大学电磁场课后答案第1章

合集下载

1高等电磁理论第一章答案1

1高等电磁理论第一章答案1

D 8 0 E0 (ex e y ez )
4 2 2 x 4 3 1 1 (2) D = ε E = ε0 2 4 2 E0 y = 0 E0 0 ,解得 x , y , z 2 2 2 2 2 4 z 0
E ex104 ei(t 20 z ) e y 104 e
i(t 20 z ) 2
(V m)
试求: (1)平面波的传播方向; (2)电磁波的频率; (3)波的极化方式; (4)磁场强度
H; (5)电磁波流过沿传播方向单位面积的平均功率。
解: (1)由 k r 20 z 可得 k 20 ez ,即波的传播方向为 e z (2)由 k
k (e x e z )( x z ) 2 则k , k E 0 ,是平面电磁波。 k (e - e ) ( x z ) x z 2 由 k E H ,可得
k ( zx) i 2k 2 E0 e ey 1 H kE k ( x z ) i 2k 2 E e ey 0
1-9 若媒质的介电常数和磁导率都是空间坐标的函数,即分别为 r 、 r ,则该媒
(1)
E ( E ) 2 E i H 2 (r ) E
E得
5
2 E 2 0 E ( E
令 k 2 2 0 ,可得
( r ) ) (r )
2 E k 2 E E
Η
1

1
kE


(20 e z ) [10 e
4 i (t 20 z )
e x 10 e
4

电磁场与电磁波课后答案

电磁场与电磁波课后答案

第一章 矢量场1.1 z y x C z y x B z y xA ˆˆˆ3;ˆ2ˆˆ;ˆˆ3ˆ2+-=-+=-+=ρρρ 求:(a) A ; (b) ∃b ; (c) ρρA B ⋅ ; (d) ρρB C ⨯ ; (e) ()ρρρA B C ⨯⨯ (f)()ρρρA B C ⨯⋅ 解:(a) 14132222222=++=++=z y x A A A A ; (b) )ˆ2ˆˆ(61ˆz y x BB b -+==ρρ( c) 7=⋅B A ρρ; (d) z y xC B ˆ4ˆ7ˆ---=⨯ρρ (e)z y x C B A ˆ4ˆ2ˆ2)(-+=⨯⨯ρρρ (f)19)(-=⋅⨯C B A ρρρ 1.2 ρA z =++2∃∃∃ρπϕ; ρB z =-+-∃∃∃ρϕ32 求:(a) A ; (b) ∃b ; (c) ρρA B ⋅ ; (d) ρρB A ⨯ ; (e) B A ρρ+解:(a) 25π+=A ;(b) )ˆ2ˆ3ˆ(141ˆz b -+-=ϕρ;(c) 43-=⋅πB A ρρ (d) z A B ˆ)6(ˆ3ˆ)23(+--+=⨯πϕρπρρ (e) z B A ˆˆ)3(ˆ-++=+ϕπρρρ 1.3 ρA r=+-22∃∃∃πθπϕ; ρB r =-∃∃πθ 求:(a) A ; (b) ∃b ; (c) ρρA B ⋅ ; (d) ρρB A ⨯ ; (e) ρρA B +解:(a) 254π+=A ; (b) )ˆˆ(11ˆ2θππ-+=r b ; (c) 22π-=⋅B A ρρ ; (d) ϕπθππˆ3ˆ2ˆ22++=⨯rA B ρρ ; (e) ϕπˆ2ˆ3-=+r B A ρρ 1.4 ρA x y z =+-∃∃∃2; ρB x y z =+-α∃∃∃3 当ρρA B ⊥时,求α。

解:当ρρA B ⊥时,ρρA B ⋅=0, 由此得 5-=α1.5 将直角坐标系中的矢量场ρρF x y z xF x y z y 12(,,)∃,(,,)∃==分别用圆柱和圆球坐标系中的坐标分量表示。

工程电磁场课后答案1(完整)

工程电磁场课后答案1(完整)

