人教版初一数学下册

合集下载

人教版初一数学下册知识点总结

人教版初一数学下册知识点总结

人教版初一数学下册知识点总结人教版初一数学下册知识点直线、射线、线段(1)直线、射线、线段的表示方法①直线:用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB.②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边.③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA)。

(2)点与直线的位置关系:①点经过直线,说明点在直线上;②点不经过直线,说明点在直线外。

两点间的距离(1)两点间的距离:连接两点间的线段的长度叫两点间的距离。

(2)平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离。

人教版初一数学知识点正方体(1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象.(2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.(3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面.一元一次方程的解定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解。

把方程的解代入原方程,等式左右两边相等。

初一数学下册知识点1.解一元一次方程的一般步骤去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化。

2.解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号。

3.在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c。

人教版七年级数学下册《实数大小比较》150题及解析

人教版七年级数学下册《实数大小比较》150题及解析

初一数学下册知识点《实数大小比较》经典例题及解析题号一二三四总分得分一、选择题(本大题共68小题,共204.0分)1.定义[x]表示不超过实数x的最大整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数y=[x]的图象如图所示,则方程[x]=x2的解为()A. 0或B. 0或2C. 1或D. 或-【答案】A【解析】解:当1≤x<2时,x2=1,解得x1=,x2=-(舍去);当0≤x<1时,x2=0,解得x=0;当-1≤x<0时,x2=-1,方程没有实数解;当-2≤x<-1时,x2=-2,方程没有实数解;所以方程[x]=x2的解为0或.故选:A.根据新定义和函数图象讨论:当1≤x<2时,则x2=1;当0≤x<1时,则x2=0;当-1≤x <0时,则x2=-1;当-2≤x<-1时,则x2=-2;然后分别解关于x的一元二次方程即可.本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了实数的大小比较.2.四个实数0、、-3.14、2中,最小的数是()A. 0B.C. -3.14D. 2【答案】C【解析】解:根据实数比较大小的方法,可得-3.14<0<<2,所以最小的数是-3.14.故选:C.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.3.下列四个数:-3,-,-π,-1,其中最小的数是()A. -πB. -3C. -1D. -【答案】A【解析】解:∵-1>->-3>-π,∴最小的数为-π,故选:A.将四个数从大到小排列,即可判断.本题考查实数的大小比较,记住任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.4.在实数-,-2,0,中,最小的实数是()A. -2B. 0C. -D.【答案】A【解析】解:实数-,-2,0,中,最小的实数是-2,故选:A.根据负数的绝对值越大,这个数越小,然后根据正数大于0,负数小于0进行大小比较即可.此题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.5.已知,,,那么a,b,c的大小关系是()A. a<b<cB. b<a<cC. c<b<aD. c<a<b【答案】B【解析】解:∵a-b=-1-(2-)=-(1+)≈2.449-2.414>0,∴a>b;∵a-c=-1-(-2)=+1-≈2.414-2.449<0,∴a<c;于是b<a<c,故选B.利用作差法比较a和b、b和c、a和c的大小,再比较a、b、c三者的大小.此题主要考查了实数的大小的比较,其中比较两个实数的大小,可以采用作差法、取近似值法、比较n次方的方法等.实数大小比较法则:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.6.在实数0,-2,,3中,最大的是()A. 0B. -2C.D. 3【答案】D【解析】【分析】本题考查了实数的大小比较,要注意无理数的大小范围.根据正负数的大小比较,估算无理数的大小进行判断即可.【解答】解:2<<3,实数0,-2,,3中,最大的是3.故选D.7.在实数-3,-1,0,1中,最小的数是()A. -3B. -1C. 0D. 1【答案】A【解析】解:∵-3<-1<0<1,∴最小的是-3.故选:A.根据正数大于0,0大于负数,正数大于负数直接进行比较大小,再找出最小的数.此题主要考查了有理数的比较大小,根据正数都大于0,负数都小于0,正数大于负数,两个负数绝对值大的反而小的原则解答.8.在实数-3,2,0,-4中,最大的数是()A. -3B. 2C. 0D. -4【答案】B【解析】【分析】本题考查了实数大小比较,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.根据正数大于0,0大于负数,正数大于负数,比较即可.【解答】解:∵-4<-3<0<2,∴四个实数中,最大的实数是2.故选B.9.在实数﹣2,2,0,﹣1中,最小的数是( )A. ﹣2B. 2C. 0D. ﹣1【答案】A【解析】【分析】此题考查了有理数大小比较,熟练掌握两个负数比较大小的方法是解本题的关键.找出实数中最小的数即可.【解答】解:在实数-2,2,0,-1中,最小的数是-2,故选:A.10.下列实数中,最小的数是()A. B. 0 C. 1 D.【答案】A【解析】解:根据题意得:-<0<1<,则最小的数是-.故选:A.将各项数字按照从小到大顺序排列,找出最小的数即可.此题考查了实数大小比较,正确排列出数字是解本题的关键.11.四个实数-2,0,-,1中,最大的实数是()A. -2B. 0C. -D. 1【答案】D【解析】解:∵-2<-<0<1,∴四个实数中,最大的实数是1.故选:D.根据正数大于0,0大于负数,正数大于负数,比较即可.本题考查了实数大小比较,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.12.如图,数轴上A、B两点分别对应实数a,b,则下列结论正确的是()A. a<bB. a=bC. a>bD. ab>0【答案】C【解析】解:∵b在原点左侧,a在原点右侧,∴b<0,a>0,∴a>b,故A、B错误,C正确;∵a、b异号,∴ab<0,故D错误.故选:C.根据各点在数轴上的位置判断出a、b的符号,再比较出其大小即可.本题考查的是实数大小比较及数轴的特点,熟知数轴上各数的特点是解答此题的关键.13.下面实数比较大小正确的是()A. 3>7B.C. 0<-2D. 22<3【答案】B【解析】解:A、3<7,故本选项错误;B、∵≈1.7,≈1.4,∴>,故本选项正确;C、0>-2,故本选项错误;D、22>3,故本选项错误.故选B.根据实数比较大小的法则对各选项进行逐一分析即可.本题考查的是实数的大小比较,熟知实数比较大小的法则是解答此题的关键.14.下列四个实数中,比-1小的数是()A. -2B. 0C. 1D. 2【答案】A【解析】解:∵-1<0,1>0,2>0,∴可排除B、C、D,∵-2<0,|-2|>|-1|,∴-2<-1.故选:A.根据实数比较大小的法则进行比较即可.本题考查的是实数比较大小的法则,即任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.15.在,0,-1,这四个实数中,最大的是()A. B. 0 C. -1 D.【答案】D【解析】解:∵正实数都大于0,负实数都小于0,正实数大于一切负实数,0<<1,1<<2,∴-1<0<<,故选D.利用任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可.本题主要考查了比较实数的大小,掌握任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,是解答此题的关键.16.下列各数中最小的是()A. 0B. -3C. -D. 1【答案】B【解析】解:因为在A、B、C、D四个选项中只有B、C为负数,故应从B、C中选择;又因为|-3|>|-|=2,所以-3<-,故选B.根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可解答.此题主要考查了实数的大小的比较,实数比较大小的方法:(1)正数都大于0,负数都小于0,正数大于一切负数;(2)两个负数绝对值大的反而小.17.在0,,-1,这四个实数中,最大的数是()A. -1B. 0C.D.【答案】D【解析】解:∵正数大于0、0大于负数,∴这4个数中较大为是和,而>,∴是4个数中最大的,故选D.根据正数大于0、0大于负数解答可得.本题主要考查实数的大小比较,解题的关键是熟练掌握正数大于0、0大于负数.18.在有理数-1,0,3,中,最大的数是()A. -1B. 0C. 3D.【答案】C【解析】解:在实数-1,0,3,中,最大的数是3,故选:C.根据正实数都大于0,负实数都小于0,正实数大于一切负实数进行比较即可.此题主要考查了实数的比较大小,关键是掌握任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.19.在0,2,-3,-这四个数中,最小的数是()A. 0B. 2C. -3D. -【答案】C【解析】解:根据实数比较大小的方法,可得-3<-<0<2,所以最小的数是-3.故选:C.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.20.已知:,,,则a,b,c的大小关系是A. B. C. D.【答案】A【解析】【分析】比较根指数不同的根式的大小,可以首先把它们化为根指数相同的根式,然后只需比较被开方数的大小.先把它们化为根指数相同的根式,再比较被开方数的大小即可解决问题.【解答】解:根据二次根式的性质,化简a=1.4,1.4=<,即a<b.又∵=,=,∴a<b<c.故选A.21.实数a,b在数轴上的对应点的位置如图所示,把-a,-b,0按照从小到大的顺序排列,正确的是()A. -a<0<-bB. 0<-a<-bC. -b<0<-aD. 0<-b<-a【答案】C【解析】解:∵从数轴可知:a<0<b,∴-a>-b,-b<0,-a>0,∴-b<0<-a,故选:C.根据数轴得出a<0<b,求出-a>-b,-b<0,-a>0,即可得出答案.本题考查了数轴,有理数的大小比较的应用,能根据数轴得出-b<0<-a,是解此题的关键.22.已a,b为实数,ab=1,M=,N=,则M,N的大小关系是()A. M>NB. M=NC. M<ND. 无法确定【答案】B【解析】解:M==,∵ab=1,∴==1.N==,∵ab=1,∴==1,∴M=N.故选B.23.比较实数:2、、的大小,正确的是()A. <2<B. 2<<C. <<2D. 2<<【答案】A【解析】解:∵2=<,∴2<,∵<=2,∴<2,∴<2<.故选:A.应用放缩法,判断出2、、的大小关系即可.此题主要考查了实数大小比较的方法,要熟练掌握,注意放缩法的应用.24.四个实数-2,0,-,-1中,最大的实数是()A. -2B. 0C.D. -1【答案】B【解析】解:∵-2,-,-1均为负数,负数小于零,∴最大的实数是0,故选:B.根据负实数都小于0即可得出答案.本题主要考查实数的大小比较,解题的关键是熟练掌握正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.25.已知a=,b=,c=,则下列大小关系正确的是()A. a>b>cB. c>b>aC. b>a>cD. a>c>b【答案】A【解析】解:∵a==,b==,c==,且<<,∴>>,即a>b>c,故选:A.将a,b,c变形后,根据分母大的反而小比较大小即可.此题考查了实数比较大小,将a,b,c进行适当的变形是解本题的关键.26.实数a,b在数轴上对应的点如图所示,则a,b,-a,-b这四个数中最小的数是()A. aB. bC. -aD. -b【答案】D【解析】解:如图,-b<a<-a<b,故最小的数是-b,故选:D.在数轴上把-a,-b表示出来,再根据数轴上右边的数大于左边的数,即可解答.本题考查了实数大小比较,解决本题的关键是熟记数轴上右边的数大于左边的数.27.在实数|-3|,-2,0,1中最大的数是()A. |-3|B. -2C. 0D. 1【答案】A【解析】解:|-3|=3,∴|-3|是最大的数,故选:A.根据实数的大小比较法则即可求出答案.本题考查实数的大小比较,解题的关键是熟练运用实数的大小的比较方法,本题属于基础题型.28.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是()A. aB. bC. cD. d【答案】A【解析】解:根据图示,可得3<|a|<4,1<|b|<2,0<|c|<1,2<|d|<3,所以这四个数中,绝对值最大的是a.故选:A.首先根据数轴的特征,以及绝对值的含义和性质,判断出实数a,b,c,d的绝对值的取值范围,然后比较大小,判断出这四个数中,绝对值最大的是哪个数即可.此题主要考查了实数大小的比较方法,以及绝对值的非负性质的应用,要熟练掌握,解答此题的关键是判断出实数a,b,c,d的绝对值的取值范围.29.在实数0,-2,,2中,最大的是()A. 0B. -2C.D. 2【答案】C【解析】解:根据实数比较大小的方法,可得>2>0>-2,故实数0,-2,,2其中最大的数是.故选:C.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.30.下列各数中最大的数是()A. πB. 3C.D. -3【答案】A【解析】解:根据实数比较大小的方法,可得π>3>>-3.故选:A.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.31.