电力电子技术(第5版)王兆安
《电力电子技术》西安交通大学_王兆安_第五版
科内各二级学科的关系。
精选课件
7
1.1 什么是电力电子技术
☞电力电子技术和控制理论 控制理论广泛于电力电子技术中,它使电力电
子装置和系统的性能不断满足人们日益增长的各种
需求。电力电子技术可以看成是弱电控制强电的技
术,是弱电和强电之间的接口。而控制理论则是实
现这种接口的一条强有力的纽带。
另外,控制理论是自动化技术的理论基础,二
磁、电加热、高性能交直流
电源等之中,因此,无论是
国内国外,通常都把电力电
图1-2 电气工程的双三角形描述
子技术归属于电气工程学科。在我国,电力电子与电力传
动是电气工程的一个二级学科。图1-2用两个三角形对电 气工程进行了描述。其中大三角形描述了电气工程一级学
科和其他学科的关系,小三角形则描述了电气工程一级学
这一时期,也应用直流发电机组来变流。
☞1947年美国著名的贝尔实验室发明了晶体管,引发了
电子技术的一场革命。
精选课件
10
1.2 电力电子技术的发展史
◆晶闸管时代
☞晶闸管由于其优越的电气性能和控制性能,使
之很快就取代了水银整流器和旋转变流机组,并且
其应用范围也迅速扩大。电力电子技术的概念和基
础就是由于晶闸管及晶闸管变流技术的发展而确立
1.1 什么是电力电子技术
◆具体地说,电力电子技术就是使用电力电子器件 对电能进行变换和控制的技术。
☞电力电子器件的制造技术是电力电子技术的基 础。
☞变流技术则是电力电子技术的核心。 表1-1 电力变换的种类
输出
输入
直流(DC)
交流(AC)
交流(AC)
整流
交流电力控制 变频、变相
(2024年)电力电子技术第5版王兆安课件
该方式通过调制信号(如正弦波)与高频载波(如三角波)进行比较生成PWM脉冲。优 点是生成的PWM脉冲频率高、波形好且易于实现实时控制。缺点是对于非线性负载的适 应性较差。
32
07
电力电子系统的设计与应用
2024/3/26
33
电力电子系统的设计原则与方法
2024/3/26
设计原则
确保系统稳定性、高效性、可靠性和 安全性;满足特定应用需求;优化成 本和性能。
2024/3/26
6
02
电力电子器件
2024/3/26
7
不可控器件
电力二极管(Power Diode)
结构和工作原理
伏安特性
2024/3/26
8
不可控器件
主要参数
晶闸管(Thyristor)
结构和工作原理
2024/3/26
9
不可控器件
伏安特性和主要参数
派生器件
2024/3/26
10
半控型器件
2024/3/26
36
感谢您的观看
THANKS
2024/3/26
37
26
电压型和电流型逆变电路
电压型逆变电路
电压型逆变电路的输出电压波形为矩 形波或正弦波,其特点是输出电压幅 值和频率可调,适用于对输出电压要 求较高的场合。
电流型逆变电路
电流型逆变电路的输出电流波形为矩 形波或正弦波,其特点是输出电流幅 值和频率可调,适用于对输出电流要 求较高的场合。
2024/3/26
工业自动化
应用于电机驱动、电源供 应、过程控制等领域,提 高生产效率和能源利用率 。
35
电力电子系统的发展趋势与挑战
发展趋势
《电力电子技术》西安交通大学_王兆安_第五版
编辑ppt
4
1.1 什么是电力电子技术
■电力电子学 ◆美国学者W. Newell认为电力电子学是由电力学、 电子学和控制理论三个学科交叉而形成的。
图1-1 描述电力电子学的倒三角形
编辑ppt
5
1.1 什么是电力电子技术
☞电力电子技术和电子学 电力电子器件的制造技术和用于信息变换的电子
☞采用全,可称之为斩波控制方式,简称斩控方式。
☞在80年代后期,以绝缘栅极双极型晶体管(IGBT)为代表的复合 型器件异军突起。它是MOSFET和BJT的复合,综合了两者的优点。 与此相对,MOS控制晶闸管(MCT)和集成门极换流晶闸管(IGCT) 复合了MOSFET和GTO。
动,甚至用于直流输电。这一时期,各种整流电路、逆变
电路、周波变流电路的理论已经发展成熟并广为应用。在
这一时期,也应用直流发电机组来变流。
