三角函数的图像与性质ppt
合集下载
高中数学三角函数的图像与性质优秀课件
1
2 3
2
2
1 2
3 2
2
y cos x,x R
3 2
2
正、余弦函数的性质
y
2
sin
1 2
x
4
④周期性:形如y Asin x 或y Aco1sx 的
函数的周期T 2 .
2 1
3 2 5 3 7 4
2
2
2
2
y sin 2x 1
1
2 3 2
2 1
2
3 2
例1:已知函数y
Asin x A
0,
0,
2
,x
R
的部分图像,求函数解析式.
解:由图知A 2.
又 T 3 1 2,故T 8, 即 2 8, .
4
4
令 1 = 得= .
4
2
4
综上得,y
2sin
4
x
4
.
例2:函数f
x
Asin
x
0,
2
,x
R
的部分图像如图,则函数表达式为(
x
0
4
3
2
4
2x
0
3
2
2
2
y sin 2x
0
1
0
1
0
五点:0,0, 4 ,1, 2 ,0,
3
4
,1,,0.
1
3 2
2 1 2
2
五点作图法
例1:用“五点法”作y
2sin
1 2
x
4
,x
2
,7 2
的图像.
x
3
5
7
2
2
三角函数的图象与性质 (共44张PPT)
(
)
3 3 A.-2,2 3 3 3 3 C. - , 2 2
解析: 当 故
π π 1 π π 5π x∈0,2 时, 2x- ∈- 6, 6 , sin2x-6 ∈-2,1, 6
上是减函数 - π , 0 C.在[0,π]上是增函数,在
)
π π π π D.在2,π和-π,-2上是增函数,在-2,2 上是减函数
3.(2015· 皖南八校模拟)函数 f(x)=cos 2x+2sin x 的最大值与最小值 的和是 A.-2 3 C.- 2
4.求函数 y=cos x+sin
2
π x|x|≤4 的最大值与最小值.
π 2 2 解:令 t=sin x,∵|x|≤ ,∴t∈- , . 4 2 2
∴y=-t
2
1 2 5 +t+1=-t-2 + , 4
1- 2 1 5 2 ∴当 t= 时,ymax= ,当 t=- 时,ymin= . 2 4 2 2 ∴函数 y=cos x+sin
sin 2x>0, 解析:由 2 9-x ≥0,
π kπ<x<kπ+ ,k∈Z, 2 得 -3≤x≤3.
π π ∴-3≤x<- 或 0<x< . 2 2 ∴函数 y=lg(sin 2x)+ 9-x
2
π π 的定义域为-3,2 ∪0,2 .
2
π 1- 5 x通法]
1.三角函数定义域的求法 求三角函数定义域实际上是构造简单的三角不等式(组),常借 助三角函数线或三角函数图象来求解.
2.三角函数值域的不同求法 (1)利用 sin x 和 cos x 的值域直接求;
三角函数认识ppt课件
辅助角公式
总结词
用于将三角函数式化为单一三角函数的形式。
详细描述
辅助角公式是三角函数中常用的化简工具,它可以将复杂的三角函数式化为单一三角函数的形式,便于计算和理 解。具体公式如下:sin(x+y)=sinxcosy+cosxsiny,cos(x+y)=cosxcosy-sinxsiny, tan(x+y)=(tanx+tany)/(1-tanxtany)。
三角函数认识ppt课件
目录
• 三角函数的定义 • 三角函数的图像与性质 • 三角函数的应用 • 三角函数的变换公式 • 三角函数的特殊值
01
三角函数的定义
角度与弧度的关系
角度制
以度(°)为单位,规定一周为 360度,每度分为60分,每分为 60秒。
弧度制
以弧度(rad)为单位,规定圆的 周长为2π弧度。角度与弧度的转 换公式为:1° = π/180 rad。
三角函数的基本恒等式
正弦、余弦、正切之间的基本恒等式。
利用这些恒等式,可以方便地进行三角函数的转换和化简,对于解决三角函数问 题非常有用。
THANK YOU
积的和差公式
总结词
用于计算两个角的三角函数值的乘积之和或之差。
详细描述
