m×20.7m。

1.2水文罗屿特大桥下部构造位于海水中受潮差影响,平均高潮水位 2.92m、平均低潮水位-2.19m,平均潮位4.11m。

1.3工程地质上述墩位处在深水区域,海底标高为-19.500~-4.300,地层按其时代、成因、岩性、风化程度及工程特性,由上而下依次为:第四系海积层(Q4cm)、第四系残积层(Q4el);下伏基岩为燕山晚期侵入花岗岩(γ53)及其风化层;表层为素填土(Q4me)。

料详见地勘资料。

二、设计依据《公路桥涵钢结构及木结构设计规范》(JTJ025-86);《建筑结构设计综合手册》;《公路桥涵施工技术规范》《钢结构设计规范》三、钢吊箱设计3.1承台施工概述承台底面标高高出净水面,且海水较深,拟采用有底钢吊箱施工承台。

根据设计文件要求,承台混凝土浇注完毕后,须进行防腐涂装,因此钢吊箱设计时四边尺寸必须要超出承台实际尺寸(现考虑预留1m),为后期涂装留有足够施工空间。

承台混凝土浇筑需准备一套模板,混凝土一次浇筑成型,整个钢吊箱只是起围护止水的作用。

3.2钢吊箱初步设计承台封底混凝土厚1.5m,侧模板高度为8m,顶口高出设计平均高位1.28m,面板采用6mm钢板,竖肋采用槽18a,按0.6m间距布置,水平肋采用槽14a,按0.4m间距布置,圈梁采用双肢槽20a。

只在模板顶口布置一层内支撑,材料选取φ450钢管。

底篮采用型钢模板和“井”字型承重工钢梁作为封底混凝土浇筑时的主要受力构件。

布置图如下所示:3.3钢吊箱侧壁模板设计验算3.3.1最不利工况侧壁模板主要是起围护止水的作用,当封底混凝土达到强度并抽水完成时,钢吊箱内外水头差最大,为最不利工况。

3.3.2荷载计算侧壁模板承受水平向荷载,按照设计规范,水平力=静水压力+流水压力+波浪力+其它。

桥梁设计手算计算书(DOC)

桥梁设计手算计算书(DOC)

设计原始资料1. 地形、地貌、气象、工程地质及水文地质、地震烈度等自然情况(1)气象:天津地区气候属于暖温带亚湿润大陆性季风气候区,部分地区受海洋气候影响。

四季分明,冬季寒冷干旱,春季大风频繁,夏季炎热多雨,雨量集中,秋季冷暖变化显著。

年平均气温12.2 °C,最冷月平均气温-4 °C,七月平均气温26.4 °C。

(2)工程地质:天津地铁一号线经过地区处于海河冲积平原上,地形平_ 坦,地势低平,地下水位埋深较浅,沿线分布了较多的粉砂、细砂、粉土,均为地震可液化层,局部地段具有地震液化现象。

沿线地层—简单,第四系地层广泛发育,—地层分布从上到下依次为人工堆积层、新近沉积层、上部陆相层、第一海相层、中上部陆相层、上部及中_ 上部地层广泛发育沉积有十几米厚的软土。

—a. 人工填土层,厚度5m ?k=100KP;b. 粉质黏土,中密,厚度15m ?k=150 KP a;c. 粉质黏土,密实,厚度15m ?k=180KP;d. 粉质黏土,密实,厚度10m ?k=190KP。

