水轮发电机组轴电流异常原因分析及处理

水轮发电机组轴电流异常原因分析及处理
水轮发电机组轴电流异常原因分析及处理

水轮发电机组轴电流异常原因分析及处理

摘要:本文简要介绍了轴电流保护的功用和原理;通过采用排除法找到了轴电流异常超标的原因,得出了机组一次轴电流并无异常,而其以转频为主的二次轴电流异常问题与机组励磁电流和机组转速有关,其产生原因系转子上部的励磁空间磁场在轴CT中产生电磁感应所致;提出了行之有效的处理对策解决了机组轴电流异常超标问题。

关键词:水轮发电机组轴电流空间磁场原因分析处理对策

引言

闽东水电开发公司周宁水电站位于福建省周宁县境内,是穆阳溪梯级开发的第二级电站,装有2台设计水头为400m的混流式水轮发电机组,其单机容量为125MW,额定转速为428.6r/min。其发电机型号为SF125-14/5380,采用具有上下两个导轴承的立轴悬式结构,其推力轴承位于转子上方并布置在上机架中心体上部,上导轴承布置在上机架中心体内。

轴CT采用哈尔滨市华新电力电子设备厂生产的专用穿心式轴电流互感器,其变比为

2/0.005,饱和倍数为10倍,二次输出绕组共有2组,分别为工作绕组和试验绕组。轴CT安装在上机架中心体下部,亦即转子和上机架中心体之间。据发电机组厂家推荐,轴电流二次输出报警整定值为5mA,即对应一次轴电流为2A。

轴电流保护作为水轮发电机的一套后备保护,对机组的安全运行起着不可或缺的作用。周宁水电站两台机组自2005年4月投产以来,一直存在轴电流严重超标问题。轴电流保护装置一直在误发报警信号,根本无法起到轴电流保护作用。

1 轴电流保护的原理

由于定、转子之间的气隙不均匀以及定子铁芯的局部磁阻较大、磁路不对称等原因,导致发电机的定子磁场存在不平衡,这会使得水轮发电机的转子上产生与轴相交的交变磁通和轴向的感应电势即轴电压。在轴承绝缘良好时,轴电流是相当小的,而当轴承某一部位绝缘不良或轴电压大于油膜的击穿值时,轴电流将明显增大,该轴电流将使轴瓦发生电蚀而损伤甚至毁坏,并加速轴承润滑油的变质老化。

轴电流保护装置由轴CT和轴电流信号装置组成,主要用于监测轴电流中的工频基波50Hz 分量及其三次谐波150Hz分量。当机组运行时,如果发电机大轴中产生了轴电流,套在发电机大轴上的轴CT将该电流检测出来,送人信号装置,经过整流、滤波、放大后,当轴电流超

过设计值(整定值)时,能及时发信号或停机,以防止轴电流对轴承的破坏[1]。

2 轴电流异常原因检查及分析

2.1 常规检查分析

(1)机组转轴对地电阻检测。用万用表在发电机接地碳刷接线端子处检测发电机主轴对地电阻:在机组停机时,其电阻值接近为0;而在机组运行时其电阻值则均大于1MΩ。由于机组下导轴承未采用绝缘隔离措施,停机时主轴与下导瓦直接接触,故其电阻值接近为0;而机组运行中轴承瓦面油膜已建立,故其电阻值大于1MΩ。此外用500V摇表在机组检修时检测上导轴承和推力轴承的绝缘也均满足要求。可见机组转轴对地绝缘并无异常。

(2)机组轴承瓦面和轴承透平油检测。机组投运多年来经常对各部轴承瓦面和轴承透平油进行检测,每次检测结果均未见异常。

(3)轴电流二次接线回路电磁干扰检测。为了解电磁感应是否系轴CT二次端子到发电机就地端子箱的二次接线回路所引发,曾把一组备用的轴CT二次回路接线在轴CT二次端子侧直接短路后,当机组运行时在发电机就地端子箱处测量该回路开路电压,其电压值为零,据此排除了二次接线回路产生电磁干扰的可能。

(4)轴CT性能参数检测。曾在机组小修时对轴CT的变比和饱和倍数进行检测,结果表明其变比正确,且在一次电流达到40A时,其二次电流的线性度依然良好。

(5)机组转轴剩磁检测。停机时在1号、2号机组的上导轴、下导轴和水导轴处使用细线悬吊回形针的简易方法测试其剩磁状况,发现主轴均有轻微吸附回形针现象。由于两台机组主轴的磁化现象都很轻微,据此认为其磁化因素不是轴电流异常超标的主要原因。

2.2 轴电流回路电流电压波形检测分析

为深入分析轴电流超标的原因,曾对1号、2号机组轴电流的一次、二次回路信号进行实测录波,所得结果见表1,此外从录波器记录的两台机组转速、电压和负荷调节过程中其二次轴电流的波形中得知:二次轴电流的大小和频率都随着机组转频的升高而增大,且其大小随着励磁电流的增加而增大,但与机组负荷高低关系不大。表1中一次轴电流系采取模拟其一次回路闭合连通的情况下测得的。从表1可知:1)在2号机组处空转态时,一次轴电压和一次轴电流均为0,而此时二次轴电流达到12.5mA,已超过报警整定值5mA,处于报警状态;2)在2号机组处空载态时,其一次轴电压和一次轴电流的幅值都很微小,主频为工频50Hz,而此时其二次轴电压和二次轴电流的幅值分别达到5.2V和220mA,主频却为转频7.13Hz,两者大小和频率明显对应不上。由此可见:机组一次轴电流实际上并不存在问题;二次轴电流

异常超标与一次轴电流无关,其大小与机组励磁电流和机组转速有关,其频率与机组转频一致。

表1 机组轴电流一次和二次回路电流电压检测结果

机组

检测

工况

一次轴电压一次轴电流二次轴电压二次轴电流

幅值(mV) 主频(Hz) 幅值(mA) 主频(Hz) 幅值(V) 主频(Hz) 幅值(mA) 主频(Hz)

1号机组

空载460 50 0.1 50 / / / / 满负荷/ / / / 4.6 7.13 180 7.13

2号机组

空转0 0 0 0 0.168 7.13 12.5 7.13 空载480 50 0.1 50 5.2 7.13 220 7.13 满负荷480 50 / / / / 220 7.13

2.3 转子上部和下部空间磁场检测分析

为检测转子上部和下部空间的磁场状况,曾在1号机组上机架中心体下部固定轴CT的支架上加装了3个空心线圈,并在转子下导部位也加装了2个空心线圈。转子上下部空间磁场检测结果见表2。检测结果表明:机组停机时5个线圈的输出感应电压均低于3mV,基本上可认定为零;机组处空载态时位于轴CT部位的线圈其输出感应电压的频率与机组转频一致,其输出感应电压的大小与线圈匝数基本上成正比关系;而在空载态时位于下导处的线圈其输出的感应电压值很小,且其主频率不明朗,更未见转频成分。

表2 转子上下部空间磁场检测结果

检测工况轴CT支架处水平轴CT支架处垂直下导处水平下导处垂直线圈850匝线圈850匝线圈1600匝线圈850匝线圈850匝

幅值

(mV)

主频

(Hz)

幅值

(mV)

主频

(Hz)

幅值

(mV)

主频

(Hz)

幅值

(mV)

主频

(Hz)

幅值

(mV)

主频

(Hz)