积的和差公式也是三角函数中常用的公式之一,它可以计算两个角的三角函数值 的乘积之和或之差。具体公式如下:sin(x-y)=sinxcosy-cosxsiny,cos(xy)=cosxcosy+sinxsiny,tan(x-y)=(tanx-tany)/(1+tanxtany)。
详细描述
和差角公式是三角函数中非常重要的公式之一,它可以将两个角的三角函数值 相加或相减,得到新的三角函数值。具体公式如下: sin(x+y)=sinxcosy+cosxsiny,cos(x+y)=cosxcosy-sinxsiny, tan(x+y)=(tanx+tany)/(1-tanxtany)。
高中数学课件三角函数ppt课件完整版
归纳法等方法推导出诱导公式。
03
诱导公式的应用
在解三角函数的方程、求三角函数的值、证明三角恒等式等方面有广泛
应用。例如,利用诱导公式可以简化计算过程,提高解题效率。
恒等式及其证明方法
恒等式的基本形式
两个解析式之间的一种等价关系,即对于某个变量或一组变量的取值范围内,无论这些变量 取何值,等式都成立。
拓展延伸:反三角函数简介
01
02
03
04
反三角函数的定义
反正弦、反余弦、反正切等反 三角函数的定义及性质。
反三角函数的图像
反正弦、反余弦、反正切函数 的图像及其与对应三角函数的
关系。
反三角函数的应用
在几何、物理等领域中的应用, 如角度计算、长度测量等。
反三角函数的计算
利用计算器或数学软件进行计 算,求解三角方程等问题。
高中数学课件三角函 数ppt课件完整版
REPORTING
目录
• 三角函数基本概念与性质 • 三角函数诱导公式与恒等式 • 三角函数的加减乘除运算 • 三角函数在解三角形中的应用 • 三角函数在数列和概率统计中的应用 • 总结回顾与拓展延伸
PART 01
三角函数基本概念与性质
REPORTING
三角函数的定义及性质
PART 05
三角函数在数列和概率统 计中的应用
REPORTING
三角函数在数列求和中的应用
利用三角函数的周期 性,将数列求和转化 为定积分计算
结合三角函数的图像 和性质,分析数列的 收敛性和求和结果
通过三角函数的和差 化积公式,简化数列 求和过程
三角函数在概率统计中的应用
利用三角函数表示周期性随机 变量的概率密度函数
原创三角函数的概念图像及性质.ppt
① asin□与bcos□之间是“+”连接
② a,b分别是sin□与cos□的系数 注3.辅助角φ的确定方法:
(a,b)
方法甚多凭爱好 坐标定义是基础
φ
数形结合两限制 注释说明一般角
O
X
(2) a sin □ bcos□ a2 b2 cos(□ )
(其中 tan a,Φ与点(b,a)同象限)
cos A b2 c2 a2 2bc
cos B a2 c2 b2 2ac
cos C a2 b2 c2 2ab
三角式运算公式总述
1.公式:
①同角关系 ②异角关系
2.作用:
一角二名三结构……
世上本无路三角走运的算人公多式了关便联有图了路
半角
作用
商数 平方 关系 关系
倒数
关系
同角
基本
1、同角基本关系式
(1)公式:
①平方关系 sin 2 cos2 1
②商数关系 sin tan cos③倒数关系 tan Fra bibliotekot 1 sinx
注:记忆图
①平方关系:阴影三角形…
tanx
②商数关系:边上左右邻居…
③倒数关系:对角线……
secx
cosx
1
cotx
cscx
1、同角基本关系式
(1).公式:……
(2).作用: 变名变结构
注:经典题型:同角两弦的和差商积可互化.即“知一有n”
桥梁: (sin x cos x)2 1 2sin x cos x 1 sin 2x
sin x n1 sin x cos x n3 sin x cos x n5 sin 2 x cos2 x n7
五点做图象 “代
三角函数的图像和性质课件
(1)y=sin 2x-π4; (2)y=sin π4-2x.
2.周期性是函数的整体性质,要求对于函数整个定义 域范围内的每一个x值都满足f(x+T)=f(x),其中T是 不为零的常数.如果只有个别的x值满足f(x+T)= f(x),或找到哪怕只有一个x值不满足f(x+T)=f(x), 都不能说T是函数f(x)的周期.