如图所示,数轴上两点A,B分别表示实数a,b,则下列四个数中最大的一个数是()A. aB. bC.D.【答案】D【解析】解:∵负数小于正数,∴<a<b<,在区间(0,1)上的实数的倒数比实数本身大.所以>b.故选D.由于负数小于正数,所以a,比b,小,在区间(0,1)上的实数的倒数比实数本身大.本题考查知识点为:负数小于正数,在区间(0,1)上的实数的倒数比实数本身大.32.比较2,,的大小,正确的是()A. B. C. D.【答案】A【解析】解:∵2=,∴<,∵=2,∴<2,∴<<,故选A.先把2写成与的形式,再按照实数大小比较的法则判断即可.此题考查了实数的大小比较法则,解题的关键是牢记法则,此题比较简单,易于掌握.33.如果m>0,n<0,m<|n|,那么m,n,-m,-n的大小关系是()A. -n>m>-m>nB. m>n>-m>-nC. -n>m>n>-mD. n>m>-n>-m 【答案】A【解析】解:根据正数大于一切负数,只需分别比较m和-n,n和-m.再根据绝对值的大小,得-n>m>-m>n.故选A.先确定m、n、-m、-n的符号,再根据正数大于0,负数小于0即可比较m,n,-m,-n 的大小关系.此题主要考查了实数的大小的比较,两个负数,绝对值大的反而小.34.在实数-,π,0,-3中,最小的实数是()A. -B. πC. 0D. -3【答案】D【解析】解:根据实数比较大小的方法,可得-3<-<0<π,∴最小的实数是-3.故选:D.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.35.下列各组数的大小关系正确的是()A. +0.3<-0.1B. 0<-|-7|C. -<-1.414D. ->-【答案】C【解析】解:A、+0.3>-0.1,故本选项不符合题意;B、0>-|-7|,故本选项不符合题意;C、∵1.4142=1.999396,∴-<-1.414,故本选项符合题意;D、-<-,故本选项不符合题意;故选:C.先根据实数的大小比较法则比较数的大小,再得出选项即可.本题考查了实数的大小比较法则、相反数和绝对值,能熟记实数的大小比较法则的内容是解此题的关键,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.36.在-3,0,,,这四个数中,最小的数是()A. -3B. 0C.D.【答案】D【解析】【分析】此题主要考查了实数比较大小,正确掌握比较方法是解题关键.直接利用负数比较大小的方法结合实数比较大小的方法分析得出答案.【解答】解:∵|-3|=3,|-|=>3,∴-3>-,∴>0>-3>-,故最小的数是:-.故选D.37.在实数-3、0、-、3中,最小的实数是()A. -3B. 0C. -D. 3【答案】A【解析】解:∵1<2<4,∴1<<2.∴-1>->-2.∵3>2,∴-3<-2.∴-3<-2<-<0<3.∴其中最小的实数是-3.故选:A.先估算出-的大小,然后再比较即可.本题主要考查的是比较实数的大小,估算出-的大小是解题的关键.38.下列各数中,最小的数是()A. -2B. 0C.D. -π【答案】D【解析】解:|-|=,则|-|>0>-2>-π,故最小的数是:-π.故选:D.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.39.在下列实数中,最小的是()A. -B. -C. 0D.【答案】A【解析】解:,∴这四个数中最小的是.故选:A.根据实数的大小比较的法则进行比较即可.本题考查的是实数的大小比较,任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.40.实数a,b在数轴上的对应点的位置如图所示.把-a,b,0按照从小到大的顺序排列,正确的是()A. -a<0<bB. 0<-a<bC. b<0<-aD. b<-a<0【答案】B【解析】解:由数轴可知,a<0<b,|a|<|b|,∴0<-a<b,故选:B.根据数轴确定a,b的符号和绝对值的大小,根据实数的大小比较法则解答.本题考查的是数轴的概念,实数的大小比较,根据数轴的概念正确判断实数的大小是解题的关键.41.下列整数中,最接近﹣π+1的数是()A. ﹣3B. 0C. ﹣1D. ﹣2【答案】D【解析】【分析】本题考查实数比大小,深刻理解实数中正数>0>负数,两个负数比较大小,绝对值越大的反而越小.据此先估算π的近似值,再通过法则比较即可得出结论.【解答】解:∵π≈3.14∴-π≈-3.14,∴﹣π+1=-2.14,∴最接近的数为-2.故选D.42.四个实数0、、-3.14、2中,最小的数是()A. 0B.C. -3.14D. 2【答案】C【解析】【分析】本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:∵-3.14<0<<2,∴最小的数是-3.14,故选C.43.实数a,b,c在数轴上的对应点的位置如图所示,则下列结论正确的是( )A. B. C. D.【答案】C【解析】解:由数轴可知,-4<a<-3,-1<b<0,2<c<3,∴|c|<|a|,A错误;ac<0,B错误;c-b>0,C正确;b+c>0,D错误;故选:C.根据数轴确定a,b,c的范围,根据绝对值的性质,有理数的运算法则计算,判断即可.本题考查的是数轴,绝对值,有理数的乘法,加法和减法,掌握数轴的定义,绝对值的性质是解题的关键.44.下列各数中最小的数是()A. -πB. -3C. -D. 0【答案】A【解析】解:根据实数比较大小的方法,可得-π<-3<-<0,∴各数中最小的数是-π.故选:A.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.45.实数a在数轴上对应的点如图所示,则a,-a,1的大小关系正确的是()A. -a<a<1B. a<-a<1C. 1<-a<aD. a<1<-a【答案】D【解析】解:由数轴上a的位置可知a<0,|a|>1;设a=-2,则-a=2,∵-2<1<2∴a<1<-a,故选项A,B,C错误,选项D正确.故选D.本题首先运用数形结合的思想确定a的正负情况,然后根据相反数意义即可解题.此题主要考查了比较实数的大小,解答此题的关键是根据数轴上a的位置估算出a的值,设出符合条件的数值,再比较大小即可.46.实数中,最小的数是()A. B. -1 C. 0 D. 3【答案】A【解析】【分析】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得,∴中,最小的数是.故选A.47.下列各实数中最小的是()A. |-2|B. 0C. -D. -【答案】C【解析】解:根据实数比较大小的方法,可得-<-<0<|-2|,∴各实数中最小的是-.故选:C.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.48.实数a在数轴上对应的点如图所示,则a,-a,-1的大小关系正确的是()A. a<-a<-1B. -a<a<-1C. -1<-a<aD. a<-1<-a【答案】C【解析】【分析】此题主要考查了比较实数的大小,解答此题的关键是根据数轴上a的位置估算出a的值,设出符合条件的数值,再比较大小即可.本题首先运用数形结合的思想确定a的正负情况,然后根据相反数意义即可解题.【解答】解:由数轴上a的位置可知a>0,|a|<1;设a=0.5,则-a=-0.5,∵-1<-0.5<0.5∴-1<-a<a,故选项A,B,D错误,选项C正确.故选C.49.比实数小的数是()A. 2B. 3C. 4D. 5【答案】A【解析】解:∵4<6<9,∴2<<3,∴比实数小的数是2,故选:A.根据实数的估计解答即可.本题考查了实数的大小比较,解决本题的关键是熟记0大于负数,负数比较大小绝对值大的反而小.50.如图,若A是实数a在数轴上对应的点,则关于a,-a,1的大小关系表示正确的是()A. a<1<-aB. a<-a<1C. 1<-a<aD. -a<a<1【答案】A【解析】【分析】本题考查了实数与数轴的对应关系,数轴上的数右边的数总是大于左边的数,根据数轴可以得到a<1<-a,据此即可确定哪个选项正确.【解答】解:∵实数a在数轴上原点的左边,∴a<0,但|a|>1,-a>1,则有a<1<-a.故选A.51.下列四个数:-3,-,-π,-,其中最大的数是()A. -3B. -C. -πD. -【答案】D【解析】解:∵|-3|=3,|-|=,|-π|=π,|-|=,<<3<π,∴最大的数是-.故选:D.根据负数相比较,绝对值大的反而小解答.本题考查了有理数比较大小,(1)正数都大于0,负数都小于0,正数大于一切负数;(2)两个负数,绝对值大的反而小.52.如图,点A是实数a在数轴上对应的点,则a,-a,1的大小关系表示正确的是()A. -a>1>aB. -a>a>1C. 1>-a>aD. 1>a>-a【答案】A【解析】解:如图所示:a<-1,则-a>1,故-a>1>a.故选:A.直接利用数轴得出a的取值范围,进而比较大小即可.此题主要考查了实数比较大小,正确利用数轴是解题关键.53.已知0<x<1,那么在x,,,x2中最小的数是( )A. xB. x2C.D.【答案】B【解析】【分析】本题考查了实数的大小比较,解本题的关键是特殊值法.根据0<x<1,可设x=,从而得出分别为,2,,,再找出最小值即可.【解答】解:∵0<x<1,∴设x=,∴分别为,2,,,∴的值最小.故选B.54.下列各数中,最小实数是()A. 0B.C.D.【答案】B【解析】【分析】此题主要考查了实数的大小的比较,实数比较大小的方法:(1)正数都大于0,负数都小于0,正数大于一切负数;(2)两个负数绝对值大的反而小.根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可解答.【解答】解:因为在A、B、C、D四个选项中只有B、D选项为负数,故应从B、C选项中选择;又因为|-3|>|-1|,所以-3<-1,因此最小的实数是-3.故选B.55.实数、在数轴上的位置如图所示,则化简的结果为()A. B. C. D.【答案】B【解析】【分析】本题考查了实数与数轴,利用两数相加取绝对值较大加数的符号得出和的符号,小数减大数差为负数是解题关键;由a、b在数轴上的位置,得且,所以,,根据结果的正负性去掉绝对值符号化简即可得到答案.【解答】解:由a、b在数轴上的位置,得且,∴,,∴===故答案为B.56.数轴上实数b的对应点的位置如图所示.比较大小:b+1________0,应该是()A. <B. ≥C. ≤D. >.【答案】A【解析】【分析】本题主要考查的是实数与数轴、不等式的基本性质,熟练掌握相关知识是解题的关键.依据表示b的数在数轴上的位置可知:-2<b<-1,然后依据不等式的性质进行变形即可.【解答】解:由题图知-2<b<-1,所以-1<b+1<0,故选A.57.在0,2,(-3)0,-5这四个数中,最大的数是()A. 0B. 2C. (-3)0D. -5【答案】B【解析】【分析】先利用a0=1(a≠0)得(-3)0=1,再利用两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小即可得出结果.本题主要考查了有理数的大小比较和零指数幂,掌握有理数大小比较的法则和a0=1(a≠0)是解答本题的关键.【解答】解:在0,2,(-3)0=1,-5这四个数中,最大的数是2,故选B.58.在-1,-2,0,1这四个数中,最小的数是( )A. -1B. -2C. 0D. 1【答案】B【解析】【分析】本题考查了有理数大小比较有关知识,根据正数大于0,0大于负数,正数大于负数,同为负数时,绝对值大的负数反而小,比较即可.【解答】解:∵-2<-1<0<1,∴四个实数中,最小的实数是-2.故选B.59.在3,,-4,这四个数中,最大的是( )A. 3B.C. -4D.【答案】D【解析】【分析】本题考查的是实数的大小比较及估算无理数的大小,熟知实数比较大小的法则是解答此题的关键.先估算出和的值,再根据实数比较大小的法则进行比较即可.【解答】解:∵2<<3,又∵3<<4,∴-4<<3<,∴最大的数是.故选D.60.在3,0,-2,-四个数中,最小的数是()A. 3B. 0C. -2D. -【答案】C【解析】解:∵-2<-<0<3,∴四个数中,最小的数是-2,故选:C.依据比较有理数大小的方法判断即可.本题主要考查的是比较有理数的大小,熟练掌握比较有理数大小的法则是解题的关键.61.已知,那么在、、、中最小的数是().A. B. C. D.【答案】B【解析】【分析】此题主要考查了实数比较大小,正确掌握实数的比较大小的方法是解题关键.直接利用x的取值范围,进而比较各数大小.【解答】解:∵-1<x<0,∴>-x2>x>2x,∴在x、2x、、-x2中最小的数是:2x.故选:B.62.在-3,,-1,0这四个实数中,最大的是()A. -3B.C. -1D. 0【答案】B【解析】解:∵正实数都大于0,负实数都小于0,正实数大于一切负实数,∴-3<-1<0<,∴最大.故选:B.利用任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可.本题主要考查了比较实数的大小,掌握任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,是解答此题的关键.63.下列判断错误的是( )A. B.C. D.【答案】C【解析】【分析】本题考查了实数的大小比较和二次根式的性质,把根号外的因式平方后移入根号内,根据此时被开方数的大小比较即可.【解答】解:A.1.52=2.25, 32=9 , 22=4,2.25<9<4,故正确;B.22=4,()2=5,2.52=6.25,4<5<6.25,故正确;C.12=1,(-)2=8-2=8-1=8-7=8-,2=8-6=8-,8-<8-<8-所以,故错误;D.=5-2=,1=5-4=5->,故正确.故选C.64.已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A. a>bB. |a|>|b|C. ab>0D. -a<b【答案】B【解析】【分析】本题考查实数与数轴、绝对值以及实数的大小比较,解答本题的关键是明确题意,利用数形结合的思想解答.根据数轴可以判断a、b的正负,从而可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由数轴可得,-2<a<-1<0<b<1,∴a<b,故选项A错误,|a|>|b|,故选项B正确,ab<0,故选项C错误,-a>b,故选项D错误,故选:B.65.有理数a,b在数轴上的位置如图所示,下列结论正确的是()A. -a<-b<a<bB. a<-b<b<-aC. -b<a<-a<bD. a<b<-b<-a 【答案】B【解析】【分析】本题主要考查的是数轴,比较实数的大小的有关知识,根据数轴得到a<0<b且|a|>b,然后再进行大小比较即可.【解答】。