36 7.13 30 7.13 53 7.13 6 / 5 150

周宁电站发电机转子上部轴CT的内侧,有两根沿转轴上下走向的在转轴圆周上呈约∠103o夹角分布的励磁引线。有关资料[2]表明对称布置的励磁引线其起励电流对轴电流监测装置是有影响的,而周宁电站发电机非对称布置的励磁引线电流对轴电流监测装置同样也是有影响的。

发电机加励后,励磁回路将产生横向分布的磁场,该磁场随主轴一起旋转并与轴CT和空

心线圈的磁回路相互作用,从而在轴CT和空心线圈内部极可能引发频率与转频一致的感应电势。由此推断:机组运行中转子上部空间存在的频率为转频的空间磁场应主要与磁极引线或励磁回路有关。

在发动机下导处由于没有励磁回路产生的磁场且下导位置离转子较远,故下导处空心线圈基本上不存在感应电势,因而其感应电压很小,且不存在转频成分。

3 处理对策和建议

1)由于二次轴电流异常超标的信号为机组转频而非工频,为此应在发电机保护柜内对轴CT二次回路采取低阻高通信号过滤装置,把转频7.13Hz及其低阶倍频如三倍频21.43Hz 以下低频信号滤除,并确保工频50Hz及以上高频信号进入轴电流信号装置,则轴电流异常超标问题即可得到解决。

2)鉴于发动机下导处不存在空间干扰磁场,若将轴CT由位于发电机转子上部改装到位于发电机下部至接地碳刷之间,可望有效解决轴电流异常超标问题。

3)改变轴电流保护形式,改用轴电压测量法[3]或轴绝缘电阻测量法[4](即通过直接测量轴绝缘电阻来检测轴绝缘情况)等形式进行轴电流保护,也可解决轴电流异常超标问题。

4)对类似周宁水电站这种高转速大容量的发电机组,建议在确定采用轴CT进行轴电流保护时,应预先考虑好防磁场干扰的技术措施;此外由于轴电流保护装置主要用于监测工频50Hz及以上高频分量,故在其装置中最好应预先配置低阻高通滤波功能以避免受到低速转频信号的干扰。

4 结语

综合以上分析,周宁水电站1号、2号机组一次轴电流并无异常,而其以转频为主的二次轴电流异常问题与机组励磁电流和机组转速有关,其产生原因系转子上部的励磁空间磁场在轴CT中产生电磁感应所致。为解除机组这一运行安全隐患,该电站两台机组均于2010年在轴CT二次回路上采取低阻高通滤波装置圆满解决了轴电流异常超标问题。

参考文献:

[1]龚力文.发电机轴电流保护动作的原因及防范[J].水电站自动化,2004(1):25-27.

[2]陈显芳.轴电流及其监测装置[J].东方电机,1997(1):68-75.

[3] 王立贤,刘亚涛. 水力发电机组轴绝缘监测系统[J]. 中国西部科技,2010,9(1):27-29.

[4] 朱梅生,李志超,卢继平. 水轮发电机轴绝缘监测方法及效果分析[J]. 电力系统保护与

控制,2010,38(4):126-129.

水轮发电机组轴电流异常原因分析及处理

水轮发电机组轴电流异常原因分析及处理 摘要:本文简要介绍了轴电流保护的功用和原理;通过采用排除法找到了轴电流异常超标的原因,得出了机组一次轴电流并无异常,而其以转频为主的二次轴电流异常问题与机组励磁电流和机组转速有关,其产生原因系转子上部的励磁空间磁场在轴CT中产生电磁感应所致;提出了行之有效的处理对策解决了机组轴电流异常超标问题。 关键词:水轮发电机组轴电流空间磁场原因分析处理对策 引言 闽东水电开发公司周宁水电站位于福建省周宁县境内,是穆阳溪梯级开发的第二级电站,装有2台设计水头为400m的混流式水轮发电机组,其单机容量为125MW,额定转速为428.6r/min。其发电机型号为SF125-14/5380,采用具有上下两个导轴承的立轴悬式结构,其推力轴承位于转子上方并布置在上机架中心体上部,上导轴承布置在上机架中心体内。 轴CT采用哈尔滨市华新电力电子设备厂生产的专用穿心式轴电流互感器,其变比为 2/0.005,饱和倍数为10倍,二次输出绕组共有2组,分别为工作绕组和试验绕组。轴CT安装在上机架中心体下部,亦即转子和上机架中心体之间。据发电机组厂家推荐,轴电流二次输出报警整定值为5mA,即对应一次轴电流为2A。 轴电流保护作为水轮发电机的一套后备保护,对机组的安全运行起着不可或缺的作用。周宁水电站两台机组自2005年4月投产以来,一直存在轴电流严重超标问题。轴电流保护装置一直在误发报警信号,根本无法起到轴电流保护作用。 1 轴电流保护的原理 由于定、转子之间的气隙不均匀以及定子铁芯的局部磁阻较大、磁路不对称等原因,导致发电机的定子磁场存在不平衡,这会使得水轮发电机的转子上产生与轴相交的交变磁通和轴向的感应电势即轴电压。在轴承绝缘良好时,轴电流是相当小的,而当轴承某一部位绝缘不良或轴电压大于油膜的击穿值时,轴电流将明显增大,该轴电流将使轴瓦发生电蚀而损伤甚至毁坏,并加速轴承润滑油的变质老化。 轴电流保护装置由轴CT和轴电流信号装置组成,主要用于监测轴电流中的工频基波50Hz 分量及其三次谐波150Hz分量。当机组运行时,如果发电机大轴中产生了轴电流,套在发电机大轴上的轴CT将该电流检测出来,送人信号装置,经过整流、滤波、放大后,当轴电流超

过电压产生的危害及防止措施

编号: 中国农业大学现代远程教育 毕业论文(设计) 论文题目:过电压产生的危害及防止措施 学生 指导教师 专业 层次 批次 学号 学习中心 工作单位 年月 中国农业大学网络教育学院制

目录 摘要 (3) 前言 (4) 1过电压的基本概念 (4) 1.1过电压的定义 (4) 1.2过电压的分类 (4) 2过电压的危害 (5) 2.1雷击过电压的危害 (5) 2.2操作过电压的危害 (6) 2.3暂态过电压 (7) 3过电压的防止措施 (8) 3.1变电站倒闸操作 (8) 3.1.1切断空载线路过电压 (8) 3.1.2切断空载变压器的过电压 (9) 3.1.3电弧接地过电压 (10) 3.1.4铁磁谐振过电压 (11) 3.1.5电磁式电压互感器饱和过电压 (11) 3.2雷电 (12) 4过电压保护设备及其保护原理、作用 (13) 4.1避雷器 (13) 4.2避雷针 (14) 4.3避雷线 (14) 4.4放电间隙 (15) 结束语 (15) 参考文献 (15)

电力系统过电压是危害电力系统安全运行的主要因素之一,过电压一旦发生,往往造成电气设备损坏和大面积停电事故。过电压来自两个方面,一种是遭受雷击产生的外部过电压,另一种是操作和事故时引起的内部过电压,主要是操作过电压。过电压的数值与电力网和结构、系统容量及参数、中性点接地方式、断路器性能等有关。通常采用避雷器、避雷针、避雷线等方法限制外部过电压。而对于内部过电压,针对操作中产生过电压的形式可采取不同的控制措施,如对于谐振过电压,可采用并联电阻或改变系统运行参数的方法加以限制,对于电弧接地过电压,则产用将系统中性点直接接地的方法等,以达到保证设备安全、系统安全、人员安全的目的。 关键词:过电压危害防止限制