(k∈Z),
∴π3+2kπ≤x<56π+2kπ(k∈Z). 故所求函数的定义域为π3+2kπ,56π+2kπ(k∈Z). [答案] π3+2kπ,56π+2kπ(k∈Z)
[例2] (2010·江西高考)函数y=sin2x+sin x-1的值域为( )
A.[-1,1]
B.[-54,-1]
C.[-54,1]
在 [(2k-1)π,2kπ] 上递增,k∈Z;在 [2kπ,(2k+1)π]
上递减,k∈Z
在
(-π2+kπ, π2+kπ)
上递增,
k∈Z
上递减,k∈Z
函数
y=sinx
y=cosx
y=tanx
最值
x= π2+2kπ 时 时, ymax=1(k∈Z); x=-π2+2kπ 时时, ymin=-1(k∈Z)
无
周期性
2π
2π
π
1.函数y=tan π4-x的定义域是 A.x|x≠π4,x∈R B.x|x≠-π4,x∈R C.x|x≠kπ+π4,k∈Z,x∈R D.x|x≠kπ+34π,k∈Z,x∈R
()
解析:∵x-π4≠kπ+π2,∴x≠kπ+34π,k∈Z.
答案: D
2.函数f(x)=2cos x+52π是
()
A.最小正周期为2π的奇函数
B.最小正周期为2π的偶函数
2.周期性是函数的整体性质,要求对于函数整个定义 域范围内的每一个x值都满足f(x+T)=f(x),其中T是 不为零的常数.如果只有个别的x值满足f(x+T)= f(x),或找到哪怕只有一个x值不满足f(x+T)=f(x), 都不能说T是函数f(x)的周期.
(k∈Z),
∴π3+2kπ≤x<56π+2kπ(k∈Z). 故所求函数的定义域为π3+2kπ,56π+2kπ(k∈Z). [答案] π3+2kπ,56π+2kπ(k∈Z)
[例2] (2010·江西高考)函数y=sin2x+sin x-1的值域为( )
A.[-1,1]
B.[-54,-1]
C.[-54,1]
在 [(2k-1)π,2kπ] 上递增,k∈Z;在 [2kπ,(2k+1)π]
上递减,k∈Z
在
(-π2+kπ, π2+kπ)
上递增,
k∈Z
上递减,k∈Z
函数
y=sinx
y=cosx
y=tanx
最值
x= π2+2kπ 时 时, ymax=1(k∈Z); x=-π2+2kπ 时时, ymin=-1(k∈Z)
无
周期性
2π
2π
π
1.函数y=tan π4-x的定义域是 A.x|x≠π4,x∈R B.x|x≠-π4,x∈R C.x|x≠kπ+π4,k∈Z,x∈R D.x|x≠kπ+34π,k∈Z,x∈R
()
解析:∵x-π4≠kπ+π2,∴x≠kπ+34π,k∈Z.
答案: D
2.函数f(x)=2cos x+52π是
()
A.最小正周期为2π的奇函数
B.最小正周期为2π的偶函数
三角函数的图像与性质课件
1
0 -1
y
y=-cosx x [0,2 ]
1
●
o
●
3●
2
x
2
2
-1 ●
●
思考:
1、函数y=1+sinx的图象与函数y=sinx的图象有什么关系? 2、函数y=-cosx的图象与函数y=cosx的图象有什么关系?
y 2
1
o
2
-1
y
1
o
2
-1
y=1+sinx x[0, 2 ]
3
2
x
2
y=sinx x[0, 2 ]
解:(1)函数的定义域为 R,
且
f(x)
=
cos(
π 2
+
2x)
=
-
sin
2x.∵f( -x) =-
sin(-2x)=sin 2x=-f(x),∴函数 f(x)=cos(2x
+52π)是奇函数.(2)函数的定义域为 R,
且 f(-x)=sin[cos(-x)]=sin(cos x)=f(x),
∴函数 f(x)=sin(cos x)是偶函数.
【名师点评】 判断函数奇偶性时,必须先检查定义 域是否是关于原点的对称区间.如果是,再验证f(-x) 是否等于-f(x)或f(x),进而判断函数的奇偶性;如果 不是,则该函数必为非奇非偶函数.
跟踪训练
3.判断下列函数的奇偶性.
(1)f(x)=cos(2x+52π);
(2)f(x)=sin(cos x).
