搞定DC-DC电源转换方案设计,必看金律十一条

合集下载

DC-DC转换设计的要点

DC-DC转换设计的要点

D C-D C转换器可以实现各种电压电平的高效电源转换和供电,但是随着需求的不断上升,需要更高功率密度更高效率以及更小的尺寸,D C-D C转换的P C B设计就更为重要了。

下面说一说D C-D C转换器P C B设计的一些要点:走线长度在高频转换器中,承载高速开关信号的走线长度对于保持信号完整性和降低E M I至关重要。

较长的走线可以充当天线并辐射电磁能量,可能会对其他组件或电路造成干扰,此外,较长的走线可能会引起延迟、信号反射、寄生效应,从而导致转换器效率和稳定性降低。

因此走线长度应该尽可能短,尤其是对于高速时钟和数据时钟,适当的阻抗匹配技术和受控阻抗走线可进一步优化信号传输并最大限度地减少信号衰减。

环路区域环路区域是指P C B上的信号走线及其返回路径形成的封闭区域,在D C-D C转换器等高功率和高频电路中,最小化环路面积对于降低辐射E M I至关重要。

越大的环路面积会导致更多的磁通量与环路耦合,从而导致更高的E M I。

最小化环路面积的主要措施是:通过将信号走线放置在靠近其返回路径的位置(例如利用接地层/紧密间隔的电源层)来最小化环路面积。

器件选择和电容摆放在关键信号和电源线中添加铁氧体磁珠和共模扼流圈等滤波器组件可以减弱传导电磁干扰并防止进一步传播。

连接滤波电容时,正确的位置对于滤除E M I至关重要。

滤波元器件应该尽可能靠近D C-D C转换器放置,在I C和有源元件的电源引脚附近正确放置去耦电容有助于抑制高频噪声并提高E M I性能。

去耦电容的放置寄生电感寄生电感是导电路径(例如迹线/电线)的固有电感,取决于其物理尺寸和材料特性。

在D C-D C转换器等高频电路中,路径电感会影响转换器的效率和性能。

高寄生电感会导致电压下降,开关损耗增加以及转换器效率降低,还有可能导致电路中的电压过冲和振铃,影响信号完整性。

为了最大限度地减少寄生电感,P C B工程师可以使用更宽的走线,更短的路径,或者利用专用的接地层/电源层为高电流/开关信号创建低电感返回路径。

11条学会DC-DC电源变换

11条学会DC-DC电源变换
第九条 、隔离的DCDC开关电源模块电路设计方案
常用的隔离DC/DC转换主要分为三大类:1.反激式变换。2.正激式变换。3.桥式变换
常用的单端反激式DC/DC变换电路,这类隔离的控制芯片型号也不少。控制芯片典型代表是常用的UC3842系列。这种是高性能固定频率电流的控制器,主要用于隔离AC/DC、DC/DC转换电路。其主要应用原理是:电路由主电路、控制电路、启动电路和反馈电路4 部分组成。主电路采用单端反激式 拓扑,它是升降压斩波电路演变后加隔离变压器构成的,该电路具有结构简单, 效率高, 输入电压范围宽等优点。 控制电路是整个开关电源的核心,控制的好坏直接决定了电源整体性能。这个电路采用峰值电流型双环控制,即在电压闭环控制系统中加入峰值电流反馈控制。 这类方案选择合适的变压器及MOS管可以把功率做的很大,与前面几种设计方案相比电路结构复杂,元器件参数确定比较困难,开发成本较高,因此需要此方案时可以优先选择市面上比较廉价的DC/DC隔离模块。
选择稳压管时一般可按下述式子估算: (1) Uz=Vout; (2)Izmax=(1.5-3)ILmax (3)Vin=(2-3)Vout 这种电路结构简单,可以抑制输入电压的扰动,但由于受到稳压管最大工作电流限制,同时输出电压又不能任意调节,因此该电路适应于输出电压不需调节,负载电流小,要求不高的场合,该电路常用作对供电电压要求不高的芯片供电。
第四条、基准电压源芯片稳压电路
稳压电路的另一种形式,有些芯片对供电电压要求比较高,例如AD DA芯片的基准电压等,这时常用的一些电压基准芯片如TL431、 MC1403 ,REF02等。TL431是最常用基准源芯片,有良好的热稳定性能的三端可调分流基准电压源。它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值。最常用的电路应用如下图示,此时Vo=(1+R1/R2)Vref。选择不同的R1和R2的值可以得到从2.5V到36V范围内的任意电压输出,特别地,当R1=R2时,Vo=5V。

电源、DCDC电路原理设计及PCB布线注意事项大全

电源、DCDC电路原理设计及PCB布线注意事项大全

注:本文内容摘抄整理自网络、论坛,仅供大家参考学习,谢谢!!!电源、DC-DC 电路原理设计及PCB布线注意事项大全一般的降压型的DC-DC变换的典型原理电路,如下图:一.DC-DC电路设计至少要考虑以下条件:1.外部输入电源电压的范围,输出电流的大小。