☞1947年美国著名的贝尔实验室发明了晶体管,引发了
电子技术的一场革命。
编辑ppt
10
1.2 电力电子技术的发展史
◆晶闸管时代
☞晶闸管由于其优越的电气性能和控制性能,使
现。这就使得晶闸管的应用受到了很大的局限。
编辑ppt
11
1.2 电力电子技术的发展史
◆全控型器件和电力电子集成电路(PIC) ☞70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管
(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器 件迅速发展。全控型器件的特点是,通过对门极(基极、栅极)的控 制既可使其开通又可使其关断。
降为零,从而提高了电力电子装置的功率密度。
编辑ppt
13
1.3 电力电子技术的应用
电力电子技术第五版(王兆安)课件
VS
漏抗对整流器换相的影响
漏抗的存在使得换相过程变得复杂,可能 导致换相失败或产生过大的换相过电压。
整流电路的谐波和功率因数
谐波
整流电路输出的非正弦波形含有丰富的谐波 成分,对电网和负载造成不良影响。
功率因数
整流电路的功率因数通常较低,因为谐波和 无功功率的存在使得视在功率大于有功功率 。提高功率因数的方法包括采用功率因数校 正电路和采用高功率因数的整流器等。
用效率。
交通运输
电动汽车、高铁、航空器等交 通工具的电力驱动系统大量采
用电力电子技术。
工业自动化
电机驱动、电源供应、自动化 控制等方面广泛应用电力电子
技术,提高生产效率。
信息技术
数据中心、云计算等领域需要 高效、可靠的电源供应,电力 电子技术发挥着重要作用。
课程目标与学习方法
课程目标
掌握电力电子技术的基本原理、分析方法、设计方法和实验 技能,具备从事电力电子技术应用和研究的初步能力。
电压型和电流型逆变电路
电压型逆变电路
电压型逆变电路以电压源作为输入,通过控制开关元 件的通断,得到所需的交流输出电压。其特点是输出 电压波形质量高,但需要较大的滤波电感。
电流型逆变电路
电流型逆变电路以电流源作为输入,通过控制开关元 件的通断,得到所需的交流输出电流。其特点是输出 电流波形质量高,但需要较大的滤波电容。
BIG DATA EMPOWERS TO CREATE A NEW ERA
电力电子技术第五版(王兆
安)课件
• 电力电子技术概述 • 电力电子器件 • 整录
CONTENTS
01
电力电子技术概述
BIG DATA EMPOWERS TO CREATE A NEW
电力电子技术(王兆安第五版)课后习题全部答案
3-5.单相桥式全控整流电路,U2=100V,负载中R=2Ω,L值极大,反电势E=60V,当=30时,要求:作出ud、id和i2的波形;
1求整流输出平均电压Ud、电流Id,变压器二次侧电流有效值I2;
2考虑安全裕量,确定晶闸管的额定电压和额定电流。
解:①ud、id和i2的波形如下图:
因为单相全波可控整流电路变压器二次测绕组中,正负半周内上下绕组内电流的方向相反,波形对称,其一个周期内的平均电流为零,故不会有直流磁化的问题。
以下分析晶闸管承受最大反向电压及输出电压和电流波形的情况。
1以晶闸管VT2为例。当VT1导通时,晶闸管VT2通过VT1与2个变压器二次绕组并联,所以VT2承受的最大电压为2 。
3-1.单相半波可控整流电路对电感负载供电,L=20mH,U2=100V,求当α=0和60时的负载电流Id,并画出ud与id波形。
解:α=0时,在电源电压u2的正半周期晶闸管导通时,负载电感L储能,在晶闸管开始导通时刻,负载电流为零。在电源电压u2的负半周期,负载电感L释放能量,晶闸管继续导通。因此,在电源电压u2的一个周期里,以下方程均成立:
解:假设 ,当负载为电阻时,ud的波形如下:
当负载为电感时,ud的波形如下:
3- 8.三相半波整流电路,可以将整流变压器的二次绕组分为两段成为曲折接法,每段的电动势相同,其分段布置及其矢量如图2-60所示,此时线圈的绕组增加了一些,铜的用料约增加10%,问变压器铁心是否被直流磁化,为什么?