(2)y= - cosx, x [0, 2 ]
解:(1)按五个关键点列表
x
0
2
3
2
2
sinx 0 1 0 -1 0
高考数学:专题二 第一讲 三角函数的图像和性质课件
题型与方法
变式训练 1 已知点
Psin
第一讲
3π 3π 落在角 θ 的终边上,且 ,cos 4 4 ( D ) 5π C. 4 7π D. 4
θ∈[0,2π),则 θ 的值为 π 3π A. B. 4 4 本
讲 3π π 2 栏 目 解析 ∵sin 4 =sin 4= 2 , 开 2 3π π 2 关
答案 A
考点与考题
第一讲
3.(2012· 浙江)把函数 y=cos 2x+1 的图象上所有点的横坐标伸 长到原来的 2 倍(纵坐标不变), 然后向左平移 1 个单位长度, 再向下平移 1 个单位长度,得到的图象是
本 讲 栏 目 开 关
(
)
考点与考题
第一讲
本 讲 栏 目 开 关
解析 利用三角函数的图象与变换求解. 横坐标伸长2倍 y=cos 2x+1―――――――→ 纵坐标不变 向左平移1个单位长度 y=cos x+1――――――――――→ 向下平移1个单位长度 y=cos(x+1)+1――――――――――→
∴ω=6n(n∈N*),
∴当 n=1 时,ω 取得最小值 6.
考点与考题
第一讲
2.(2011· 天津)已知函数 f(x)=2sin(ωx+φ),x∈R,其中 ω>0, π -π<φ≤π.若 f(x)的最小正周期为 6π,且当 x= 时,f(x)取 2
本 讲 栏 目 开 关
得最大值,则 A.f(x)在区间[-2π,0]上是增函数 B.f(x)在区间[-3π,-π]上是增函数 C.f(x)在区间[3π,5π]上是减函数 D.f(x)在区间[4π,6π]上是减函数
2π 由点 M 3 ,-2在函数 f(x)的图象上得, 2π 4π 2× +φ=-2,即 sin +φ=-1. 2sin 3 3
三角函数的图像和性质PPT课件
三角函数的图像和性质
2021/6/7
1
一、三角函数图像的作法 二、三角函数图像的性质 三、f(x)= Asin(x+) 的性质
几何法 五点法 图像变换法
2021/6/7
2
一、三角函数图象的作法
1.几何法 y=sinx 作图步骤:
y
(1)等分单位圆作出特殊角的三角函数线;
(2)平移三角函数线; (3)用光滑的曲线连结各点.
得 到 y = s i n ( ω x + ) 在 某 周 期 内 的 简 图
步骤4
各点纵的坐纵标坐标变为伸原长来或的缩A倍短(横坐标不变);
得 到 y = A s i n ( ω x + ) 在 某 周 期 内 的 简 图
沿x轴
扩展
步骤5
得 到 y = A s i n ( ω x + ) 在 R 上 的 图 象
3
x
11
返回目录
二、三角函数图象的性质
函数 y sin x
ycosx
y tanx
图象
y 1
0
1
2 x
y
1
0
1
2
x
y
2
3 2
2
0
3 2
x
单调性
[2k, 32k](kz)
2
2
递减
[ 2 k, 2 2 k](k 递z)增
[2k, 2k](kz) 递增 [2 k,2 k](k z)
22
递减
纵向伸长3倍
y=3sinx
左移 π 3π
y=3横si向n(缩x+短31) y=3sin(2x+ 2π) 方法2: y=sinx 3
2021/6/7
1
一、三角函数图像的作法 二、三角函数图像的性质 三、f(x)= Asin(x+) 的性质
几何法 五点法 图像变换法
2021/6/7
2
一、三角函数图象的作法
1.几何法 y=sinx 作图步骤:
y
(1)等分单位圆作出特殊角的三角函数线;
(2)平移三角函数线; (3)用光滑的曲线连结各点.