第一章方案比选一、桥型方案比选桥梁的形式可考虑拱桥、梁桥、梁拱组合桥和斜拉桥。

任选三种作比较,从安全、功能、经济、美观、施工、占地与工期多方面比选,最终确定桥梁形式。

桥梁设计原则1 •适用性桥上应保证车辆和人群的安全畅通,并应满足将来交通量增长的需要桥下应满足泄洪、安全通航或通车等要求。

建成的桥梁应保证使用年限,并便于检查和维修。

2. 舒适与安全性现代桥梁设计越来越强调舒适度,要控制桥梁的竖向与横向振幅,避免车辆在桥上振动与冲击。

整个桥跨结构及各部分构件,在制造、运输、安装和使用过程中应具有足够的强度、刚度、稳定性和耐久性。

3. 经济性设计的经济性一般应占首位。

经济性应综合发展远景及将来的养护和维修等费用。

4. 先进性桥梁设计应体现现代桥梁建设的新技术。

应便于制造和架设,应尽量采用先进工艺技术和施工机械、设备,以利于减少劳动强度,加快施工进度,保证工程质量和施工安全。

桥梁工程课程设计计算书

桥梁工程课程设计计算书

桥梁工程课程设计及计算书设计题目: 桥梁工程课程设计学院:土木与建筑学院指导老师:汪峰姓名:学号:班级:2014年6月一、基本资料1.标准跨径:20 m计算跨径:19.50 m主梁全长:19.96 m2.桥面净宽:净7.5 m+2×0.25 m3. 车辆荷载:公路— 级4. 人群荷载:3.0 KN/m²5. 选用材料:钢筋:采用HRB300钢筋,HRB335钢筋。

混凝土:主梁C40人行道及栏杆:C25桥面铺装:C25(重度24KN/m)6. 课程设计教材及主要参考资料:《桥梁工程》.姚玲森编.人民交通出版社,1990年《桥梁工程》.邵旭东等编.人民交通出版社,2007年《桥梁工程》.范立础编.人民交通出版社,2001年《简支梁桥示例集》.易建国编.人民交通出版社,2000年《桥梁工程课程设计指导书》.桥梁教研室.哈尔滨工业大学教材科,2002年《梁桥设计手册》.桥梁编辑组.人民交通出版社,1990年《公路桥涵设计通用规范》(JTG D60-2004)人民交通出版社北京《拱桥设计手册(上、下)》.桥梁编辑组.人民交通出版社,1990年《配筋混凝土结构设计原理》袁国干主编,同济大学出版社二、桥梁尺寸拟定1.主梁高度:h=1.5m梁间距:采用5片主梁,间距1.8m。

2.横隔梁:采用五片横隔梁,间距为4×4.85m,梁高1.0m, 横隔梁下缘为15cm,上缘为16cm。

3.主梁梁肋宽:梁肋宽度为18cm。

4.桥面铺装:分为上下两层,上层为沥青砼厚2.0cm, 下层为C25 防水混凝土垫层厚10.0cm。

桥面采用1.5%横坡。

5.桥梁横断面及具体尺寸:(见作图)6.桥梁纵断面及具体尺寸:(见作图)三、桥梁计算 一、主梁的计算1、主梁的抗弯及抗扭惯性矩x I 、TiI求主梁界面的重心位置x a (图3) 、平均板厚:H=1/2(10+18)=14(cm )cm x 93.452005141)12081(20512005124141)20081(a =⨯+⨯-⨯⨯+⨯⨯-=442323m 415481019.0cm 94.1548101445.93-21501502015020121214-45.931416014160121==⨯⨯+⨯⨯+⨯⨯+⨯⨯=x I43313517m 00.081.0.1613036.00.141.803333.0=⨯⨯+⨯⨯==∑=i i Mi i Ti t b c I2.计算结构自重集度(表1)结构自重集度计算表 表1主梁 m KN /10.13250)]2.0-80.1)(218.010.0(50.120.0[g 1=⨯++⨯= 横隔梁 对于边主梁m KN g /68.050.19/255216.015.0)}202.0-80.1()]218.010.0(-00.1{[2=⨯⨯+⨯⨯+= 对于中主梁 /m 63.168.02g 12KN =⨯=桥面铺装层m KN g /29.45)/2450.701.02350.702.0(3=⨯⨯+⨯⨯=栏杆及人行道 /m 00.25/254KN g =⨯= 合计对于边主梁 m KN g i /07.2000.229.468.010.13g =+++==∑对于中主梁/m 75.022.0029.41.3613.10'KN g =+++=3.结构自重内力计算(表2)边中主梁自重产生的内力 表2主:括号()内值为中主梁内力3.汽车、人群荷载内力计算(1)支点处荷载横向分布系数(杠杆原理法)汽车荷载距人行道边缘不小于0.5m 。

