去耦电容的选择、容值计算和布局布线

合集下载

PCB布板布线规则

PCB布板布线规则

细述PCB板布局布线基本规则PCB又被称为印刷电路板(PrintedCircuitBoard),它可以实现电子元器件间的线路连接和功能实现,也是电源电路设计中重要的组成部分。

今天就将以本文来介绍PCB板布局布线的基本规则。

、元件布局基本规则1.按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;2.定位孔、标准孔等非安装孔周围1.27mm内不得贴装元、器件,螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴装元器件;3.卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;4.元器件的外侧距板边的距离为5mm;5.贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;6.金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。

定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;7.发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;8.电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。

特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。

电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;9.其它元器件的布置:所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm);11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。

重要信号线不准从插座脚间穿过;12、贴片单边对齐,字符方向一致,封装方向一致;13、有极性的器件在以同一板上的极性标示方向尽量保持一致。

二、元件布线规则1、画定布线区域距PCB板边W1mm的区域内,以及安装孔周围1mm内,禁止布线;2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu入出线不应低于10mil(或8mil);线间距不低于10mil;3、正常过孔不低于30mil;4、双列直插:焊盘60mil,孔径40mil;1/4W电阻:51*55mil(0805表贴);直插时焊盘62mil,孔径42mil;无极电容:51*55mil(0805表贴);直插时焊盘50mil,孔径28mil;5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。

芯片设计中的电源完整性优化方案有哪些

芯片设计中的电源完整性优化方案有哪些

芯片设计中的电源完整性优化方案有哪些在当今的科技领域,芯片作为核心组件,其性能和稳定性对于各种电子设备的运行至关重要。

而在芯片设计中,电源完整性是一个关键的考虑因素。

电源完整性不佳可能导致信号失真、噪声增加、性能下降甚至芯片失效等问题。

那么,为了确保芯片的正常运行,有哪些有效的电源完整性优化方案呢?首先,合理的电源分配网络(PDN)设计是基础。

PDN 就像是芯片的“血管”,负责为各个部分输送稳定的电源。

在设计 PDN 时,需要考虑到电流的需求、电阻和电感的影响。

通过使用多层板和大面积的电源平面,可以减小电阻和电感,从而降低电源线上的电压降和噪声。

同时,合理规划电源引脚的布局,使得电流能够均匀地分布到芯片的各个区域。

其次,去耦电容的选择和布局也非常重要。

去耦电容就像是电源的“蓄水池”,能够在电流需求突然变化时迅速提供能量,从而稳定电源电压。

在选择去耦电容时,需要考虑电容的容量、等效串联电阻(ESR)和等效串联电感(ESL)等参数。

通常,会使用多种不同容量的电容组合,以覆盖不同频率范围的噪声。

在布局去耦电容时,应尽量靠近电源引脚和芯片的敏感区域,以减少寄生电感的影响。

芯片封装的设计也对电源完整性有着显著的影响。

优质的封装可以降低电感和电阻,提高电源的传输效率。

例如,采用倒装芯片封装技术,可以缩短芯片与封装之间的连接路径,从而减小电感。

此外,优化封装的引脚布局和电源引脚的数量,也有助于改善电源的分布。

在芯片内部,电源门控技术是一种有效的节能和优化电源完整性的方法。

通过在不需要某些模块工作时关闭其电源,可以减少静态功耗,同时降低电源噪声的影响。

这种技术需要在设计时仔细考虑电源开关的控制逻辑和时序,以避免出现错误的操作。

电源网格的布线也是一个关键环节。

布线的宽度和间距需要根据电流大小进行合理设计,以确保足够的电流承载能力。

同时,要尽量避免直角转弯和过长的走线,以减小电感的影响。

使用先进的布线工具和算法,可以帮助优化电源网格的布线。

旁路电容 去耦电容

旁路电容 去耦电容

旁路电容去耦电容旁路电容、去耦电容是电子电路中常见的元件,它们在保证电路稳定性和提高信号质量方面起到了重要作用。

本文将详细介绍旁路电容和去耦电容的定义、作用、选择和使用注意事项。

一、旁路电容旁路电容(Bypass Capacitor)是指将电容器连接在某个电路或器件的两个节点上,起到稳定电压和滤波的作用。

旁路电容通常被连接在电源和地之间,用于阻止高频噪声通过电源线进入电路,保持电路的稳定工作。

旁路电容的容值一般较大,通常在几十微法到几百微法之间。

旁路电容的作用主要有两个方面:一是通过对高频信号的短路作用,将高频噪声引流至地,使电路的工作频率范围更加纯净;二是通过对低频信号的开路作用,使电源电压更加稳定,提供一个低阻抗的电源供电路径,减小电源线的电压波动。

在选择旁路电容时,需要根据电路的工作频率范围和所需的电容值来确定。

一般来说,电容值越大,旁路效果越好;而工作频率越高,电容值则需要相应减小。

此外,还应选择具有良好高频特性和低ESR(Equivalent Series Resistance)的电容器,以保证电路的性能。

二、去耦电容去耦电容(Decoupling Capacitor)是指将电容器连接在电源和地之间,用于平衡电源电压和提供瞬态电流的元件。

去耦电容主要用于提供电流给电路中的各个部分,以满足电路对瞬态电流的需求,避免电源线上的电压波动对电路的干扰。

去耦电容的作用主要有两个方面:一是通过对高频信号的短路作用,使高频噪声引流至地,减小电源线上的噪声干扰;二是通过对低频信号的开路作用,提供电流给电路中的各个部分,保持电源电压的稳定性。