发电机轴电压监测

发电机轴电压监测 众所周知,大型汽轮发电机在正常运行中都会产生的轴电压,如果不采取有效的预防措施,或者预防措施失效,都将会导致轴瓦烧伤的严重后果。国内的发电机制造商都有消除轴电压危害的规范设计,就是在发电机大轴靠近汽轮机端处轴承外侧安装一个大轴接地碳刷,并在发电机大轴靠近励磁机端的轴承底座加装可靠 的绝缘垫片。这些装置只要正确地起作用,就可以解决大型汽轮发电机转子轴电压过高导致发电机轴瓦损坏的问题,但遗憾的是,国内众多发电厂实际运行情况显示,大型汽轮发电机轴瓦烧伤的事件仍时有发生,主要原因是缺少有效的在线监测手段来保证这些预防措施处于可靠的工作状态。只有采取了有效的在线监测手段,才可以彻底避免轴电压导致轴瓦烧伤事故的发生,为了寻求有效的监测方法,还得从分析轴电压的产生原因及危害途径入手。 发电机中轴电压主要有以下几个来源: (1) 由于汽轮发电机的轴封不好,沿轴向有高速蒸汽泄漏或汽缸内的高速喷射而使转轴本身带静电荷。 (2) 由于汽轮发电机的转子表面的不平整,毛刺、转轴上的螺栓、转轴上冷却风扇等在高速旋转时与周围气体(空气、氢气)发生摩擦而产生静电荷。上述两种轴电压有时很高,可以使人感到麻电。但在运行时已通过炭刷接地而被消除。 (3) 由汽轮机最后一级动叶上甩出的水珠所形成的静态电压。如没有提供其它更为便捷的电流通道,该电压会逐渐增大,并通过轴承的油层放电。高温蒸汽温度降低时会发生正负电荷分离,随着蒸汽冲击叶片,电荷就聚集在叶片上。 (4) 直流电压场(发电机转子电压)中的交流波,会通过直流场的线圈和绝缘的电容在轴上形成一个相对地面的交流电压。该电压包括了励磁系统中的二极管或半导体闸流管交变所产生的高频电压峰值(直流同轴励磁机也存在脉动分量,只不过由于整流子极数较多,显得相对比较平缓) 。上述两种电压都很弱,而且如果通过接地刷等允许电流流出,该电压将逐渐衰减。正因为这个原因,应使用一个高电抗仪表测量这些相对于大地的电压。 (5) 因发电机磁场回路的不对称性,在发电机轴的末端会形成一个电压。磁场不平衡的原因一般是因为定子铁芯的局部磁阻较大(例如定子铁芯锈蚀) ,以及定、转子之间的气隙不均匀所致。该电压很强,如果不加以阻止,会形成一股强大的轴电流从轴的一端通过轴承框架流向轴的另一端。该电压有一个频率,主要是发电机的额定频率。 (6) 由于发电机定子绕组对转子铁心间存在耦合电容,转子对轴承间存在耦合电容。而由于电路、元器件、连接和回路阻抗的不平衡,发电机三相电压不平衡实际存在,即发电机定子中有零序分量存在。三相中性点电压将不可避免地产生位移。该电压将在由发电机定子—大轴—轴颈—轴瓦—轴承支架—机组底座组成的系统中产生零序电流,即轴承变为发电机零序回路的一部分。由轴承电容产生的发电机轴电压,虽然在数值上很低,但定子绕组对转子的耦合电容越大,轴电压越高。 轴电压监测系统工作原理 1 装置介绍 监测系统由安装在控制柜内的轴电压监控器、轴电流监控器和安装在发电机汽机联轴器端上发电机转子大轴接地装置组成,接地装置见图1,接地装置接线原理图见图2。

发电机轴电压产生的原因、危害及处理措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 发电机轴电压产生的原因、危害及处理措施(正 式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-4103-45 发电机轴电压产生的原因、危害及 处理措施(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行 具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常 工作或活动达到预期的水平。下载后就可自由编辑。 随着电源建设的迅猛发展, 单机容量的逐渐增大, 轴电压成为大型发电机采用静止自并励磁系统后的一个严重问题。研究轴电压、轴电流有着很重要的意义。轴电压的波形具有复杂的谐波脉冲分量, 对油膜绝缘特别有害当轴电压未超过油膜的破坏值时, 轴电流非常小。若轴电压超过轴承油层击穿电压, 则在轴承上形成很大的轴电流, 即所谓电火花加工电流, 将烧蚀轴承部件, 造成很大危害。磁路不对称、单极效应、电容电流、静电效应、静态励磁系统、外壳、轴等的永久性磁化均有可能引起轴电压。【文献2】 轴电压是指在电机运行时,电机两轴承端或电机转轴与轴承间所产生的电压。在正常情况下,轴电压较低时,燃气发电机转轴与轴承间存在的润滑油膜能起

变频电机轴电压与轴电流产生机理分析

变频电机轴电压与轴电流产生机理分析(一) 1 引言 当电动机在正弦波电源驱动下运行时,通过电机轴的交变磁链产生轴电压。这些磁链是由转子和定子槽、分离铁心片之间的连接部分、磁性材料的定向属性和供电电源不平衡等因素引起磁通不平衡而产生的[1]。到90年代,以IGBT为功率器件的PWM逆变器作为电机驱动电源时,电机轴电流问题更加严重,且其产生机理与正弦波电源驱动时完全不同。文献[1]指出,具有高载波频率(例如10kHz以上)的IGBT逆变器导致电动机的轴承比低载波频率的逆变器驱动时损坏更快。Busse较为详细地分析了轴承电流的产生及轴承电流密度与轴承损坏之间的关系[2],并建立了PWM驱动下的轴承电流电路模型,但该模型未能体现出轴承电流与逆变器开关频率之间的关系。为讨论高频PWM脉冲电压驱动时电机轴电压与轴电流的产生机理,本文在建立轴电压与轴电流电路模型的基础上,分析轴电流产生的条件及形式,并针对逆变器输出电压的特性变化以及电机端有无过电压等情况,通过仿真分析得到不同情况下的轴电压与轴承电流波形。 在抑制轴承电流方面,文献[1]给出的办法用正弦波滤波器将PWM电压转换成正弦波电压,使电机工作在正弦波供电状态下,但该方法所串电感大,系统动态响应慢,同时电感上的压降和功耗增大。本文在逆变器输出端串小电感并辅以RC吸收网络,可有效抑制PWM 逆变器驱动下出现的轴电流。 2 共模电压与轴电压 一般认为,磁路不均衡、单极效应和电容电流是电机中产生轴电压的主要原因[3]。在电网供电的普通电机中,人们一般比较重视磁路不平衡的影响。但在逆变器供电的电机中轴电压主要由电压不平衡,即电源电压的零序分量产生。由于电路、元器件、连接和回路阻抗的不平衡,电源电压将不可避免地产生零点漂移,该电压将在系统中产生零序电流,轴承则是电机零序回路的一部分。 正弦波电源驱动时,通过计算可知=0。在PWM逆变器驱动下,的值取决于逆变器开关状态,且变化周期与逆变器载波频率一致。事实上,只是共模电压的一种表现形式,由于静电耦合,电机各部分间存在着大小不等的分布电容,因此构成电机的零序回路。根据传输线理论,一个分布参数电路可用等效的具有相同输入输出关系的集总参数π网络模型代替。 因此,电机分布参数电路可用集总参数电路来等效,形成轴电压的绕组--转子耦合部分电路如图2a)所示,其中Vbrg为轴电压,Ibrg为轴承电流,Va,Vb和Vc为电机输入电压。尽管Iws不流过轴承,但它与轴承电流在定子绕组上有相同的路径,势必对轴承电流有所影响。为便于分析,绕组中心点到定子的耦合部分将不予考虑。为计算方便,将图2 a)简化为图2 b)所示等效单相驱动电路模型。图中Z1为电源中点对地阻抗,Z2为旁路阻抗,表征驱动回路中的共模电抗线圈、线路电抗器和长电缆等;R0和L0为定子的零序电阻和电感;Csf、Csr和Crf分别为电机定子对地、定子对转子和转子对地电容;Rb为轴承回路电阻;Cb 和R1为轴承油膜的电容和非线性阻抗;Usg和Urg分别为定子绕组与转子中性点对地电压。 对于采用逆变器供电的电机,当轴承油膜未被击穿时,由于载波频率高,电容的容抗大大减小,与Xcb相比,Rb很小而R1很大,由于PWM驱动电压为非正弦电压,计算时先将其分解,然后分别求取,轴电压有效值为: 3 轴承模型与轴承电流的产生 由于分布电容的存在和高频脉冲输入电压的激励作用,电机轴上形成耦合共模电压。事实上,轴电压的出现不仅与上面两个因素有关,且和轴承结构有着直接关系。转子前后端均