2.DC-DC输出的电压,电流,系统的功率最大值。

二.基于以上两点选择PWM IC要考虑:1.PWM IC的最大输入电压。

2.PWM开关的频率,这一点的选择关系到系统的效率。

对储能电感,电容的大小的选择也有一定影响。

3.MOS管的所能够承受的最大额定电流及其额定功率,如果DC-DC IC内部自带MOS,只需要考虑IC输出的额定电流。

4.MOS的开关电压Vgs大小及最大承受电压。

三.电感(L1),二极管(CR1),电容(C2)的选择1. 电感量:大小选择主要由开关频率决定,大小会影响电源纹波;额定电流,电感的内阻选择由系统功耗决定。

2. 二极管:通常都用肖特基二极管。

选择时要考滤反向电压,前向电流,一般情况反向电压为输入电源电压的二倍,前向电流为输出电流的两倍。

3. 电容:电容的选择基于开关的频率,系统纹波的要求及输出电压的要求。

容量和电容内部的等效电阻决定纹波大小(当然和电感也有关)。

如何得到一个电源纹波相对较小、对系统其他电路干扰相对较小,而且相对稳定可靠的DC-DC电路,需要对以上电路的原理做如下修改:1.输入部分:电源输入端需要加电感电容滤波。

目的:由于MOS管的开关及电感在瞬间的变化会造成输入电源的波动,尤其是在系统耗电波动较大时,影响更为明显。

2.输出部分:(1)假定C2的选择的100uF是正确的,我们想得到更小的纹波,可以将100uF 的电容改成两颗47uF的电容(基于相同类型的电容);如果100uF电容采用的是铝电解,可以在原来的基础上加一颗10uF的磁片电容或钽电容。

(2)在输出端再加一颗电容和一颗电容对原来的电源做一个LC滤波,会得到一个纹波更小的电源。

DCDC设计原理、经验与应用技巧总结

DCDC设计原理、经验与应用技巧总结

DC/DC设计原理、经验与应用技巧总结摘要:DC/DC设计原理、经验与应用技巧总结0关键字:D C/DC,设计原理, 应用技巧0“绿色”系统的发展趋势不仅意味着必须采用环保元器件,还对电子产业提出了节能的挑战。

能源之星(En erg yS tr)和80+等组织都已针对各式消费电子(特别是计算类)颁布了相关规范。

对当前的消费者而言,更长的电池寿命也是个十分吸引的特性。

因此,更长的电池寿命、更小的外形尺寸及各国政府推出的新法规都在要求必需谨慎选择电源元件,尤其是对板上的D C-D C转换器。

这表示着新平台的功率密度、效率和热性能必须大幅提高。

众所周知,设计理想的D C-D C转换器涉及到众多权衡取舍。

功率密度的提高通常意味着总体功耗的增加,以及结温、外壳温度和P CB温度的提升。

同样地,针对中等电流到峰值电流优化D C/D C电源,几乎也总是意味着牺牲轻载效率,反之亦然。

本人结合自己十多年的D C-D C应用经验,谈谈D C-D C转换器的基本原理和设计经验技巧。

来源:大比特半导体器件网D C-D C就是直流-直流变换,一般有升压(BO O ST)、降压(BUC K型)两种。

降压式D C/D C变换器的输出电流较大,多为数百毫安至几安,因此适用于输出电流较大的场合。

降压式D C/D C变换器基本工作原理电路如图1所示。

VT1为开关管,当VT1导通时,输入电压Vi通过电感L1向负载RL供电,与此同时也向电容C2充电。

在这个过程中,电容C2及电感L1中储存能量。

当VT1截止时,由储存在电感L1中的能量继续向RL供电,当输出电压要下降时,电容C2中的能量也向RL放电,维持输出电压不变。

二极管VD1为续流二极管,以便构成电路回路。

输出的电压Vo经R1和R2组成的分压器分压,把输出电压的信号反馈至控制电路,由控制电路来控制开关管的导通及截止时间,使输出电压保持不变。

来源:大比特半导体器件网0图1、降压式D C/D C变换器基本工作原理电路0D C-D C设计技巧0一.D C-D C电路设计至少要考虑以下条件:1.外部输入电源电压的范围,输出电流的大小。

DCDC电源设计方案

DCDC电源设计方案

DCDC电源设计方案DC-DC电源设计是一种将直流电源转换为不同电压或电流输出的电源设计方案。

DC-DC电源的设计目标是提供高效率、稳定可靠的电源输出,确保电路正常工作和设备正常运行。

本文将介绍DC-DC电源设计的基本原理、设计步骤和一些具体的设计方案。

一、DC-DC电源设计的原理和基本概念DC-DC电源设计基于开关电源的原理,使用开关元件(如MOS管)周期性地开启和关闭来控制电源输出电压和电流的变化。

通过调整开关元件的开关频率、占空比和电压波形等参数,可以实现不同输出电压和电流的调节。

DC-DC电源设计中,常用的基本概念有:1.输入电压:直流电源输入的电压值,例如12V、24V等。

2.输出电压:DC-DC电源输出的电压值,例如5V、3.3V等。

3.输出电流:DC-DC电源输出的电流值,例如1A、2A等。

4.效率:DC-DC电源输出功率与输入功率之比,用来衡量电源转换的效率。

5.稳定性:DC-DC电源输出电压或电流的稳定性,要求在负载变化、输入电压波动等情况下仍能保持稳定。

二、DC-DC电源设计的步骤DC-DC电源设计一般包括以下几个步骤:1.确定设计需求和参数:根据目标设备的需求和规格,确定DC-DC电源的输入电压、输出电压和输出电流等参数。

