复合材料细观有限元分析专题.
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题 复合材料细观有限元分析
§A-1 短纤维复合材料力学行为分析 一、有效模量分析
1、短纤维复合材料的形貌
面内分布
厚度方向分布
2、有限元分析模型
层板比拟法
c
c c
c
a) aligned fiber model
b) tilted fiber model
单向短纤维复合材料的理想化模型
1 n ij ( ij ) p V p V p 1
12 10 8 6 4 2 0
Ratcheting Strain , %
=0.0 =0.1 =1.0
r
1
2
3
4
5
6
7
8
9
10
Cyclic Number N , cycle
未增强基体的r~N模拟结果
2.5
Ratcheting Strain , %
2.0
=0.0 =0.1 =1.0
基体材料的弹塑性力学性能参数
不同纤维位向角下的拉伸应力-应变曲线
二、循环变形行为的模拟
采用如图所示的代表性体积单元来分析复合材料 的整体行为。
x Matrix D/2 O Fiber d/2 l/2 L/2 z
复合材料代表性体积单元以及有限元分析网格(Vf=15%,l/d=20)
在有限元分析中可采用 2-D轴对称8节点单元进 行分析(如图中所示),边界条件为对称位移 边界条件。 各个尺寸之间满足如下关系: L/2=l/2+2.5d,ld2 /LD2=Vf Al2O3 纤维为弹性材料,弹性模量 Ef=300 GPa , 泊松比f=0.20。
上述模型中的材料参数可以通过单拉实验确 定,对纯Al的值如表1所示。
基体材料的材料参数值
M=10, E=70GPa, v=0.33, Q0=15MPa; ξ(1)=5000, ξ(2)=1250, ξ(3)=800, ξ(4)=400, ξ(5)=200, ξ(6)=100, ξ(7)=50, ξ(8)=33.3, ξ(9)=25, ξ(10)=20; r(1)=4.6, r(2)=3.5, r(3)=4.5, r(4)=2.4, r(5)=5.2, r(6)=5.4, r(7)=2.6, r(8)=2.1, r(9)=2.0, r(10)=12.5 (MPa).
述代表性体积单元。对随机 分布短纤维复合材料的处理
方法与前一致。
斜向纤维等效模型
不同的方法得到的结果不同,见下表。
复合材料 -Al2O3f/Al5.5Mg -Al2O3f/Al5.5Zn -Al2O3f/Al12Si Vf 0 10 15 20 0 10 15 20 0 10 20 混合律 -85 93 102 -85 93 102 -85 102 H-T方程 夹杂理论 -76 80 84 -76 80 84 -76 84 -78 83 88 -78 83 88 -78 88
Different multi-particle unit cell models
0.40
0.40
Ratchetting strain r , %
0.32
Ratchetting strain r , %
0.32
Sphere Ellipsoid Cylinder Cube Mixed
0.24
0.24
Kang GZ, et al: Mater. Sci. Eng. A 426(2006), 66; Mater. Sci. Eng. A 458(2007), 170.
单拉应力-应变曲线
单轴应变循环曲线
棘轮行为
4、多颗粒有限元模型
(a) single particle (c) body-centered cube (e) edge-centered cube
(单位:GPa)
FEM -81.4 87.7 93.9 -81.4 87.7 93.9 -81.4 93.9
测量 70 78.1~80.2 85.2~89.8 94.2~97.2 70 78.9 87.4~89.2 94.8~95.6 70 73.6~75.0 80.6
二、有效性能分析(拉伸应力-应变曲线)
(SP) (BC) (EC)
(b) simple cube
(SC)
(d) face-centered cube (f) body-face-edge-centered (FC) cube (BFE)
晶体点阵结构
单胞及有限元网格(规则排列)
多颗粒单胞(随机分布、不同形状)
b/a=3/4
L/d=1
• Al合金基体为弹塑性材料,其循环本构模型描 述如下。 主控方程:
ε ε p εe εe D1 : σ
ε
p
3 sα 2 sα
屈服函数:
F 1.5(s α) : (s α) Q0
背应力演化方程:
α r ( k )b ( k )
k 1
M
(k=1, 2, …, M)
0.16
Uniform random distribution Normal distribution
0.16
0.08
0
2
4
6
8
10
12
0.08
0
2
4
6
8
10
12
r
1.5 1.0 0.5 0.0 1
2
3
4
5
6
7
8
9
10
Cyclic Number N , cycle
复合材料的r~N模拟结果
§A-2 颗粒增强复合材料力学行为分析
1、颗粒增强复合材料的形貌
Vp=14%
Vp=21%
2、颗粒增强复合材料的力学行为
单调拉伸
应变循环
棘轮行为
3、单颗粒有限元模型
轴对称边界条件
只需求出了
p为离散的单元号,n为单元总数。
c
,即可得:
c Ec c
y Fiber y o Matrix l Interface z
c
S
c
x d
L
a) Longitudinal section
S
b) Transverse section
三维代表性体积单元
所有的计算都是基于上
(k ) (k ) 2 p (k ) (k ) b p b ε 3 (k ) k (k ) (k ) p [ H f 1 ]p
Байду номын сангаас