人教版最新教材七年级数学下册经典易错题初一数学

人教版最新教材七年级数学下册经典易错题初一数学

七年级下册经典易错习题一、填空题1.一个数的平方等于它本身,这个数是;一个数的平方根等于它本身,这个数是;一个数的算术平方根等于它本身,这个数是;一个数的立方等于它本身,这个数是;一个数的立方根等于它本身,这个数是;一个数的倒数是它本身,这个数是;一个数的绝对值等于它本身,这个数是。

2.16的平方根为,=16,16的平方根等于 .3.;,则。

4.已知一个正数的两个平方根分别为3x-5和x-7,则这个正数为 .5.17-1的整数部分为;小数部分为;绝对值为;相反数为 .6. 如图,在数轴上,1的对应点是A、B, A是线段BC的中点,则点C所表示的数是。

7.已知,OA⊥OC,且∠AOB:∠AOC=2:3,则∠BOC的度数为。

8.如果∠1=80°,∠2的两边分别与∠1的两边平行,那么∠2= 。

9.已知点A(1+m,2m+1)在x轴上,则点A坐标为。

10.已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B的坐标为 .11.点P(a-2,2a+3)到两坐标轴距离相等,则a= .12.将点A(1,-3)向右平移2个单位,再向下平移2个单位后得到点B(a,b),则ab=.13.已知平面直角坐标系内点P的坐标为(-1,3),如果将平面直角坐标系向左平移3个单位,再向下平移2个单位,那么平移后点P的坐标为________.14.在平面直角坐标系中,已知A(2,-2),在y轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P共有个。

15.点P(a+5,a)不可能在第象限。

16.平面直角坐标系内有一点P(x,y),满足x=0y,则点P在17.方程52=+yx在正整数范围内的解是_____ 。

18.已知x=1,y=﹣8是方程mx+y-1=0的解,则m的平方根是。

19.关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是。

20.如果不等式2x-m≤0的正整数解有3个,则m的取值范围是。

最新人教版七年级数学下册教案

最新人教版七年级数学下册教案

最新人教版七年级数学下册教案案例是教学理论的故乡。

一个典型的案例有时也能反应人类认识实践上的真谛,从众多的案例中,可以寻觅到理论假定的支持性或反对性论据,并避免地道从理论的研究进程中的偏差。

今天作者在这里整理了一些最新202X人教版七年级数学下册教案,我们一起来看看吧!最新202X人教版七年级数学下册教案1学习目标1.经历视察、操作、想像、推理、交换等活动,进一步发展推理能力和有条理表达能力.2.掌控直线平行的条件,领会归纳和转化的数学思想学习重难点:探索并掌控直线平行的条件是本课的重点也是难点.一、探索直线平行的条件平行线的判定方法1:二、练一练1、判定题1.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等.( )2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等.( )2、填空1.如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或笔________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.(2)(3)2.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.三、挑选题1.如图3所示,下列条件中,不能判定AB∥CD的是( )A.AB∥EF,CD∥EFB.∠5=∠A;C.∠ABC+∠BCD=180°D.∠2=∠32.右图,由图和已知条件,下列判定中正确的是( )A.由∠1=∠6,得AB∥FG;B.由∠1+∠2=∠6+∠7,得CE∥EIC.由∠1+∠2+∠3+∠5=180°,得CE∥FI;D.由∠5=∠4,得AB∥FG四、已知直线a、b被直线c所截,且∠1+∠2=180°,试判定直线a、b的位置关系,并说明理由.五、作业课本15页-16页练习的1、2、3、5.2.2平行线的判定(2)课型:新课:备课人:韩贺敏审核人:霍红超学习目标1.经历视察、操作、想像、推理、交换等活动,进一步发展空间观念,推理能力和有条理表达能力.毛2.分析题意说理进程,能灵活地选用直线平行的方法进行说理.学习重点:直线平行的条件的运用.学习难点:选取适当判定直线平行的方法进行说理是重点也是难点.一、学习进程平行线的判定方法有几种?分别是什么?二.巩固练习:1.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.(第1题) (第2题)2.如图,一个合格的变形管道ABCD需要AB边与CD边平行,若一个拐角∠ABC=72°,则另一个拐角∠BCD=_______时,这个管道符合要求.二、挑选题.1.如图,下列判定不正确的是( )A.由于∠1=∠4,所以DE∥ABB.由于∠2=∠3,所以AB∥ECC.由于∠5=∠A,所以AB∥DED.由于∠ADE+∠BED=180°,所以AD∥BE2.如图,直线AB、CD被直线EF所截,使∠1=∠2≠90°,则( )A.∠2=∠4B.∠1=∠4C.∠2=∠3D.∠3=∠4三、解答题.1.你能用一张不规则的纸(比如,如图1所示的四边形的纸)折出两条平行的直线吗?与同伴说说你的折法.2.已知,如图2,点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?试用两种方法说明理由.最新202X人教版七年级数学下册教案2七年级数学下册二元一次方程组说课稿一、说教材分析1.教材的地位和作用二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。