施 工 栈 桥 计 算 书

施 工 栈 桥 计 算 书

施工栈桥计算书一、水文资料1、流速:V=2.1m/s2、浪高:H=6.8m3、波长:L=85.2m4、平均高潮水位:+1.86m5、水深:d=20.86 m二、基本数据1、Eg=206x103N/mm22、[Óg]=160Mpa3、φ85CM钢管桩截面δ=10mmA=0.02669m2I=2.368x10-4m4W=5.475x10-3m3三、设计荷载1、结构自重2、施工荷载⑴50t履带吊自重50t+吊重30t⑵6m3混凝土运输车自重20t+6m3混凝土自重15t3、水流力:按《港口工程荷载规范(JTJ215-98)》计算4、波浪荷载:按《海港水文规范(JTJ213-98)》计算5、风载取1.0Kpa四、结构计算(一)、钢管桩水平力计算1、风力计算⑴钢管桩迎风面积:A=1.2x(6.5-1. 85)=5.568 m⑵横向贝雷及分配梁迎风面积:A1=0.32x4+6x1.5x3x0.3+0.12x18=11.54m2⑶纵向贝雷及横梁迎风面积:A2=4x0.6+6x1.5x0.1+6x0.25+6x2.8x0.1=7.68m2 ⑷横向风力计算:单桩风力:F1=4.675x0.1=0.3944t贝雷及分配梁风力:F2=11.54x0.1/4=0.288t⑸纵向风力计算:单桩风力:F1=4.675x0.1=0.9444t贝雷及分配梁风力:F2=7.68x0.1/4=0.192t2、水流力计算F W=C W·ρ/2·V2·A对钢管桩:C W=0.73对钢管桩横联:C W=1.45⑴横向水流力计算:单根钢管桩:F W=0.73x1.025/2x2.12x20.86x0.85=2.93t钢管桩横联(对单桩):F W1=1.45x1.025/2x2.12x3x0.85/2=0.42t ⑵纵向水流力计算单根钢管桩:F W=0.73x1.025/2x2.12x20.86x0.85=2.93t钢管桩横联(对单桩):F W1=1.45x1.025/2x2.12x4.5x0.85/2=0.63t 3、波浪力计算速度分力P Dmax=C D·ρ/2·D·H2·k1·α惯性分力P Imax=C M·ρ/2·A·H·k2·γpH/d=0.326 ηmax /H=0.66查表ηmax=4.49 m⑴速度分力计算:C D=1.2k1=(4πZ2/L-4πZ1/L+sh4πZ2/L-sh4πZ1/L)/8sh4πd/L=0.287 α=1.2 Z2=25.35 Z1=0P Dmax=1.2x1/2x1.025x0.85x6.82x0.287x1.2=8.323t⑵惯性分力计算:C M=2.0K2=(sh2πZ2/L-sh2πZ1/L)/ch2πd/L=0.993γp=1.0 Z2=21.95 Z1=0P Imax=2.0x1/2x1.025x0.567x6.8x0.993x1.0=3.92t⑶单桩水平总波浪力P max= P Dmax·(1+0.25 P2Imax/ P2Dmax)=8.78t⑷P Dmax和P Imax对桩底弯距计算①M Dmax=C D·ρ·D·H2·L·K3·β/2πC D=1.2β=1.19 Z2=25.35 Z1=0K3=1/ sh4πd/L·[π2·(Z22- Z12)/4L2+π(Z22- Z12)/8L·sh4πZ2/L-1/32·(ch4πZ2/L-ch4πZ1/L)]=0.19M Dmax=148.3t·m②M Imax=C M·ρ·A·H·L·K4·γM/4πC M=2.0γM =1.0 Z2=21.95 Z1=0K4=1/ ch2πd/L·[2π·(Z2- Z1)·sh2πZ2 /L-(ch2πZ2- ch2πZ1)]=0.94M Imax=50.52t·m③对桩底总弯距M max= M Dmax·(1+0.25 M2Imax/ M2Dmax)=152.6t·m⑸钢管桩横联波浪力计算①横向钢管桩横联波浪力计算钢管桩横联标高+1.0米,钢管直径0.6米Z2=20米Z1=19.4米P Dmax=C D·ρ/2·D·H2·k1·αP Imax=C M·ρ/2·A·H·k2·γpC D=2.0k1=(4πZ2/L-4πZ1/L+sh4πZ2/L-sh4πZ1/L)/8sh4πd/L=0.012 α=1.2C M=2.2K2=(sh2πZ2/L-sh2πZ1/L)/ch2πd/L=0.36γM=1.0P Dmax=2.05tP Imax=7.06t钢管桩横联总波浪力P max= P Imax=7.06t作用于单根钢管上的波浪力P=1/2 P max =3.53t②纵向向钢管桩横联波浪力计算P=3.53/3·4.5=5.4 t⑹钢管桩截面应力计算①横向钢管桩截面应力计算:M=152.6+3.53x20.86+0.3944x23.18+0.288x25.5+2.93x10.43+0.42 x20.86=281.7t·m钢管桩间用导管架连接,钢管截面摸量w=w1+A·(4.5/2)2=0.1406m3Ó=M/W=20.05MPa≤[Ó]=160Mpa②纵向钢管桩截面应力计算:M=152.6+5.4x20.86+0.3944x23.18+0.192x25.5+2.93x10.43+0.634x20.86=323.06t·m钢管桩间用导管架连接,钢管截面摸量w=w1+A·(3/2)2=0.06553m3Ó=M/W=49.3MPa≤[Ó]=160Mpa(二)、施工栈桥上部结构计算施工荷载(集中荷载):80t 贝雷及横梁(均布荷载)1t/m1、贝雷绗片计算计算简式:集中荷载跨中最大弯距M1=306.72t·m均布荷载跨中最大弯距M2=25.92t·mM=M1+M2=332.64t·m6片贝雷绗片承受弯距6X72=432t·mM<432t·m2、钢管桩分配梁计算①I45分配梁计算:单根跨中最大弯距M=18.75 t·mI45截面摸量W=1430X103 m m3Ó=M/W=131.1MPa≤[Ó]=160Mpa②贝雷I32分配梁计算50T履带吊车履带长4.69米,宽0.76米,顺栈桥方向作用于2根分配梁上。