2. 选择拓扑结构:根据需求参数和应用场景选择合适的DC-DC拓扑结构,常见的有反激式、降压Buck型、升压Boost型、降压升压Buck-Boost型等。

3.选择元器件和设计电路:根据拓扑结构选择合适的开关元件、滤波电感、滤波电容和控制电路等元器件,并设计合理的电路连接方式和参数。

4.进行电路仿真和优化:使用仿真软件对电路进行仿真分析,评估电路的性能指标,并根据仿真结果对电路进行优化调整。

5.PCB设计和布局:根据电路设计结果进行PCB设计和布局,确保电路的稳定性和可靠性。

6.电路调试和测试:对设计好的PCB电路进行调试和测试,验证电路的稳定性、效率和输出性能是否符合设计要求。

DCDC转换器电路设计的六大技巧

DCDC转换器电路设计的六大技巧

DC/DC转换器电路设计的六大技巧2017-11-19 xmsun2007来源阅 34 转 1转藏到我的图书馆微信分享:QQ空间QQ好友新浪微博推荐给朋友一、正确理解DC/DC转换器DC/DC转换器为转变输入电压后有效输出固定电压的电压转换器。

DC/DC转换器分为三类:升压型DC/DC转换器、降压型DC/DC转换器以及升降压型DC/DC转换器。

根据需求可采用三类控制。

PWM控制型效率高并具有良好的输出电压纹波和噪声。

PFM控制型即使长时间使用,尤其小负载时具有耗电小的优点。

PWM/PFM转换型小负载时实行PFM控制,且在重负载时自动转换到PWM控制。

目前DC-DC转换器广泛应用于手机、MP3、数码相机、便携式媒体播放器等产品中。

在电路类型分类上属于斩波电路。

二、DC/DC转换器电路设计原理DC-DC就是直流-直流变换,一般有升压(BOOST)、降压(BUCK型)两种。

降压式DC/DC变换器的输出电流较大,多为数百毫安至几安,因此适用于输出电流较大的场合。

降压式DC/DC变换器基本工作原理电路如下图所示。

VT1为开关管,当VT1导通时,输入电压Vi通过电感L1向负载RL供电,与此同时也向电容C2充电。

在这个过程中,电容C2及电感L1中储存能量。

当VT1截止时,由储存在电感L1中的能量继续向RL供电,当输出电压要下降时,电容C2中的能量也向RL放电,维持输出电压不变。

二极管VD1为续流二极管,以便构成电路回路。

输出的电压Vo经R1和R2组成的分压器分压,把输出电压的信号反馈至控制电路,由控制电路来控制开关管的导通及截止时间,使输出电压保持不变。

DC/DC变换器基本工作原理图三、DC-DC电路设计要考虑以下条件:1.外部输入电源电压的范围,输出电流的大小。

2. DC-DC输出的电压,电流,系统的功率最大值。

四、选择PWM IC要考虑的要点有:1. PWM IC的最大输入电压。

2.PWM开关的频率,这一点的选择关系到系统的效率。

常用DCDC电源电路方案设计

常用DCDC电源电路方案设计

常用DC /DC电源电路设计方案分析1、DC/DC电源电路简介DC/DC电源电路又称为DC/DC转换电路,其主要功能就是进行输入输出电压转换。

一般我们把输入电源电压在72V以内的电压变换过程称为DC/DC转换。

常见的电源主要分为车载与通讯系列和通用工业与消费系列,前者的使用的电压一般为48V、36V、24V 等,后者使用的电源电压一般在24V以下。

不同应用领域规律不同,如PC中常用的是12V、5V、3.3V,模拟电路电源常用5V 15V,数字电路常用3.3V等。

结合到本公司产品,这里主要总结24V以下的DC/DC电源电路常用的设计方案。

2、DC/DC转换电路分类DC/DC转换电路主要分为以下三大类:(1)稳压管稳压电路。

(2)线性(模拟)稳压电路。

(3)开关型稳压电路3、稳压管稳压电路设计方案稳压管稳压电路电路结构简单,但是带负载能力差,输出功率小,一般只为芯片提供基准电压,不做电源使用。

比较常用的是并联型稳压电路,其电路简图如图(1)所示,选择稳压管时一般可按下述式子估算:(1) Uz=Vout; (2)Izmax=(1.5-3)I Lmax (3)Vin=(2-3)Vout这种电路结构简单,可以抑制输入电压的扰动,但由于受到稳压管最大工作电流限制,同时输出电压又不能任意调节,因此该电路适应于输出电压不需调节,负载电流小,要求不高的场合,该电路常用作对供电电压要求不高的芯片供电。

有些芯片对供电电压要求比较高,例如AD DA芯片的基准电压等,这时候可以采用常用的一些电压基准芯片如MC1403 ,REF02,TL431等。

这里主要介绍TL431、REF02的应用方案。

3.1 TL431常用电路设计方案TL431是一个有良好的热稳定性能的三端可调分流基准电压源。

它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值。

该器件的典型动态阻抗为0.2Ω,参考电压源误差1%,输出电流为1.0-100mA。

DC-DC电路设计

DC-DC电路设计

2高频链DC/DC电路设计2.1高频链DC/DC电路概述直流-直流(DC/DC)变换电路是将一组电参数的直流电能变换成另一组电参数的直流电能的电路。

它能完成以下功能:直流电幅值变换,直流电极性变换,直流电路阻抗变换和有源滤波,可用于直流电机调速,直流焊机,电解电镀电源,开关电源,功率因子校正等场合。

用仿真电子学的方法也能进行直流电幅值变换呵有源滤波。

但因为调整管上较大的压降使这些变换损耗很大。

为了提高效率,现代的DC/DC变换普遍应用开关变换技术,用开关变换技术构成的DC/DC变换器常被称为开关电源。

DC/DC变换电路分为无变压器隔离的DC/DC变换电路和有变压器隔离的变换器,无隔离的开关变换基本电路有:降压式变换电路,升压式变换电路,升降式变换电路,库克电路,SEPIC电路和ZETA电路。