0.29K
7401
VOH 74LS00
2.9.1 驱动: 负载: 拉电流: 灌电流: 扇出:
2.9.2 VOH > VIH VOL < VIL IOH > IIH IOL > IIL
第三章 组合逻辑电路分析与设计
3.1.2证明(C)A ABC ACD C D E
A ACD (C D )E
(b) _______ ________ _______ ________
A B C D C D A D
( A B)(C D) (C D)( A D)
(C D)( A B D)
AC AD BC BD CD D
AC BC D
3.2.1展开最小项(a) L A(B C) A BC A(B B)(C C) ( A A)BC
mi
3.2.2 (a)
______________________
___________________
AC ABC BC ABC AC BC BC ABC
灌电流多余: (8-4.8)/0.4=8
N=min(8,17)=8
2.4.5
__________________ ____ ____
L AB BC D E
AB BC D E
2.4.6 RP计算 (1)拉电流时
VCC R IP IH 74LS 00 VOH 7401
D=0 选中低位片1;D=1 选中高位片2
01234
56789
1
0
1
A B C D
0
2
0
4.2.9 7位数字译码显示电路

电磁场1章习题答案

电磁场1章习题答案
外导体电流密度为


根据柱坐标下的旋度公式计算磁场强度的旋度
即得:
求磁感应强度的散度,可直接应用柱坐标下的散度公式
说明了恒流磁场是无散场.验证边界条件:
1-27解:波阵面的形状可由等相位面方程判断。等相位面是平面(柱面,球面),则该波是平面(柱面,球面)波。由等相位面方程可见,在某时刻,满足等相位面方程的条件是
在超前,为右旋极化波
范围内为线极化波
落后,为左旋极化波
且振幅相等,为圆极化波.
可见,x,y方向上振幅相等,,落后所以为左旋圆极化波。
x和y方向上,电场相位相等,,为线极化波。

x和y方向上,电场相位相等,,为线极化波。
,落后,为左旋椭圆极波。
第一章
1-1解:
方法(一):应用高斯定理
由于电荷分布具有球对称性,所以容易用高斯定理来直接求解电场.如图所示:
应用高斯定理
(1)r<a:
(2)r>b
同理:,
求以上三个区域内的。*因为静电场是无旋场,
所以在以上三个区域内:
*应用球坐标系下的矢量旋度公式(P251)
求以上三个区域内的
*应用高斯定理
*应用球坐标系下的矢量散度公式(P251)
代入计算结果也可求出相应区域的
1-2解:因两圆柱面间的电荷分布不对称,不能直接用高斯定理求解。可采用补偿叠加的方法,设小圆柱面内具有体密度为的两种电荷分布,将不对称电荷分布化为对称电荷分布的叠加。如下图所示:
------?

1-8解:设内球壳半径为a=10cm,外球壳半径为b=20cm,两球壳之间的正电荷的体密度为
因为电流密度分别沿z轴(正、负)方向,所以A只有z方向分量,

电磁学答案第1章

电磁学答案第1章

第一部分 习题 第一章 静电场基本规律1.2.1在真空中有两个点电荷,设其中一个所带电量是另一个的四倍,它们个距2510-⨯米时,相互排斥力为1.6牛顿。

问它们相距0.1米时,排斥力是多少?两点电荷的电量各为多少?解:设两点电荷中一个所带电量为q ,则另一个为4q :(1) 根据库仑定律:r r q q K F ˆ221 = 得:212221r r F F = (牛顿))()(4.01010560.12122222112=⨯⨯==--r r F F (2) 21224r q K F =∴ 2194221211109410560.14)()(⨯⨯⨯⨯±=±=-K r F q =±3.3×710- (库仑) 4q=±1.33×810- (库仑)1.2.2两个同号点电荷所带电量之和为 Q ,问它们带电量各为多少时,相互作用力最大?解: 设其中一个所带电量为q ,则一个所带电量为Q-q 。