施工便桥(170M跨吊桥)计算书

施工便桥(170M跨吊桥)计算书

施工便桥(170M跨吊桥)设计计算书施工便桥(170M跨吊桥)设计计算资料一、基础资料1、该便桥设计为单跨跨径为170M,两锚跨分别为60M和55.2M的单跨简易吊桥。

桥面宽4.5M,(包括人行道)2、主承重索:上下游各为8Φ56MM,单根破断拉力为245T的钢丝绳。

钢丝绳结构为8T*36WS+IWR3、骑马采用南宁永和大桥及湘潭湘江四大桥用四门缆索吊装用骑马,墙板采用δ=16mm厚钢板,上下轴直径分别为Φ60mm和Φ100mm。

跑车轮采用Φ320mm*76mm.每个骑马之间的水平间距为5m.4、骑马下的吊带及骑马之间的距离限位装置均采用δ=10mm厚钢板。

5、钢横梁采用I63B工字钢,在端头100CM范围内,两侧加焊10mm厚加劲钢板,与钢吊带联接的耳板采用δ=30mm厚钢板。

6、钢纵梁采用6I45B工字钢,间距为90cm。

7、分配梁采用I14b型槽钢,间距为25cm 。

8、桥面采用δ=10mm厚防滑花纹钢板,宽度考虑3*152cm。

9、桥面栏杆采用Φ48mm*2.5mm钢管,栏杆高度为1.2m,立柱间距2.5m,水平联接设两道,间距为60cm.二、荷载1、桥面恒载:Q1(δ=10mm厚钢板)Q1=(170-2.5*2)*1.52*0.01*7.85*3=59.1T2、栏杆恒载:Q2(Φ48mm*2.5mm钢管)Q2=(170-2.5*2)*4*2.81+1.2*2.81*67*2=2306Kg=2.3T3、分配梁恒载 Q3(I14b槽钢)Q3=0.0617*6*661=66.2T4、钢纵梁恒载Q4(I45b工字钢)Q4=0.0874*6*6*33=103.8T5、钢横梁下翼缘辅助联接恒载Q5(3I20b工字钢+[20b槽钢)Q5=(31.1*5*3+25.8*4.6)*33=19311Kg=19.3T6、钢横梁恒载Q6(I63b工字钢)此恒载由钢横梁自身恒载Q61和两端头1m范围内的加劲板和耳板横载Q611组成。