隔离式DC/DC变换电路也叫间接直流变流电路,其结构图如下:图2.1采用这种结构较为复杂的电路来完成直流—直流变换有以下原因:1. 输出与输入端需要隔离2. 某些应用中需要相互隔离的多路输出3. 输出电压与输入电压的比例远小于1或远大于14. 交流环节采用较高的工作频率,可以减小变压器和滤波电感,滤波电容的体积和重量在许多DC/DC开关变换电路的应用场合中,常需输入输出间的电隔离,其中变压器隔离的DC/DC变换电路最常用有:正激式变换电路,反激式变换电路和桥式隔离变换电路和推挽式隔离变换电路等。

其中正激式变换电路电路较简单,成本低,可靠性高,驱动电路简单,但变压器单向励磁,利用率低,适合于各种中小功率电源,功率范围在几百W~几KW;反激式电路非常简单,成本很低,可靠性高,驱动电路简单,但难以达成较大的功率,变压器单向励磁利用率低,适用于小功率电子设备,计算机设备消费电子设备电源,功率范围在几W~几十W。

全桥型变压器双向励磁,容易达到大功率,但结构复杂,成本高,有直通问题,可靠性低,需要复杂的多组隔离驱动电路,适用于大功率工业用电源,焊接电源和点解电源等。

DCDC转换器回路设计指南

DCDC转换器回路设计指南

DCDC转换器回路设计指南本资料为DC/DC转换器电路的设计提供一些提示,尽量用具体事例说明在各种制约条件下,怎样才能设计出最接近要求规格的DC/DC转换器电路。

DC/DC转换器电路的各种特性(效率、纹波、负载瞬态响应等)可根据外设元件的变更而变更,一般最佳外设元件因使用条件(输入输出规格)不同而不同,例如,当您问“怎样才能提高效率?”,回答“视使用条件而不同”或者“那要看具体情况啦”,感觉好像被巧妙地塘塞过去了,估计您也遇到过这样的情况吧。

那么,为什么会出现这样的回答呢?其理由就是因为电源电路大多使用市售的商品作为电路的一部分,所以必须既要考虑大小、成本等的制约又要考虑电气要求规格来设计。

通常产品目录中的标准电路选定的元件大多是在标准使用条件下能发挥一般特性的元件,因而,并不一定能说在各种使用条件下都是最佳的元件选定。

所以在各个设计中,必须根据各自的要求规格(效率、成本、贴装空间等)从标准电路进行设计变更。

但要能设计出符合要求规格的电路,需要足够的知识和经验。

本资料就用具体的数值为不具备这些知识和经验的人说明哪些元件如何改变就能达到要求的动作,这样不需要进行复杂的电路计算就能快捷地使DC/DC转换器电路正常工作。

至于正常工作后对设计的检验,可以自己以后细细地计算,也可以一开始就请具有丰富知识和经验的人进行检验。

DC/DC转换器的种类和特点DC/DC转换器电路根据其电路方式主要有以下一些:非绝缘型基本(单线圈)型电容耦合型双线圈SEPIC, Zeta,…电荷泵(开关电容/无线圈)型绝缘型变压器耦合型正向变压器耦合型回扫基本型系指通过将电路工作限定为只升压或者只降压来最低限度地减少元件数目,输入侧和输出侧没有电气绝缘的类型。

图1所示为升压电路图2所示为降压电路这些电路具有小型、便宜、纹波小等优点,随着设备的小型化对它们的需要在增加。

SEPIC、Zeta分别是在基本型的升压电路、降压电路的VIN-VOUT间插入电容器,并增加了一个线圈。

六个技巧,搞定DCDC转换器电路设计(优选.)

六个技巧,搞定DCDC转换器电路设计(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改六个技巧,搞定DC/DC转换器电路设计一、正确理解DC/DC转换器DC/DC转换器为转变输入电压后有效输出固定电压的电压转换器。