水轮发电机组检修等级标准及检修项目

水轮发电机检修等级标准及检修项目 (讨论稿) 1.检修等级划分 1.1 A级检修 A级检修是指对发电机组进行全面的解体检查和修理,以保持、恢复或提高设备性能。 1.2 B级检修 B级检修是指针对机组某些设备存在问题,对机组部分设备进行解体检查和修理。B级检修可根据机组设备状态评估结果,有针对性地实施部分A 级检修项目或定期滚动检修项目。 1.3 C级检修 C级检修是指根据设备的磨损、老化规律,有重点地对机组进行检查、评估、修理、清扫。C级检修可进行少量零件的更换、设备的消缺、调整、预防性试验等作业以及实施部分A级检修项目或定期滚动检修项目。 1.4 D级检修 D级检修是指当机组总体运行状况良好,而对主要设备的附属系统和设备进行消缺。D级检修除进行附属系统和设备消缺外,还可根据设备状态的评估结果,安排部分C 级检修项目。 1.5 状态检修 状态检修是指根据设备状态监测和故障诊断系统技术提供的设备状态信息,在设备可能发生故障前有目的安排的检修,属于预测性检修。检修项目和时间的确定取决于对设备状态诊断分析的结果。

2.检修内容 2.1 A级检修标准项目的主要内容: 2.1.1 制造厂要求的项目; 2.1.2 全面解体、检查、清扫、测量、调整和修理; 2.1.3 定期监测、试验、校验和鉴定; 2.1.4 按规定需要定期更换零部件的项目; 2.1.5 按各项技术监督规定检查项目; 2.1.6 消除设备和系统的缺陷和隐患。 2.2 B级检修标准项目 B级检修标准项目是根据设备状态评价及系统的特点和运行状况,有针对性地实施部分A级检修项目和定期滚动检修项目。 2.3 C级检修标准项目的主要内容: a)消除运行中发生的缺陷; b)重点清扫、检查和处理易损、易磨部件,必要时进行实测和试验; c)按各项技术监督规定检查项目。 2.4 D级检修主要内容是消除设备和系统的缺陷。 D级检修主要内容是消除设备和系统的缺陷。 2.5 特殊项目 特殊项目为标准项目以外的检修项目以及执行反事故措施、节能措施、技改措施等项目; 2.6 重大特殊项目 重大特殊项目是指技术复杂、工期长、费用高或对系统、设备结构有重大改变的项目。 3. A级标准检修项目及特殊项目 3.1水轮机

水轮发电机轴电流保护装置调试报告

四川华能太平驿有限责任公司发电机轴电流保护装置 安装调试竣工报告 一、概述 四川华能太平驿水电站4#水轮发电机组单机容量65MW,水轮机为混流式,发电机为悬吊式。发电机由天津发电设备厂制造,发电机大轴直径725mm,其主要技术参数分别为: 发电机 型号:SF65—24/6440;额定容量:76.47MVA 额定电压:10500V;额定电流:4205A; 励磁电压:198V;励磁电流:1021A; 功率因素:cosΦ=0.85;额定频率:f=50HZ; 相数:3;定子接法:2Y; 绝缘等级:B(后改造为F级);励磁方式:可控硅励磁; 电机重量:457T。 二、工程概况 本工程于2012年12月至2013年3月,利用1、2、4号机组检修停电进行了发电机轴电流监测装置的安装及调试,3号机组由于检修时装置尚未到货,该机组另行找停电机会安装。从1、2、4号机组安装的情况来看,该装置工作状态稳定,测量数据准确,报警信号灵敏,且厂家承诺在3号机组安装时如有任何安装及设备本身问题,无偿提供服务,故本项目提前竣工。 1、ZDL-M轴电流监测装置功能 装置采用高性能单片机为核心控制部件构成控制器,采用空心环形互感器做为轴电流传感器,监测发电机大轴电流变化,以判断发电机轴瓦绝缘、以及定子是否电流平衡等状况。单片机实时监测轴电流传感器的变化值,该值与大轴电流呈线性变化关系,经滤波、数值变换处理后,确认轴电流超过整定值后,输出报警或跳闸信号。 2、技术参数

三、 安装工艺 1. 仪表安装:仪表安装于各机组自动制柜上方。A1、A2、B1、B2分别对应传感器1、3、2、4,报警接点接入监控系统。设置报警值0.5A ,未设置跳闸出口。 2. 传感器安装:轴电流传感器安装在能反应大轴电流的静止部分,即发电机大轴接地碳刷上方,经外部支架与发电机机架固定,将分半传感器合抱在大轴上,连接合缝处(用塞尺测量对接间隙小于0.1mm ),用螺栓将传感器与支架固定牢靠。

水轮发电机组启动试验方案

某某某电站2号机组启动试验方案 编写: 审核: 批准: 某某某电站机组设备检修项目部 二0一一年三月十八日

某某某电站2号机组启动试验方案为使某某某电站设备2号机组在大修后能准确迅速投入系统运行,预防弃水,根据招标文件中的相关内容,结合《立式水轮发电机检修技术规程》,修后启动试验分为:充水启动试验、空载扰动试验、机组过速试验、发电机零起升压试验、同期并网带负荷试验、甩负荷试验、事故低油压停机试验、24小时试运行试验。为保证试验工作安全有序进行,特编制以下试验方案,试验时要求把试验的数据完整的记录下来,所有试验项目合格后方可正式投入运行。 一、试验组织措施 现场负责人: 技术监督: 试验人员: 二、启动试验前的验收 1.检修完工要严格执行验收制度,加强质量管理; 2.检修质量验收要求实行检修工作人员自检与验收人员检验相结合; 3.各级验收人员应由工作认真负责、熟悉检修技术业务者担任; 4.机组检修完工,三级验收完成,各项检验数据合格,启动前的全面检查通过后,方可进 行启动试验。 三、本机试验 1.充水前的调整与试验 1.1.机械零位调整试验:要求5分钟零位漂移不超过1mm。 1.2.调速器接力器开启和关闭时间测试: 实测接力器开启时间为: 实测接力器关闭时间为: 1.3.紧急停机时间测定及调整: 将接力器开到全开位置,中控室或机旁给出紧急停机令,观察接力器是否快速全关到零,并记录接力器从全开到全关所用的时间。 实测紧急停机时间为:

1.4.调速器操作回路模拟试验 1.4.1.调速器处于自动、停机备用工况,各表头输出为零,停机联锁动作指示灯亮,接入 模拟机频信号、网频信号。中控室分别给出开机、合油开关、增减负荷、停机等操作指令。观察各种操作指令下表头的输出值是否符合其操作实际要求,必要时可进行调整,同时观察机、网频指示是否正确。 1.4. 2.压紧行程: 1.4.3.调速器油压装置压力整定值测试 1.5.机组PLC可编程控制器I/O测点核对,机组I/O所有测点均需核对,并观察显示是否 正确。 1.6.调速器静特性试验: 调速器处于自动工况,按实验要求设置Bp、Bt、Td、Tn值,开度限制100%,功率给定置零。将油开关信号端子短接,机、网频输入端接入50.00Hz的信号。用增减按纽调节,使接力器单调上升或下降。记录频给和相应的接力器行程值。 1.7.励磁操作回路模拟试验 1.7.1.控制回路模拟:FMK控制、增减励磁控制、调节器联动、远方、现地控制。 1.7. 2.保护回路模拟:低速保护、过压保护、保护联动。 1.7.3.信号回路模拟。 2.机组充水试验: 2.1.充水启动应具备以下条件 2.1.1.机组检修工作已经全部结束,工作票已全部收回,机组充水前的各项调整试验均已 完成。 2.1.2.由检修项目经理负责,组织本次大修的机械、电气一次、电气二次等有关专职人员 进行一次最后的机组全面检查,压力钢管、尾水管内应清理完毕,尾水管、钢管排水阀均已关闭,水机转轮室、发电机空气间隙及发电机风洞内均无异物,进人孔均已可靠封堵。 2.1. 3.调速系统处于手动运行状态,渗漏水泵、低压气机等处于正常工作状态。

轴电压测量及注意事项

发电部关于#1发电机轴电压测量的说明 一、发电机轴电压测量目的: 发电机组由于某些原因引起发电机组轴上产生了电压,如果在安装或运行中,没有采取足够的措施,当轴电压足以击穿轴与轴承间的油膜时,便发生放电,会使润滑冷却的油质逐渐劣化,严重者会使轴瓦烧坏,被迫停机造成事故。所以在运行中,测量检查发电机组的轴及轴承间的电压是十分必要的,对于检修机组判定轴瓦绝缘是否良好具有重要意义。根据《电力设备预防性试验规程- DL/T 596—1996》,轴电压应小于10V。京海电厂#1发电机运行期间未进行轴电压测量,为了对近2年运行期发电机轴瓦绝缘情况准确判断,建议在B修前对#1发电机轴电压进行测量,发现问题,根据测量结果并在检修期内消除轴瓦隐患,有利于发电机长期稳定运行。 二、产生轴电压的原因 1.由于发电机的定子磁场不平衡,在发电机的转轴上产生了感应电势。磁场不平衡的原因一般是因为定子铁芯的局部磁阻较大(例如定子铁芯锈蚀),以及定、转子之间的气隙不均匀所致。 2.高速蒸汽产生的静电 由于汽轮发电机的轴封不好,沿轴有高速蒸汽泄漏或蒸气缸内的高速喷射等原因而使转轴本身带静电荷。这种轴电压有时很高,可以使人感到麻手,但它不易传导至励磁机侧,在汽机侧也有可能破坏油膜和轴瓦,通常在汽机轴上接引接地碳刷来消除。 为了消除轴电压经过轴承、机座与基础等处形成的电流回路,可以在励磁机侧轴承座下加垫绝缘板。使电路断开,但当绝缘垫因油污、损坏或老化等原因失去作用时,则轴电压足以击穿轴与轴承间的油膜而发生放电,久而久之,就会使润滑和冷却的油质逐渐劣化,严重者会使转轴和轴瓦烧坏,造成停机事故。 三、发电机结构特点 我厂330MW发电机由东方汽轮发电机厂生产。发电机冷却方式为水氢氢。在发电机进行轴瓦座绝缘测量,绝缘值要求最小不得低于0.5MΩ,否则要对轴瓦进行干燥处理,规范轴瓦安装工艺,直至轴瓦对地绝缘合格。

一起水轮发电机轴电流超标故障的分析与处理过程

一起水轮发电机轴电流超标故障的分析与处理过程 金华峰1,2,伏虹润1 (1.大唐国际彭水水电开发有限公司,重庆市彭水县,409600;2.重庆大学电气工程学院) 概要:观察分析了彭水水电站3#发电机轴电流的变化特点,推断出故障原因后,经返厂处理后消除缺陷。目前天津阿尔斯特水轮发电机组在国内投运的较多,可供同类型机组在处理轴电流时参考。 关键词:轴电流;超标;分析;处理 0 引言 乌江彭水水电站设计单机容量350MW,水轮发电机组采用天津阿尔斯通公司生产的三相立轴双导半伞式、单路径向密闭自循环无风扇空冷同步发电机。发电机转子轴分为三段,即上端轴、转子中心体、下端轴,上端轴由轴身、滑转子组成,下端轴为三段焊接而成。由于发电机上端轴采用阿尔斯通公司新型滑转子结构,有别于常见的轴领结构,从而对发电机轴电流的防护提出了新的课题。 1 发电机轴电流运行情况描述 彭水水电站自2008年2月机组陆续投产以来,3#和5#发电机在运行期间有不同程度的轴电流存在。轴电流的大小随发电机输出功率的增加而增大,且在零功率输出加励磁工况下即有轴电流存在,此时3#机轴电流为0.42A,5#机轴电流为0.42A。在输出功率为300MW时3#机轴电流为1.36A,5#机轴电流为1.05A.在输出功率相同工况下,不存在轴电流的大小随发电机运行时间的增加而增大的现象。严重影响机组安全运行。针对3号机组进行现场机验,发现3号机组轴电流与发电机定子磁场关系密切,定子电流越大轴电流越大,再从机组状态监测数据发现,3号机组上导摆度超标,达到0.35mm,以上两因素表明3号机组存在定转子磁场旋转中心严重偏移缺陷,并且3号机组投产以来转子绝缘一直偏低,500V绝缘测试表测试绝缘值为0,因此需进一步采取综合措施限制轴电流的上升,保证机组的安全运行。 表1 3号机组轴电流记录