图2-60变压器二次绕组的曲折接法及其矢量图
2-4图2-27中阴影部分为晶闸管处于通态区间的电流波形,各波形的电流最大值均为Im,试计算各波形的电流平均值Id1、Id2、Id3与电流有效值I1、I2、I3。
电力电子技术重点王兆安第五版
第1章绪论1 电力电子技术定义:是使用电力电子器件对电能进行变换和控制的技术,是应用于电力领域的电子技术,主要用于电力变换。
2 电力变换的种类(1)交流变直流AC-DC:整流(2)直流变交流DC-AC:逆变(3)直流变直流DC-DC:一般通过直流斩波电路实现(4)交流变交流AC-AC:一般称作交流电力控制3 电力电子技术分类:分为电力电子器件制造技术和变流技术。
第2章电力电子器件1 电力电子器件与主电路的关系(1)主电路:指能够直接承担电能变换或控制任务的电路。
(2)电力电子器件:指应用于主电路中,能够实现电能变换或控制的电子器件。
2 电力电子器件一般都工作于开关状态,以减小本身损耗。
3 电力电子系统基本组成与工作原理(1)一般由主电路、控制电路、检测电路、驱动电路、保护电路等组成。
(2)检测主电路中的信号并送入控制电路,根据这些信号并按照系统工作要求形成电力电子器件的工作信号。
(3)控制信号通过驱动电路去控制主电路中电力电子器件的导通或关断。
(4)同时,在主电路和控制电路中附加一些保护电路,以保证系统正常可靠运行。
4 电力电子器件的分类根据控制信号所控制的程度分类(1)半控型器件:通过控制信号可以控制其导通而不能控制其关断的电力电子器件。
如SCR晶闸管。
(2)全控型器件:通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件。
如GTO、GTR、MOSFET和IGBT。
(3)不可控器件:不能用控制信号来控制其通断的电力电子器件。
如电力二极管。
根据驱动信号的性质分类(1)电流型器件:通过从控制端注入或抽出电流的方式来实现导通或关断的电力电子器件。
如SCR、GTO、GTR。
(2)电压型器件:通过在控制端和公共端之间施加一定电压信号的方式来实现导通或关断的电力电子器件。
如MOSFET、IGBT。
根据器件内部载流子参与导电的情况分类(1)单极型器件:内部由一种载流子参与导电的器件。
如MOSFET。
电力电子技术(第5版)(王兆安,刘进军)第2章 电力电子器件
-
V
+ + + + + + n +
p -
-
+
+
Wo W
17/89
2.2.1 PN结与电力二极管的工作原理
■二极管的基本原理——PN结的单向导电性 ◆当PN结外加正向电压(正向偏置)时,在外电路上则 形成自P区流入而从N区流出的电流,称为正向电流IF, 这就是PN结的正向导通状态。 ◆当PN结外加反向电压时(反向偏置)时,反向偏置的 PN结表现为高阻态,几乎没有电流流过,被称为反向截 止状态。 ◆ PN结具有一定的反向耐压能力,但当施加的反向电压 过大,反向电流将会急剧增大,破坏PN结反向偏置为截 止的工作状态,这就叫反向击穿。 ☞按照机理不同有雪崩击穿和齐纳击穿两种形式 。 ☞反向击穿发生时,采取了措施将反向电流限制在一 定范围内,PN结仍可恢复原来的状态。 ☞否则PN结因过热而烧毁,这就是热击穿。
u i UFP
iF
u
2V 0
F
t fr
b) 零偏置转换为正向偏置
t
图2-6 电力二极管的动态过程波形
22/89
2.2.3 电力二极管的主要参数
■正向平均电流IF(AV) ◆指电力二极管长期运行时,在指定的管壳温度(简称 壳温,用TC表示)和散热条件下,其允许流过的最大工 频正弦半波电流的平均值。 ◆ IF(AV)是按照电流的发热效应来定义的,使用时应按有 效值相等的原则来选取电流定额,并应留有一定的裕量。 ■正向压降UF ◆指电力二极管在指定温度下,流过某一指定的稳态正 向电流时对应的正向压降。 ■反向重复峰值电压URRM ◆指对电力二极管所能重复施加的反向最高峰值电压。