根据库仑定律知,相互作用力的大小:2)(rq Q q K F -= 求 F 对q 的极值 使0='F即:0)2(=-q Q r K∴ Q q 21=。

1.2.3两个点电荷所带电量分别为2q 和q ,相距L ,将第三个点电荷放在何处时,它所受合力为零?解:设第三个点电荷放在如图所示位置是,其受到的合力为零。

图 1.2.3即:41πε20xq q = 041πε )(220x L q q - =21x2)(2x L - 即:0222=-+L xL x 解此方程得:)()21(0距离的是到q q X L x ±-= (1) 当为所求答案。

时,0)12(>-=x L x (2) 当不合题意,舍去。

时,0)12(<--=x L x1.2.4在直角坐标系中,在(0,0.1),(0,-0.1)的两个位置上分别放有电量为1010q -=(库)的点电荷,在(0.2,0)的位置上放有一电量为810Q -=(库)的点电荷,求Q 所受力的大小和方向?(坐标的单位是米)解:根据库仑定律知:1211ˆr r Qq K F = )ˆsin ˆ(cos 11211j i rQ q Kαα-= 2281092.01.01010109+⨯⨯⨯=--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-++21222122)2.01.0(ˆ1.0)2.01.0(ˆ2.0j i =j iˆ100.8ˆ1061.187--⨯-⨯ 如图所示,其中 21212111)(cos y x x +=α21212111)(sin y x y +=α同理:)ˆsin ˆ(cos 222212j i r Q q K F αα+⨯= 2281092.01.01010109+⨯⨯⨯=--×⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-++21222122)2.01.0(ˆ1.0)2.01.0(ˆ2.0j i=j iˆ100.8ˆ1061.187--⨯-⨯ )(ˆ1022.3721牛顿iF F F -⨯=+=1.2.5在正方形的顶点上各放一电量相等的同性点电荷q 。

《电磁场和电磁波》课后习题解答(第一章)

《电磁场和电磁波》课后习题解答(第一章)

第一章习题解答【习题Ll解】【习题L2解】【习题L3解】(1)要使ALR,则须散度A-B=O所以从Z∙5=T+3H8c=0可得:3b+8c=l即只要满足3b÷8c=l就可以使向量二和向量了垂直。

(2)要使4||月,则须旋度AxB=O所以从可得b=-3,c=-8【习题1・4解】A=I2以+9e y+6z,B=CIeX+be y,因为3JLA,所以应有A∙3=0g∣j(12久+9e y+e z^∙^ae x+Z?Gy)=12Q+9/?=0(I)又因为同=1;所以病存=1;(2)一4由⑴,⑵解得Q=±《,"=+W【习题1.5解】由矢量积运算规则4_B=A?C a x a2a3=(%Z-+(a3x-a x z)e y+(01y-a2x)e7xyz =8名+纥5+BZeZ取一线元:dl=e x dx+e y dy+e z dz则有dx_dy_dz则矢量线所满足的微分方程为丁二万一=Hιy xy"z或写成=常数)a2z-a3ya3x-a l za↑y-a2x求解上面三个微分方程:可以直接求解方程,也可以采用以下方法d(qx)="(/丁)二d(%z)a i a2z-a i a3ya2a3x-a l a2za l a3y-a2a i xxdx_ydy_ZdZx(a2z-a3y)y{a3x-a x z)z(a l y-a2x)由(1)(2)式可得d(a2y)=k(a2a3x-aλa2z)ydy=k(a3xy-a}yz)(4)对⑶⑷分别求和所以矢量线方程为【习题L6解】矢量场A=(αxz+x2)eχ+Sy+孙2)0+{z-z1-∖-cxz-2xyz)e z假设A是一个无源场,则应有divΛ=O即:divA=V•4=空L+空L+空■=O∂x∂y∂z因为A=axz+X2∕ξ=by+xy1A z=z-z1+cxz-2xyzx所以有divA=az+2x+b+2xy+l-2z+cχ-2xy=X(2+c)÷z(a-2)+b+l=0 得a=2,b=-1,c=-2【习题1.7解】设矢径r的方向与柱面垂直,并且矢径不到柱面的距离相等(r=a)f∙ds-[rds=a∖ds=a2πah所以,①=S JSJS【习题1.8解】φ=3X2y i A=X2yze v+3xy2e^而rot((∕A)=Vx(以)=×A÷V^×A又=巴?十3?+再等=6xye x+3jc2e y ox-oy∂z所以+9x3y2e v-lSx2y3e v+6x3y2ze z=3X2y2[(9X一X2)e x-9yeγ+4xze z]【习题1.9解】所以&CyCzrotA=VXA=———∂x∂y∂zA x A y A(-1+1)&+(4/Z-4xz)e、+(2y-2y)&=6由于场H的旋度处处等于0,所以矢量场A为无旋场。