人教版初一数学下册:实际问题与一元一次不等式(提高)知识讲解

人教版初一数学下册:实际问题与一元一次不等式(提高)知识讲解

实际问题与一元一次不等式(提高)知识讲解【学习目标】1.会从实际问题中抽象出不等的数量关系,会用一元一次不等式解决实际问题; 2. 熟悉常见一些应用题中的数量关系.【要点梳理】要点一、常见的一些等量关系 1.行程问题:路程=速度×时间2.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量3.利润问题:商品利润=商品售价-商品进价,=100%⨯利润利润率进价4.和差倍分问题:增长量=原有量×增长率5.银行存贷款问题:本息和=本金+利息,利息=本金×利率6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.【高清课堂:实际问题与一元一次不等式409415 小结:】 要点二、列不等式解决实际问题列一元一次不等式解应用题与列一元一次方程解应用题类似,通常也需要经过以下几个步骤:(1)审:认真审题,分清已知量、未知量及其关系,找出题中不等关系要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“至少”、“不超过”、“超过”等; (2)设:设出适当的未知数;(3)列:根据题中的不等关系,列出不等式; (4)解:解所列的不等式;(5)答:写出答案,并检验是否符合题意. 要点诠释:(1)列不等式的关键在于确定不等关系;(2)求得不等关系的解集后,应根据题意,把实际问题的解求出来; (3)构建不等关系解应用题的流程如图所示.(4)用不等式解决应用问题,有一点要特别注意:在设未知数时,表示不等关系的文字如“至少”不能出现,即应给出肯定的未知数的设法,然后在最后写答案时,应把表示不等关系的文字补上.如下面例1中 “设还需要B 型车x 辆 ”,而在答中 “至少需要11台B 型车 ”.这一点要应十分注意. 【典型例题】类型一、简单应用题1.蓝天运输公司要将300吨物资运往某地,现有A、B两种型号的汽车可供调用.已知A型汽车每辆最多可装该物资20吨,B型汽车每辆最多可装该物资15吨.在每辆车不超载的条件下,要把这300吨物资一次性装运完.问:在已确定调用7辆A型车的前提下至少还需调用B型车多少辆?【思路点拨】本题的数量关系是:7辆A型汽车装载货物的吨数+B型汽车装货物的吨数≥300吨,由此可得出不等式,求出自变量的取值范围,找出符合条件的值.【答案与解析】解:设需调用B型车x辆,由题意得:72015300x⨯+≥,解得:2103x≥,又因为x取整数,所以x最小取11.答:在已确定调用7辆A型车的前提下至少还需调用B型车11辆.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的不等量关系.举一反三:【变式】(2015•香坊区二模)某商场共用2200元同时购进A、B两种型号的背包各40个,且购进A型号背包2个比购进B型号背包1个多用20元.(1)求A、B两种型号背包的进货单价各为多少元?(2)若该商场把A、B两种型号背包均按每个50元的价格进行零售,同时为了吸引消费者,商场拿出一部分背包按零售价的7折进行让利销售.商场在这批背包全部销售完后,若总获利不低于1350元,求商场用于让利销售的背包数量最多为多少个?【答案】解:(1)设A型背包每个为x元,B型背包每个为y元,由题意得,解得:.答:A、B两种型号背包的进货单价各为25元、30元;(2)设商场用于让利销售的背包数量为a个,由题意得,50×70a%+50(40×2﹣a)﹣2200≥1350,解得:a≤30.所以,商场用于让利销售的背包数数量最多为30个.答:商场用于让利销售的背包数数量最多为30个.类型二、阅读理解型2. 用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:甲种原料乙种原料维生素C含量(单位•千克)600 100原料价格(元•千克)8 4现配制这种饮料10kg,要求至少含有4200单位的维生素C,若所需甲种原料的质量为xkg,则x应满足的不等式为()A.600x+100(10-x)≥4200 B.8x+4(100-x)≤4200C.600x+100(10-x)≤4200 D.8x+4(100-x)≥4200【思路点拨】首先由甲种原料所需的质量和饮料的总质量,表示出乙种原料的质量,再结合表格中的数据,根据“至少含有4200单位的维生素C”这一不等关系列不等式.【答案】A【解析】解:若所需甲种原料的质量为xkg,则需乙种原料(10-x)kg.根据题意,得600x+100(10-x)≥4200.【总结升华】能够读懂表格,会把文字语言转换为数学语言.【变式】(2015春•西城区期末)为了落实水资源管理制度,大力促进水资源节约,某地实行居民用水阶梯水价,收费标准如下表:(1)小明家5月份用水量为14立方米,在这个月,小明家需缴纳的水费为元;(2)小明家6月份缴纳水费110元,在这个月,小明家缴纳第二阶梯水价的用水量为立方米;(3)随着夏天的到来,用水量将会有所增加,为了节省开支,小明家计划7月份的水费不超过180元,在这个月,小明家最多能用水多少立方米?【答案】解:(1)由表格中数据可得:0≤x≤15时,水价为:5元/立方米,故小明家5月份用水量为14立方米,在这个月,小明家需缴纳的水费为:14×5=70(元);(2)∵15×5=75<110,75+6×7=117>110,∴小明家6月份使用水量超过15立方米但小于21立方米,设小明家6月份使用水量为x立方米,∴75+(x﹣15)×7=110,解得:x=20,故小明家缴纳第二阶梯水价的用水量为:20﹣15=5(立方米),故答案为:5;(3)设小明家能用水a立方米,根据题意可得:117+(a﹣21)×9≤180,解得:a≤28.答:小明家计划7月份的水费不超过180元,在这个月,小明家最多能用水28立方米.类型三、方案选择型3.(2015•龙岩)某公交公司有A,B型两种客车,它们的载客量和租金如下表:A B载客量(人/辆)45 30租金(元/辆)400 280红星中学根据实际情况,计划租用A,B型客车共5辆,同时送七年级师生到基地校参加社会实践活动,设租用A型客车x辆,根据要求回答下列问题:(1)用含x的式子填写下表:车辆数(辆)载客量租金(元)A x 45x 400xB 5﹣x __________ ___________(2)若要保证租车费用不超过1900元,求x的最大值;(3)在(2)的条件下,若七年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.【思路点拨】(1)根据题意,载客量=汽车辆数×单车载客量,租金=汽车辆数×单车租金,列出代数表达式即可;(2)根据题意,表示出租车总费用,列出不等式即可解决;(3)由(2)得出x的取值范围,一一列举计算,排除不合题意方案即可.【答案与解析】解:(1)∵载客量=汽车辆数×单车载客量,租金=汽车辆数×单车租金,∴B型客车载客量=30(5﹣x);B型客车租金=280(5﹣x);故填:30(5﹣x);280(5﹣x).(2)根据题意,400x+280(5﹣x)≤1900,解得:x≤4,∴x的最大值为4;(3)由(2)可知,x≤4,故x可能取值为0、1、2、3、4,①A型0辆,B型5辆,租车费用为400×0+280×5=1400元,但载客量为45×0+30×5=150<195,故不合题意舍去;②A型1辆,B型4辆,租车费用为400×1+280×4=1520元,但载客量为45×1+30×4=165<195,故不合题意舍去;③A型2辆,B型3辆,租车费用为400×2+280×3=1640元,但载客量为45×2+30×3=180<195,故不合题意舍去;④A型3辆,B型2辆,租车费用为400×3+280×2=1760元,但载客量为45×3+30×2=195=195,符合题意;⑤A型4辆,B型1辆,租车费用为400×4+280×1=1880元,但载客量为45×4+30×1=210,符合题意;故符合题意的方案有④⑤两种,最省钱的方案是A型3辆,B型2辆.【总结升华】此题主要考查了一次不等式的综合应用,由题意得出租用x辆甲种客车与总租金关系是解决问题的关键.举一反三:【变式】黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用不超过5000元,问公司租用的四座车和十一座车各多少辆?【答案】解:设四座车租x辆,则十一座车租70411x-辆.依题意 70×60+60x+(70-4x)×10≤5000,将不等式左边化简后得:20x+4900≤5000,不等式两边减去3500得 20x≤100,不等式两边除以20得 x≤5,又∵70411x-是整数,∴1x=,704611x-=.答:公司租用四座车l辆,十一座车6辆.4.响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?【思路点拨】(1)关系式为:甲种电冰箱用款+乙种电冰箱用款+丙种电冰箱用款≤132000,根据此不等关系列不等式即可求解;(2)关系式为:甲种电冰箱的台数≤丙种电冰箱的台数,以及(1)中得到的关系式联合求解.【答案与解析】解:(1)设购买乙种电冰箱x台,则购买甲种电冰箱2x台,丙种电冰箱(80-3x)台,根据题意得1200×2x+1600x+(80-3x)×2000≤132000解这个不等式得x≥14∴至少购进乙种电冰箱14台;(2)根据题意得2x≤80-3x解这个不等式得x≤16由(1)知x≥14∴14≤x≤16又∵x为正整数∴x=14,15,16.所以,有三种购买方案方案一:甲种电冰箱为28台,乙种电冰箱为14台,丙种电冰箱为38台.方案二:甲种电冰箱为30台,乙种电冰箱为15台,丙种电冰箱为35台.方案三:甲种电冰箱为32台,乙种电冰箱为16台,丙种电冰箱为32台.【总结升华】探求不等关系时,要注意捕捉“大于”、“超过”、“不少于”、“不足”、“至多”等表示不等关系的关键词,通过这些词语,可以直接找到不等关系.附录资料:一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x ,请你根据题意写出x 必须满足的不等式. 【思路点拨】由题意知,x 必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系. 【答案与解析】 解:依题意得:8482(8)34.x x >⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.【高清课堂:第二讲 一元一次不等式组的解法370096 例2】 举一反三:【变式】直接写出解集:(1)2,3x x >⎧⎨>-⎩的解集是______;(2)2,3x x <⎧⎨<-⎩的解集是______;(3)2,3x x <⎧⎨>-⎩的解集是_______;(4)2,3x x >⎧⎨<-⎩的解集是_______.【答案】(1)2x >;(2)3x <-;(3)32x -<<;(4)空集.类型二、解一元一次不等式组2. 解下列不等式组(1) 313112123x x x x +<-⎧⎪⎨++≤+⎪⎩①②(2)213(1)4x x x +>-≥-.【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集.【答案与解析】解:(1)解不等式①,得x<-2解不等式②,得x≥-5故原不等式组的解集为-5≤x<-2.其解集在数轴上表示如图所示.(2)原不等式可变为:213(1)3(1)4x xx x+>-⎧⎨-≥-⎩①②解①得:4x<解②得:12 x≥-故原不等式组的解集为14 2x-≤<.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.举一反三:【变式】(2015•江西样卷)解不等式组,并把解集在数轴上表示出来.【答案】解:,∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵. 【思路点拨】设有x 名学生,则由第一种植树法,知道一共有(4x +37)棵树;第二种植树法中,前(x-1)名学生中共植6(x-1)棵树; 最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵, 这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式.到此,不等式组即建立起来了,接下来就是解不等式组. 【答案与解析】解:设有x 名学生,根据题意,得:4376114376132x x x x +>-⎧⎨+--<⎩()()()()(),不等式(1)的解集是:x <2121; 不等式(2)的解集是:x >20,所以,不等式组的解集是:20<x <2121, 因为x 是整数,所以,x=21,4×21+37=121(棵) 答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系. 举一反三:【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内? 【答案】解:设这件商品原价为x 元,根据题意可得:88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4.(2015•桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样). (1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可; (2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可. 【答案与解析】 解:(1)设每本文学名著x 元,动漫书y 元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:,解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本; 方案二:文学名著27本,动漫书47本; 方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.【高清课堂:实际问题与一元一次不等式组409416 例2】举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少? 【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤, 又x 为整数,所以5x =或6或7, ∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆; 方案2:租甲种货车6辆,乙种货车4辆; 方案3:租甲种货车7辆,乙种货车3辆. (2)运输费用:方案1:2000×5+1300×5=16500(元);方案2:2000×6+1300×4=17200(元);方案3:2000×7+1300×3=17900(元).∴方案1运费最少,应选方案1.。

人教版数学初一下册第五章 相交线与平行线 5.3.2:命题、定理、证明(1)课件

人教版数学初一下册第五章 相交线与平行线  5.3.2:命题、定理、证明(1)课件
如果两个数互为相反数,那么这两个数相加得0; (4)同旁内角互补;
如果两个角是同旁内角,那么这两个角互补;
(5)对顶角相等.如果两个角是对顶角,那么这两个角相等.
16
知识点一:命题
学以致用
2、改写成“如果……那么……”的形式。并指出下列各命题 的题设和结论,
①、内错角相等; ②、两条平行线被第三直线所截,同位角相等; ③、同角的余角相等; ④、同平行于一直线的两直线平行; ⑤、直角三角形的两个锐角互余; ⑥、等角的补角相等; ⑦、正数与负数的和为0。
①如果一个数能被4整除,那么它也能被2整除。 ②如果两个角互补,那么它们是邻补角。
③相等的角是对顶角.
1
2
1 2
20
知识点二:真命题和假命题
归纳总结
判断一个命题真假的方法:
利用已有的知识,通过观察、验证、推理、举 反例等方法。
判断一个命题是假命题的方法:
判断一个命题是假命题,只要举出一个例子, 说明该命题不成立就可以了,这种方法称为举反例。
,那么..."的形式,会区分命题的题设和结论。 2.知道真命题和假命题的概念,会通过举反例判 断一个命题是假命题.
重点难点 重点:命题的概念以及真命题和假命题的概念.
难点:区分命题的题设和结论.
3
知识点一:命题
新知探究
刚刚我们复习了平行线的性质与判定,这些语句都对某 一件事情作出判断,如:同位角相等,两条直线平行.
(2)题设是“两直线平行”,结论是“同位角相等”;
(3)题设是“两个角是邻补角”,结论是“这两个角互补”.
13
知识点一:命题
互动探究
先独立完成导学案互动探究2,再同桌相互交流, 最后小组交流;