得 到 y = s i n ( ω x + ) 在 某 周 期 内 的 简 图
步骤4
各点纵的坐纵标坐标变为伸原长来或的缩A倍短(横坐标不变);
得 到 y = A s i n ( ω x + ) 在 某 周 期 内 的 简 图
沿x轴
扩展
步骤5
得 到 y = A s i n ( ω x + ) 在 R 上 的 图 象
3
x
11
返回目录
二、三角函数图象的性质
函数 y sin x
ycosx
y tanx
图象
y 1
0
1
2 x
y
1
0
1
2
x
y
2
3 2
2
0
3 2
x
单调性
[2k, 32k](kz)
2
2
递减
[ 2 k, 2 2 k](k 递z)增
[2k, 2k](kz) 递增 [2 k,2 k](k z)
22
递减
纵向伸长3倍
y=3sinx
左移 π 3π
y=3横si向n(缩x+短31) y=3sin(2x+ 2π) 方法2: y=sinx 3
三角函数图像与性质(课堂PPT)
D.2sin
2x-π 3
+1
2、将函数 f(x)=sin(ωx+φ)(ω>0,-π2≤φ<π2) 图象上每一点的横坐标缩短为原来的一半,
纵坐标不变,再向右平移π个单位长度可得 6
π
2
y=sin x 的图象,则 f 6 =________. 2
方法总结
在利用图象求三角函数 y=Asin(ωx+φ)的有关 参数时,注意从图中观察振幅、周期,即可求出 A、 ω,然后根据图象过某一特殊点来求 φ,若是利用零 点值来求,则要注意是 ωx+φ=kπ(k∈Z),根据点在 单调区间上的关系来确定一个 k 的值,此时要利用数 形结合,否则易步入命题人所设置的陷阱.
三角函数的图像与性质
高考预测
1.高考对三角函数图象的考查主要包括三个方 面:一是用五点法作图,二是图象变换,三是已 知图象求解析式或求解析式中的参数的值,以选 择题或填空题的形式考查.
2.高考对三角函数性质的考查是重点,以解答 题为主,考查y=Asin(ωx+φ)的周期性、单调性 、对称性以及最值等,常与平面向量、三角形结 合进行综合考查,试题难度属中低档.
由 2kπ-π≤2x+π≤2kπ+π,k∈Z,
26
2
得 kπ-π≤x≤kπ+π,k∈Z.
3
6
所以 f(x)的单调递增区间为 kπ-π3,kπ+π6 ,k∈Z.
(2)因为
x∈
0,π 2
,所以
2x+π6∈
π,7π 66
,
则-12≤sin
2x+π 6
≤1.
所以 f(x)在 0,π2 上的取值范围是 -12,1 .
63
[探究 2] 若函数 f(x)的图象向左平移 θ(θ>0)个单
高三数学第二轮复习三角函数的图像与性质课件ppt.ppt
则同时具有以下两个性质的函数是( A ) ①最小正周期是π ②图象关于点(π/6,0)对称.
2.已知f(x)=sin(x+π/2),g(x)=cos(x-π/2),则下列结论
中正确的是( D) (A)函数y=f(x)·g(x)的周期为2π (B)函数y=f(x)·g(x)的最大值为1 (C)将f(x)的图象向左平移π/2单位后得g(x)的图象 (D)将f(x)的图象向右平移π/2单位后得g(x)的图象
直于 x 轴的直线, 对称中心为图象与 x 轴的交点).
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
[2k5.单+ 2调, 性2k:+y=3s2in]x(k在[Z2)k上-单2调, 2递k减+2;
](kZ)上单调递增, 在
6
是 (k ,k ],k z 使 g(x) 0 且递减的区间是
12
6
(k ,k 5 ],k z ,
6
12
∴当 0 a 1时,函数 f (x) 的递增的区间是
(k ,k 5 ],k z ,
6
12
当 a 1时,函数 f (x) 的递增的区间是 (k ,k ],k z .
且f (0) 3 , f ( ) 1 .
2 42
(1)求 f (x) 的最小正周期; (2)求 f (x) 的单调递减区间; (3)函数 f (x) 的图象经过怎样的平移才能 使所得图象对应的函数成为奇函数?
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
7.3三角函数的图像和性质课件高中数学苏教版必修第一册
当且仅当x=+2kπ(k∈Z)时,取 当且仅当x=2kπ(k∈Z)时,取得最
最值
得最大值1;当且仅当x=-+2kπ 大值1;当且仅当x=2kπ+π(k∈Z)
(k∈Z)时,取得最小值-1
时,取得最小值-1
奇偶性 奇函数
偶函数
对称轴 x=kπ+,k∈Z
x=kπ,k∈Z
对称
中心
(kπ,0),k∈Z
,k∈Z
3
π
π
kπ- ≤x≤kπ+ (k∈Z).