能力,是其最重要的参数,一般都远大于处理信息的电
电力电子技术(王兆安第五版)课后习题全部答案
精心整理电力电子技术2-1与信息电子电路中的二极管相比,电力二极管具有怎样的结构特点才使得其具有耐受高压和大电流的能力?答:1.电力二极管大都采用垂直导电结构,使得硅片中通过电流的有效面积增大,显着提高了二极管的通流能力。
2.电力二极管在P区和N区之间多了一层低掺杂N区,也称漂移区。
低掺杂N区由于掺杂浓度低而接近于无掺杂的纯半导体材料即本征半导体,由于掺杂浓度低,低掺杂N区就可以承受很高的电压而不被击穿。
或:uAK>0I m,试I1=b)II2=c)II3=2-5上题中如果不考虑安全裕量,问100A的晶阐管能送出的平均电流I d1、I d2、I d3各为多少?这时,相应的电流最大值I m1、I m2、I m3各为多少?解:额定电流I T(AV)=100A的晶闸管,允许的电流有效值I=157A,由上题计算结果知a)I m135.3294767.0≈≈IA,I d1≈0.2717I m1≈89.48Ab)I m2,90.2326741.0AI≈≈I d2AIm56.1265434.02≈≈c)I m3=2I=314I d3=5.78413=m I2-6GTO 和普通晶闸管同为PNPN 结构,为什么GTO 能够自关断,而普通晶闸管不能?答:GTO 和普通晶阐管同为PNPN 结构,由P1N1P2和N1P2N2构成两个晶体管V1、V2,分别具有共基极电流增益1α和2α,由普通晶阐管的分析可得,121=+αα是器件临界导通的条件。
121>αα+两个等效晶体管过饱和而导通;121<αα+不能维持饱和导通而关断。
GTO 之所以能够自行关断,而普通晶闸管不能,是因为GTO 与普通晶闸管在设计和工艺方面有以下几点不同:l)GTO 在设计时2α较大,这样晶体管V2控制灵敏,易于GTO 关断;2)GTO 导时刻,负载电流为零。
在电源电压u 2的负半周期,负载电感L 释放能量,晶闸管继续导通。
因此,在电源电压u 2的一个周期里,以下方程均成立:t U ti L ωsin 2d d 2d = 考虑到初始条件:当?t =0时i d =0可解方程得:)cos 1(22d t LU i ωω-= =LU ω22=22.51(A) u d 与i d 的波形如下图:当α=60°时,在u 2正半周期60?~180?期间晶闸管导通使电感L 储能,电感L 储藏的能量在u 2负半周期180?~300?期间释放,因此在u 2一个周期中60?~300?期间以下微分方程成立:考虑初始条件:当?t =60?时i d =0可解方程得:)cos 21(22d t L U i ωω-=其平均值为)(d )cos 21(2213532d t t L U I ωωωπππ-=⎰=LU ω222=11.25(A) 此时u d 与i d 的波形如下图:3-2.图3-10为具有变压器中心抽头的单相全波可控整流电路,问该变压器还有直流磁化问题吗?试说明:①晶闸管承受的最大反向电压为222U ;②当负载是电阻或电感时,其输出电压和电流的波形与单相全控桥时相同。
电力电子技术第五版王兆安课件-1绪论
03
电力电子技术பைடு நூலகம்应用领 域
电力系统
电力系统中的高压直流输电(HVDC)
01
通过电力电子技术实现大容量、长距离的直流输电,提高电网
稳定性和输电效率。
灵活交流输电系统(FACTS)
02
基于电力电子技术的控制器能够对交流输电系统进行快速、灵
活的控制,改善电网的稳定性、阻尼和潮流控制。
分布式发电与微电网
电力电子技术第五版 王兆安课件-1绪论
目 录