DC/DC 转换器分为三类:升压型DC/DC转换器、降压型DC/DC转换器以及升降压型DC/DC转换器。

根据需求可采用三类控制。

PWM控制型效率高并具有良好的输出电压纹波和噪声。

PFM控制型即使长时间使用,尤其小负载时具有耗电小的优点。

PWM/PFM转换型小负载时实行PFM控制,且在重负载时自动转换到PWM控制。

目前DC-DC转换器广泛应用于手机、MP3、数码相机、便携式媒体播放器等产品中。

在电路类型分类上属于斩波电路。

二、DC/DC转换器电路设计原理DC-DC就是直流-直流变换,一般有升压(BOOST)、降压(BUCK型)两种。

降压式DC/DC变换器的输出电流较大,多为数百毫安至几安,因此适用于输出电流较大的场合。

降压式DC/DC变换器基本工作原理电路如下图所示。

VT1为开关管,当VT1导通时,输入电压Vi通过电感L1向负载RL供电,与此同时也向电容C2充电。

在这个过程中,电容C2及电感L1中储存能量。

当VT1截止时,由储存在电感L1中的能量继续向 RL供电,当输出电压要下降时,电容C2中的能量也向RL放电,维持输出电压不变。

二极管VD1为续流二极管,以便构成电路回路。

输出的电压Vo经R1和 R2组成的分压器分压,把输出电压的信号反馈至控制电路,由控制电路来控制开关管的导通及截止时间,使输出电压保持不变。

DC/DC变换器基本工作原理图三、DC-DC电路设计要考虑以下条件:1.外部输入电源电压的范围,输出电流的大小。

2. DC-DC输出的电压,电流,系统的功率最大值。

四、选择PWM IC要考虑的要点有:1. PWM IC的最大输入电压。

DCDC转换器设计原则和地线连接技巧

DCDC转换器设计原则和地线连接技巧

DC-DC转换器设计原则和地线连接技巧DC/DC转换器设计原则和地线连接技巧在设计印刷线路板时,设计工程师都会仔细思考铜线的走线方式和元器件的放置问题。

如果没有充分考虑这两点,印刷线路板的效率、最大输出电流、输出纹波及其它特性都将会受到影响。

产生这些影响的两个主要原因则是地线(GND、VSS)和电源线(+B、VCC、VDD)的连接,如果地线及电源线设计合理,电路将能正常地工作,获得较好的性能指标,否则会产生干扰、性能指标恶化等问题。

本文就DC/DC转换器的设计,介绍一些通用的设计原则和地线连接方法。

设计原则印制线走线方式和元器件的放置常常会影响电路的性能。

以下提出了接地线设计的四个原则: 1. 用平面布线方式(planar pattern)接地; 2. 用平面布线方式接电源线; 3. 按电路图中的信号电流走向依序逐个放置元器件; 4. 实验获得的数据在应用时不应做任何调整,即使受板的尺寸或其它因素影响也应原样复制数据。

在设计中注意以上原则和要点,可以减少电路噪声和信号干扰。

除了以上的基本原则外,在设计铜线走线模式和元件放置时应谨记以下两点:布线之间会产生杂散电容;连线长度会产生阻抗。

在设计中注意线间杂散电容和缩短布线长度有利于消除噪声,减少辐射的产生。

在上面的几个基本原则基础上,设计工程师应注意以下几点(参见图1): 1. 根据电路原理图进行元件的布局,输入电流线和输出电流线应进行区别; 2. 合理放置元器件,保证它们之间的连线最短,以减少噪声; 3. 在电压变化很大和流过大电流的地方应小心设计以降低噪声;4. 如果电路中采用了线圈和变压器,必须小心进行连接;5. 电路设计时,将元器件放置在同一方向,便于回流焊接;6. 元器件间或元器件焊盘和焊盘间必须保证0.5毫米以上的间隙,避免出现桥接。

PCB设计示例 a. 升压转换器模式布线方式在升压转换器中,输出电容(CL)的位置比其它元件更重要,参考图2。

11条黄金定律,搞定DC-DC电源转换方案设计

11条黄金定律,搞定DC-DC电源转换方案设计

11 条黄金定律,搞定DC/DC 电源转换方案设计
搞嵌入式的工程师们往往把单片机、ARM、DSP、FPGA 搞的得心应手,而一旦进行系统设计,到了给电源系统供电,虽然也能让其精心设计的
程序运行起来,但对于新手来说,有时可能效率低下,往往还有供电电流不足或过大引起这样那样的问题,本文十大金律轻松搞定DCDC 电源转换电路设计。

第一条、搞懂DC/DC 电源怎幺回事
DC/DC 电源电路又称为DC/DC 转换电路,其主要功能就是进行输入输出电压转换。

一般我们把输入电源电压在72V 以内的电压变换过程称为DC/DC 转换。

常见的电源主要分为车载与通讯系列和通用工业与消费系列,前者的
使用的电压一般为48V、36V、24V 等,后者使用的电源电压一般在24V 以下。

不同应用领域规律不同,如PC 中常用的是12V、5V、3.3V,模拟电路电源常用5V 15V,数字电路常用3.3V 等,现在的FPGA、DSP 还用2V 以下的电压,诸如1.8V、1.5V、1.2V 等。

在通信系统中也称二次电源,它是由一次电源或直流电池组提供一个直流输入电压,经DC/DC 变换以后在输出端获一个或几个直流电压。

第二条、需要知道的DC/DC 转换电路分类
DC/DC 转换电路主要分为以下三大类:
①稳压管稳压电路。

②线性(模拟)稳压电路。

③开关型稳压电路
第三条、最简单的稳压管电路设计方案
稳压管稳压电路电路结构简单,但是带负载能力差,输出功率小,一般只。

DC-DC电路设计技巧及器件选型原则

DC-DC电路设计技巧及器件选型原则

1.概念:DC-DC指直流转直流电源(Direct Current)。

是一种在直流电路中将一个电压值的电能变为另一个电压值得电能的装置。

如,通过一个转换器能将一个直流电压(5.0V)转换成其他的直流电压(1.5V或12.0V),我们称这个转换器为DC-DC转换器,或称之为开关电源或开关调整器。

DC-DC转换器一般由控制芯片,电感线圈,二极管,三极管,电容器构成。

在讨论DC-DC转换器的性能时,如果单针对控制芯片,是不能判断其优劣的。

其外围电路的元器件特性,和基板的布线方式等,能改变电源电路的性能,因此,应进行综合判断。

DC-DC转换器的使用有利于简化电源电路设计,缩短研制周期,实现最佳指标等,被广泛用于电力电子、军工、科研、工控设备、通讯设备、仪器仪表、交换设备、接入设备、移动通讯、路由器等通信领域和工业控制、汽车电子、航空航天等领域。