新人教版七年级数学下册全册教案附同步练习及单元测试卷(含答案)

新人教版七年级数学下册全册教案附同步练习及单元测试卷(含答案)

新人教版七年级数学下册全册教案附同步练习及单元测试卷(含答案)第五章相交线与平行线5.1.1相交线教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。

人教版七年级下册数学教学计划7篇

人教版七年级下册数学教学计划7篇

人教版七年级下册数学教学计划7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、学习总结、合同协议、规章制度、条据文书、事迹材料、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, the shop provides you with various types of classic model essays, such as work summary, study summary, contract agreement, rules and regulations, documents, deeds materials, experience, teaching materials, composition, other model essays, etc.want to know different model essay formats and writing methods, please pay attention!人教版七年级下册数学教学计划7篇应该有很多人在自己的教学或者是生活中都有过写教学计划的经历吧,教学计划的制定是我们在教学上赢得他教师尊重的有效途径,要学会正确面对,本店铺今天就为您带来了人教版七年级下册数学教学计划7篇,相信一定会对你有所帮助。

人教版七年级下册数学第9章 不等式与不等式组全章课件

人教版七年级下册数学第9章 不等式与不等式组全章课件
10天的工作量 < 500件
(2)“提前完成任务”是什么意思?
10天的工作量 ≥ 500件
(三)深入探究,阶段小结
解:每个小组每天生产x件产品,
依题意得: 3×10x<500, ① 3×10(x+1)>500. ②
①式解得:x
<
16
2 3
②式解得:x
>15
2 3
∴不等式组的解集为
15
2 3
<x
< 16
问题3:
从刚才的练习中你发现了什么?请你把你的发现和合作小组的同学 交流.
⑴ 5>3, 5+2 > 3+2, 5-2 > 3-2; ⑵ -1<3, -1+2 < 3+2,-1-3< 3-3; ⑶ 6<2, 6×5 < 2×5,
6×(-5) >2×(-5); ⑷ -2<3, (-2)×6 < 3×6,
依题意得:40x≤2400 且 40x≥2000
(二)概念认识
c>10-3 且 c<10+3
c >10-3 c <10+3
一元一次 不等式组
40x≤2400 且 40x≥2000
40x≤2400
【问题3】
40x≥2000
请大家判断一下,下列式子是一元一次不等式
组吗?一元一次不等式组有什么特点?
x - 3 >0
23 从图中可以找到两个不等式解集的公共部分, 得不等式组的解集是: x >3
(五)练习巩固
【问题 7】完成课本 140 页练习 1.
(六)课堂小结
【问题 8】本节课你学到了哪些知识?
第九章 不等式与不等式组

人教版七年级下册数学知识点总结归纳

人教版七年级下册数学知识点总结归纳

人教版七年级下册数学知识点总结归纳七年级下册数学知识点1概率1.一般地,在大量重复试验中,如果事件A发生的频率n/m会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。

2.随机事件:在一定的条件下可能发生也可能不发生的事件,叫做随机事件。

3.互斥事件:不可能同时发生的两个事件叫做互斥事件。

4.对立事件:即必有一个发生的互斥事件叫做对立事件。

5.必然事件:那些无需通过实验就能够预先确定它们在每一次实验中都一定会发生的事件称为必然事件。

6.不可能事件:那些在每一次实验中都一定不会发生的事件称为不可能事件。

2相交线与平行线1.相交线在同一平面内,两条直线的位置关系有相交和平行两种。

如果两条直线只有一个公共点时,称这两条直线相交。

2.垂线当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足。

3.同位角两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角。

4.内错角两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角。

5.同旁内角两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角。

6.平行线几何中,在同一平面内,永不相交(也永不重合)的两条直线叫做平行线。

平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。

7.平移平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。

3平面直角坐标系1.定义:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。

2.平面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。

人教版初一下册数学知识点

人教版初一下册数学知识点

人教版初一下册数学知识点(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!人教版初一下册数学知识点数学是一门基础性的科学,值得每个人去学习,尤其是孩子,更要去学习数学,并且以此来构架自己的思维体系。

人教版初一数学下册:不等式及其性质(基础)知识讲解

人教版初一数学下册:不等式及其性质(基础)知识讲解

附录资料:不等式及其性质(基础)知识讲解【学习目标】1.了解不等式的意义,认识不等式和等式都可以用来刻画现实世界中的数量关系.2. 知道不等式解集的概念并会在数轴上表示解集.3. 理解不等式的三条基本性质,并会简单应用.【要点梳理】要点一、不等式的概念一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大.(2)(3)x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.要点二、不等式的解及解集1.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.2.不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.3.不等式的解集的表示方法(1)用最简的不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式的无限个解.如图所示:要点诠释:借助数轴可以将不等式的解集直观地表示出来,在应用数轴表示不等式的解集时,要注意两个“确定”:一是确定“边界点”,二是确定方向.(1)确定“边界点”:若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;(2)确定“方向”:对边界点a 而言,x >a 或x ≥a 向右画;对边界点a 而言,x <a 或x ≤a 向左画. 注意:在表示a 的点上画空心圆圈,表示不包括这一点.【高清课堂:一元一次不等式370042 不等式的基本性质】 要点三、不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a >b ,那么a ±c >b ±c .不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a >b ,c >0,那么ac >bc (或a b c c >). 不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a >b ,c <0,那么ac <bc (或a b c c<). 要点诠释:不等式的基本性质的掌握注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会. (2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变. 【典型例题】类型一、不等式的概念1.用不等式表示: (1)x 与-3的和是负数;(2)x 与5的和的28%不大于-6; (3)m 除以4的商加上3至多为5. 【思路点拨】列不等式时,应抓住“大于”、“不大于”、“不是”、“至多”、“非负数”等表示不等关系的关键性词语,进而根据这些关键词的内涵列出不等式. 【答案与解析】解:(1)x -3<0;(2)28%(x+5)≤-6;(3)34m+≤5. 【总结升华】在不等式及其应用的题目中,经常会出现一些表示不等关系的词语.正确理解这些关键词很重要.如:若x 是非负数,则x ≥0;若x 是非正数,则x ≤0;若x 大于y ,则有x -y >0;若x 小于y ,则有x -y <0等.举一反三: 【变式】(2015春•陕西校级期末)下列式子:①﹣2<0;②2x+3y <0;③x=3;④x+y 中,是不等式的个数有( ) A .1个 B .2个 C .3个 D .4个【答案】B.类型二、不等式的解及解集2.对于不等式4x+7(x-2)>8不是它的解的是()A.5 B.4 C.3 D.2【思路点拨】根据不等式解的定义作答.【答案】D【解析】解:当x=5时,4x+7(x-2)=41>8,当x=4时,4x+7(x-2)=30>8,当x=3时,4x+7(x-2)=19>8,当x=2时,4x+7(x-2)=8.故知x=2不是原不等式的解.【总结升华】不等式的解的定义与方程的解的定义是类似的,其判定方法是相同的.3.不等式x>1在数轴上表示正确的是()【思路点拨】根据不等式的解集在数轴上表示出来的方法画数轴即可.【答案】C【解析】解:∵不等式x>1∴在数轴上表示为:故选C.【总结升华】用数轴表示解集时,应注意两点:一是“边界点”,如果边界点包含于解集,则用实心圆点;二是“方向”,相对于边界而言,大于向右,小于向左,同时还应善于逆向思维,通过读数轴写出对应不等式的解集.【高清课堂:一元一次不等式370042练习2】举一反三:【变式】如图,在数轴上表示的解集对应的是( ).A.-2<x<4 B.-2<x≤4 C.-2≤x<4 D.-2≤x≤4【答案】B类型三、不等式的性质4.(2015•浙江模拟)若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.x+3>y+3 C.﹣3x>﹣3y D.>【思路点拨】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案. 【答案】C . 【解析】解:A 、不等式的两边都减3,不等号的方向不变,故A 正确; B 、不等式的两边都加3,不等号方向不变,故B 正确; C 、不等式的两边都乘﹣3,不等号的方向改变,故C 错误; D 、不等式的两边都除以3,不等号的方向改变,故D 正确; 故选:C .【总结升华】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变. 举一反三:【变式】三角形中任意两边之差与第三边有怎样的关系? 【答案】解:如图,设c ,b ,a 为任意一个三角形的三条边,则:b ac ,a c b ,c b a >+>+>+移项可得:a b c ,c a b ,b c a ->->-> 即:三角形两边的差小于第三边.附录资料:一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用. 【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x,请你根据题意写出x必须满足的不等式.【思路点拨】由题意知,x必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得:8482(8)34. xx>⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.【高清课堂:第二讲一元一次不等式组的解法370096 例2】举一反三:【变式】直接写出解集:(1)2,3x x >⎧⎨>-⎩的解集是______;(2)2,3x x <⎧⎨<-⎩的解集是______;(3)2,3x x <⎧⎨>-⎩的解集是_______;(4)2,3x x >⎧⎨<-⎩的解集是_______.【答案】(1)2x >;(2)3x <-;(3)32x -<<;(4)空集.类型二、解一元一次不等式组2. 解下列不等式组(1) 313112123x x x x +<-⎧⎪⎨++≤+⎪⎩①②(2)213(1)4x x x +>-≥-.【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集. 【答案与解析】解:(1)解不等式①,得x <-2解不等式②,得x ≥-5故原不等式组的解集为-5≤x <-2. 其解集在数轴上表示如图所示.(2) 原不等式可变为:213(1)3(1)4x x x x +>-⎧⎨-≥-⎩①②解①得:4x < 解②得:12x ≥-故原不等式组的解集为142x -≤<.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.举一反三:【变式】(2015•江西样卷)解不等式组,并把解集在数轴上表示出来.【答案】解:,∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x名学生,则由第一种植树法,知道一共有(4x +37)棵树;第二种植树法中,前(x-1)名学生中共植6(x-1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式.到此,不等式组即建立起来了,接下来就是解不等式组.【答案与解析】解:设有x名学生,根据题意,得:437611 4376132x xx x+>-⎧⎨+--<⎩()()()()(),不等式(1)的解集是:x <2121; 不等式(2)的解集是:x >20,所以,不等式组的解集是:20<x <2121, 因为x 是整数,所以,x=21,4×21+37=121(棵) 答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系. 举一反三:【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内? 【答案】解:设这件商品原价为x 元,根据题意可得:88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩ 解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4.(2015•桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样). (1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案. 【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可; (2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可. 【答案与解析】 解:(1)设每本文学名著x 元,动漫书y 元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:,解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本; 方案二:文学名著27本,动漫书47本; 方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.【高清课堂:实际问题与一元一次不等式组409416 例2】举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少? 【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤, 又x 为整数,所以5x =或6或7, ∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆; 方案2:租甲种货车6辆,乙种货车4辆; 方案3:租甲种货车7辆,乙种货车3辆. (2)运输费用:方案1:2000×5+1300×5=16500(元); 方案2:2000×6+1300×4=17200(元); 方案3:2000×7+1300×3=17900(元). ∴方案1运费最少,应选方案1.。

5.1.3同位角、内错角、同旁内角(教案)2022春七年级下册初一数学(人教版)