电磁场与电磁波(版)课后答案谢处方

电磁场与电磁波(版)课后答案谢处方

第一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C和()⨯A BC ;(8)()⨯⨯A BC 和()⨯⨯A B C 。

解 (1)23A x y z+-===-e e e A a e ee A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由cos AB θ=14-==⨯A B A B ,得1cos ABθ-=(135.5= (5)A 在B 上的分量 B A =A cos AB θ=1117=-A B B (6)⨯=A C 123502xy z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e ⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520x y z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。

(1)判断123PP P ∆是否为一直角三角形; (2)求三角形的面积。

电磁场1章习题答案

电磁场1章习题答案
因为电流密度分别沿z轴(正、负)方向,所以A只有z方向分量,
故仅有
设同轴线无限长,因为场分布具有轴对称性,故问题可视为与无关,即
所以
下面分4个区域进行求解,4个区域的及积分常数分别用下标1,2,3,4表示。
(2)
(3)
利用边界条件:
进而求得:
可应用恒流磁场的斯托克斯定律--安培环路定律
求磁场强度。设内导体内的电流为I。则内导体电流密度为
根据前面所求的电位和电场强度的表达式,可画出电位和电场强度的图形(到r=1m)
(1-14)
1-14此题与P25例题十分相似,可以先根据电流分布求解矢量磁位的的泊松方程,然后再求其旋度即得磁感应强度,进而计算出磁场强度.设内导体所通过的直流电流为I,外导体通过的直流电流为-I.
解:在圆柱坐标系中,矢量磁位的每个分量都满足泊松方程:
,它表示垂直于Z轴的平面;由该电场的表达式可看出,在该平面上,电场强度的大小处处相等,只是随时间t做正弦变化,即振幅是均匀的。所以该波属于均匀平面波。
由平面电磁波的一般瞬时形式可看出:
方向传播该波沿-z
在自由空间中
波阻抗
根据右手螺旋法则,磁
场H的振动方向为x方向。
其大小的复数形式为:
1-29
解:平面波极化性质判断然后由E沿半径的积分求电位.
分r<a,a<r<b和r>b三个区域进行讨论.
(1):
(2):
(3):
由于电荷分布在有限空间,可选取无穷远处为零电位参考点.于是电位
在球坐标系中
根据前面所计算的三个区域电位的表达式,可分别求出各个区域的电场强度,即
根据电场强度的表达式,可得: r=50cm=0.5m时,P点的电场强度为:

电磁学第一章习题答案

电磁学第一章习题答案

ε0
d ρ 3 E内 = r) = 0 (1 − (2) dr 3ε 0 2R
2 ∴r = R 3 ρ0 R Emax = 9ε 0
r越大,E外 单调减小,因而球外场强无极值
1.6.3附图中A与O、O与B、B与D的距离皆为L,A点 有正电荷q,B点有负电荷-q (1)把单位正电荷从O点沿半圆OCD移到D点,电 场力做了多少功? (2)把单位负电荷从D点沿AD的延长线移到无穷 远,电场力做了多少功?
C
q
A
−q
2L
O
B
L
D
根据电位叠加原理:
q q U0 = ( − )=0 4πε 0 L L
q q q UD = ( − )=− 4πε 0 3L L 6πε 0 L
(1)电场力把单位正电荷(即 q0 = 1)从O 点沿OCD移到D点所做的功:
1
1
AOCD = q0 (U 0 − U D ) = q0 (0 −
侧面 上底 下底
ηL = ε0
上下底面上
θ=
π