在选择去耦电容时,需要考虑电路的工作频率范围、电容值和ESR 等因素。

一般来说,去耦电容的电容值应根据电路的瞬态电流需求来确定,电容值越大,能提供的瞬态电流越大;而ESR越低,能提供的瞬态电流响应越快。

因此,在实际应用中,需要根据电路的需求综合考虑这些因素,选择合适的去耦电容。

去耦电容的选取

去耦电容的选取

高速电路板上使用最多的是什么东西?去耦电容!关键词:去耦(decouple)、旁路(Bypass)、等效串联电感(ESL)、等效串联电阻(ESR)、高速电路设计、电源完整性(PI)、信号完整性(SI)高手和前辈们总是告诉我们这样的经验法则:“在电路板的电源接入端放置一个1~10μF的电容,滤除低频噪声;在电路板上每个器件的电源与地线之间放置一个0.01~0.1μF的电容,滤除高频噪声。

”在书店里能够得到的大多数的高速PCB设计、高速数字电路设计的经典教程中也不厌其烦的引用该首选法则(老外俗称Rule of Thumb)。

但是为什么要这样使用呢?各位看官,如果你是电路设计高手,你可以去干点别的更重要的事情了,因为以下的内容仅是针对我等入门级甚至是门外级菜鸟。

做电路的人都知道需要在芯片附近放一些小电容,至于放多大?放多少?怎么放?将该问题讲清除的文章很多,只是比较零散的分布于一些前辈的大作中。

鄙人试着采用拾人牙慧的方法将几个问题放在一起讨论,希望能加深对该问题的理解;如果很不幸,这些对你的学习和工作正好稍有帮助,那我不胜荣幸的屁颠屁颠的了。

首先就我的理解介绍两个常用的简单概念。

什么是旁路?旁路(Bypass),是指给信号中的某些有害部分提供一条低阻抗的通路。

电源中高频干扰是典型的无用成分,需要将其在进入目标芯片之前提前干掉,一般我们采用电容到达该目的。

用于该目的的电容就是所谓的旁路电容(Bypass Capacitor),它利用了电容的频率阻抗特性(理想电容的频率特性随频率的升高,阻抗降低,这个地球人都知道),可以看出旁路电容主要针对高频干扰(高是相对的,一般认为20MHz以上为高频干扰,20MHz以下为低频纹波)。

什么是退耦?退耦(Decouple),最早用于多级电路中,为保证前后级间传递信号而不互相影响各级静态工作点的而采取的措施。

在电源中退耦表示,当芯片内部进行开关动作或输出发生变化时,需要瞬时从电源线上抽取较大电流,该瞬时的大电流可能导致电源线上电压的降低,从而引起对自身和其他器件的干扰。