电机轴电流的分析

电机轴电流的分析 电 机 轴 电 流 的 分 析轴电流的存在对电动机轴承的使用寿命具有极大的破坏性, 根据现场实际运 行情况,分析其产生的原因,采取装设转轴接地碳刷、加强非轴伸端轴承座与支 架的绝缘等有效措施,从而从根本上解决轴电流危害的问题。 1 轴电流的危害 在电动机运行过程中,如果在两轴承端或电机转轴与轴承间有轴电流的存 在,那么对于电机轴承的使用寿命将会大大缩短。轻微的可运行上千小时,严重 的甚至只能运行几小时,给现场安全生产带来极大的影响。同时由于轴承损坏及 更换带来的直接和间接经济损失也不可小计。 2 轴电压和轴电流的产生 (1) 磁不平衡产生轴电压 电动机由于扇形冲片、 硅钢片等叠装因素, 再加上铁芯槽、 通风孔等的存在, 造成在磁路中存在不平衡的磁阻,并且在转轴的周围有交变磁通切割转轴,在轴 的两端感应出轴电压。 (2) 逆变供电产生轴电压 电动机采用逆变供电运行时,由于电源电压含有较高次的谐波分量,在电压 脉冲分量的作用下,定子绕组线圈端部、接线部分、转轴之间产生电磁感应,使转轴的电位发生变化,从而产生轴电压。 (3) 静电感应产生轴电压 在电动机运行的现场周围有较多的高压设备,在强电场的作用下,在转轴的 两端感应出轴电压。 (4) 外部电源的介入产生轴电压由于运行现场接线比较繁杂,尤其大电机保护、 测量元件接线较多,哪一根带电线头搭接在转轴上,便会产生轴电压。 (5) 其他原因 如静电荷的积累、测温元件绝缘破损等因素都有可能导致轴电压的产生。 轴电压建立起来后,一旦在转轴及机座、壳体间形成通路,就产生轴电流。 3 轴电流对轴承的破坏 正常情况下,转轴与轴承间有润滑油膜的存在,起到绝缘的作用。对于较低 的轴电压,这层润滑油膜仍能保护其绝缘性能,不会产生轴电流。但是当轴电压 增加到一定数值时,尤其在电动机启动时,轴承内的润滑油膜还未稳定形成,轴 电压将击穿油膜而放电,构成回路,轴电流将从轴承和转轴的金属接触点通过, 由于该金属接触点很小,所以这些点的电流密度大,在瞬间产生高温,使轴承局 部烧熔,被烧熔的轴承合金在碾压力的作用下飞溅,于是在轴承内表面上烧出小 凹坑。一般由于转轴硬度及机械强度比轴承烧熔合金的高,通常表现出来的症状 是轴承内表面被压出条状电弧伤痕。 4 轴电流的防范 针对轴电流形成的根本原因,一般在现场采用如下防范措施: (1) 在轴端安装接地碳刷,以降低轴电位,使接地碳刷可靠接地,并且与 转轴可靠接触,保证转轴电位为零电位,以此消除轴电

由于操作过电压导致35KV变压器烧原因分析

伊和乌素风电场 35KV风机变压器烧损原因的初步分析 国网新源控股有限公司生产技术部: 2009年6月26日05时14分,在运行人员根据负荷情况退出3192电容补偿单元时,一期16台风机变高压断路器保险熔断,9台风机变烧损。现将具体详细情况汇报如下: 一、事故前风场运行工况: 2009年6月26日05时,35kVⅠ、Ⅱ段母线分段运行,35KVⅠ母3101、3102开关运行,35KVⅡ母3201、3202、3203、3204开关运行,SCV热备用,3191一支路投入、3192两支路运行,伊库线向系统送有功17MW、无功5.2MVAR(伊和乌素风场主接线见附件一)。二、事件经过及一次风机变检查情况: 05时14分,运行人员根据伊库线负荷情况,按正常操作程序切除3192电容补偿单元。05时15分,35KVⅠ段3102开关过流保护动作,3102开关跳闸, 35kVⅠ段母线单相接地报警,220kV线路、#1主变保护启动。 05时16分,检查确认Ⅰ段35kV母线电压不正常,拉开风机一回集电线路3101开关。母线接地故障消失。随后现场检查,发现16台风机变高压熔断器或单相、两相、三相熔断。 三、保护自动装置检查情况: 1. 05时26分,3102间隔保护过流Ⅰ段动作。

2. 05时27分,现场检查一期微机消谐装置告警,打印报告显示:接地故障、过压故障、谐振故障。 3.#1主变35KV侧故障录波器有录波报告(见附件二)。 05:14:24:649毫秒,后台机操作拉开3192开关,引发一期35kV 系统操作过电压,开关拉开8ms后发生三相短路,时间持续245ms,电流最大为2000A(10ms左右),不稳定和两相接地短路,480ms后再次发生三相短路,电流最大值为2800A(20ms左右),接着又发生两次A、B相间接地短路。以上四次故障或时间或电流没有到达3101、3102保护动作值。 05:15:36:228ms录波显示05:15:39:780ms至05:15:49:930ms 间共发生四次相间过电压,其中第四次A、B(录波启动后13700ms 后)发生的短路最严重,一次值最大过4000A(120ms左右)保护动作整定时间50毫秒,此电流导致3102保护跳闸。 以上两次录波显示,拉3192断路器时C相出现瞬时过电压121V(二次值),第一次录波中谐振时相对地有效值基本上在120V(二次值)左右电压风机变接地及短路熔断器熔断时产生的过电压(05时14分25秒759毫秒)半周波,波峰值256V(二次值)。 4.220kv线路辅助保护、主变保护均有启动报告。 四、电容器3192单元相关情况分析: 1.电容、电抗参数(详细参数见附件三): 1.1型号: TBB35-(3000+3000)/250ACW(可半容量投切) 1.2额定电压: 35 kV(系装置接入系统母线处的系统标称电压值)

发电机轴电压产生的原因、危害及处理措施

随着电源建设的迅猛发展, 单机容量的逐渐增大, 轴电压成为大型发电机采用静止自并励磁系统后的一个严重问题。研究轴电压、轴电流有着很重要的意义。轴电压的波形具有复杂的谐波脉冲分量, 对油膜绝缘特别有害当轴电压未超过油膜的破坏值时, 轴电流非常小。若轴电压超过轴承油层击穿电压, 则在轴承上形成很大的轴电流, 即所谓电火花加工电流, 将烧蚀轴承部件, 造成很大危害。磁路不对称、单极效应、电容电流、静电效应、静态励磁系统、外壳、轴等的永久性磁化均有可能引起轴电压。【文献2】 轴电压是指在电机运行时,电机两轴承端或电机转轴与轴承间所产生的电压。在正常情况下,轴电压较低时,燃气发电机转轴与轴承间存在的润滑油膜能起到较好的绝缘作用。但是,如果由于某些原因使得轴电压升高到一定数值时,就会击穿油膜放电,构成轴电流产生的回路。轴电流不但会破坏油膜的稳定性,使润滑冷却的油质逐渐劣化,同时,由于轴电流从轴承和转轴的金属接触点通过,金属接触点很小,电流密度很大,在瞬间会产生高温,使轴承局部烧熔。被烧熔的轴承合金在碾压力的作用下飞溅,将在轴承内表面烧出小凹坑。最终,轴承会因机械磨损加速而破损,严重时会烧坏轴瓦,造成事故被迫停机。【文献12】 发电机轴电压一直是存在的,但一般不高,通常不超过几V~十几V,但当绝缘垫因油污、损坏或老化等原因失去作用时,则轴电压足以击穿轴与轴承间的油膜而发生放电,久而久之,就会使润滑和冷却的油质逐渐劣化,严重者会使转轴和轴瓦烧坏,造成停机事故。 1、发电机轴电压产生的原因 (1)、磁不对称引起的轴电压它是存在于汽轮发电机轴两端的交流型电压。由于定子铁芯采用扇形冲压片、转子偏心率、扇形片的导磁率不同,以及冷却和夹紧用的轴向导槽等发电机制造和运行原因引起的磁不对称,结果产生包括轴、轴承和