∴ cos θ = 0
侧面上场强夹角
θ = 0 ∴ cos θ = 1
ηL ∴ ∫∫ E idS = ∫∫ E cos θ dS = E i2π rL = ε0 侧面
η ∴E = 2πε 0 r
1.4.6电荷以体密度 ρ = ρ0 (1 − r R) 分布在半径为R 的球内,其中ρ0 为常量,r为球内某点与球心的 距离 (1)求球内外的场强(以r代表从球心到场点的 矢量) (2)r为多大时场强最大?该点场强 Emax = ?
1.3.7 电荷以线密度η均匀分布在长为L的直线段上 (1)求带电线 的中垂面上与带电线相距为R的点的场强; η (2)证当L→∞时,该点场强 E = 2πε R (3)试证当 R〉〉 L 时所得结果与点电荷场强公式一致

《电磁学答案》第一章

《电磁学答案》第一章

2
3
2
q2
4 0a
3q 2
a2
2 cos
2
30 0
| q0 3a
q
4 0
|
2
| (
q0 | 3a 3
)
2
4
3q | q0 | 3
3q q0 3
9. 电量都是Q的两个点电荷相距为l,连线中点为O;有另一 点电荷q,在连线的中垂面上距O为x处。(1)求q受的力;
(2)若q开始时是静止的,然后让它自己运动,它将如何运 动?分别就q与Q同号和异号情况加以讨论。
解:把p=ql分解为:pθ=psinθ,pr=pcosθ,由电偶极子在延 长线,垂直平分线公式得:
Er
2 pr
4 0r 2
2 p cos 4 0r 2
E
p
4 0r 2
p sin 4 0r 2
P(r,θ)
E
Er 2
E
2
p
4 0r 2
p
4 0r 2
3cos2 3
r
4 cos2 sin2
lθ -q o +q
解:(1) 从上题中得知: α粒子受的万有引力可以忽略, 它受的库仑力为:
F
(42q)1q02rα2粒 子9.0的1加09速度(7为9 :1.6
1019 ) (2 1.6 (6.9 1015 )2
1019
)
2
7.84 102 ( N )
a
F m
7.84 10 2 6.68 10 27
1.17 10 29 (m / s2 )
/r
x
2
2 1 l / r
( 1) x 2
2
取二级近似

电磁场理论课后习题1答案

电磁场理论课后习题1答案

电磁场理论课后习题1答案电磁场理论是物理学中的重要课程,它研究了电磁场的产生、传播和相互作用。

在学习这门课程时,课后习题是巩固知识、提高能力的重要途径。

本文将针对电磁场理论课后习题1给出详细的解答。

习题1:一个带电粒子在电磁场中运动,受到的洛伦兹力为F=q(E+v×B),其中q是粒子的电荷量,E是电场强度,v是粒子的速度,B是磁感应强度。

请证明:洛伦兹力对粒子所做的功率为P=qv·E。

解答:根据洛伦兹力的表达式F=q(E+v×B),我们可以将其展开为F=qE+qv×B。

其中第一项qE表示粒子在电场中受到的电力,第二项qv×B表示粒子在磁场中受到的磁力。

根据功率的定义,功率P等于力F对时间t的导数,即P=dW/dt,其中W表示对物体所做的功。

所以我们需要计算洛伦兹力对粒子所做的功。

根据力的功的定义,功W等于力F对位移的积分,即W=∫F·ds。

在这里,位移ds是粒子在运动过程中的微小位移。

将洛伦兹力F=qE+qv×B代入功的计算式中,得到W=∫(qE+qv×B)·ds。

由于电场强度E和磁感应强度B是空间中的矢量场,所以我们可以将其展开为E=E_xi+E_yj+E_zk和B=B_xi+B_yj+B_zk的形式。

对于微小位移ds,我们可以将其表示为ds=dx·i+dy·j+dz·k。

将上述表达式代入功的计算式中,得到W=∫(q(E_xi+E_yj+E_zk)+q(v_xi+v_yj+v_zk)×(B_xi+B_yj+B_zk))·(dx·i+dy·j+dz·k)。