• 电力电子技术的定义与重要性 • 电力电子技术的发展历程 • 电力电子技术的应用领域 • 电力电子技术的基本元件与电路 • 电力电子技术的未来挑战与解决方案 • 结论
01
电力电子技术的定义与 重要性
定义
总结词
电力电子技术是一门研究利用半导体电力电子器件进行电能转换和控制的学科。
结合可再生能源的发展,研究电力电子技 术在绿色能源转换和智能电网建设中的应 用,推动能源可持续发展。
06
结论
本章总结
01
介绍了电力电子技术的 定义、发展历程和应用 领域。
02
强调了电力电子技术在 能源转换和智能电网中 的重要性。
03
概述了电力电子技术的 基本概念、电路拓扑和 变换理论。
04
展望了未来电力电子技 术的发展趋势和挑战。
稳压等领域。
电路分析方法
基尔霍夫定律
基尔霍夫定律是电路分析的基本原理,包括电流定律和电压定律, 用于描述电路中电压和电流的关系。
等效电路法
等效电路法是一种将复杂电路简化为简单电路的方法,通过引入等 效电阻、电感等元件来简化电路分析。
状态方程法
状态方程法是一种描述电路中状态变量的方法,通过建立状态方程 来分析电路的工作状态和动态特性。
电力电子技术第五版(王兆安)课件_5DC-DC变换
5.1 基本斩波电路 5.2 复合斩波电路和多相多重斩波电路 5.3 带隔离的直流直流变流电路 本章小结
引言
直流 - 直流变流电路( DC/DC Converter )包括直接直 流变 流电路和间接直流变流电路。
■直接直流变流电路
◆也称斩波电路(DC Chopper)。 ◆功能是将直流电变为另一固定电压或可调电压的直流 电。 ◆一般是指直接将直流电变为另一直流电,这种情况下 输入与输出之间不隔离。
Io Uo 1 E R R
(5-25)
☞电源电流I1为
I1
U 1 E o Io 2 E R
(5-26)
13/44
5.1.2 升压斩波电路
■例5-3 在图5-2a所示的升压斩波电路中,已知E=50V,L 值和C值极大,R=20,采用脉宽调制控制方式,当 T=40s,ton=25s时,计算输出电压平均值Uo,输出电 流平均值Io。 解:输出电压平均值为:
16/44
5.1.3 升降压斩波电路和Cuk斩波电路
■升降压斩波电路 ◆工作原理 ☞ V导通时,电源E经V向L供电 使其贮能,此时电流为i1,同时C维持 输出电压恒定并向负载R供电。 ☞ V关断时,L的能量向负载释放, 电流为i2,负载电压极性为上负下正, 与电源电压极性相反,该电路也称作 反极性斩波电路。 ◆基本的数量关系 T ☞稳态时,一个周期 两 (5-39) uL dt 0 T内电感L 0 端电压uL对时间的积分为零,即 当V处于通态期间,uL=E;而 当V处于断态期间,uL=-uo。于 是: E (5-40) t U t
■间接直流变流电路
◆在直流变流电路中增加了交流环节。 ◆在交流环节中通常采用变压器实现输入输出间的隔离, 因此也称为直—交—直电路。
最新《电力电子技术》西安交通大学_王兆安_第五版
1.2 电力电子技术的发展史
■电力电子技术的发展史
图1-3 电力电子技术的发展史
◆一般认为,电力电子技术的诞生是以1957年美国通用 电气公司研制出第一个晶闸管为标志的。
8
1.2 电力电子技术的发展史
◆晶闸管出现前的时期可称为电力电子技术的史前期或黎 明期。
☞1904年出现了电子管,它能在真空中对电子流进行控 制,并应用于通信和无线电,从而开启了电子技术用于电 力领域的先河。
☞电力电子技术和控制理论 控制理论广泛用于电力电子技术中,它使电力电
子装置和系统的性能不断满足人们日益增长的各种 需求。电力电子技术可以看成是弱电控制强电的技 术,是弱电和强电之间的接口。而控制理论则是实 现这种接口的一条强有力的纽带。
另外,控制理论是自动化技术的理论基础,二 者密不可分,而电力电子装置则是自动化技术的基 础元件和重要支撑技术。