正负电源间去耦电容位置-概述说明以及解释

正负电源间去耦电容位置-概述说明以及解释

正负电源间去耦电容位置-概述说明以及解释1.引言1.1 概述概述部分的内容可以从以下角度进行描述:正负电源间去耦电容位置是电子电路设计中一个非常重要的问题。

在电子设备中,正负电源提供电流和稳定的电压,而去耦电容则起到平滑和过滤电压的作用。

去耦电容的位置选择直接关系到电路的稳定性和性能的提升。

本文将对正负电源间去耦电容位置进行详细的讨论和探究。

首先,我们将介绍正负电源的基本概念和作用,以便读者能够更好地理解和把握去耦电容的重要性。

其次,我们将详细探讨正电源去耦电容的位置选择。

根据电路的结构和要求,我们将提出一些关键要点,包括但不限于去耦电容与正电源之间的距离、去耦电容与负载之间的关系等。

这些要点将有助于读者在实际应用中合理选择去耦电容的位置,以提高电路的稳定性和性能。

接着,我们将研究负电源去耦电容的位置选择。

与正电源类似,负电源去耦电容的位置也直接影响电路的性能。

我们将探讨一些关键要点,例如负电源去耦电容与地/负载之间的连接方式、位置选择的考虑因素等。

通过深入分析和研究,读者将能够准确选择负电源去耦电容的位置,以优化电路性能和提高稳定性。

最后,在结论部分,我们将总结正负电源去耦电容位置的重要性。

通过本文的阐述,读者将更好地理解去耦电容的作用和位置选择的原则,并明确其在电路设计中的必要性。

同时,我们也将提出一些进一步研究的方向,以促进这一领域的发展和提高电路设计的水平。

通过对正负电源间去耦电容位置的详细讨论,我们旨在帮助读者深入理解这一问题的关键点,并能够在实际应用中准确选择去耦电容的位置,以提高电路的稳定性和性能。

1.2 文章结构本文将分为引言、正文和结论三个部分来探讨正负电源间去耦电容位置的问题。

引言部分将对本文的主题进行概述,介绍正负电源去耦电容在电子设备中的作用,并说明文章的目的。

正文部分将重点讨论正电源去耦电容的位置和负电源去耦电容的位置。

对于正电源去耦电容位置,我们将提出一些关键要点,包括其作用、放置位置的选择以及相关的注意事项等。

电力电子技术中的电容选型及容值计算指南

电力电子技术中的电容选型及容值计算指南

电力电子技术中的电容选型及容值计算指南在电力电子技术中,电容是一种重要的元件,广泛应用于电源、逆变器、变频器等电路中。

正确选择和计算电容的容值,对于电路性能和稳定性非常关键。

本篇文章将介绍电力电子技术中电容的选型原则以及容值计算的指导方法。

一. 电容选型原则1. 工作电压 (Rated Voltage)在选择电容时,需要考虑电路中的最大工作电压。

工作电压应大于或等于电路中最大电压幅值的峰-峰值。

如果电容的工作电压过低,则容易导致电容击穿,从而引发故障。

2. 脉冲功率 (Pulse Power)对于一些需要传输脉冲功率的电路,比如在电动机驱动器中,电容必须具有足够大的脉冲功率承受能力。

因此,在选型时需要查阅电容的数据手册,确保其能够满足所需的脉冲功率要求。

3. 电容损耗 (Dielectric Losses)电容的损耗正比于工作频率和电容的介电损耗因子。

在高频应用中,为了减小能效损耗,应选择具有较低损耗因子的电容。

同时还需要考虑电容的温升和工作寿命。

4. 尺寸和体积 (Size and Volume)尺寸和体积是电容选型时需要考虑的另一个重要因素。

一般来说,选择具有更高介电常数的电容,可以减小其体积。

同时还需要考虑电容的容量,以满足电路中的电能存储需求。

二. 电容容值计算方法电容的容值选择取决于电路的需求和设计参数。

以下是一些电容容值计算的常用方法:1. 低通滤波器 (Low-Pass Filters)在低通滤波器中,电容的选择取决于滤波器的截止频率以及负载阻抗。

一般来说,电容的容值可以通过以下公式计算:C = 1 / (2πfR)其中,C为所需电容的容值,f为截止频率,R为负载阻抗。

2. 直流链接和绕组 (DC Link and Windings)对于直流链接和绕组,电容的容值需要根据电压涟漪和电流涟漪来选择。

一般来说,电容的容值可以通过以下公式计算:C = ΔI / (ΔV × f)其中,C为所需电容的容值,ΔI为电流涟漪的最大值,ΔV为电压涟漪的最大值,f为涟漪频率。