5.1.3同位角、内错角、同旁内角(教案)2022春七年级下册初一数学(人教版)
3.增强学生的数学应用意识:将同位角、内错角、同旁内角知识应用于解决实际问题,让学生体会数学与生活的紧密联系,提高数学应用能力。
4.培养学生的数学抽象素养:通过对平行线性质的抽象概括,让学生理解数学概念的本质,提高数学抽象思维。
本节课旨在使学生在掌握知识的同时,培养数学学科核心素养,为今后的学习打下坚实基础。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“同位角、内错角、同旁内角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-对于难点二,教师可以设计一系列由浅入深的例题,逐步引导学生运用平行线性质进行推理。在解答过程中,强调步骤的严谨性,帮助学生建立正确的逻辑思维。
-对于难点三,将实际生活中的问题引入课堂,让学生学会从复杂情境中提取关键信息,运用所学知识解决问题。例如,可以设计一些与建筑、交通等实际情境相关的题目,让学生应用同位角、内错角、同旁内角的知识。
此外,注重分层教学。针对不同水平的学生,设计难易程度不同的题目,使每个学生都能在课堂上得到锻炼和提高。对于基础较弱的学生,可以适当降低难度,加强基础知识的学习;对于基础较好的学生,可以适当提高难度,拓展他们的思维。
最后,加强课后辅导。在课后,关注学生的作业完成情况,及时解答他们的疑问。同时,鼓励学生之间相互讨论、交流,共同进步。
本节课旨在帮助学生掌握平行线的性质,培养空间想象能力和逻辑思维能力。
二、核心素养目标
本节课的核心素养目标为:

初一人教版七年级下册数学完全平方公式

初一人教版七年级下册数学完全平方公式

初一人教版七年级下册数学完全平方公式知识点归纳总结一、完全平方公式的概念完全平方公式是数学中一种重要的恒等式,它描述了一个二次多项式如何表示为一个平方的形式。

具体地说,完全平方公式是形如a²±2ab+b²=(a±b)²的等式。

其中,a和b 是任意实数或代数式,它们可以是数字、字母、单项式或多项式。

二、完全平方公式的定义完全平方公式可以定义为:一个二次多项式,如果它可以表示为(a±b)²的形式,则称该二次多项式为完全平方公式。

其中,a和b可以是任意实数或代数式。

三、完全平方公式的性质唯一性:对于给定的a和b,完全平方公式(a±b)²是唯一的。

这意味着没有其他形式的二次多项式可以表示为完全平方。

展开性:完全平方公式可以展开为a²±2ab+b²的形式。

这是完全平方公式的一个重要性质,它允许我们将一个看似复杂的二次多项式简化为一个更简单的形式。

对称性:完全平方公式具有对称性,即(a+b)²=(b+a)²和(a-b)²=(b-a)²。

这意味着在完全平方公式中,a和b的位置可以互换而不影响公式的值。

四、完全平方公式的特点平方项:完全平方公式的第一项和最后一项都是平方项,即a²和b²。

这两项代表了公式中的主要部分,它们决定了公式的整体形状。

乘积项:完全平方公式的中间项是a和b的乘积的两倍,即±2ab。

这项是公式中的关键部分,它连接了平方项并使整个公式成为一个整体。

正负号:完全平方公式中的正负号取决于中间项是正是负。

如果中间项是正数,则公式为(a+b)²;如果中间项是负数,则公式为(a-b)²。

五、完全平方公式的规律二次项和一次项的关系:在完全平方公式中,二次项(a ²)和一次项(±2ab)之间存在密切的关系。

人教版七年级下册数学算术平方根的定义

人教版七年级下册数学算术平方根的定义

a 0; a 0.
ax
填表
正方形的面积/dm2 1 9 16 36
正方形的边长/dm 1 3 4 6
分析:设正方形的边长为 x (x 0) dm
由题意得
x2 a .
由算术平方根的意义可知 x a .
4a 25 (a > 0)
2
?
5
填表
正方形的面积/dm2 1 9 16 36
正方形的边长/dm 1 3 4 6
4a 9 16 36 25 (a > 0)
3
4
6
2 5
?
上面的问题,实际上是已知一个 正数的平方,求这个正数的问题.
填表
正方形的面积/dm2 1 9 16 36
正方形的边长/dm 1 3 4 6
分析:设正方形的边长为 x (x 0) dm
由题意得
x2 a .
4a 25 (a > 0)
2
?
5
算术平方根的定义
64 8
可以看出:100 49 0.0001 , 10 7 0.01 ;
64
8
被开方数越大,对应的算术平方根也越大.
这个结论对所有正数都成立.
典型例题 求下列各式的值:
(1) 81; (2) 4 ; (3) 62; (4) 32 42 . 25
解:(1)因为 92 = 81,所以 81 的算术平方根是 9,即 81 9;
解:
4
(4)因为 42 = 16,所以 16 的算术平方根是 4 ,即 16 4 ;
所以 16 的算术平方根就是4的算术平方根;
因为 22 = 4,所以 4 的算术平方根是 2 ,即 4 2;
所以 16 的算术平方根是 2 .

人教版初一数学下册常考试题(详细解析)

人教版初一数学下册常考试题(详细解析)