11
1.2 电力电子技术的发展史
☞把驱动、控制、保护电路和电力电子器件集成在 一起,构成电力电子集成电路(PIC),这代表了 电力电子技术发展的一个重要方向。电力电子集成 技术包括以PIC为代表的单片集成技术、混合集成 技术以及系统集成技术。
☞随着全控型电力电子器件的不断进步,电力电子 电路的工作频率也不断提高。与此同时,软开关技 术的应用在理论上可以使电力电子器件的开关损耗 降为零,从而提高了电力电子装置的功率密度。
年来也采用了变频装置,以达到节能的目的。
13
1.3 电力电子技术的应用
☞有些并不特别要求调速的电机为 了避免起动时的电流冲击而采用了 软起动装置,这种软起动装置也是 电力电子装置。 ☞电化学工业大量使用直流电源, 电解铝、电解食盐水等都需要大容 量整流电源。电镀装置也需要整流 电源。 ☞电力电子技术还大量用于冶金工 业中的高频或中频感应加热电源、 淬火电源及直流电弧炉电源等场合。
电力电子技术第五版(王兆安)
1.1 什么是电力电子技术
◆具体地说,电力电子技术就是使用电力电子器件 对电能进行变换和控制的技术。
☞电力电子器件是电力电子技术的基础。
☞变流技术则是电力电子技术的核心。
表1-1 电力变换的种类
输出
输入
交流(AC)
直流(DC)
直流(DC)
整流
直流斩波
交流(AC)
交流电力控制 变频、变相
逆变
第1章 绪论
1.1 什么是电力电子技术 1.2 电力电子技术的发展史 1.3 电力电子技术的应用 1.4 本教材的内容简介
1.1 什么是电力电子技术
■电力电子技术的概念 ◆电力电子技术就是应用于电力领域的电子技 术。 ☞电力电子技术中所变换的“电力” 有区别 于“电力系统”所指的“电力” ,后者特指电 力网的“电力” 。 ☞电子技术包括信息电子技术(模拟电子技术 和数字电子技术)和电力电子技术两大分支。
10/21
1.2 电力电子技术的发展史
◆全控型器件和电力电子集成电路(PIC) ☞70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管
(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器 件迅速发展。
全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其 开通又可使其关断。 ☞采用全控型器件的电路的主要控制方式为脉冲宽度调制(PWM) 方式。相对于相位控制方式,可称之为斩波控制方式,简称斩控方式。 ☞在80年代后期,以绝缘栅极双极型晶体管(IGBT)为代表的复合 型器件异军突起。它是MOSFET和BJT的复合,综合了两者的优点。 与此相对,MOS控制晶闸管(MCT)和集成门极换流晶闸管 (IGCT)复合了MOSFET和GTO。
电力电子技术 第五版 (王兆安 刘进军 着) 机械工业出版社
开关速度低,为电流驱动,所需 驱动功率大,驱动电路复杂,存 在二次击穿问题
GTO
电压、电流容量大,适用于大功率场 合,具有电导调制效应,其通流能力 很强
电流关断增益很小,关断时门极 负脉冲电流大,开关速度低,驱 动功率大,驱动电路复杂,开关 频率低
案 0
π
答ud
2π
ωt
后0
π
2π
ωt
课
id
0
π
2π
ωt
当α=60°时,在 u2 正半周期 60°~180°期间晶闸管导通使电感 L 储能,电感 L 储藏的
能量在 u2 负半周期 180°~300°期间释放,因此在 u2 一个周期中 60°~300°期间以下微分方程
成立:
L d id = dt
2U 2 sin ωt
GTO 驱动电路的特点是:GTO 要求其驱动电路提供的驱动电流的前沿应有足够的幅 值和陡度,且一般需要在整个导通期间施加正门极电流,关断需施加负门极电流,幅值和 陡度要求更高,其驱动电路通常包括开通驱动电路,关断驱动电路和门极反偏电路三部分。