产生轴电压的原因如下

产生轴电压的原因如下: 3p W ]!F0C-s y u ①、由于发电机的定子磁场不平衡,在发电机的转轴上产生了感应电势。磁场不平衡的原因一般是因为定子铁芯的局部磁组较大(例如定子铁芯锈蚀),以及定、转子之间的气隙不均匀所致。②、由于汽轮发电机的轴封不好,沿轴有高速蒸汽泄漏或蒸气缸内的高速喷射等原因而使转轴本身带静电荷。这种轴电压有时很高,可以使人感到麻电。但在运行时已通过炭刷接地,所以实际上已被消除。轴电压一般不高,通常不超过2~3 伏,为了消除轴电压经过轴承、机座与基础等处形成的电流回路,可以在励磁机侧轴承座下加垫绝缘板。使电路断开,但当绝缘垫因油污、损坏或老化等原因失去作用时,则轴电压足以击穿轴与轴承间的油膜而发生放电,久而久之,就会使润滑和冷却的油质逐渐劣化,严重者会使转轴和轴瓦烧坏,造成停机事故。 发电机磁场非常强大,发电机的主轴穿过磁场中心,可是一旦有微小偏差,在发电机轴两端就有感应电压,如果发电机轴两端经轴承和机座成为闭合环路,就会产生巨大的短路电流,为了切断这个环路,发电机轴承的一端必须加绝缘垫片的 轴电流是由于发电机磁场不对称,发电机大轴被磁化,静电充电等原因在发电机轴上感应出轴电压,引起的从发电机组轴的一端经过油膜绝缘破坏了的轴承、轴承座及机座底板,流向轴的另一端的电流

逆变器供电的电机轴电流及其防治 1 引言 感应电动机的轴电压和轴电流现象并不是什么新的问题,alger在1920年就阐述了引起这些电流的原因,即磁通在电机内的不对称分布。而c.u.t.pearce在1927年也说到:只要有可能设计出一个完美平衡或是对称的电机,轴承电流在理论上和实际上都是不存在的。而事实上,感应电机在正弦波电源的驱动下,就会因电机内部的因素产生轴电流,这些因素可以分为两点:一是同极的磁通,例如通过电机轴中央的磁通;二是通过电机轴的交变磁链。其中第二种情况更普遍一些。而这些磁链主要是由转子和定子槽机械尺寸的偏差、磁性材料的定向属性的改变以及供电电源不平衡等因素引起的磁通不平衡所产生的。 近年来,以绝缘栅双极晶体管(igbt)为功率器件的脉宽调制(pwm)逆变器作为感应电机的驱动电源时,轴电流的问题变得日趋严重,这也使得轴承出现问题和损坏的机率增加、损坏的速度加快。而且具有高载波频率(大于12khz)的igbt逆变器导致电机轴承的损害比低载波频率的逆变器更快。此时产生的轴电流的主要原因就是pwm逆变器的输出在电气上的瞬时不平衡。 过大的轴电流将造成轴承的损坏,从而使得电机不能正常运行。通过电机可靠性研究表明电机轴承的损坏占电机损坏总数的40%,而轴承制造商反映几乎在所有损坏的轴承中有25%是由于逆变器输出电压的dv/dt过大,损坏的数字还在飞速地增长。 本文通过电机模型的建立,分析了电机在正弦波供电和pwm逆变器供电时的轴电压、轴电流产生的机理,由此重视起对电机轴承的研究;所阐述的几种不同的轴承电流的流向,为的

水轮发电机产品说明书-00SM

SF90-28/6800 S129-00SM 四川东风电机厂 有限公司水轮发电机 产品说明书 1. 总则 1.1 本说明书适用于SF90-28/6800水轮发电机。本发电机为立轴悬式结构,采用密闭自循环空气冷却器冷却的三相凸极同步水轮发电机。 1.2 本发电机的性能符合国家标准GB/T7894-2001《水轮发电机基本技术条件》及GB/T755-2000《旋转电机定额和性能》的规定。 1.3 本发电机由水轮机直接拖动。 2.基本规格、数据与参数 2.1 主要规格: 型号: SF90-28/6800 额定容量: 102857 kVA 额定功率: 90000 kW 额定电压: 13800 V 额定电流: 4303.2 A 额定功率因数: 0.875(滞后) 额定频率: 50 Hz 额定转速: 214.3 r/min 飞逸转速: 410 r/min 相数: 3 定子接法: Y 额定励磁电压: 285 V 额定励磁电流: 1100 A 励磁方式:自并激静止可控硅励磁 旋转方向:俯视顺时针 2.2 主要数据及参数 定子铁芯外径: Da = 6800 mm 定子铁芯内径: Di = 6060 mm

定子铁芯长: lt = 1900 mm 气隙:δ = 22 mm 转子铁芯长: lp =1890 mm 定子绕组15℃时的电阻: R1(15) = 0.004 Ω 转子绕组15℃时的电阻: R2(15) = 0.1766 Ω 定子漏抗: Xe = 0.125 标么值 纵轴同步电抗: Xd = 1.0195 标么值 纵轴瞬变电抗: Xd′ = 0.3224 标么值 纵轴超瞬变电抗: Xd″ = 0.1977 标么值 横轴同步电抗: Xq = 0.6661 标么值 横轴超瞬变电抗: Xq″ = 0.1993 标么值 负序电抗: X2 = 0.1985 标么值 保梯电抗: Xp = 0.2579 标么值 定子绕组开路时、励磁绕组的时间常数:Tdo′=7.99 s 励磁绕组短路时、定子绕组的时间常数:Ta = 0.2334 s 短路比: fko = 1.113 (计算值) 效率:η = 98.2% (计算值) 3.主要结构 本发电机为立轴悬式结构,具有上、下两个导轴承,分别在上机架中心体和下机架中心体内。推力轴承位于上机架上方的推力油槽内。采用无风扇密闭自循环空气冷却系统。它主要由定子、转子、上机架、下机架、推力轴承、辅助接线、灭火水管、制动器管路、空气冷却器装置等组成,其结构特点分述于下: 3.1 定子 定子由机座、铁芯及定子绕组等组成。由于运输条件限制,定子分为四瓣。定子在工地组圆、叠片、下线及试验。定子在机坑外组圆、叠片后,用专用吊具吊入机坑内进行下线、试验等。

过电压--试题库

1 进网作业试题库 判断: 349. 在雷云对地放电的过程中,余辉放电阶段放电电流最大。() × 61. 为防止直接雷击电力设备,一般多采用避雷针和避雷线。() √ 62. 工频过电压的特点是数值不很大,持续时间长。() √ 96.为防止避雷线与大地发生短路,避雷线与大地之间具有较好的绝缘。()× 97. 35~110KV架空线路,如果未沿全线架设避雷线,则应在变电所1~2km的进 线段架设避雷线。() √ 98. 高压长线路空载运行时,线路末端电压高于首端电压。() √ 133. 用于3~10KV配电变压器防雷保护的避雷器应尽量靠近变压器设置,避雷器的接地线应与变压器金属外壳分别单独接地。() × 134.普通阀型避雷器由于阀片热容量有限,所以不允许在内过电压下动作。()√ 241. 35~110KV架空线路,如果未沿全线架设避雷线,则应在变电所1~2km的进线段架设避雷线。() √ 242.内部过电压与电网结构、各项参数、运行状态、停送电操作等多种因素有关。() √ 278.线路空载运行可能会引起工频过电压。() √ 310.避雷线的主要作用是传输电能。() ×