6
3
π
π
所以原函数的减区间是[kπ-6,kπ+3](k∈Z).
π
π
(2)y=2sin 4 - =-2sin - 4 .
π
令 z=x- ,则 y=-2sin z,求 y=-2sin z 的减区间,即求 2sin z 的增区间.
4
π
π
所以- +2kπ≤z≤ +2kπ,k∈Z,
(k∈Z)上都是增函数,其值由-1 (k∈Z)上都是增函数,其值由-1
单调性 增大到1;在每一个闭区间
增大到1;在每一个闭区间
[2kπ+,2kπ+] (k∈Z)上都是减函 [2kπ,2kπ+π] (k∈Z) 上都是减函
数,其值由1减小到-1
数,其值由1减小到-1
函数
正弦函数y=sin x
余弦函数 y=cos x
反思感悟与三角函数有关的函数的值域(或最值)的求解思路
1.求形如y=asin x+b的函数的最值或值域时,可利用正弦函数的有界性
(-1≤sin x≤1)求解.
2.对于形如y=Asin(ωx+φ)+k(Aω≠0)的函数,当定义域为R时,值域为
三角函数的图像与性质课件PPT
正解:因为 x∈π6,π,所以借助函数 y=sin x 的图象可知, 此时 0≤sin x≤1.于是由 sin x=2m-1,得 0≤2m-1≤1,解得 m 的取值范围12≤m≤1.
纠错心得:三角函数的取值范围与定义域有关,因此,在求解 有关范围问题时,一定要先看清定义域,再由定义域推得三角函数 的取值范围,最后求出正确答案.
思路点拨:要使函数有意义,则 sin x>0 且 25-x2≥0,即 sin x>0 且-5<x<5,结合图象求出在区间(-5,5)上满足 sin x>0 的 x 的取值范围,即原函数的定义域.
解: 使函数有意义的条件是s2i5n-x>x2≥0,0, 记 sin x>0 的 x 取值为 集合 A,25-x2≥0 的 x 取值为集合 B,则 A=(2kπ,2kπ+π),k∈Z, B=[-5,5].用图象表示如下:
小结 为了突出函数的这个特性,我们把函数f(x)=sin x称为周 期函数,2kπ为这个函数的周期 (其中k∈Z且k≠0).
思考3 正弦函数y=sin x的周期是否唯一?正弦函数y=sin x 的周期有哪些? 答 正弦函数y=sin x的周期不止一个. ±2π,±4π,±6π,… 都 是 正 弦 函 数 的 周 期 , 事 实 上 , 任 何 一 个 常 数 2kπ(k∈Z 且 k≠0)都是它的周期.
探究点一 周期函数的定义
思考1 观察正弦函数图象知,正弦曲线每相隔2π个单位重复出现 其理论依据是什么? 答 诱导公式sin(x+2kπ)=sin x(k∈Z)当自变量x的值增加2π的整 数倍时,函数值重复出现.数学上,用周期性这个概念来定量地刻 画这种“周而复始”的变化规律.
思考2 设f(x)=sin x,则sin(x+2kπ)=sin x可以怎样表示?把函数 f(x)=sin x称为周期函数,那么,一般地,如何定义周期函数呢? 答 f(x+2kπ)=f(x)(k∈Z)这就是说:当自变量x的值增加到x+2kπ 时,函数值重复出现. 一般地,对于函数y=f(x),如果存在一个不为零的常数T,使得当x 取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y= f(x)叫做周期函数,不为零的常数T叫做这个函数的周期.
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
1
y sin x, x[0, 2
3
π
2
2π
O
x
2
-1
思考4:观察函数y=sinx在[0,2π]内的 图象,其形状、位置、凸向等有何变化 规律?
思考5:在函数y=sinx,x∈[0,2π]的 图象上,起关键作用的点有哪几个?
y 1
O
-1
2
3
π
2
2π x
思 考 6 : 当 x∈[2π , 4π], [-2π , 0],…时,y=sinx的图象如何?