去耦电容的选择

去耦电容的选择

去耦电容的选择在高速时钟电路中,尤其要注意元件的RF去耦问题。

究其原因,主要是因为元件会把一部分能量耦合到电源/地系统之中。

这些能量以共模或差模RF的形式传播到其他部件中。

陶瓷片电容需要比时钟电路要求的自激频率更大的频率,这样可选择一个自激频率在10~30 MHz,边沿速率是2 ns或者更小的电容。

同理可知,由于许多PCB的自激范围是200~400 MHz,当把PCB 结构看做一个大电容时,可以选用适当的去耦电容,增强EMI的抑制。

表5-1和表5-2所示给出了电容选择方面有用的数据。

从这两个表中,可以知道由于引线中不可避免存在较小电感,表面安装元件具有更高的(大约两个数量级)自激频率。

铝电解电容不适用于高频去耦,主要用于电源或电力系统的滤波。

由实际经验可知,选择不同去耦电容的依据,通常是根据时钟或处理器的第一谐波来选择。

但是,町电流是由3次或5次谐波产生的,此时就应该考虑这些谐波,采用较大的分立电容去耦。

在达到200~300 MHz以上频率的电流工作状态后,0.1μF 与0.01μF并联的去耦电容由于感性太强,转换速度缓慢,不能提供满足需要的充电电流。

在PCB上放置元件时,必须提供对高频RF的去耦。

必须确保所选去耦电容能满足可能的要求。

考虑自激频率的时候需要考虑对重要谐波的抑制,一般考虑到时钟的5次谐波。

以上这些要点对高速时钟电路尤为重要。

对去耦电容容抗的计算是选择去耦电容的基础,表示为其中,Xc是容抗(Ω);f是谐振频率(Hz);C为电容大小。

选择去耦电容的关键是计算所用电容的容值大小,这里向大家介绍常在高速电路里使用的波形法。

如图1所示,逻辑状态由0转换到1,实际的时钟边沿速率发生了变化。

虽然切换位置仍然保持不变,但t1、t2,已改变,这是因为电容充、放电使信号边沿变化变缓的原因。

图1 时钟信号的容性影响利用表的公式可以计算图1中的时钟边沿变化率。

在设计时要注意的是,必须确保最慢的边沿变化率不会影响其工作性能。

去耦电容的容值计算和布局布线

去耦电容的容值计算和布局布线

去耦电容的容值计算和布局布线去耦电容是一种常见的电子电路组件,用来消除电源电压中的小幅度变化和高频噪声,保持电路的稳定性和准确性。

去耦电容的容值计算和布局布线对于电子电路的设计和实施非常重要。

在本文中,我们将详细介绍去耦电容的容值计算和布局布线的一些基本原则和步骤。

一、容值计算:容值计算是确定去耦电容的容量大小的过程。

容值的选择取决于被去耦电路的功耗和工作频率。

下面是一些常见的容值计算方法:1.基本原则:根据供电电路的功耗和工作频率,选择一个合适的容值范围。

一般来说,容值越大,电路的抗干扰能力越强。

但是过大的容值可能导致电容器体积过大、成本上升等问题。

2.能量平衡法:通过估计电路的能量变化情况,选择一个合适的容值范围。

根据传输速率和功耗等参数,计算出电路在单位时间内的能量变化量,然后根据能量变化量和容量大小的关系来确定一个合适的容值范围。

3.经验法则:通常情况下,可以参考一些经验法则来选择去耦电容的容值。

例如,对于数字电路,可以使用供电电流的10%作为参考容值;对于模拟电路,可以使用供电电流的1%作为参考容值。

二、布局布线:布局布线是指去耦电容在电路板上的位置和连接方式。

正确的布局布线可以提高电路的抗干扰能力和信号完整性。

1.位置选择:尽量将去耦电容放置在供电接口附近,以最大限度地去除电源电压中的噪声。

可以通过模拟电路和数字电路分区的方式来布局。

2.布线方式:一般来说,去耦电容与供电引脚之间需要短而粗的连接线路,以降低电阻和电感。

可以使用直接连接方式或者通过PCB布线来实现。

在进行PCB布线时,尽量缩短去耦电容与电源引脚之间的距离,降低电阻和电感。

3.接地方式:去耦电容的一端应该与地线相连,形成电路的回路。

可以选择直接与普通电路板的地线相连,或者单独设计一个地线平面来连接。

4.绕线方式:在进行布线时,尽量避免与其他电路、信号线和高频线路交叉,以降低串扰和干扰。

5.EMI控制:如果需要进一步降低电磁干扰(EMI),可以在电路板上使用屏蔽设备或者滤波电路来控制电磁干扰。

去耦电容选择原则

去耦电容选择原则

去耦电容选择原则
1. 去耦电容的容值应选择足够大,以提供足够的电流响应能力。

一般来说,容值在10uF或以上是比较常见的选择。

2. 选择电容器时,应注意其最大工作电压是否符合电路要求,以避免电容器过压损坏。

3. 需要注意电容器的尺寸和重量,以确保其可以适应所设计的电路板和整体产品结构。

4. 可以考虑使用低阻抗的电解电容器(如固态铝电解电容器)来减小电路中的串扰和噪声。

5. 根据电路的特性,可以选择使用不同类型的电容器,如铝电解电容器、固态铝电解电容器、陶瓷电容器等。

6. 在选择电解电容器时,应注意其额定寿命和温度范围是否符合电路的要求。

7. 对于需要高频去耦的电路,可以选择使用陶瓷电容器,因为其具有较低的ESR(等效串联电阻)和较好的高频性能。

8. 可以根据电路的需求选择使用多个并联的去耦电容器,以提高去耦效果和系统稳定性。

由多个电组成的去耦旁路电路,电容怎么布局摆放,先大后小还是先小后大?

由多个电组成的去耦旁路电路,电容怎么布局摆放,先大后小还是先小后大?

由多个电组成的去耦旁路电路,电容怎么布局摆放,先大后小还是先小后大?
对于噪声敏感的IC电路,为了达到更好的滤波效果,通常会选择使用多个不同容值的电容并联方式,以实现更宽的滤波频率,如在IC电源输入端用1μF、100nF和10nF并联可以实现更好的滤波效果。

那现在问题来了,这几个不同规格的电容在PCB布局时该怎么摆,电源路径是先经大电容然后到小电容再进入IC,还是先经过小电容再经过大电容然后输入IC。

我们知道,在实际应用中,电容不仅仅是理想的电容C,还具有等效串联电阻ESR及等效串联电感ESL,如下图所示为实际的电容器的简化模型:
在高速电路中使用电容需要关注一个重要的特性指标为电容器的自谐振频率,电容自谐振频率公式表示为:
自谐振频率点是区分电容器是容性还是感性的分界点,低于谐振频率时电容表现为电容特性,高于谐振频率是电容表现为电感特性,只有在自谐振频率点附近电容阻抗较低,因此,实际去耦电容都有一定的工作频率范围,只有在其自谐振频率点附近频段内,电容才具有很好的去耦作用,使用电容器进行电源去耦时
需要特别注意这一点。

电容的特性阻抗可表示为:
可见大电容(1uF)的自谐振点低于小电容(10nF),相应的,大电容对安装的PCB电路板上产生的寄生等效串联电感ESL的敏感度小于小电容。

SO,小电容应该尽量靠近IC的电源引脚摆放,大电容的摆放位置相对宽松一些,但都应该尽量靠近IC摆放,不能离IC距离太远,超过其去耦半径,便会失去去耦作用。

以上情况适用于未使用电源平面的情况,对于高速电路电路,一般内层会有完整的电源及地平面,这时去耦电容及IC的电源地引脚直接过孔via打到电源、地平面即可,不需用导线连接起来。

耦合电容和分布电容的选用

耦合电容和分布电容的选用

耦合电容和分布电容的选用
耦合电容和分布电容的选用
 从电路来说,总是存在驱动的源和被驱动的负载。

如果负载电容比较大,驱动电路要
 把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱
 动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,
 会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作。

 这就是耦合。

 去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。

 旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪
 声提高一条低阻抗泄防途径。

高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u
 等,而去耦合电容一般比较大,是10u 或者更大,依据电路中分布参数,以及驱动电流的变
 化大小来确定。

 旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,
 防止干扰信号返回电源。

这应该是他们的本质区别。

4层板去耦电容放置指南

4层板去耦电容放置指南

4层板去耦电容放置指南
1. 电源层:在四层板中,通常会有一个专门的电源层。

将去耦电容尽可能靠近芯片的电源引脚放置,可以提供最短的电流路径和最小的阻抗。

这样可以有效地降低电源噪声并提供稳定的电源供应。

2. 地层:地层用于提供信号返回路径和屏蔽。

将去耦电容放置在地层上,可以提供良好的接地,减少信号干扰。

确保电容的负极连接到地层,以提高去耦效果。

3. 对称放置:对于对称布局的电路,尽量将去耦电容对称放置在芯片的两侧。

这样可以保持信号路径的对称性,减少信号失真和反射。

4. 靠近时钟源:如果电路板上存在时钟信号源,将去耦电容放置在时钟源附近可以减少时钟信号的噪声和抖动。

这样可以提高系统的稳定性和可靠性。

5. 避免走线穿过电容:尽量避免在去耦电容上方或下方走线,因为走线会增加电容的寄生电感,降低去耦效果。

如果必须走线,尽量保持走线短而粗。

6. 分组放置:根据不同的电源域或功能模块,将去耦电容分组放置。

这样可以方便管理和维护,同时减少不同电源域之间的相互干扰。

7. 使用多个电容值:使用多个不同容值的去耦电容可以在不同频率范围内提供更好的去耦效果。

一般选择几个不同容值的电容,如 0.1uF、1uF 和 10uF 等。

总之,合理的去耦电容放置可以提高电路板的性能和可靠性。

在设计过程中,应根据具体的电路需求和布局约束来优化电容的放置。

芯片电源管脚的去耦电容究竟要用多大的?

芯片电源管脚的去耦电容究竟要用多大的?