根据矢量积的性质,可以得到v×B=(v_yB_z-v_zB_y)i-(v_xB_z-v_zB_x)j+(v_xB_y-v_yB_x)k。

将其代入功的计算式中,得到W=∫(q(E_xi+E_yj+E_zk)+q((v_yB_z-v_zB_y)i-(v_xB_z-v_zB_x)j+(v_xB_y-v_yB_x)k))·(dx·i+dy·j+dz·k)。

电磁场与电磁波课后习题答案第一章

电磁场与电磁波课后习题答案第一章

电磁场与电磁波课后习题答案第一章第一章1.2给定三个矢量A ,B ,C :iu ui ui uu A = a x +2a y -3 a z u ui ui B = -4 a y +a z ur uu uu C =5ax-2az求:⑴矢量A 的单位矢量uu;⑵矢量A 和B 的夹角AB ;.. ur ur u ur⑵ cos AB ■二A ? B / A BAB=135.5°ir urur uruu uu ur⑶ A ? B = 11, AB = 10a x a y 4a z,、ir ur ir⑷ A ? ( B C ) = 42ur ur ur(A B ) ? C = 42,iru irur uu uu⑸ A ( B C ) =55a x 44a y 11a zur urur ucuu uu(A B )C =2a x 40 a y +5a z1.3有一个二维矢量场F (r )二a x ( y ) +a y (x ),求其矢量线方程,并ir ⑶A ? ■ B 和AurB⑷A ? ( ur B LTC)和ir⑸A( u B ir C ) WALrALrBMBLrcLTCluamAwaA3uu盯2一nH和定性画出该矢量场图形解:由dx/( y)=dy/x,得x2+ y2=c1.6求数量场 =ln ( x 2+ y 2+z 2)通过点P (1, 2, 3)的等值面方程。

解:等值面方程为In ( x 2 + y 2+z 2) =C 则 c=ln(1+4+9)=ln14 那么 x 2+ y 2+ z 2=141.9 求标量场 (x,y,z )=6x 2y 3+e z 在点 P (2,-1,0)的梯度解: tuu uu uua uu o o uuuu > 口由=a x+a y+a z ——=12x y a x +18x y a y +e za z 得 xyzUTuu uu1.10在圆柱体x 2 + y 2=9和平面x=0,y=0,z=0及z=2所包围的区域,设此区域的表面为S:⑴求矢量场A 沿闭合曲面S 的通量,其中矢量场的表达式为u uu uuuuA = a x 3x +a y ( 3y+z )+a z (3z x)⑵验证散度定理。

电磁场与电磁波(第四版)课后答案 第一章_习题

电磁场与电磁波(第四版)课后答案 第一章_习题

2),
cos

EB

25 r3
(ex x

ey
y

ez z
)


ex 2 ey 2 ez
EB
0.5 22 (-2)2 12

25 (2x 2 y r3 0.5 3
z)

0.8957
arccos(0.8957) 153.6



C•B
A
C•A
B
2 erx ery 2 erz 3 5 0 6 ery 4 erz
erx 2 ery 40 erz 5
r A


r B

r C

=

r A

r C

r B


r A

r B
Cr
5 0 6
e
e
er
r 2 sin r sin


r

r
r 2 sin


r
Ar
rA r sin A sin cos
e
r sin

r cos cos
e
r

r sin sin

r
2
er sin

r
cos

sin

(7)A •
rr BC
=
rr A B
r •C
r ex

r ey
2

r ez
3
erx •0
er y 4

电磁学第一章习题答案

电磁学第一章习题答案

第一章 静电场习题答案1-1 氢原子由一个质子(即氢原子核)和一个电子组成。

根据经典模型,在正常状态下,电子绕核作圆周运动,轨道半径是5.29×10-11m 。

已知质子质量m p =1.67×10-27kg ,电子质量m e =9.11×10-31kg ,电荷分别为±e=±1.60×10-19C ,万有引力常量G=6.67×10-11N.m 2/kg 2。