-6π -4π -2π -5π -3π
y 1
-π
O
-1
π
3π 5π
2π 4π
6πx
思考7:函数y=sinx,x∈R的图象叫做正 弦曲线,正弦曲线的分布有什么特点?
-6π -4π -2π -5π -3π
y 1
-π
O
-1
π
3π 5π
2π 4π
6πx
思考8:你能画出函数y=|sinx|, x∈[0,2π]的图象吗?
3.正、余弦函数的图象不仅是进一步研 究函数性质的基础,也是解决有关三角 函数问题的工具,这是一种数形结合的 数学思想.
作业:P34练习:2 P46习题1.4 A组: 1
1.4.2 正弦函数、余弦函数的性质 第一课时
问题提出
t
p
1 2
5730
1.正弦函数和余弦函数的图象分别是什
么?二者有何相互联系?
思考3:设想由正弦函数的图象作出余弦 函数的图象,那么先要将余弦函数 y=cosx转化为正弦函数,你可以根据哪 个公式完成这个转化?
思考4:由诱导公式可知,y=cosx与
y
sin( 2
x) 是同一个函数,如何作函
数 y sin( 2 x)在[0,2π]内的图象?
y
1
y=sinx
2
O -1
2
π
2π x
2.正弦函数是奇函数,余弦函数是偶函 数 . 一 般 地 , y=Asinωx 是 奇 函 数 , y=Acosωx(Aω≠0)是偶函数.
3.正、余弦函数有无数个单调区间和无 数个最值点,简单复合函数的性质应转 化为基本函数处理.
作业:P40-41练习:1,2,3,5,6.
1.4.3 正切函数的图象与性质
作业:P36练习:1,2,3.
1.4.2 正弦函数、余弦函数的性质 第二课时
问题提出
1.周期函数是怎样定义的?
对 于 函 数 f(x) , 如 果 存 在 一 个 非 零常数T,使得当x取定义域内的每一 个值时,都有f(x +T)=f(x), 那么函 数f(x)就叫做周期函数,非零常数T就 叫做这个函数的周期.
思考4:类似地,余弦函数在哪些区间上
是增函数?在哪些区间上是减函数?
y y=cosx
2
2
1 22
2
2
x
2
O
2
2-1
2
2
2
余弦函数在每一个闭区间 [ 2k2k
上都是增函数;在每一个闭区间
[2k 2k 上都是减函数.
思考5:正弦函数在每一个开区间 (2kπ,+2kπ) (k∈Z)上都是增函
思考5:函数y=cosx,x∈[0,2π]的图 象如何?其中起关键作用的点有哪几个?
y 1
O
π
2π x
-1
2
2
思考6:函数y=cosx,x∈R的图象叫做余 弦曲线,怎样画出余弦曲线,余弦曲线 的分布有什么特点?
y
2
2
1 22
2
2
x
2
O
2
2-1
2
2
2
理论迁移
例1 用“五点法”画出下列函数的 简图:
3
2 2π
O
π
x
-1
2
例2 当x∈[0,2π]时,求不等式 cos x 1 的解集.
2y
1
y
1 2
O
π
2π x
-1
2
2
[0, ] [ 5 , 2 ]
3
3
小结作业
1.正、余弦函数的图象每相隔2π个单位 重复出现,因此,只要记住它们在[0, 2π]内的图象形态,就可以画出正弦曲 线和余弦曲线.
2.作与正、余弦函数有关的函数图象, 是解题的基本要求,用“五点法”作图 是常用的方法.
2.正、余弦函数的最小正周期是多少?
函数
y Asin( x和 ) y Acos( x )
(A 0, 0) 的最小正周期是多少?
3.周期性是正、余弦函数所具有的一个 基本性质,此外,正、余弦函数还具有 哪些性质呢?我们将对此作进一步探究.
探究(一):正、余弦函数的奇偶性和单调性
思考1:观察下列正弦曲线和余弦曲线的
思考4:周期函数的周期是否惟一?正弦 函数的周期有哪些?
思考5:如果在周期函数f(x)的所有周期 中存在一个最小的正数, 则这个最小正 数叫做f(x)的最小正周期.那么, 正弦函 数的最小正周期是多少?为什么?
思考6:就周期性而言,对正弦函数有 什么结论?对余弦函数呢?