r ( k ) (k ) (k )
为材料常数
该模型能够合理描述未增强基体的循环变形 行为。
§A-1 短纤维复合材料力学行为分析 一、有效模量分析
1、短纤维复合材料的形貌
面内分布
厚度方向分布
2、有限元分析模型
层板比拟法
c
c c
c
a) aligned fiber model
b) tilted fiber model
单向短纤维复合材料的理想化模型
1 n ij ( ij ) p V p V p 1
12 10 8 6 4 2 0
Ratcheting Strain , %
=0.0 =0.1 =1.0
r
1
2
3
4
5
6
7
8
9
10
Cyclic Number N , cycle
未增强基体的r~N模拟结果
2.5
Ratcheting Strain , %
2.0
=0.0 =0.1 =1.0
基体材料的弹塑性力学性能参数
不同纤维位向角下的拉伸应力-应变曲线
二、循环变形行为的模拟
采用如图所示的代表性体积单元来分析复合材料 的整体行为。
x Matrix D/2 O Fiber d/2 l/2 L/2 z
复合材料代表性体积单元以及有限元分析网格(Vf=15%,l/d=20)
在有限元分析中可采用 2-D轴对称8节点单元进 行分析(如图中所示),边界条件为对称位移 边界条件。 各个尺寸之间满足如下关系: L/2=l/2+2.5d,ld2 /LD2=Vf Al2O3 纤维为弹性材料,弹性模量 Ef=300 GPa , 泊松比f=0.20。
上述模型中的材料参数可以通过单拉实验确 定,对纯Al的值如表1所示。
基体材料的材料参数值
M=10, E=70GPa, v=0.33, Q0=15MPa; ξ(1)=5000, ξ(2)=1250, ξ(3)=800, ξ(4)=400, ξ(5)=200, ξ(6)=100, ξ(7)=50, ξ(8)=33.3, ξ(9)=25, ξ(10)=20; r(1)=4.6, r(2)=3.5, r(3)=4.5, r(4)=2.4, r(5)=5.2, r(6)=5.4, r(7)=2.6, r(8)=2.1, r(9)=2.0, r(10)=12.5 (MPa).
述代表性体积单元。对随机 分布短纤维复合材料的处理
方法与前一致。
斜向纤维等效模型
不同的方法得到的结果不同,见下表。
复合材料 -Al2O3f/Al5.5Mg -Al2O3f/Al5.5Zn -Al2O3f/Al12Si Vf 0 10 15 20 0 10 15 20 0 10 20 混合律 -85 93 102 -85 93 102 -85 102 H-T方程 夹杂理论 -76 80 84 -76 80 84 -76 84 -78 83 88 -78 83 88 -78 88
Different multi-particle unit cell models
0.40
0.40
Ratchetting strain r , %
0.32
Ratchetting strain r , %
0.32
Sphere Ellipsoid Cylinder Cube Mixed
0.24
0.24
Kang GZ, et al: Mater. Sci. Eng. A 426(2006), 66; Mater. Sci. Eng. A 458(2007), 170.
单拉应力-应变曲线
单轴应变循环曲线
棘轮行为
4、多颗粒有限元模型
(a) single particle (c) body-centered cube (e) edge-centered cube
(单位:GPa)
FEM -81.4 87.7 93.9 -81.4 87.7 93.9 -81.4 93.9
测量 70 78.1~80.2 85.2~89.8 94.2~97.2 70 78.9 87.4~89.2 94.8~95.6 70 73.6~75.0 80.6
二、有效性能分析(拉伸应力-应变曲线)
(SP) (BC) (EC)
(b) simple cube
(SC)
(d) face-centered cube (f) body-face-edge-centered (FC) cube (BFE)
晶体点阵结构
单胞及有限元网格(规则排列)
多颗粒单胞(随机分布、不同形状)
b/a=3/4
L/d=1
• Al合金基体为弹塑性材料,其循环本构模型描 述如下。 主控方程:
ε ε p εe εe D1 : σ
ε
p
3 sα 2 sα
屈服函数:
F 1.5(s α) : (s α) Q0
背应力演化方程:
α r ( k )b ( k )
k 1
M
(k=1, 2, …, M)
0.16
Uniform random distribution Normal distribution
0.16
0.08
0
2
4
6
8
10
12
0.08
0
2
4
6
8
10
12
r
1.5 1.0 0.5 0.0 1
2
3
4
5
6
7
8
9
10
Cyclic Number N , cycle
复合材料的r~N模拟结果
§A-2 颗粒增强复合材料力学行为分析
1、颗粒增强复合材料的形貌
Vp=14%
Vp=21%
2、颗粒增强复合材料的力学行为
单调拉伸
应变循环
棘轮行为
3、单颗粒有限元模型
轴对称边界条件
只需求出了
p为离散的单元号,n为单元总数。
c
,即可得:
c Ec c
y Fiber y o Matrix l Interface z
c
S
c
x d
L
a) Longitudinal section
S
b) Transverse section
三维代表性体积单元
所有的计算都是基于上
(k ) (k ) 2 p (k ) (k ) b p b ε 3 (k ) k (k ) (k ) p [ H f 1 ]p
Байду номын сангаас
r ( k ) (k ) (k )
为材料常数
该模型能够合理描述未增强基体的循环变形 行为。