通常情况下,芯片电源管脚都会有两个电容,一个俗称大电容,另一个俗称小电容。

大电容学名储能电容,因为有存储电荷的能力,所以在逻辑器件状态变化时大电容一般会提供一个瞬态电流,减小电源瞬变及跌落,也就是电源完整性,即△V=Ldi/dt;当然,一般情况下并不是IC每个电源管脚都会有一个大电容,但IC对角建议各加一个大电容;小电容如0.1uF电容通常为芯片的去耦电容,即滤除电源上的高频噪声,因为芯片集成度高,那么芯片内部逻辑器件快速切换或时钟的高频噪声可能耦合到电源上,而整机的电源是相互连通的,所以就会导致电源的噪声顺着电源线或耦合到其它信号电缆上逃逸出机箱,导致电缆的传导与辐射问题,因而电源一定要干净。

目前业界芯片电源管脚去耦电容基本以0.1uF 为主,这在前些年芯片集成度低、速率低时是没有问题的,但以目前芯片集成度和速率来看,这是不合适的,究竟选择多大的去耦电容(与芯片内部逻辑器件转换速率及时钟频率等等都有关系),虽然很难把握,但是有一点是可以肯定的,EMC问题90%与互连电缆有关,因为设备互连电缆长度基本在0.5m-4m之间,根据波长与频率的关系,所以认证测试时互连电缆的辐射基本在230MHz之下,更高频率为机箱缝隙的泄露,所以通常情况下对强干扰器件和敏感器件如时钟芯片、DDR、晶体、晶振、锁相环等等还会再加上1000pF电容(谐振频率160MHz左右)和0.1uF电容并联,用以拓展滤波频段,滤除电源上的高频噪声,后期哪怕不用,因为预留了焊盘,因此后期认证测试时如果为电源引起的互连电缆传导与辐射可以尝试使用1000pF电容加以解决。

实际设计或整改时,因为电容受引线电感的影响,如引脚长度,过孔,PCB布线等,因此,实际电容会发生串联谐振,根据串联谐振频率公式计算选择电容时有相当的麻烦及不确定性,工程上的经验参考如下表所示:数值0.25in引线表面安装(0805)1.0uF2.6 MHz 5 MHz0.1uF 8.2 MHz 16 MHz0.01uF 26 MHz 50 MHz0.001uF 82 MHz 159 MHz500pF 116 MHz 225 MHz100pF 260 MHz 503 MHz10pF 821 MHz 1.6 GHz以上是工程经验的总结,实际整改或设计时可以直接参考这个表格,将大大的提高我们解决问题的能力和工作效率。

EMC设计四大技巧之滤波设计、接地设计、屏蔽设计和PCB布局布线详解

EMC设计四大技巧之滤波设计、接地设计、屏蔽设计和PCB布局布线详解

EMC设计四大技巧之滤波设计、接地设计、屏蔽设计和PCB布局布线详解电磁干扰的主要方式是传导干扰、辐射干扰、共阻抗耦合和感应耦合。

对这几种途径产生的干扰我们应采用的相应对策:传导采取滤波,辐射干扰采用屏蔽和接地等措施,就能够大大提高产品的抵抗电磁干扰的能力,也可以有效的降低对外界的电磁干扰。

本文从滤波设计、接地设计、屏蔽设计和PCB布局布线技巧四个角度,介绍EMC的设计技巧。

一、EMC滤波设计技巧EMC设计中的滤波器通常指由L,C构成的低通滤波器。

滤波器结构的选择是由"最大不匹配原则"决定的。

即在任何滤波器中,电容两端存在高阻抗,电感两端存在低阻抗。

图1是利用最大不匹配原则得到的滤波器的结构与ZS和ZL的配合关系,每种情形给出了2种结构及相应的衰减斜率(n表示滤波器中电容元件和电感元件的总数)。

其中:l和r分别为引线的长度和半径。

寄生电感会与电容产生串联谐振,即自谐振,在自谐振频率fo处,去耦电容呈现的阻抗最小,去耦效果最好。

但对频率f高于f/o的噪声成份,去耦电容呈电感性,阻抗随频率的升高而变大,使去耦或旁路作用大大下降。

实践中,应根据噪声的最高频率fmax来选择去耦电容的自谐振频率f0,最佳取值为fo=fmax。

去耦电容容量的选择在数字系统中,去耦电容的容量通常按下式估算:二、EMC接地设计接地是最有效的抑制骚扰源的方法,可解决50%的EMC问题。

系统基准地与大地相连,可抑制电磁骚扰。

外壳金属件直接接大地,还可以提供静电电荷的泄漏通路,防止静电积累。

在地线设计中应注意以下几点:(1)正确选择单点接地与多点接地在低频电路中,信号的工作频率小于1MHz,它的布线和器件间的电感影响较小,而接地电路形成的环流对干扰影响较大,因而应采用单点接地。

当信号工作频率大于10MHz 时,地线阻抗变得很大,此时应尽量降低地线阻抗,应采用就近多点接地。

当工作频率在1~10MHz时,如果采用一点接地,其地线长度不应超过波长的1/20,否则应采用多点接地法。

去耦电容摆放规则

去耦电容摆放规则

去耦电容摆放规则
去耦电容的摆放规则主要包括以下几点:
1. 配置位置:去耦电容应尽量靠近目标芯片的电源引脚,这样可以最大限度地缩短电流路径,减少所经过的电阻和电感,提供更好的补偿效果。