深水桥梁施工中的钢吊箱设计计算书.doc

深水桥梁施工中的钢吊箱设计计算书.doc

深水桥梁施工中的钢吊箱设计计算书一、设计条件1、钢吊箱顶标高+437.341m2、钢吊箱底标高+428.841m3、承台底标高+430.341m4、承台顶标高+434.341m5、施工最高水位+437.50m6、施工一般水位+436.00m7、浇筑第一层承台时水位+436.00m8、抽水水位+437.00m9、施工最大流速+0.0m/s10、施工时风速+0.0m/s11、第一节高度 5.0m12、第二节高度 3.5m13、封底砼C25干容重24kN/m314、护筒顶标高+438.00m15、护筒直径 2.2m16、承台直径D=20m17、护筒与封底砼间的粘结力f=100kN/m2二、设计依据1、《港口工程荷载规范》(JTJ 215-98)2、《港口工程钢结构设计规范》(JTJ 283-99)3、《钢结构设计规范》(GB 50017-2003)4、《港口工程混凝土结构设计规范》(JTJ 267-98)5、《混凝土结构设计规范》(GB 50010-2002)6、《水利水电工程钢闸门设计规范》(DL/T 5039—95)三、钢吊箱基本尺寸及布置1、基本尺寸:壁体厚度: 1.0m 壁体外周长: 69.429m 壁体内周长: 63.146m 吊箱外面积: 383.596m 2 吊箱内面积: 317.309m 2 夹壁内面积: 66.287m 2护筒的总面积: 22225.722.24)(19m =⨯⨯π个护筒的总周长: m 319.1312.2)(19=⨯⨯π个 2、吊箱重量: a.第一节自重: 壁体高度:5.0m壁体自重:58.5t底板自重:63.9t连通器:0.7t拉压杆:20.1t第一节总重:143.2tb.第二节自重:壁体高度:3.5m壁体自重:38.2t第二节总重:38.2tc.吊箱结构布置图如下:A四、钢吊箱下沉计算1、第一节下沉吊箱第一节下沉时,夹壁排水面积2225.72m A =,自浮时下沉1h ,则 底板自重排开水的体积为36398.1478.5V m == 1143.272.2258.14h =⨯+得1 1.9h m = 干舷3.1m2、第二节接高拼装后下沉 下沉2h ,则2143.238.272.2258.14h +=⨯+得2 2.40h m = 干舷2.60m 为保证1.20m 干舷,须注水1.40m 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、结构承载力分析、计算
1、验算说明
桥面宽度:净2.5+2×0.25米。

2、验算程序
采用Midas civil2006进行结构验算。

3、验算荷载等级
满布人群荷载3.5kN/m2。

4、验算原始数据
主缆:
主缆采用Φ44(6×41WS+IWR)高强度镀锌钢丝绳,选用钢芯钢丝绳,单根钢丝绳的最小破断拉力为1220kN,钢丝绳公称抗拉强度为1770MPa,每股主缆采用3根钢丝绳,主缆的中心距为3.3m。

两侧为无悬吊荷载的后缆,主跨为100米,垂度为10m,垂跨比为1/10。

吊杆:
吊杆采用Φ32的HRB335钢筋,上端用索夹与主缆相连,下端则采用专门加工的吊夹与桥面系的横梁联结。

吊杆的纵向间距为2.5m。

桥面系:
横梁采用工字钢—I16,中间纵梁采用2根工字钢—I14,两边采用2根槽钢—[14a,纵梁支撑在横梁上,并在纵梁上铺设5mm厚的钢板。

5、计算模型建立及计算结果
5.1 计算模型
模型如图1。

主缆单元:1~42 82~123
吊杆单元:43~81 124~162
5.2 截面验算及荷载组合
验算部位:主缆、吊杆、桥面系(横梁和纵梁)
验算荷载内容为桥梁运营阶段主缆、吊杆及桥面系的受力
状态。

(1)承载能力极限状态下各种荷载组合如下:
基本组合:按《公路桥涵设计通用规范》(JTG D60-2004)
第4.1.6条的规定;
(2)正常使用极限状态下各种荷载组合如下:
长期效应组合:按《公路桥涵设计通用规范》(JTG
D60-2004)第4.1.7条的规定;
短期效应组合:按《公路桥涵设计通用规范》(JTG
D60-2004)第4.1.7条的规定;
5.3 计算结果
5.3.1最不利位置
主缆拉力最大位置:塔顶处。