具有可靠性高、系统升级容易等特点,电源模块的应用越来越广泛。

此外,DC-DC转换器还广泛应用于手机、MP3、数码相机、便携式媒体播放器等产品中。

在电路类型分类上属于斩波电路。

2.特点:其主要特点是效率高:与线性稳压器的LDO相比较,效率高是DCDC的显著优势。

通常效率在70%以上,重载下高的可达到95%以上。

其次是适应电压范围宽。

A: 调制方式1: PFM(脉冲频率调制方式)开关脉冲宽度一定,通过改变脉冲输出的频率,使输出电压达到稳定。

PFM控制型即使长时间使用,尤其小负载时具有耗电小的优点。

2: PWM(脉冲宽度调制方式)开关脉冲的频率一定,通过改变脉冲输出宽度,使输出电压达到稳定。

PWM控制型效率高并具有良好的输出电压纹波和噪声。

B: 通常情况下,采用PFM和PWM这两种不同调制方式的DC-DC转换器的性能不同点如下。

PWM的频率,PFM的占空比的选择方法。

PWM/PFM转换型小负载时实行PFM控制,且在重负载时自动转换到PWM控制。

02.架构分类1)常见的三种原理架构:A、 Buck(降压型DC/DC转换器)图1 B、Boost(升压型DC/DC转换器)图2 C、Buck-Boost(升降压型DC/DC转换器)图3 2)Buck电路工作原理详解图4伏秒平衡原则:处于稳定状态的电感,电感两端的正伏秒积等于负伏秒积,即:电感两端的伏秒积在一个开关周期内必须平衡。

dcdc方案

dcdc方案

DC-DC方案1. 简介DC-DC(Direct Current to Direct Current)方案是一种将电流从直流转换为直流的电力转换技术。

它在许多领域中被广泛应用,包括电子设备、通信系统、汽车电子和太阳能电池等。

DC-DC方案通过改变输入电压的水平、电流的波形和电流的输出模式来满足所需的电力转换需求。

2. 工作原理DC-DC方案基于两个关键的电力转换原理:升压和降压。

2.1 升压升压是指将较低电压的直流电源转换为较高电压的过程。

这种转换是通过使用电感和电容等器件来实现的。

DC-DC升压方案的关键组件是升压变换器,它包括开关元件(如MOSFET或BJT)、电感和电容。

升压的基本过程如下:1.当开关元件闭合时,电感器上的电流增加,储存了能量。

2.当开关元件打开时,电感器上的电流减小,能量被释放。

3.通过选择合适的电感和电容数值,可以将输入电压高效地升压到所需的输出电压。

2.2 降压降压是指将较高电压的直流电源转换为较低电压的过程。

与升压类似,降压也是通过使用电感和电容等器件来实现的。

DC-DC降压方案的关键组件也是降压变换器,它包括开关元件、电感和电容。

降压的基本过程如下:1.当开关元件闭合时,电感器上的电流增加,储存了能量。

2.当开关元件打开时,电感器上的电流减小,能量被释放。

3.通过选择合适的电感和电容数值,可以将输入电压高效地降压到所需的输出电压。

3. DC-DC方案的优势DC-DC方案相比其他电力转换技术具有以下优势:•高效性:DC-DC方案可以实现高效能量转换,减少能量损耗。

•稳定性:DC-DC方案可以提供稳定的输出电压和电流,适用于对电力供应要求较高的应用。

•可调性:DC-DC方案可以通过调整输入和输出参数来满足不同应用的需求。

•小型化:DC-DC方案可以通过优化设计和集成化来实现小型化,适用于空间受限的应用。

4. DC-DC方案的应用DC-DC方案广泛应用于各种领域,包括但不限于以下几个方面:4.1 电子设备DC-DC方案在电子设备中被广泛应用,用于将电池供电的低电压转换为各种类型的电子设备所需的工作电压。

DC电源模块解决方案

DC电源模块解决方案

DC/DC电源模块解决方案电源作为电子产品的动力中枢,其续航能力直接决定着电子产品的使用寿命。

随着集成电路制造工艺的不断进步,数字电路的电源电压一直下降,但系统的供电电源还是在较高的电位,因此必须靠降压型电源来提供较低的供电电源。

开关电源技术问世以前,线性电源作为各类电子产品的关键电源,可以实现直流高电压向直流低电压的单向变换,适用于低压差的电压转换和低负载电流的应用。

要提升电子产品的性能,节约能源,关键是要解决电源的性能问题。

目录1.DC/DC电源模块的介绍2.隔离DC/DC电源模块的设计方案3.DC/DC电源模块的电压转换原理1.DC/DC电源模块的介绍DC/DC电源模块又称为DC/DC转换电路,其关键功能就是进行输入输出电压转换。

一般我们把输入电源电压在72V以内的电压变换进程称为DC/DC转换。

多见的电源关键分为车载与通讯系列和通用工业与消费系列,前者的使用的电压一般为48V、36V、24V等,后者使用的电源电压一般在24V以下。

不同应用领域规律不同,如PC中常用的是12V、5V、3.3V,模拟电路电源常用5V 15V,数字电路常用3.3V 等,现在的FPGA、DSP还用2V以下的电压,诸如1.8V、1.5V、1.2V 等。

在通信系统中也称二次电源,它是由一次电源或直流电池组提供一个直流输入电压,经DC/DC变换以后在输出端获一个或几个直流电压。

2.隔离DC/DC电源模块的设计方案常用的隔离DC/DC转换关键分为三大类:1.反激式变换。

2.正激式变换。

3.桥式变换常用的单端反激式DC/DC变换电路,这类隔离的控制芯片型号也不少。

控制芯片典型代表是常用的UC3842系列。

这种是高性能固定频率电流的控制器,关键用于隔离AC/DC、DC/DC转换电路。

主电路选用单端反激式拓扑,它是升降压斩波电路演变后加隔离变压器组成的,该电路具有结构简单,效率高,输入电压范围宽等长处。

控制电路是整个开关电源的主要,控制的好坏直接决定了电源整体性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