2. 大小选择:去耦电容的大小应根据目标芯片的需求和工作频率来选择。

一般而言,较大的电容值能够提供更好的瞬态补偿效果。

常见的去耦电容值通常在几十微法(uF)到几百微法(uF)范围内。

3. 多电容并联:针对不同频率范围的干扰,可以配置多个电容并联来实现更好的滤波效果。

例如,可以同时配置一个较小容值的陶瓷电容和一个较大容值的电解电容,以满足高频和低频噪声的补偿需求。

4. 电容的连接:电容的连接应确保电流的流畅性和稳定性,应尽量避免在电容器上使用走线以降低连接电感。

应将电容放置在有源器件附近以共享相同的过孔,同时应将过孔放置在靠近安装焊盘的位置,并尽可能靠近两个电容器过孔。

5. 电容的安装:在安装电容时,应将所有本地帽安装在最靠近平面的板上,将电容焊接焊盘附近放置过孔,同时将电容器放置在与数字和模拟接地相同的层上。

对于BGA(球栅阵列)的去耦电容器放置,应放置在BGA另一侧的引脚下方,而不是在BGA的电源/接地部分内每个球放置一个过孔。

遵循这些规则可以确保去耦电容的正确摆放,从而提高电路的性能和稳定性。

退耦电容原理--退藕电容的一般配置原则

退耦电容原理--退藕电容的一般配置原则

退耦电容原理所谓退耦,既防止前后电路网络电流大小变化时,在供电电路中所形成的电流冲动对网络的正常工作产生影响。

换言之,退耦电路能够有效的消除电路网络之间的寄生耦合。

退耦滤波电容的取值通常为47~200μF,退耦压差越大时,电容的取值应越大。

所谓退耦压差指前后电路网络工作电压之差。

如下图为典型的RC退耦电路,R起到降压作用:大家看到图中,在一个大容量的电解电容C1旁边又并联了一个容量很小的无极性电容C2原因很简单,因为在高频情况下工作的电解电容与小容量电容相比,无论在介质损耗还是寄生电感等方面都有显著的差别(由于电解电容的接触电阻和等效电感的影响,当工作频高于谐振频率时,电解电容相当于一个电感线圈,不再起电容作用)。

在不少典型电路,如电源退耦电路,自动增益控制电路及各种误差控制电路中,均采用了大容量电解电容旁边并联一只小电容的电路结构,这样大容量电解电容肩负着低频交变信号的退耦,滤波,平滑之作用;而小容量电容则以自身固有之优势,消除电路网络中的中,高频寄生耦合。

在这些电路中的这一大一小的电容均称之为退耦电容。

Re: 大电容由于容量大,所以体积一般也比较大,且通常使用多层卷绕的方式制作,这就导致了大电容的分布电感比较大(也叫等效串联电感,英文简称ESL)。

电感对高频信号的阻抗是很大的,所以,大电容的高频性能不好。

而一些小容量电容则刚刚相反,由于容量小,因此体积可以做得很小(缩短了引线,就减小了ESL,因为一段导线也可以看成是一个电感的),而且常使用平板电容的结构,这样小容量电容就有很小ESL 这样它就具有了很好的高频性能,但由于容量小的缘故,对低频信号的阻抗大。

所以,如果我们为了让低频、高频信号都可以很好的通过,就采用一个大电容再并上一个小电容的方式。

常使用的小电容为 0.1uF的瓷片电容,当频率更高时,还可并联更小的电容,例如几pF,几百pF的。

而在数字电路中,一般要给每个芯片的电源引脚上并联一个0.1uF的电容到地(这个电容叫做退耦电容,当然也可以理解为电源滤波电容,越靠近芯片越好),因为在这些地方的信号主要是高频信号,使用较小的电容滤波就可以了。

详细解析电源完整性去耦电容原理及选型

详细解析电源完整性去耦电容原理及选型

详细解析电源完整性去耦电容原理及选型(电源)完整性在现今的(电子产品)中相当重要。

有几个有关电源完整性的层面:(芯片)层面、(芯片封装)层面、电路板层面及系统层面。

在电路板层面的电源完整性要达到以下三个需求:1、使芯片引脚的电压噪声+电压纹波比规格要求要小一些(例如芯片电源管脚的输入电压要求1V之间的误差小于+/-50 mV)2、控制接地反弹(地弹)(同步切换噪声SSN、同步切换输出SSO)3、降低电磁干扰(EMI)并且维持(电磁兼容)性((EMC)):电源分布(网络)(PDN)是电路板上最大型的导体,因此也是最容易发射及接收噪声的(天线)。

“地弹”,是指芯片内部“地”电平相对于电路板“地”电平的变化现象。

以电路板“地”为参考,就像是芯片内部的“地”电平不断的跳动,因此形象的称之为地弹(ground bounce)。

当器件输出端由一个状态跳变到另一个状态时,地弹现象会导致器件逻辑输入端产生毛刺。

对于任何形式封装的芯片,其引脚必会存在电感(电容)等寄生(参数),而地弹主要是由于GND引脚上的阻抗引起的。

(集成电路)的规模越来越大,开关速度不断提高,地弹噪声如果控制不好就会影响电路的功能,因此有必要深入理解地弹的概念并研究它的规律。

我们可以用下图来直观地解释一下。

图中开关Q的不同位置代表了输出的“0”“1”两种状态。

假定由于电路状态转换,开关Q接通RL 低电平,负载电容对地放电,随着负载电容电压下降,它积累的电荷流向地,在接地回路上形成一个大的(电流)浪涌。

随着放电电流建立然后衰减,这一电流变化作用于接地引脚的电感LG,这样在芯片外的电路板“地”与芯片内的地之间,会形成一定的电压差,如图中VG。

这种由于输出转换引起的芯片内部参考地电位漂移就是地弹。

芯片A的输出变化,产生地弹。

这对芯片A的输入逻辑是有影响的。

接收逻辑把输入电压和芯片内部的地电压差分比较确定输入,因此从接收逻辑来看就像输入(信号)本身叠加了一个与地弹噪声相同的噪声。

退耦电容的布置和布线

退耦电容的布置和布线

去耦电容的布局与布线作者 卢起斌日期2009-5-4 版本1.0去耦电容放置在负载器件的电源和地之间, 主要有两个作用:一方面是作为负载器件的蓄能电容,避免由于电流的突变而使电压下降,相当于滤除纹波;另一方面旁路掉该器件的高频噪声。