吊杆拉应力最大处:跨中。

5.3.2强度计算(表一、表二、表三)
表1 主缆验算表
表2 吊杆验算表
表3 桥面系强度验算表
注:
1.主缆的最小破断拉力取自《重要用途钢丝绳》(GB
8918-2006)。

2.主缆安全载重系数取自《公路桥涵设计手册—基本资料》。

3.吊杆的抗拉强度设计值取自《公路钢筋混凝土及预应力混
凝土桥涵设计规范》(JTG D62-2004)。

4.桥面系强度的轴向应力容许值取自《公路桥涵钢结构及木
结构设计规范》(JTJ 025-86)中表1.2.5。

由表1、表2和表3可以看出:主缆、吊杆及其桥面系的承载能
力均满足受力要求。

5.3.3位移验算
5.3.3.1 满布人群荷载作用下跨中竖向位移验算:
《公路桥涵钢结构及木结构设计规范》(JTJ 025-86)第1.1.5条规定,汽车荷载作用下所引起的竖向挠度,不应超过
L 4001,即为mm 250100000400
1=⨯。

而满布人群荷载作用下产生的跨中最大竖向位移为f =232mm<250mm ,小于规范值。

5.3.3.2 满布人群荷载作用下1/4跨竖向位移验算:
《公路桥涵钢结构及木结构设计规范》(JTJ 025-86)第1.1.5条规定,汽车荷载作用下所引起的竖向挠度,不应超过
L 4001,即为mm 2501000004001=⨯。

而满布人群荷载作用下产生的1/4跨最大
竖向位移为f =132mm<250mm ,小于规范值。

所以位移满足规范要求。

注:按照《公路桥涵钢结构及木结构设计规范》(JTJ 025-86)第1.5.34条规定,桥梁横向稳定性满足要求。

二、输出分析结果
[选择的荷载组合] 荷载组合荷载组合内容
-------------------------------------------------------
基本组合 1.2 ×自重 + 1.4×LC
短期效应组合 1.0 ×自重 + 1.0 × LC
长期效应组合 1.0 ×自重 + 0.4 × LC
其中LC为人群荷载工况,人群荷载标准值为3.5kN/m2(满布)
______________________________________________________
模型单元图和具体内力、应力图见图2~12,
并附内力和应力数据。

二、锚碇抗滑稳定性验算
因两岸锚碇形式一样,以新棘村岸进行验算。

经计算在最不利组合下,钢丝绳的最大拉力为1001.3kN ,新棘村岸钢丝绳的最大拉力为kN T 6.200223.1001=⨯=,如图所示,
kN G 346224)53.375)5.48.2(2
1(=⨯⨯+⨯⨯+⨯= kN G 84.110732.024)53.375)5.48.2(2
1(18sin =⨯⨯⨯+⨯⨯+⨯=︒; kN G N 9.328895.0346218cos =⨯==︒;
偏安全地取摩擦系数5.0=μ 安全系数3.137.16
.200284.11079.32885.018sin >=+⨯=+=︒
T G N K μ 其中安全系数3.1=K 取自《公路桥涵地基与基础设计规范》(JTG D63—2007)
经计算两岸锚碇抗滑稳定性满足规范要求。

三、拉杆强度验算
经计算,最不利组合下,单侧钢丝绳(3根)的最大拉力为1001.3kN ,一根钢丝绳的拉力为:kN T 8.33333.1001==
此人行索桥采用简易粗钢筋作为拉杆,直径为HRB335的Φ50,极限承载拉力kN T 85.5492802525142.3=⨯⨯⨯='。

由于拉杆需要弯折,考虑10%的强度折减后拉杆的实际极限承载拉力kN T 87.4949.085.549=⨯=''. 拉杆的实际安全系数为48.18
.33387.494==''=T T k 。

所以拉杆强度满足要求。

四、索塔和塔墩基础计算
经计算,此索塔主要受压应力,最大压应力为kPa 794,C30混凝土的抗压设计强度为13.8MPa 。

所以索塔应力满足规范要求。

塔墩基础最大压应力为kPa 253,基础置于弱风化灰岩中,承载力为MPa 9.1。

所以基础应力满足要求。

相关文档
最新文档