(1)求电子所受质子的库仑力和引力;(2)库仑力是万有引力的多少倍?(3)求电子的速度。

答:(1)设电子所受的库仑力为F ,根据库仑定律,其大小()()N r q q F 8211219922101023.81029.51060.11099.841---⨯=⨯⨯⨯⨯=⋅=πε设电子所受的万有引力为f ,根据万有引力定律,其大小()N r mM G f 4721127311121063.31029.51067.11011.91067.6-----⨯=⨯⨯⨯⨯⨯⨯=⋅= (2)394781027.21063.31023.8⨯=⨯⨯=--f F (3)设电子绕核做圆周运动的速度为v ,因为F f <<,所以可认为向心力就是库仑力F ,根据Rv m F 2=向得s m m RF v /1019.21011.91029.51023.8631118⨯=⨯⨯⨯⨯==---向 1-3 答:(1)它们之间的库仑力为()()N r q q F 4.14100.41060.11099.84121521992210=⨯⨯⨯⨯=⋅=--πε(2)每个质子所受的重力为:N Mg P 26271064.18.91067.1--⨯=⨯⨯==2626108.81064.14.14⨯=⨯=-P F 所以P F >> 1-5 答:设油滴的电量为q ,它受的电场力和重力分别为F 和P ,由F =P ,即mg Eq =,得()C E mg q 19563361002.81092.18.91010851.01064.114.334---⨯=⨯⨯⨯⨯⨯⨯⨯⨯== 考虑到电荷的正负,C q 191002.8-⨯-=1-7 根据经典理论,在正常状态下,氢原子中电子绕核做圆周运动,其轨道半径为m 111029.5-⨯,已知质子电荷为C e 191060.1-⨯=,求电子所在处原子核(即质子)的电场强度。

电磁学第一章答案

电磁学第一章答案
第一章 —— 静电场 20
§2 电场 电场强度
因为l r, 且P ql qli , 所以得
1 2ql 1 2P EA i 3 4 0 r 4 0 r 3 2求EB : q和 q在B点产生的场强E和E
分别为
E
y
E
s?d点电荷位于球面中心204rqe???????sssrqsed4d20e???0e?q?r高斯定理库仑定律电场强度叠加原理专业资料第一章静电场第一章静电场353高斯定理点电荷在任意封闭曲面内??cosd4d20esrq?20d4rsq??00ed4??qq???s?ds?ds?d?rs?drsdd2?其中立体角专业资料第一章静电场第一章静电场363高斯定理q点电荷在封闭曲面之外2ds?2e?0dd111???se??222dd0es???0dd21??0d???sse??1ds?1e?专业资料第一章静电场第一章静电场373高斯定理由多个点电荷产生的电场???????21eee???????siissese????dde????????外内isiisisese????dd???????内内0e1diiisiqse???0d
G 6.67 1011 N m2 kg2
Fe 39 2.27 10 Fg
(微观领域中,万有引力比库仑力小得多,可忽略不计.)
第一章 —— 静电场 10
§1 静电的基本现象和基本规律
4、静电力的叠加原理: 作用于某电荷上的总静电力等于其他点电荷单独存在时作 用于该电荷的静电力的矢量和。 离散状态


Q



P E0


Q


P q
F E0 q
第一章 —— 静电场 14

电磁场含电磁波课后答案第1章.doc

电磁场含电磁波课后答案第1章.doc

第一章习题解答给定三个矢量 A 、B和C如下:A e x e y 2 e z 3B e y 4 e zC e x 5 e z 2求:( 1)a A;( 2)A B;(3)AgB;(4)(7)Ag( B C )和( A B )gC;( 8)( AA e x e y 2 e z 3 解( 1)a A12 22 e xA ( 3)2 AB;( 5)A在B上的分量;( 6)A C;B) C 和 A (B C ) 。