- -.新人教版初一数学〔下〕数学常考试题一、选择题〔共30小题〕1.〔常考指数:106〕如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.假设∠AED′=40°,那么∠EFB等于〔〕A.70°B.65°C.80°D.35°考点:翻折变换〔折叠问题〕.专题:数形结合.分析:根据平角的知识可求出∠DED′的度数,再由折叠的性质可得出∠D′EF=∠DEF=∠DED′,从而根据平行线的性质可得出∠EFB的度数.解答:解:∵∠AED′=40°,∴∠DED′=180°﹣40°=140°,又由折叠的性质可得,∠D′EF=∠DEF=∠DED′,∴∠DEF=70°,又∵AD∥BC,∴∠EFB=70°.应选:A.点评:此题考察了翻折变换的知识,解答此题的关键是根据折叠的性质得出∠D′EF=∠DEF=∠DED′,难度一般.2.〔常考指数:69〕如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是〔〕A.30°B.25°C.20°D.15°考点:平行线的性质.分析:此题主要利用两直线平行,同位角相等作答.解答:解:根据题意可知,两直线平行,同位角相等,∴∠1=∠3∵∠3+∠2=45°,∴∠1+∠2=45°∵∠1=20°,∴∠2=25°.应选:B.点评:此题主要考察了两直线平行,内错角相等的性质,需要注意隐含条件,直尺的对边平行,等腰直角三角板的锐角是45°的利用.3.〔常考指数:79〕如图,棋子“车〞的坐标为〔﹣2,3〕,棋子“马〞的坐标为〔1,3〕,那么棋子“炮〞的坐标为〔〕A.〔3,2〕B.〔3,1〕C.〔2,2〕D.〔﹣2,2〕考点:坐标确定位置.分析:根据两点的坐标确定符合条件的平面直角坐标系,然后确定其它点的坐标.解答:解:由棋子“车〞的坐标为〔﹣2,3〕、棋子“马〞的坐标为〔1,3〕可知,平面直角坐标系的原点为底边正中间的点,以底边为x轴,向右为正方向,以左右正中间的线为y轴,向上为正方向;根据得出的坐标系可知,棋子“炮〞的坐标为〔3,2〕.应选:A.点评:此题考察了点的坐标解决实际问题的能力和阅读理解能力,解决此类问题需要先确定原点的位置,再求未知点的位置.或者直接利用坐标系中的移动法那么“右加左减,上加下减〞来确定坐标.4.〔常考指数:94〕不等式组的解集在数轴上表示为〔〕A.B.C.D.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:此题应该先对不等式组进展化简,然后在数轴上分别表示出x的取值范围.解答:解:不等式组由①得,x>1,由②得,x≥2,故不等式组的解集为:x≥2,在数轴上可表示为:应选:A.点评:此题考察的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.要注意x是否取得到,假设取得到那么x在该点是实心的.反之x在该点是空心的.5.〔常考指数:71〕在平面直角坐标系中,点P〔﹣1,2〕的位置在〔〕A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:应先判断出所求点P的横坐标、纵坐标的符号,进而判断其所在的象限.解答:解:∵点P〔﹣1,2〕的横坐标﹣1<0,纵坐标2>0,∴点P在第二象限.应选:B.点评:此题主要考察了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限〔+,+〕;第二象限〔﹣,+〕;第三象限〔﹣,﹣〕;第四象限〔+,﹣〕.6.〔常考指数:72〕以下图形中,由AB∥CD,能得到∠1=∠2的是〔〕A.B.C.D.考点:平行线的判定与性质.分析:根据平行线的性质求解即可求得答案,注意掌握排除法在选择题中的应用.解答:解:A、∵AB∥CD,∴∠1+∠2=180°,故A选项错误;B、∵AB∥CD,∴∠1=∠3,∵∠2=∠3,∴∠1=∠2,故B选项正确;C、∵AB∥CD,∴∠BAD=∠CDA,假设AC∥BD,可得∠1=∠2;故C选项错误;D、假设梯形ABCD是等腰梯形,可得∠1=∠2,故D选项错误.应选:B.点评:此题主要考察了平行线的判定,关键是掌握平行线的判定定理.同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.此题难度不大,注意掌握数形结合思想的应用.7.〔常考指数:88〕4的算术平方根是〔〕A.±2B.±C.D.2考点:算术平方根.专题:计算题.分析:此题是求4的算术平方根,应看哪个正数的平方等于4,由此即可解决问题.解答:解:∵=2,∴4的算术平方根是2.应选:D.点评:此题主要考察了算术平方根的运算.一个数的算术平方根应该是非负数.8.〔常考指数:90〕如图,天平右盘中的每个砝码的质量都是1g,那么物体A的质量m〔g〕的取值范围,在数轴上可表示为〔〕A.B.C.D.考点:一元一次不等式的应用;在数轴上表示不等式的解集.分析:根据图形就可以得到重物A,与砝码的关系,得到重物A的范围.解答:解:由图中左边的天平可得m>1,由右边的天平可得m<2,即1<m<2,在数轴上表示为:应选:A.点评:此题考察了不等式的解集在数轴上的表示方法,在数轴上表示解集时,注意空心圆圈和失信圆点的区别.还要注意确定不等式组解集的规律:大小小大中间跑.9.〔常考指数:73〕如果a与﹣2互为倒数,那么a是〔〕C.D.2A.﹣2 B.﹣考点:倒数.分析:根据乘积是1的两个数叫做互为倒数解答.解答:解:∵a与﹣2互为倒数,∴a 是﹣.应选:B.点评:此题考察了倒数的定义,倒数的定义:假设两个数的乘积是1,我们就称这两个数互为倒数.是根底题,熟记概念是解题的关键.10.〔常考指数:108〕如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是〔〕A.32°B.58°C.68°D.60°考点:平行线的性质;余角和补角.专题:计算题.分析:此题主要利用两直线平行,同位角相等及余角的定义作答.解答:解:根据题意可知,∠2=∠3,∵∠1+∠2=90°,∴∠2=90°﹣∠1=58°.应选:B.点评:主要考察了平行线的性质和互余的两个角的性质.互为余角的两角的和为90°.解此题的关键是能准确的从图中找出这两个角之间的数量关系,从而计算出结果.11.〔常考指数:72〕如图,一扇窗户翻开后,用窗钩AB可将其固定,这里所运用的几何原理是〔〕A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短考点:三角形的稳定性.分析:根据加上窗钩,可以构成三角形的形状,故可用三角形的稳定性解释.解答:解:构成△AOB,这里所运用的几何原理是三角形的稳定性.应选:A.点评:此题考察三角形的稳定性在实际生活中的应用问题.三角形的稳定性在实际生活中有着广泛的应用.12.〔常考指数:89〕如图,以下条件中,不能判断直线l1∥l2的是〔〕A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°考点:平行线的判定.分析:在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角〞而产生的被截直线.解答:解:A、∠1与∠3是l1与l2形成的内错角,由∠1=∠3由能判断直线l1∥l2,故A选项不符合题意;B、∠2与∠3不是l1与l2形成的角,由∠2=∠3不能判断直线l1∥l2,故B选项符合题意;C、∠4与∠5是l1与l2形成的同位角,由∠4=∠5能判断直线l1∥l2,故D选项不符合题意;D、∠2与∠4是l1与l2形成的同旁内角,由∠2+∠4=180°能判断直线l1∥l2,故C选项不符合题意.应选:B.点评:正确识别“三线八角〞中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两条被截直线平行.13.〔常考指数:66〕在平面直角坐标系中,假设点P〔x﹣2,x〕在第二象限,那么x的取值范围为〔〕A.0<x<2 B.x<2 C.x>0 D.x>2考点:点的坐标.分析:根据第二象限内的点的坐标特征,列出不等式组,通过解不等式组解题.解答:解:∵点P〔x﹣2,x〕在第二象限,∴,解得0<x<2,∴x的取值范围为0<x<2,应选:A.点评:坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比方此题中求x的取值范围.14.〔常考指数:70〕解集在数轴上表示为如下图的不等式组是〔〕A.B.C.D.考点:在数轴上表示不等式的解集.分析:由数轴可以看出不等式的解集在﹣3到2之间,且不能取到﹣3,能取到2,即﹣3<x≤2.解答:解:根据数轴得到不等式的解集是:﹣3<x≤2.A、不等式组的解集是x≥2,故A选项错误;B、不等式组的解集是x<﹣3,故B选项错误;C、不等式组无解,故C选项错误.D、不等式组的解集是﹣3<x≤2,故D选项正确.应选:D.点评:在数轴上表示不等式组解集时,实心圆点表示“≥〞或“≤〞,空心圆圈表示“>〞或“<〞.15.〔常考指数:74〕不等式2x﹣6>0的解集在数轴上表示正确的选项是〔〕A.B.C.D.考点:在数轴上表示不等式的解集.专题:图表型.分析:不等式2x﹣6>0的解集是x>3,>应向右画,且不包括3时,应用圈表示,不能用实心的原点表示3这一点,据此可求得不等式的解以及解集再数轴上的表示.解答:解:将不等式2x﹣6>0移项,可得:2x>6,将其系数化1,可得:x>3;∵不包括3时,应用圈表示,不能用实心的原点表示3这一点答案.应选:A.二、填空题〔共30小题〕16.〔常考指数:53〕在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形〔实线〕四条边上的整点的个数,请你猜想由里向外第10个正方形〔实线〕四条边上的整点个数共有40 个.考点:坐标与图形性质;正方形的性质.专题:规律型.分析:可以发现第n个正方形的整数点有4n个点,故第10个有40个整数点.解答:解:第一个正方形有4×1=4个整数点;第2个正方形有4×2=8个整数点;第3个正方形有4×3=12个整数点;…∴第10个正方形有4×10=40个整数点.故答案为:40.点评:此题考察点的坐标规律、正方形各边相等的性质,解决此题的关键是观察分析,得到规律,这是中考的常见题型.17.〔常考指数:81〕点P〔﹣2,3〕关于x轴的对称点的坐标是〔﹣2,﹣3〕.考点:关于x轴、y轴对称的点的坐标.分析:两点关于x轴对称,那么横坐标不变,纵坐标互为相反数.解答:解:点P〔﹣2,3〕关于x轴的对称,即横坐标不变,纵坐标互为相反数,∴对称点的坐标是〔﹣2,﹣3〕.故答案为:〔﹣2,﹣3〕.点评:此题考察关于x轴对称的点的坐标的特点,可记住要点或画图得到.18.〔常考指数:70〕把命题“等角的补角相等〞改写成“如果…那么…〞的形式是如果两个角是等角的补角,那么它们相等.考点:命题与定理.分析:命题中的条件是两个角相等,放在“如果〞的后面,结论是这两个角的补角相等,应放在“那么〞的后面.解答:解:题设为:两个角是等角的补角,结论为:相等,故写成“如果…那么…〞的形式是:如果两个角是等角的补角,那么它们相等.故答案为:如果两个角是等角的补角,那么它们相等.点评:此题主要考察了将原命题写成条件与结论的形式,“如果〞后面是命题的条件,“那么〞后面是条件的结论,解决此题的关键是找到相应的条件和结论,比拟简单.19.〔常考指数:87〕如图是一组有规律的图案,第1个图案由4个根底图形组成,第2个图案由7个根底图形组成,…,第n〔n是正整数〕个图案中由〔3n+1〕个根底图形组成.考点:规律型:图形的变化类.专题:规律型.分析:观察图形很容易看出每加一个图案就增加三个根底图形,以此类推,便可求出结果.解答:解:第一个图案根底图形的个数:3+1=4;第二个图案根底图形的个数:3×2+1=7;第三个图案根底图形的个数:3×3+1=10;…∴第n个图案根底图形的个数就应该为:〔3n+1〕.故答案为:〔3n+1〕.点评:此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些局部发生了变化,是按照什么规律变化的.20.〔常考指数:62〕线段CD是由线段AB平移得到的,点A〔﹣1,4〕的对应点为C〔4,7〕,那么点B〔﹣4,﹣1〕的对应点D的坐标是〔1,2〕.考点:坐标与图形变化-平移.分析:由于线段CD是由线段AB平移得到的,而点A〔﹣1,4〕的对应点为C〔4,7〕,比拟它们的坐标发现横坐标增加5,纵坐标增加3,利用此规律即可求出点B〔﹣4,﹣1〕的对应点D的坐标.解答:解:∵线段CD是由线段AB平移得到的,而点A〔﹣1,4〕的对应点为C〔4,7〕,∴由A平移到C点的横坐标增加5,纵坐标增加3,那么点B〔﹣4,﹣1〕的对应点D的坐标为〔1,2〕.故答案为:〔1,2〕.点评:此题主要考察坐标系中点、线段的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移一样.21.〔常考指数:86〕如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,那么∠3=20 °.考点:平行线的性质;三角形的外角性质.专题:计算题.分析:此题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进展做题.解答:解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.点评:此题重点考察了平行线的性质及三角形外角的性质,是一道较为简单的题目.22.〔常考指数:70〕如图,AB∥CD,BE平分∠ABC,∠CDE=150°,那么∠C=120 °.考点:平行线的性质;角平分线的定义;对顶角、邻补角.专题:计算题.分析:此题主要利用邻补角互补,平行线性质及角平分线的性质进展做题.解答:解:∵∠CDE=150°,∴∠CDB=180﹣∠CDE=30°,又∵AB∥CD,∴∠ABD=∠CDB=30°;∵BE平分∠AB C,∴∠ABC=60°,∴∠C=180°﹣60°=120°.故答案为:120.点评:此题主要考察了平行线的性质,两直线平行,内错角相等,同旁内角互补.23.〔常考指数:101〕把命题“对顶角相等〞写成“如果…,那么…〞的形式为:如果两个角是对顶角,那么这两个角相等.考点:命题与定理.分析:先找到命题的题设和结论,再写成“如果…,那么…〞的形式.解答:解:∵原命题的条件是:“两个角是对顶角〞,结论是:“这两个角相等〞,∴命题“对顶角相等〞写成“如果…,那么…〞的形式为:“如果两个角是对顶角,那么这两个角相等〞.故答案为:两个角是对顶角;这两个角相等.点评:此题主要考察了将原命题写成条件与结论的形式,“如果〞后面是命题的条件,“那么〞后面是条件的结论,解决此题的关键是找到相应的条件和结论,比拟简单.24.〔常考指数:107〕的算术平方根是 2 .考点:算术平方根.分析:首先根据算术平方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.解答:解:∵=4,∴的算术平方根是=2.故答案为:2.点评:此题主要考察了算术平方根的定义,注意要首先计算=4.25.〔常考指数:65〕如图,方案把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是连接直线外一点与直线上所有点的连线中,垂线段最短.考点:垂线段最短.专题:应用题.分析:过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.解答:解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.故答案为:连接直线外一点与直线上所有点的连线中,垂线段最短.点评:此题是垂线段最短在实际生活中的应用,表达了数学的实际运用价值.26.〔常考指数:91〕4的算术平方根是 2 .考点:算术平方根.分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.解答:解:∵22=4,∴4算术平方根为2.故答案为:2.点评:此题主要考察了算术平方根的概念,算术平方根易与平方根的概念混淆而导致错误.27.〔常考指数:54〕关于x的不等式3x﹣2a≤﹣2的解集如下图,那么a的值是﹣.考点:解一元一次不等式组.分析:解出不等式的解,用含有字母a的代数式表示,根据数轴可以看出x≤﹣1,所以可以求出a的值.解答:解:解不等式得:x≤.观察数轴知其解集为:x≤﹣1,∴=﹣1,∴a=﹣.故答案为:﹣.点评:解答此类题,要懂得等量转换,注意数轴中的解集局部的端点是实心还是空心.28.〔常考指数:180〕16的平方根是±4.考点:平方根.专题:计算题.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,那么x就是a的平方根,由此即可解决问题.解答:解:∵〔±4〕2=16,∴16的平方根是±4.故答案为:±4.点评:此题考察了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.29.〔常考指数:77〕4的平方根是±2.考点:平方根.专题:计算题.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,那么x就是a的平方根,由此即可解决问题.解答:解:∵〔±2〕2=4,∴4的平方根是±2.故答案为:±2.点评:此题考察了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.30.〔常考指数:68〕如下图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,那么第15个图形需要黑色棋子的个数是255 .考点:规律型:图形的变化类.专题:压轴题;规律型.分析:观察发现,每一条边上的黑色棋子的个数是这个多边形的边数减去1,又顶点处的黑色棋子被两条边公用,根据此规律列式计算即可.解答:解:第1个图形棋子个数是:〔3﹣1〕×3﹣3=〔3﹣2〕×3=3,第2个图形棋子个数是:〔4﹣1〕×4﹣4=〔4﹣2〕×4=8,第3个图形棋子个数是:〔5﹣1〕×5﹣5=〔5﹣2〕×5=15,第4个图形棋子个数是:〔6﹣1〕×6﹣6=〔6﹣2〕×6=24,…按照这样的规律摆下去,那么第n个图形需要黑色棋子的个数是〔n+1〕〔n+2〕﹣〔n+2〕=n2﹣2n.第15个图形棋子个数是:〔17﹣1〕×17﹣17=〔17﹣2〕×17=255.故答案为:255.点评:此题主要是对图形的变化规律的考察,观察出图形的边数与每一条边上的黑色棋子的个数是解题的关键.三、解答题〔共40小题〕31.〔常考指数:56〕荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,方案租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货18吨.租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用一样.〔1〕求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?〔2〕假设荣昌公司方案此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.考点:二元一次方程组的应用;一元一次不等式组的应用.专题:应用题.分析:〔1〕找出等量关系列出方程组再求解即可.此题的等量关系为“1辆甲型汽车和2辆乙型汽车共需费用2500元〞和“租用2辆甲型汽车和1辆乙型汽车共需费用2450元〞.〔2〕得等量关系是“将本公司100吨货物运往某地销售,经与春晨运输公司协商,方案租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨同一种型号汽车每辆且同一种型号汽车每辆租车费用一样〞.解答:解:〔1〕设租用一辆甲型汽车的费用是x元,租用一辆乙型汽车的费用是y元.由题意得,;解得:,答:租用一辆甲型汽车的费用是800元,租用一辆乙型汽车的费用是850元.〔2〕设租用甲型汽车z辆,租用乙型汽车〔6﹣z〕辆.由题意得,解得2≤z≤4,由题意知,z为整数,∴z=2或z=3或z=4,∴共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆;方案二:租用甲型汽车3辆,租用乙型汽车3辆;方案三:租用甲型汽车4辆,租用乙型汽车2辆.方案一的费用是800×2+850×4=5000〔元〕;方案二的费用是800×3+850×3=4950〔元〕;方案三的费用是800×4+850×2=4900〔元〕;∵5000>4950>4900;∴最低运费是方案三的费用:4900元;答:共有三种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆;方案二:租用甲汽车3辆,租用乙型汽车3辆;方案三:租用甲型汽车4辆,租用乙型汽车2辆.最低运费是4900元.点评:解题关键是要读懂题目的意思,找出〔1〕适宜的等量关系:1辆甲型汽车和2辆乙型汽车共需费用2500元〞和“租用2辆甲型汽车和1辆乙型汽车共需费用2450元〞.〔2〕根据租车费用不超过5000元列出方程组,再求解.32.〔常考指数:49〕某班到毕业时共结余经费1800元,班委会决定拿出不少于270元但不超过300元的资金为教师购置纪念品,其余资金用于在毕业晚会上给50位同学每人购置一件文化衫或一本相册作为纪念.每件文化衫比每本相册贵9元,用200元恰好可以买到2件文件衫和5本相册.〔1〕求每件文化衫和每本相册的价格分别为多少元?〔2〕有几种购置文化衫和相册的方案?哪种方案用于购置教师纪念品的资金更充足?考点:二元一次方程组的应用;一元一次不等式组的应用.专题:方案型.分析:〔1〕通过理解题意可知此题存在两个等量关系,即每件文化衫比每本相册贵9元,用200元恰好可以买到2件文件衫和5本相册.根据这两个等量关系可列出方程组.〔2〕此题存在两个不等量关系,即设购置文化衫t件,购置相册〔50﹣t〕本,那么1800﹣300≤35t+26〔50﹣t〕≤1800﹣270,根据t为正整数,解出不等式再进展比拟即可.解答:解:〔1〕设每件文化衫和每本相册的价格分别为x元和y元,那么,解得.答:每件文化衫和每本相册的价格分别为35元和26元.〔2〕设购置文化衫t件,购置相册〔50﹣t〕本,那么:1800﹣300≤35t+26〔50﹣t〕≤1800﹣270,解得≤t≤,∵t为正整数,∴t=23,24,25,即有三种方案:第一种方案:购置文化衫23件,相册27本,此时余下资金293元;第二种方案:购置文化衫24件,相册26本,此时余下资金284元;第三种方案:购文化衫25件,相册25本,此时余下资金275元.∴第一种方案用于购置教师纪念品的资金更充足.答:有3种购置文化衫和相册的方案,当购置文化衫23件,相册27本时,用于购置教师纪念品的资金更充足.点评:此类问题属于综合性的题目,问题〔1〕在解决时只需认真分析题意,找出此题存在的两个等量关系,即每件文化衫比每本相册费9元,用200元恰好可以买到2件文件衫和5本相册.根据这两个等量关系可列出方程组.问题〔2〕需利用不等式解决,另外要注意,同实际相联系的题目,需考虑字母的实际意义,从而确定具体的取值.再进展比拟即可知道哪个方案用于购置教师纪念品的资金更充足.33.〔常考指数:45〕某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购置机器所耗资金不能超过34万元.甲乙价格〔万元/台〕7 5每台日产量〔个〕100 60〔1〕按该公司要求可以有几种购置方案?〔2〕假设该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种购置方案?考点:一元一次不等式的应用.专题:方案型.分析:〔1〕设购置甲种机器x台〔x≥0〕,那么购置乙种机器〔6﹣x〕台,根据买机器所耗资金不能超过34万元,即购置甲种机器的钱数+购置乙种机器的钱数≤34万元.就可以得到关于x的不等式,就可以求出x的范围.〔2〕该公司购进的6台机器的日生产能力不能低于380个,就是不等关系:甲种机器生产的零件数+乙种机器生产的零件数≤380件.根据〔1〕中的三种方案,可以计算出每种方案的需要资金,从而选择出适宜的方案.解答:解:〔1〕设购置甲种机器x台〔x≥0〕,那么购置乙种机器〔6﹣x〕台.依题意,得7x+5×〔6﹣x〕≤34.解这个不等式,得x≤2,即x可取0,1,2三个值.∴该公司按要求可以有以下三种购置方案:方案一:不购置甲种机器,购置乙种机器6台.方案二:购置甲种机器1台,购置乙种机器5台.方案三:购置甲种机器2台,购置乙种机器4台.〔2〕根据题意,100x+60〔6﹣x〕≥380,解之,可得:x≥,由上题解得:x≤2,即≤x≤2,∴x可取1,2两个值,即有以下两种购置方案:方案二购置甲种机器1台,购置乙种机器5台,所耗资金为1×7+5×5=32万元;方案三购置甲种机器2台,购置乙种机器4台,所耗资金为2×7+4×5=34万元.∴为了节约资金应选择方案二.故应选择方案二.点评:解决此题的关键是读懂题意,找到符合题意的不等关系式,正确确定各种情况,确定各种方案是解决此题的关键.34.〔常考指数:42〕某渔场方案购置甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料说明:甲、乙两种鱼苗的成活率分别为90%和95%.〔1〕假设购置这批鱼苗共用了3600元,求甲、乙两种鱼苗各购置了多少尾?〔2〕假设购置这批鱼苗的钱不超过4200元,应如何选购鱼苗?〔3〕假设要使这批鱼苗的成活率不低于93%,且购置鱼苗的总费用最低,应如何选购鱼苗?考点:一元一次不等式的应用;一次函数的应用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版初一数学下册_第五章__相交线与平行线_教学检测试题
一选择题。