2 313. 高压长线路空载运行时,线路末端电压高于首端电压。() √ 314. 35~110KV架空线路,如果未沿全线架设避雷线,则应在变电所1~2km的进线段架设避雷线。() √ 350.在正常情况下,阀型避雷器中流过工作电流。() × 多项选择 38.在电力系统运行操作中,较容易发生操作过电压的操作有切、合()。 A. 空载变压器 B. 高压空载长线路 C. 空载电容器 D. 高压电动机 47.金属氧化物避雷器的特点包括()体积小、重量轻、结构简单、运行维护方便等。 A.无续流 B.残压低 C.通流容量大 D.动作迅速 51.雷电侵入波前行时,如来到()处,会发生行波的全反射而产生过电压。 A. 变压器线圈尾端中性点 B. 断开状态的线路开关 C. 线圈三角形接线引出线 D. 闭合的变压器进线总开关 53.引起工频过电压的原因包括()等。 A. 线路空载运行 B. 三相短路故障 C. 开断高压电动机 D. 单相接地故障 68.金属氧化物避雷器的特点包括()体积小、重量轻、结构简单、运行维护方便等。 A. 无续流 B. 残压低 C. 通流容量大 D. 动作迅速 76.()可以作为电气设备的内过电压保护。 A. FS阀型避雷器 B. FZ阀型避雷器 C. 磁吹阀型避雷器 D. 金属氧化物避雷器 单项选择: 27. 雷云对地放电大多数要重复()次。 A. 2~3 B. 3~5 C. 5~7 答案:A

发电机轴电压产生的原因、危害及消除措施

仅供参考[整理] 安全管理文书 发电机轴电压产生的原因、危害及消除措施 日期:__________________ 单位:__________________ 第1 页共4 页

发电机轴电压产生的原因、危害及消除措施 ①磁通不对称。造成磁通不对称的原因,可能是由于定子铁芯局部磁阻较大、定子与转子气隙不均匀、分数槽电机(多为水轮发电机)电枢反应不均匀等所引起。 ②电机大轴被磁化。 ③高速蒸汽产生静电。 由于与发电机同轴相连的汽轮机的轴封不好,沿轴的高速蒸汽泄漏或蒸汽在汽缸内高速喷射等原因使轴带电荷,这种性质的轴电压有时很高,当人触及时感到麻手。 (2)危害及消除措施 高速蒸汽产生的静电荷,不易传导到励磁机侧,在汽轮机侧也有可能破坏油膜和轴瓦,通常在汽轮机轴上装设接地炭刷来消除。 对于其他原因所产生的轴电压,如果在安装时和运行中不采取有效的措施,当轴电压足以击穿轴与轴承间的油膜时,将产生一个由发电机大轴、轴颈、轴瓦、轴承支架及机组底座为回路的轴电流,虽然轴电压不高,通常在1V以下,个别机组为23V,但由于回路的电阻非常小,因此产生的轴电流可能很大,有时可达数百安培,轴电流会使轴承油的油质劣化,严重时会将轴瓦烧坏,被迫停机造成事故。 为了防止轴电流的产生,设计安装时,在位于发电机励磁机侧的轴承支架与底座之间己加装绝缘垫,同时将所有螺杆、螺钉(控制销)及油管等均已采取绝缘措施。 (3)测量轴电压的意义 由以上分析可知,发电机一侧的轴承支架与底座之间的绝缘垫是否保持良好的绝缘性能,对于防止发电机的轴和轴瓦的损坏以及轴承油质 第 2 页共 4 页

的劣化,保证机组的安全运行起着重要作用。因此,机组在安装时和运行中,通过测量比较发电机两端的电压和轴承与底座的电压,检查判断发电机轴承支架和底座之间的绝缘好坏是十分必要的,所以,交接试验标准和预防性试验规程中都把发电机轴电压的测量列为必做的试验项目。 第 3 页共 4 页

电动机轴电流引起的轴承烧损及防止措施

电动机轴电流引起的轴承烧损及防止措施 摘要:文章介绍了采用滚动轴承的大中型电动机轴电流产生的原因及其对电动机轴瓦造成的损害,并结合实践经验介绍了轴电流烧伤轴瓦的特征及处理方法。 关键词:轴承烧损;电动机;分析;轴电流;措施 某电厂一台新电机为沈阳电机股份有限公司生产,型号为YKK500-4,额定容量为800 kW,额定电压6 kV,额定转速1 490 r/min,额定电流94 A,F级绝缘,其电机轴承为滚动轴承,安装在某炉的二次风机上。自2002年8月24曰首次投运后,电机驱动端轴承温度出现异常,至9月1曰,温度达到86 ℃ ,电机6个测温点报警,同时驱动端振动增大,用远红外测温装置测量电机本体温度为60 ℃,国产黄油润滑脂大量以液体形式流出。因特殊原因,当时该炉不能停运,故只能采取紧急措施,用轴流风机对电机通风降温,电机驱动端轴承温度有所下降。 1检修及试运情况 2002年9月9曰,停炉后对电机进行解体检查,发现转子驱动端NU228E、6228E 2套轴承严重过热、变黑,轴承及轴承盒内已无润滑油脂,轴承盒内套磨出0.5 mm左右的沟槽,轴承盒外盖止口磨掉1 mm 左右,轴承盒内分布着大量黑色铁末;同时,轴承内套轨道存在大量麻坑,电机本体内外存有大量溢出的黄油,非驱动端NU228E轴承内套轨道上磨出多道划痕。电机轴承小盖及轴承盒磨损严重。 由于电机有振动现象,轴承小盖及轴承盒磨损也非常严重,当时检修人员认为是转子轴承机械配合不好。检修中更换了转子驱动端NU228E、6228E 2套轴承,非驱动端NU228轴承;更换了与轴承配套的耐高温润滑脂,重新制作了轴承盒并加装新内套。检查电机通风道未发现问题。检修完毕,电机通电运行30 min后,发现驱动端轴承温度已达86 ℃,决定立即停运。解体后发现轴承内套轨道有大量麻点,已不能使用。 2电机轴承烧损原因分析 从2次损坏的轴承内套看,其轨道上都存在大量麻点。仔细观察,发现这些麻点都是由放电产生。引起放电的原因是电机转子存在较大轴电压,在此电压下电机产生严重的轴电流,电流通过转子和轴承时发生放电现象,使轴承内套产生麻点。麻点又使轴承与转子间的摩擦阻力加大,轴承温度迅速上升。在电机首次投运后,曾出现轴承温度异常现象,此温度异常与轴电流引起的麻点有关,温度升高造成了轴承盒与轴承外套配合出现问题,引起轴承与轴承外套相对运动并磨损轴承盒外盖和内套;同时也使得轴承温度继续升高,黄油受热熔化溢出。由于磨损严重,电机驱动端轴承出现位移,造成转子驱动端与非驱动端不同心,轴承径向受力不均,致使轴承滚柱与内套磨出划痕。在第一次检修时,由于轴承小盖及轴承盒磨损非常严重,电机振动明显,机械划伤的痕迹掩盖了大部分放电麻点,再加上轴电流在电机轴承上引起的烧损事故较少,从而使检修人员忽略了轴电流的存在。 由于滚动轴承维护方便、运行可靠,因此在中小型电机中得到广泛应用。但随着滚动轴承制造技术的发展,现代中型、大型电机在制造时也多采用滚动轴承。实际上,采用此种轴承的大、中型电机,只要有轴电流存在,滚动轴承的使用寿命就极其短暂。有的运行1~2月,有的运行几d甚至几h便出现轴承温度高、振动或噪音。因此,必须高度重视此类新投入运行的大、中型电机的轴电流。

相关文档
最新文档