在很多设计中,去耦电容 通常使用容量相差一个数量级以上的两个甚至更多的电容并联 ,为的是提高电源供应电路从高到低频的瞬态响应。

理论上电容越大, 低频的通过性越好, 滤波效果也越好, 但电容器的原理和结构也决定了大 容量电容的分布参数,如等效电感和等效电阻都明显高于小电容,同时 PCB1线也存在一定的分布参数。

只是这些分布参数的在低频时表现并不明显,所以 布局安排上可以将大容量电容放得远离有源器件一些。

随着工作频率升高,滤波器件的感抗和PC 战路感抗开始呈现,且频率越高感抗越大,对供电回路的纹波影响越明显, 因此需要选用感抗小的小容量电容提供良好的去耦。

同时还应缩短滤波电容两端到负载的电源与地的距离,尽可能将去耦电容和负载器件放置在同一层。

为降低EMI ,也应尽量减小电源线和地回路之间包围的面积。

以下图例都是说明如何设计良好的去耦电路拓扑结构和布线策略。

图1各种布线方式对去耦质量的影响a) VCC and GND lead to supply70.se not via □ &Cap, DeCap has not ehsctb) GND lead noise to systam GND noi$e CL.ir$nt flo-TS partly v a DeCap DeCap has hardly eTacie) '.'CC and G N D lead :i& supplyno se f&.n-s not DaCap. DeCap has not affect討 GNC is not shon competed rcDeCap GND and □«cap a loop cjr^snl 匚e 匚EQ has hardly effectM mmp cored connec:ed to yC and p&.-.er acpply.high speed current win “ supported from DeDvCdpCb GND lead no 辭 to S/stam GND noiae current flc -;s partl\ v a□ &Cap, DeCap has hardfy sffect■V 1 jz Hl lc J…J IC■ ■■■■■■■T'—L 1 kn2006-3-19不合il* iai果电流是滾动的.则会在电客前的写遑上玉成压降,这拝取的电區就是波动的‘电源a图2两种拓扑结构的对比喪片■gzVersion B : good图3多器件时两种去耦布线的对比loi ge orecLoyoul ol Wcc ond GNDS' nailer afea图4如何减小电源和地回路所包围的面积not good good best PADComp on ent grounding图5使用地平面时如何优化地线焊盘的引线和过孔思考一下:对于稳压器,其输入端、输出端的电容如何放置?以上图片均来自互联网,仅供研究、学习之用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

去耦电容的容值计算和布局布线
有源器件在开关时产生的高频开关噪声将沿着电源线传播。

去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播, 和将噪声引导到地。

去耦电容的容值计算
去耦的初衷是:不论I C对电流波动的规定和要求如何都要使电压限值维持在规定的允许误差范围之内。

使用表达式:
C⊿U=I⊿t
由此可计算出一个I C所要求的去耦电容的电容量C。

⊿U是实际电源总线电压所允许的降低,单位为V。

I是以A(安培)为单位的最大要求电流;
⊿t是这个要求所维持的时间。

x i l i n x公司推荐的去耦电容容值计算方法:
推荐使用远大于1/m乘以等效开路电容的电容值。

此处m是在I C的电源插针上所允许的电源总线电压变化的最大百分数,一般I C 的数据手册都会给出具体的参数值。

等效开路电容定义为:
C=P/(f U^2)
式中:
P——I C所耗散的总瓦数;
U——I C的最大D C供电电压;
f——I C的时钟频率。

一旦决定了等效开关电容,再用远大于1/m的值与它相乘来找出I C所要求的总去耦电容值。

然后还要把结果再与连接到相同电源总线电源插针的总数相 除,最后求得安装在每个连接到电源总线的所有电源插针附近的电容值。

去耦电容选择不同容值组合的原因:
在去耦电容的设计上,通常采用几个不同容值(通常相差二到三个数量级,如0.1u F与10u F),基本的出发点是分散串联谐振以获得一个较宽频率范 围内的较低阻抗。

电容谐振频率的解释:
由于焊盘和引脚的原因,每个电容都存在等效串联电感(E S L),因此自身会形成一个串联谐振电路,L C串联谐振电路存在一个谐振频率,随着电力的频 率不同,电容的特性也随之变化,在工作频率低于谐振频率时,电容总体呈容性,在工作频率高于谐振频率时,电容总体呈感性,此时去耦电容就失去了去耦的效 果,如下图所示。

因此,要提高串联谐振频率,就要尽可能降低电容的等效串联电感。

电容的容值选择一般取决于电容的谐振频率。

不同封装的电容有不同的谐振频率,下表列出了不同容值不同封装的电容的谐振频率:
需要注意的是数字电路的去耦,低的E S R值比谐振频率更为重要,因为低的E S R 值可以提供更低阻抗的到地通路,这样当超过谐振频率 的电容呈现感性时仍能提供足够的去耦能力。

降低去耦电容E S L的方法:
去耦电容的E S L是由于内部流动的电流引起的,使用多个去耦电容并联的方式可以降低电容的E S L影响,而且将两个去耦电容以相反走向放置在一起,从 而使它们的内部电流引起的磁通量相互抵消,能进一步降低E S L。

(此方法适用于任何数目的去耦电容,注意不要侵犯D E L L公司的专利)
I C去耦电容的数目选择
在设计原理图的时候,经常遇到的问题是为芯片的电源引脚设计去耦电容,上面已经介绍了去耦电容的容值选择,但是数目选择怎么确定呢?理论上是每个电 源引脚最好分配一个去耦电容,但是在实际情况中,却经常看到去耦电容的数目要少于电源引脚数目的情况,如f r e e s c a l e提供的i M X233的P D K原 理图中,内存S D R A M有15个电源引脚,但是去耦电容的数目是10个。