正、余弦函数是周期函数,2kπ (k∈Z, k≠0)都是它的周期,最小 正周期是2π.
思考3:观察正弦曲线,正弦函数在哪些
区间上是增函数?在哪些区间上是减函
数?如何将这些单调区间进行整合?
y 1
y=sinx
-6π -4π -2π -5π -3π
-π
O
π
3π 5π x
2π 4π 6π
-1
正弦函数在每一个闭区间 [ 2k 2k
2
上都是增函数;在每一个闭区间
[ 2k 2k 上都是减函数.
在函数领域里,周期性是函数的一个重
要性质.
知识探究(一):周期函数的概念 思考1:由正弦函数的图象可知, 正弦曲 线每相隔2π个单位重复出现, 这一规 律的理论依据是什么?
. sin(x 2k ) sin x (k Z )
思考2:设f(x)=sinx,则sin(x 2k ) sin x 可以怎样表示?其数学意义如何?
例2 已知定义在R上的函数f(x)满足
f(x+2)+f(x)=0,试判断f(x)是否为周 期函数?
例3 已知定义在R上的函数f(x)满足 f(x+1)=f(x-1),且当x∈[0,2]时, f(x)=x-4,求f(10)的值.
小结作业
1.函数的周期性是函数的一个基本性质, 判断一个函数是否为周期函数,一般以 定义为依据,即存在非零常数T,使f(x +T)=f(x)恒成立.
知识探究(二):周期概念的拓展
思考1:函数f(x)=sinx(x≥0)是否为 周 期 函 数 ? 函 数 f(x)=sinx ( x≤0 ) 是 否为周期函数?
思考2:函数f(x)=sinx(x>0)是否为 周期函数?函数f(x)=sinx(x≠3kπ) 是否为周期函数?
思考3:函数f(x)=sinx,x∈[0,10π] 是否为周期函数?周期函数的定义域有 什么特点?
4.一个函数总具有许多基本性质,要直 观、全面了解正、余弦函数的基本特性, 我们应从哪个方面人手?
知识探究(一):正弦函数的图象 思考1:作函数图象最原始的方法是什么?
思考2:用描点法作正弦函数y=sinx在[0, 2π]内的图象,可取哪些点?
思考3:如何在直角坐标系中比较精确地 描出这些点,并画出y=sinx在[0,2π] 内的图象?
(1)y=1+sinx,x∈[0,2π]; (2)y=-cosx,x∈[0,2π] .
x0 sinx 0 1+sinx 1
3
2
22
1 0 -1 0
21 0 1
y
2
y=1+sinx
1
3
π
2
2π
O
x
-1
2
x
02
3 22
cosx 1 0 -1 0 1
-cosx -1 0 1 0 -1
y
y=-cosx
1
( k k
2
思考2:根据相关诱导公式,你能判断正 切函数是周期函数吗?其最小正周期为 多少?
正切函数是周期函数,周期是π.
思考3:函数 y tan(2x 的)周期为多少?
思考4:函数y=3sin(2x+4)的最小正 周期是多少?
思考5:一般地,函数y A sin( x )
(A 0, 0) 的最小正周期是多少?
思考6:如果函数y=f(x)的周期是T,那 么函数y=f(ωx+φ)的周期是多少?
理论迁移
例1 求下列函数的周期: (1)y=3cosx; x∈R (2)y=sin2x,x∈R; ( (34) )yy=|s2isninx(|x2 x∈6)R., x∈R ;
1.4 三角函数的图象与性质 1.4.1正弦函数、余弦函数的图象
问题提出
t
p
1 2
5730
1.在单位圆中,角α的正弦线、余弦线
分别是什么?
y
sinα=MP
P(x,y)
cosα=OM
OM x
2.任意给定一个实数x,对应的正弦值 (sinx)、余弦值(cosx)是否存在?惟一?
3.设实数x对应的角的正弦值为y,则对 应关系y=sinx就是一个函数,称为正弦 函数;同样y= cosx也是一个函数,称为 余弦函数,这两个函数的定义域是什么?
对称性,你有什么发现?
y 1
y=sinx
-6π -4π -2π -5π -3π
-π
O
π
3π 5π x
2π
4π
6π
-1
y y=cosx
2
2
1 22