电力 MOSFET 驱动电路的特点:要求驱动电路具有较小的输入电阻,驱动功率小且 电路简单。
对于电感负载:(α ~ π+α)期间,单相全波电路中 VT1 导通,单相全控桥电路中 VT1、VT4 导通,输出电压均与电源电压 u2 相等;(π+α ~ 2π+α)期间,单相全波电 路中 VT2 导通,单相全控桥电路中 VT2、VT3 导通,输出波形等于− u2。
因为单相全波可控整流电路变压器二次测绕组中,正负半周内上下绕组内电流的方向
案 相反,波形对称,其一个周期内的平均电流为零,故不会有直流磁化的问题。 答 以下分析晶闸管承受最大反向电压及输出电压和电流波形的情况。 后 ① 以晶闸管 VT2 为例。当 VT1 导通时,晶闸管 VT2 通过 VT1 与 2 个变压器二次绕组
电力电子技术 第五版 (王兆安 刘进军 着) 机械工业出版社
可见,两者的输出电压相同,加到同样的负载上时,则输出电流也相同。
要使晶闸管由导通变为关断,可利用外加电压和外电路的作用使流过晶闸管的电流降 到接近于零的某一数值以下,即降到维持电流以下,便可使导通的晶闸管关断。
3. 图 1-43 中阴影部分为晶闸管处于通态区间的电流波形,各波形的电流最大值均为 Im,试计算各波形的电流平均值 Id1、Id2、Id3 与电流有效值 I1、I2、I3。
问题吗?试说明:①晶闸管承受的最大反向电压为 2 2U2 ;②当负载是电阻或电感时,
其输出电压和电流的波形与单相全控桥时相同。 答:具有变压器中心抽头的单相全波可控整流电路,该变压器没有直流磁化的问题。
因为单相全波可控整流电路变压器二次测绕组中,正负半周内上下绕组内电流的方向 相反,波形对称,其一个周期内的平均电流为零,故不会有直流磁化的问题。
u2
O
π
ωt
ud
α
O
π
id
O i2
α
O
ωt
Id ωt
Id
ωt
②输出平均电压 Ud、电流 Id,变压器二次电流有效值 I2 分别为 Ud=0.9 U2 cosα=0.9×100×cos30°=77.97(V) Id=Ud /R=77.97/2=38.99(A) I2=Id =38.99(A)
③晶闸管承受的最大反向电压为:
a)
Im1 ≈
I 0.4767
《电力电子技术(第5版)》王兆安_第3章_整流电路
14/131
3.1.2 单相桥式全控整流电路
◆基本数量关系
☞整流电压平均值为:
Ud
1
p
p a a
2U 2
sinwtd(wt)
2
p
2
U2
cosa
0.9U 2
cosa
(3-15)
当a=0时,Ud0=0.9U2。a=90时,Ud=0。晶闸管移相范围
为90。
☞晶闸管承受的最大正反向电压均为 2U2。
☞晶闸管导通角q与a无关,均为180,其电流平均值和
e)
0
q
wt
☞wt2时刻,电感能量释放完毕,id降至
u
零,VT关断并立即承受反压。
VT f)
☞由于电感的存在延迟了VT的关断时刻,
0
wt
使ud波形出现负的部分,与带电阻负载时相
图3-2 带阻感负载的单相半
比其平均值Ud下降。
波可控整流电路及其波形
6/131
3.1.1 单相半波可控整流电路
◆电力电子电路的一种基本分析 方法
Id Id Id
wt
wt
☞wt=p+a时刻,触发VT2和VT3,
w t VT2和VT3导通,u2通过VT2和VT3分别
w t 向VT1和VT4施加反压使VT1和VT4关断,
流过VT1和VT4的电流迅速转移到VT2和
图3-6 单相桥式全控整流电流带 阻感负载时的电路及波形
VT3上,此过程称为换相,亦称换流。
wt
端流出,经VT3、R、VT2流回电源a端。
☞到u2过零时,电流又降为零,VT2和
图3-5 单相全控桥式
VT3关断。
带电阻负载时的电路及波形