(每题4分,共40分)
1. 邻补角是()
A. 和为180°的两个角
B. 有公共顶点且互补的两个角
C. 有一条公共边且相等的两个角
D. 有公共顶点且有一条公共边,另一边互为反向延长线的两个角
2.下图中,∠1和∠2是同位角的是
A B C D
3. 如图4,直线AB、CD相交于点O,OE⊥AB于O,若∠COE=55°,则∠BOD的度数为)
A. 40°
B. 45°
C. 30°
D. 35°
4. 如图5,已知ON⊥l , OM⊥l , 所以OM与ON重合,其理由是()
A. 过两点只有一条直线
B. 经过一点有且只有一条直线垂直于已知直线
C. 垂线段最短
D. 过一点只能作一条垂线
5.如图(1)所示,同位角共有()
A.1对 B.2对 C.3对 D.4对
6. 如图6,属于内错角的是()
A. ∠1和∠2
B. ∠2和∠3
C. ∠1和∠4
D. ∠3和∠4
7.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,则两次拐
弯的角度可以是()
A.第一次向右拐40°,第二次向左拐140°
B.第一次向左拐40°,第二次向右拐40°
C.第一次向左拐40°,第二次向右拐140°
D.第一次向右拐40°,第二次向右拐40°
8.如图(2)所示,∥,AB⊥,∠ABC=130°,那么∠α的度数为()
A.60° B.50° C.40° D.30°
9.适合的△ABC是()
A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定
A.60° B.50° C.40° D.30°
10. 在下列实例中,不属于平移过程的有()个。

⑴时针运转过程;⑵火箭升空过程;⑶地球自转过程;⑷飞机从起跑到离开地面的过程。

A. 1
B. 2
C. 3
D. 4
一. 填空题。

(每题4分,共20分)
1. 如图1,直线AB、CD相交于点O,已知∠AOC+∠BOD=90°,则∠BOC= 。

2. 在无风的情况下,一个重物从高空落入池塘,它的运动路线与水面的关系是。

3. 如图2,所示直线AB、CD被直线EF所截,⑴量得∠1=80°,∠2=80°,则判定AB∥CD,根据是;⑵量得∠3=100°,∠4=100°,也判定AB∥CD,根据是。

4. 如图3,AB∥DE,BC∥FE,则∠E+∠B= 。

5. 命题“两直线平行,内错角相等”的题设是,结论是
;命题“内错角相等,两直线平行”的题设是
,结论是。

三. 将以下各推理过程的理由填入括号内。

(每空2分,共14分)
1. 如图7,∠B=∠C,
AB∥EF
试说明:∠BGF=∠C
答:因为∠B=∠C
所以AB∥CD()
又因为AB∥EF
所以EF∥CD()
所以∠BGF=∠C()
2. 如图8,AD⊥BC于D,EG⊥BC于G,∠E=∠3
试说明:AD平分∠BAC
答:因为AD⊥BC,EG⊥BC
所以AD∥EG()
所以∠1=∠E()
∠2=∠3()
又因为∠3=∠E 所以∠1=∠2
所以AD平分∠BAC()
四. 平移作图。

(6分)
1. 将图9中的图案向右平移4cm。

五. 把下列命题改写成“如果……,那么……”的形式。

(每题5分,共10分)
1. 线段,则。

2. 在同一平面内,若a⊥b,c⊥b,则a∥c
六. 解答题。

(60分)
1. 如图10,直线AB、CD相交于点O,若∠BOC比∠AOC的2倍多33°,求∠BOC、∠BOD的度数。

(10分)
2. 如图11,直线MN与直线AB、CD相交于M、N,∠3=∠4,试说明∠1=∠2。

(10分)
3. 如图12,已知AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,AC与BD平行吗?AE与BF 平行吗?为什么?(14分)
4已知:如图13,AB∥CD,求∠A+∠E+∠C的度数。

(12分)
5. 如图14,已知CE∥DF,求∠ACE+∠ABD-∠CAB的度数。

(14分)
四、算一算(本题10分)
13.如图,AD是∠EAC的平分线,AD∥BC,∠B = 30°,你能算出∠EAD、∠DAC、∠C的度数吗?
22.(10分)已知,如图,CD⊥AB,GF⊥AB,∠B=∠ADE,试说明∠1=∠2.
22.(8分)如图,已知DF∥AC,∠C=∠D,你能否判断CE∥BD?试说明你的理由.。

相关文档
最新文档