搞定DC/DC电源转换方案设计,必看金律十一条来源:EEChina 作者:songzhige[导读]搞嵌入式的工程师们往往把单片机、ARM、DSP、FPGA搞的得心应手,而一旦进行系统设计,到了给电源系统供电,虽然也能让其精心设计的程序运行起来,但对于新手来说,有时可能效率低下,往往还有供电电流不足或过大引起这样那样的问题,本文十大金律轻松搞定DCDC电源转换电路设计。

关键词:DC/DC搞嵌入式的工程师们往往把单片机、ARM、DSP、FPGA搞的得心应手,而一旦进行系统设计,到了给电源系统供电,虽然也能让其精心设计的程序运行起来,但对于新手来说,有时可能效率低下,往往还有供电电流不足或过大引起这样那样的问题,本文十大金律轻松搞定DCDC电源转换电路设计。

第一条、搞懂DC/DC电源怎么回事DC/DC电源电路又称为DC/DC转换电路,其主要功能就是进行输入输出电压转换。

一般我们把输入电源电压在72V以内的电压变换过程称为DC/DC转换。

常见的电源主要分为车载与通讯系列和通用工业与消费系列,前者的使用的电压一般为48V、36V、24V 等,后者使用的电源电压一般在24V以下。

不同应用领域规律不同,如PC中常用的是12V、5V、3.3V,模拟电路电源常用5V 15V,数字电路常用3.3V等,现在的FPGA、DSP 还用2V以下的电压,诸如1.8V、1.5V、1.2V等。

在通信系统中也称二次电源,它是由一次电源或直流电池组提供一个直流输入电压,经DC/DC变换以后在输出端获一个或几个直流电压。

第二条、需要知道的DC/DC转换电路分类DC/DC转换电路主要分为以下三大类:①稳压管稳压电路。

②线性(模拟)稳压电路。

③开关型稳压电路第三条、最简单的稳压管电路设计方案稳压管稳压电路电路结构简单,但是带负载能力差,输出功率小,一般只为芯片提供基准电压,不做电源使用。

比较常用的是并联型稳压电路,其电路简图如图(1)所示,选择稳压管时一般可按下述式子估算:(1) Uz=Vout; (2)Izmax=(1.5-3)ILmax (3)Vin=(2-3)Vout 这种电路结构简单,可以抑制输入电压的扰动,但由于受到稳压管最大工作电流限制,同时输出电压又不能任意调节,因此该电路适应于输出电压不需调节,负载电流小,要求不高的场合,该电路常用作对供电电压要求不高的芯片供电。

第四条、基准电压源芯片稳压电路稳压电路的另一种形式,有些芯片对供电电压要求比较高,例如AD DA芯片的基准电压等,这时常用的一些电压基准芯片如TL431、 MC1403 ,REF02等。

TL431是最常用基准源芯片,有良好的热稳定性能的三端可调分流基准电压源。

它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值。

最常用的电路应用如下图示,此时Vo=(1+R1/R2)Vref。

选择不同的R1和R2的值可以得到从2.5V到36V范围内的任意电压输出,特别地,当R1=R2时,Vo=5V。

其他的几个基准电压源芯片电路类似。

第五条、串联型稳压电源的电路认识串联型稳压电路属直流稳压电源中的一种,其实是在三端稳压器出现之前比较常用的直流供电方法,在三端稳压器出现之前,串联稳压器通常有OP放大器和稳压二极管构成误差检测电路,如下图,该电路中,OP放大器的反向输入端子与输出电压的检测信号相连,正向输入端子与基准电压Vref相连,Vs=Vout*R2/(R1+R2)。

由于放大信号ΔVs为负值,控制晶体管的基级电压下降,因此输出电压减小在正常情况下,必有Vref=Vs=Vout*R2/(R1+R2),调整R1,R2之比可设定所需要的输出电压值。

图中所示只是这也是三端稳压器的基本原理,其实负载大小可以可以把三极管换成达林顿管等等,这种串联型稳压电路做组成的直流稳压电源处理不当,极易产生振荡。

现在没有一定模拟功底的工程师,一般现在不用这种方法,而是直接采用集成的三端稳压电路,进行DC/DC转换电路的使用。

第六条、线性(模拟)集成稳压电路常用设计方案线性稳压电路设计方案主要以三端集成稳压器为主。

三端稳压器,主要有两种:一种输出电压是固定的,称为固定输出三端稳压器,三端稳压器的通用产品有78系列(正电源)和79系列(负电源),输出电压由具体型号中的后面两个数字代表,有5V,6V,8V,9V,12V,15V,18V,24V等档次。

输出电流以78(或79)后面加字母来区分。

L表示0.1A,M表示 0.5A,无字母表示1.5A,如78L05表求5V 0.1A。

另一种输出电压是可调的线性稳压电路,称为可调输出三端稳压器,这类芯片代表是是LM317(正输出)和LM337(负输出)系列。

其最大输入输出极限差值在40V,输出电压为1.2V-35V(-1.2V--35V)连续可调,输出电流为0.5-1.5A,输出端与调整端之间电压在1.25V,调整端静态电流为50uA。