1 2 314e y e z14 14(2)A B (3)AgB ( 4 )(e x e y 2 e z3) ( e y 4 e z ) e x (e x e y 2e z 3) g( e y 4 e z ) -11由cosAgBAB A Be y 6 e z 4531111,得1417238AB cos 1 ( 11 ) 135.5o 238( 5)A在B上的分量A B A cosAgB 11 AB B 17e x e y e z( 6)A C 1 2 3 e x 4 e y13 e z 105 0 2e x e y e z( 7)由于B C 0 4 1 e x 8 e y 5 e z 205 0 2e x e y e zA B 1 2 3 e x 10 e y 1 e z 40 4 1所以Ag( B C ) ( xe y 2 z 3) x y z42e e g(e 8 e 5 e 20)( A B )gC ( e x10 e y 1 e z 4)g(e x 5 e z 2) 42e x e y e z( 8)( A B ) C 10 1 4 e x 2 e y 40 e z 55 0 2e x e y e zA (BC ) 1 2 3 e x 55 e y 44 e z118 5 20三角形的三个顶点为P1 (0,1, 2) 、 P2 (4,1, 3) 和 P3 (6, 2,5) 。

( 1)判断PP12 P3是否为一直角三角形;( 2)求三角形的面积。

电磁场与电磁波课后答案-郭辉萍版1-6章

电磁场与电磁波课后答案-郭辉萍版1-6章

电磁场与电磁波课后答案-郭辉萍版1-6章第一章 习题解答1.2给定三个矢量A ,B ,C : A =xa +2ya -3zaB = -4ya +zaC=5xa -2za求:⑴矢量A 的单位矢量Aa ; ⑵矢量A 和B 的夹角ABθ;⑶A ·B 和A ⨯B⑷A ·(B ⨯C )和(A ⨯B )·C ; ⑸A ⨯(B ⨯C )和(A ⨯B )⨯C 解:⑴Aa =A A=(xa +2ya -3za ) ⑵cos ABθ=A ·B /ABABθ=135.5o⑶A ·B =-11,A ⨯B=-10xa-y a -4za⑷A ·(B ⨯C )=-42 (A ⨯B )·C =-42⑸A ⨯(B ⨯C )=55xa -44ya -11za(A ⨯B )⨯C =2xa -40ya +5za1.3有一个二维矢量场F(r)=xa (-y )+ya (x),求其矢量线方程,并定性画出该矢量场图形。

解:由dx/(-y)=dy/x,得2x +2y =c1.6求数量场ψ=ln (2x +2y +2z )通过点P (1,2,3)的等值面方程。

解:等值面方程为ln (2x +2y +2z )=c则c=ln(1+4+9)=ln14 那么2x +2y +2z =141.9求标量场ψ(x,y,z )=62x 3y +ze 在点P (2,-1,0)的梯度。

解:由ψ∇=xaxψ∂∂+yayψ∂∂+zazψ∂∂=12x 3yxa +182x2y ya +zeza 得ψ∇=-24xa +72ya +za1.10 在圆柱体2x +2y =9和平面x=0,y=0,z=0及z=2所包围的区域,设此区域的表面为S: ⑴求矢量场A 沿闭合曲面S 的通量,其中矢量场的表达式为A=x a 32x +y a (3y+z )+za (3z -x)⑵验证散度定理。

解:⑴⎰•sd A =A d S •⎰曲+A d S •⎰xoz +A d S •⎰yoz +A d S •⎰上+A d S •⎰下A d S •⎰曲=232(3cos 3sin sin )z d d ρθρθθρθ++⎰曲=156.4A d S •⎰xoz=(3)y z dxdz +⎰xoz=-6A d S •⎰yoz=-23x dydz ⎰yoz=0A d S •⎰上+A d S •⎰下=(6cos )d d ρθρθρ-⎰上+cos d d ρθρθ⎰下=272π⎰•sd A=193⑵dVA V⎰•∇=(66)Vx dV +⎰=6(cos 1)Vd d dz ρθρθ+⎰=193即:⎰•ssd A =dVA V⎰•∇1.13 求矢量A =x a x+ya x 2y 沿圆周2x +2y =2a 的线积分,再求A ∇⨯对此圆周所包围的表面积分,验证斯托克斯定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档