去耦电容数目选择依据:
在布局空间允许的情况下,最好做到一个电源引脚分配一个去耦电容,但是在空间不足的时候,可以适当削减电容的数目,具体情况应该根据芯片上电源引脚 的具体分布决定,因为厂家在设计I C的时候,经常是几个电源引脚在一起,这样可以共用去耦电容,减少去耦电容的数目。

电容的安装方法
电容的摆放
对于电容的安装,首先要提到的就是安装距离。

容值最小的电容,有最高的谐振频率,去耦半径最小,因此放在最靠近芯片的位置。

容值稍大些的可以距离稍 远,最外层放置容值最大的。

但是,所有对该芯片去耦的电容都尽量靠近芯片。

另外的一个原因是:如果去耦电容离I C电源引脚较远,则布线阻抗将减小去耦电容 的效力。

还有一点要注意,在放置时,最好均匀分布在芯片的四周,对每一个容值等级都要这样。

通常芯片在设计的时候就考虑到了电源和地引脚的排列位置,一般都 是均匀分布在芯片的四个边上的。

因此,电压扰动在芯片的四周都存在,去耦也必须对整个芯片所在区域均匀去耦。

电容的安装
在安装电容时,要从焊盘拉出一小段引出线,然后通过过孔和电源平面连接,接地端也是同样。

放置过孔的基本原则就是让这一环路面积最小,进而使总的寄 生电感最小。

图16显示了几种过孔放置方法。

第一种方法从焊盘引出很长的引出线然后连接过孔,这会引入很大的寄生电感,一定要避免这样做,这时最糟糕的安装方式。

第二种方法在焊盘的两个端点紧邻焊盘打孔,比第一种方法路面积小得多,寄生电感也较小,可以接受。

第三种在焊盘侧面打孔,进一步减小了回路面积,寄生电感比第二种更小,是比较好的方法。

第四种在焊盘两侧都打孔,和第三种方法相比,相当于电容每一端都是通过过孔的并联接入电源平面和地平面,比第三种寄生电感更小,只要空间允许,尽量 用这种方法。

最后一种方法在焊盘上直接打孔,寄生电感最小,但是焊接是可能会出现问题,是否使用要看加工能力和方式。

推荐使用第三种和第四种方法。

需要强调一点:有些工程师为了节省空间,有时让多个电容使用公共过孔。

任何情况下都不要这样做。

最好想办法优化电容组合的设计,减少电容数量。

由于印制线越宽,电感越小,从焊盘到过孔的引出线尽量加宽,如果可能,尽量和焊盘宽度相同。

这样即使是0402封装的电容,你也可以使用20m i l宽的引出线。

引出线和过孔安装如图17所示,注意图中的各种尺寸。

对于大尺寸的电容,比如板级滤波所用的钽电容,推荐用图18中的安装方法。

注意:小尺寸电容禁止在两个焊盘间打孔,因为容易引起短 路。

电容的去耦半径
电容去耦的一个重要问题是电容的去耦半径。

大多数资料中都会提到电容摆放要尽量靠近芯片,多数资料都是从减小回路电感的角度来谈这个摆放距离问题。

确实,减小电感是一个重要原因,但是还有一个重要的原因大多数资料都没有提及,那就是电容去耦半径问题。

如果电容摆放离芯片过远,超出了它的去耦半径,电 容将失去它的去耦的作用。

理解去耦半径最好的办法就是考察噪声源和电容补偿电流之间的相位关系。

当芯片对电流的需求发生变化时,会在电源平面的一个很小的局部区域内产生电压 扰动,电容要补偿这一电流(或电压),就必须先感知到这个电压扰动。

信号在介质中传播需要一定的时间,因此从发生局部电压扰动到电容感知到这一扰动之间有 一个时间延迟。

同样,电容的补偿电流到达扰动区也需要一个延迟。

因此必然造成噪声源和电容补偿电流之间的相位上的不一致。

特定的电容,对与它自谐振频率相同的噪声补偿效果最好,我们以这个频率来衡量这种相位关系。

设自谐振频率为f,对应波长为λ,补偿电流表达式可写 为:
其中,A是电流幅度,R为需要补偿的区域到电容的距离,C为信号传播速度。

当扰动区到电容的距离达到λ/4时,补偿电流的相位为π,和噪声源相位刚好差180度,即完全反相。

此时补偿电流不再起作用,去耦作用失效,补偿的 能量无法及时送达。

为了能有效传递补偿能量,应使噪声源和补偿电流的相位差尽可能的小,最好是同相位的。

距离越近,相位差越小,补偿能量传递越多,如果距 离为0,则补偿能量百分之百传递到扰动区。

这就要求噪声源距离电容尽可
能的近,要远小于λ/4。

实际应用中,这一距离最好控制在λ/40-λ/50之间,这是一个经验数据。

例如:0.001u F陶瓷电容,如果安装到电路板上后总的寄生电感为1.6n H,那么其安装后的谐振频率为125.8M H z,谐振周期为 7.95p s。

假设信号在电路板上的传播速度为166p s/i n c h,则波长为47.9英寸。

电容去耦半径为47.9/50=0.958英寸,大约等于 2.4厘米。

本例中的电容只能对它周围2.4厘米范围内的电源噪声进行补偿,即它的去耦半径2.4厘米。

不同的电容,谐振频率不同,去耦半径也不同。

对于大电 容,因为其谐振频率很低,对应的波长非常长,因而去耦半径很大,这也是为什么我们不太关注大电容在电路板上放置位置的原因。

对于小电容,因去耦半径很小,应尽可能的靠近需要去耦的芯片,这正是大多数资料上都会反复强调的,小电容要尽可能近的靠近芯片放置。

综上所述,在选择去耦电容时,需要考虑的因素有电容的E S R、E S L值,谐振频率,布局时要注意根据I C电源引脚的数目和周围布局 空间决定去耦电容数目,根据去耦半径决定具体的布局位置。

相关文档
最新文档