其基本原理相同,均采用串联型稳压电路。

在线性集成稳压器中,由于三端稳压器只有三个引出端子,具有外接元件少,使用方便,性能稳定,价格低廉等优点,因而得到广泛应用。

第七条、DCDC转换开关型稳压电路设计方案上面所述的几种DCDC转换电路都属于串联反馈式稳压电路,在此种工作模式中集成稳压器中调整管工作在线性放大状态,因此当负载电流大时,损耗比较大,即转换效率不高。

因此使用集成稳压器的电源电路功率都不会很大,一般只有2-3W,这种设计方案仅适合于小功率电源电路。

采用开关电源芯片设计的DCDC转换电路转化效率高,适用于较大功率电源电路。

目前得到了广泛的应用,常用的分为非隔离式的开关电源与隔离式的开关电源电路。

DCDC转换开关型稳压电路设计方案,采用开关电源芯片设计的DCDC转换电路转化效率高,适用于较大功率电源电路。

目前得到了广泛的应用,常用的分为非隔离式的开关电源与隔离式的开关电源电路。

当然开关电源基本的拓扑包括降压型、升压型、升降压型及反激、正激、桥式变化等等。

非隔离式DCDC开关转换电路设计方案。

隔离式DCDC开关转换电路设计方案。

第八条、非隔离式DCDC开关转换集成电路芯片电路设计方案DCDC开关转换集成电路芯片,这类芯片的使用方法与第六条中的LM317非常相似,这里用L4960举例说明,一般是先使用50Hz电源变压器进行AC-AC变换,将~220V降至开关电源集成转换芯片输入电压范围比如1.2~34V,由L4960进行DC-DC变换,这时输出电压的变化范围下可调至5V,上调至40V,最大输出电流可达2.5A(还可以接大功率开关管进行扩流),并且内设完善的保护功能,如过流保护、过热保护等。

尽管L4960的使用方法与LM317差不多,但开关电源的L4960与线性电源的LM317相比,效率不可同曰而语,L4960最大可输出100W的功率(Pmax=40V*2.5A=100W),但本身最多只消耗7W,所以散热器很小,制作容易。

与L4960类似的还有L296,其基本参数与L4960 相同,只是最大输出电流可高达4A,且具有更多的保护功能,封装形式也不一样。

这样的芯片比较多,比如,LM2576系列,TPS54350,LTC3770等等。

一般在使用这些芯片时,厂家都会详细的使用说明和典型电路供参考。

第九条、隔离的DCDC开关电源模块电路设计方案常用的隔离DC/DC转换主要分为三大类:1.反激式变换。

2.正激式变换。

3.桥式变换常用的单端反激式DC/DC变换电路,这类隔离的控制芯片型号也不少。

控制芯片典型代表是常用的UC3842系列。

这种是高性能固定频率电流的控制器,主要用于隔离AC/DC、DC/DC转换电路。

其主要应用原理是:电路由主电路、控制电路、启动电路和反馈电路4 部分组成。

主电路采用单端反激式拓扑,它是升降压斩波电路演变后加隔离变压器构成的,该电路具有结构简单,效率高,输入电压范围宽等优点。

控制电路是整个开关电源的核心,控制的好坏直接决定了电源整体性能。

这个电路采用峰值电流型双环控制,即在电压闭环控制系统中加入峰值电流反馈控制。

这类方案选择合适的变压器及MOS管可以把功率做的很大,与前面几种设计方案相比电路结构复杂,元器件参数确定比较困难,开发成本较高,因此需要此方案时可以优先选择市面上比较廉价的DC/DC隔离模块。

第十条、 DCDC开关集成电源模块方案很多微处理器和数字信号处理器(DSP)都需要内核电源和一个输入/输出(I/O)电源,这些电源在启动时必须排序。

设计师们必须考虑在加电和断电操作时内核和I/O 电压源的相对电压和时序,以符合制造商规定的性能规格。

如果没有正确的电源排序,就可能出现闭锁或过高的电流消耗,这可能导致微处理器I /O端口或存储器、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)或数据转换器等支持器件的I/O端口损坏。

为了确保内核电压正确偏置之前不驱动I/O负载,内核电源和I/O电源跟踪是必需的。

现在有专门的电源模块公司量身定做一些专用的开关电源模块,主要是那些对除去常规电性能指标以外,对其体积小,功率密度高,转换效率高,发热少,平均无故障工作时间长,可靠性好,更低成本更高性能的DC/DC电源模块。

这些模块结合了实现即插即用(plug-and-play)解决方案所需的大部分或全部组件,可以取代多达40个不同的组件。

这样就简化了集成并加速了设计,同时可减少电源管理部分的占板空间。

最传统和最常见的非隔离式DC/DC电源模块仍是单列直插(SiP)封装。

这些开放框架的解决方案的确在减少设计复杂性方面取得了进展。

然而,最简单的是在印刷电路板上使用标准封装的组件。

第十一条、DCDC电源转换方案的选择注意事项本条金律也是本文的总结,很重要。

本文这里主要大致介绍了DCDC电源转换的稳压管稳压、线性(模拟)稳压、DCDC开关型稳压三种电路模式的几种常用的设计方法方案。

①需要注意的是稳压管稳压电路不能做电源使用,只能用于没有功率要求的芯片供电;②线性稳压电路电路结构简单,但由于转化效率低,因此只能用于小功率稳压电源中;③开关型稳压电路转化效率高,可以应用在大功率场合,但其局限性在电路结构相对复杂(尤其是大功率电路),不利于小型化。

因此在设计过程中,可根据实际需要选择合适的设计方案。

相关文档
最新文档